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Abstract 28 

In aquaculture, fish are exposed to a range of unfavourable environmental conditions. 29 

Amongst these, stocking density has attracted considerable attention as inappropriate densities may 30 

compromise welfare and negatively impact production. However, the recommendations for stocking remain 31 

elusive. The aim of the present study was to apply a novel method to investigate a level of crowding that 32 

indicated aversiveness in rainbow trout (Oncorhynchus mykiss). In a two-tank system, where two identical 33 

tanks were connected via a doorway, it was observed that social behaviour controlled the distribution of the 34 

fish between the tanks. Fish were stocked at equal quantities in each tank of the system. The doorway was 35 

opened and the fish moved between the two tanks. Typically, this resulted in one tank being occupied by a 36 

few highly aggressive dominant individuals (“dominant” tank) and the majority of the fish occupying the 37 

second tank (“crowded” tank). Here, the potential of this unequal spatial distribution for quantifying aversion 38 

to crowding was explored. Fish were stocked in three two-choice systems at a total density of 20, 40 and 80 39 

kg m 
– 3

 respectively. The number of fish in each tank was determined every three days throughout the 40 

duration of the experiment and the percentage of fish in the “crowded” tank was used as an indicator of the 41 

distribution pattern in the two-tank systems. The results indicated a negative relationship between the total 42 

density stocked (20, 40 & 80 kg m 
– 3

) and the percentage of fish in the “crowded” tank. A subsample of 43 

individuals was sacrificed for blood and brain samples every three days from the “crowded” tank, prior to the 44 

fish count. The neuroendocrine indicators of stress, elevated serotonergic activity levels which were not 45 

associated with high plasma levels of cortisol, suggested chronic stress in the fish at the highest total density 46 

stocked (80 kg m 
– 3

). Taken together, these results indicated that a level of aversiveness to crowding had 47 

been reached at the highest density stocked, where the mean absolute density, irrespective of time of day, 48 

observed in the “crowded” tank was 126.5 ± 3.7 kg m 
– 3

.  49 

 50 
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1. Introduction 54 

Stocking density in aquaculture has received considerable attention in recent years. This has 55 

been the consequence of an increasing public concern for the welfare of fish from aquaculture (Huntingford 56 

et al., 2006) and recognition in the commercial and scientific communities that inappropriate densities 57 

contribute to a reduced welfare status in fish (Ellis et al., 2002).  58 

The general perception is that welfare decreases with increasing density, though there are no 59 

unanimous results of the effect of increasing stocking densities on indicators of welfare, such as general 60 

performance and stress hormone levels (Ellis et al., 2002). Naturally, this may in part be due to species 61 

differences, where welfare may be optimal for some species at higher densities and for others at lower 62 

densities. However, contradictory results have been found even within a species (Ellis et al., 2002; Brännäs 63 

and Johnsson, 2008). This has been attributed to differences between studies in experimental design and 64 

methodology (Ellis et al., 2002). However, it has also highlighted the fact that stocking density is a complex 65 

issue and the negative effects on welfare are likely to be the cause of a combination of factors as a 66 

consequence of stocking density (Bagley et al., 1994; Person-Le Ruyet et al., 2008), such as water quality 67 

and social interactions (Ellis et al., 2002).      68 

The method that has most commonly been used to study the relationship between stocking 69 

density and welfare has been by investigating the effects of varying density levels on indicators of welfare; 70 

such as performance, condition, health and stress levels (Boujard et al., 2002; Ellis et al., 2002; Larsen et al., 71 

2012; McKenzie et al., 2012; North et al., 2006; Person-Le Ruyet et al., 2008; Skøtt Rasmussen et al., 2007). 72 

Through such studies it has been possible to make general conclusions about the influence of stocking 73 

density on welfare. Ellis et al. (2002) reviewed all the studies to date that had investigated the relationship 74 

between stocking density and welfare for rainbow trout, Oncorhynchus mykiss. They concluded that despite 75 

the lack of clear evidence, high stocking density had the potential to reduce welfare. Since then, additional 76 

studies have been carried out, which concluded that low as well as high stocking densities had the potential 77 

to compromise indicators of welfare (Boujard et al., 2002; Ellis et al., 2002; Larsen et al., 2012; McKenzie et 78 

al., 2012; North et al., 2006; Person-Le Ruyet et al., 2008; Skøtt Rasmussen et al., 2007).  79 
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A number of the published studies on this issue have attempted to make specific 80 

recommendations for maximum stocking densities for rainbow trout based on their experimental results 81 

(Ellis et al., 2002). Depending on the type of rearing system, the recommendations for appropriate stocking 82 

densities made by the studies reviewed ranged from 4 to more than 267 kg m 
– 3

 (Ellis et al., 2002). 83 

Evidently, concrete conclusions regarding the density limits at which welfare and production in rainbow 84 

trout are optimised continue to be ambiguous. Therefore, developing alternative methods to investigate the 85 

density levels that fish experience as critically crowded may provide insight into optimal density limits for 86 

rainbow trout.     87 

The aim of the current study was to apply a novel method to investigate a level of 88 

aversiveness to crowding of farmed rainbow trout (Oncorhynchus mykiss). This was achieved by studying 89 

the spatial distribution in two-tank systems stocked fish at different densities to establish a level of aversion 90 

to crowding. Here, a two-tank system consisted of two identical tanks which were attached to each other with 91 

a doorway, allowing individuals to move freely between the two tanks. Groups of fish held in this system 92 

were observed to distribute themselves unequally between the two tanks, despite equal initial stocking and 93 

equal feed rations in the two tanks. Social behaviour was established as the controlling factor for this 94 

distribution pattern, as aggression and dominance related behaviours by a few individuals in one tank, 95 

referred to as the “dominant” tank, drove the majority of the group into the second tank, referred to as the 96 

“crowded” tank. The percentage of fish, of the total quantity of fish in the system, occupying the “crowded” 97 

tank was used as an indicator of the distribution pattern between the two tanks at three stocking densities; 20, 98 

40 and 80 kg m 
– 3

. To support these observations, neuroendocrine indicators of stress, plasma cortisol and 99 

brain serotonergic activity, of individuals from the “crowded” tank were examined to determine crowding 100 

stress.  101 

 102 

2. Materials and Methods 103 

2.1 Experimental fish 104 

Rainbow trout from Mark Mølle fish farm, Nykøbing Mors in Denmark were used in the 105 

present study. The fish were transported by truck to the Danish Technical University, Institute of Aquatic 106 
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Resources (DTU Aqua) in Hirtshals and upon arrival unloaded directly into quarantine tanks. While in 107 

quarantine, the fish were put on a feeding regime at 0.75 % of their total body mass per day. Additionally, 108 

the salt content in the water was slowly increased to 15 ‰. The fish were held in quarantine conditions for a 109 

period of 15 days, after which they were available to be used for experiments. 110 

Fish were ordered and delivered on two occasions to provide adequate quantities of 111 

individuals for all three trials of the experiment. Fish from the first delivery were used in trial 1 and 2 and 112 

fish from the second delivery were used in trial 3. The fish originated from the same family.   113 

At the time of arrival, the fish from the first delivery had an average individual weight of 150 g. At the time 114 

the fish were used during trial 1 and trial 2, the fish had an average individual weight of 279 g and 390 g 115 

respectively. At the time of arrival, the fish from the second delivery had an average individual weight of 116 

300 g. At the time the fish were used during trial 3, the fish had an average individual weight of 430 g. 117 

 118 

2.2 Experimental facilities 119 

The three trials of the experiment were carried out using two-tank systems. Each system 120 

consisted of two identical 700 liter circular tanks attached to one another via a doorway. The doorway could 121 

be opened by the researcher by removing the sliding door. Each tank was 100 cm in height and had a 122 

diameter of 100 cm. The doorway had a width of 15 cm and ran the height of the tank. Each tank was 123 

individually equipped with a water inflow and outflow, as well as an oxygen and air supply. A water current 124 

of approximately 0.5 BL s 
-1

 (body lengths per second) was achieved through small holes in inflow pipe 125 

creating pressure, thereby circulating the water around the tank.   126 

Three two-tank systems, standing parallel to each other, were used simultaneously during each 127 

trial and were supplied with water from the same recirculating system. The water quality parameters in the 128 

system; temperature, ammonia, nitrate, nitrite and pH were checked daily to ascertain that they were within 129 

optimal levels for the fish. The temperature of the water in the system was 16 ± 0.01 °C, ammonia 130 

(NH3/NH4
+
) levels were 0 mg l 

-1
, nitrite (NO2

-
) and nitrate (NO3

-
) were 37.6 ± 1.9 and 0.4 ± 0.05 mg l 

-1
 131 

respectively and pH was 7.6 ± 0.01. Oxygen levels were adjusted manually as the fish moved between the 132 
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tanks and kept at levels between 90- 100% saturation in both tanks of each system. The fish were on a 12/12 133 

hour light dark regime, with the lights switching on automatically at 08:00 and switching off at 20:00. 134 

 135 

2.3 Experimental design 136 

During pilot studies it was observed that when groups of fish were placed in a two-tank 137 

system, the result was an unequal distribution of individuals between the two tanks. At the start, an equal 138 

quantity of fish was stocked in each tank of the system. Each tank was given the same amount of feed, 139 

throughout the study. The doorway was opened allowing individuals to move freely between the two tanks. 140 

The resulting distribution pattern typically observed was one tank becoming occupied by a few dominant 141 

aggressive individuals and the majority of the fish occupying the second tank. The few dominant individuals 142 

occupying one tank drove out the majority of the group into the second tank, thereby controlling the 143 

distribution of the group in the two-tank system. Although quantifications of their behaviour were not made, 144 

observation of the fish confirmed that they exhibited behaviour that was characteristic for a dominant 145 

individual. They displayed territorial behaviour, monopolising the food resource with chasing out individuals 146 

entering the tank. Furthermore, if more than one individual was present they displayed agonistic behaviour 147 

towards each other. The tank occupied by the dominant individuals will be referred to as the “dominant” tank 148 

and the tank holding the majority of the fish as the “crowded” tank. For the present study, we utilised this 149 

inequality in the distribution pattern of groups of fish in the two-tank system to investigate a level of 150 

aversiveness to crowding.  151 

Three stocking densities were used during the experiment; the first two-choice system was 152 

stocked at 20 kg m 
– 3

, the second at 40 kg m 
– 3

 and the third at 80 kg m 
– 3

. The experiment was completed in 153 

triplicates as trial 1, trial 2 and trial 3. Between each trial, the stocking density in each two-choice system 154 

was changed. The number of fish in each tank was determined every three days during the experiment for a 155 

period of two weeks. As the distribution of the fish changed between the night time and the day time, the fish 156 

count and sampling of individuals in the “crowded” tank was determined at two time points during the daily 157 

cycle. One time point was chosen at the end of the night time hours, which was in the morning at 07:30 when 158 

it was still dark. The second time point was chosen at the end of the day time hours, which was in the 159 
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evening at 19:30 when it was still light. These time points will be referred to as in “dark” and “light”, 160 

respectively. During the experiment, sampling was alternated between the morning (“dark”) and the evening 161 

(“light”). Between each trial, the order of the sampling time points was changed. If in trial 1, the first 162 

sampling was done in the “dark”, then during trial 2, the first sampling was done in the “light” and so on. For 163 

each trial, there were a total of four sampling sessions; two at “dark” (session 1 and session 2) and two at 164 

“light” (session 1 and session 2). 165 

Additionally, a subsample consisting of six individuals from the “crowded” tank was sampled 166 

for blood and brain parts. The individuals were taken before the number of fish in the tank was determined. 167 

Plasma cortisol concentrations and brain serotonergic activity were analysed to assess the stress levels in this 168 

tank. Cortisol is a commonly used physiological indicator of stress in fish when studying the effects of 169 

stocking density (Ellis et al., 2002; North et al., 2006). Additionally, serotonergic activity, the ratio between 170 

the brain tissue concentration of serotonin (5-HT, monoamine) and 5-hydroxyindoleacetic acid (5-HIAA, 171 

metabolite), has previously been used as an indicator of stress in relation to stocking density in rainbow trout 172 

(McKenzie et al., 2012) and has also been used as an indicator of chronic social stress in salmonid fish in 173 

pairs and small groups (Øverli et al., 1999; Winberg et al., 1991; Winberg et al., 1992; Winberg and Nilsson, 174 

1993).   175 

  176 

2.4 Experimental procedure  177 

The fish were transported to the experimental facility and stocked into the three two-tank 178 

systems using 20, 40 and 80 kg m 
– 3

. The two tanks of each system were stocked with equal densities. 179 

During this initial stocking process, the number of fish going into each tank was counted to allow for future 180 

determination of the percentage of fish occupying each tank. After initial stocking, the fish were given an 181 

acclimation period of a week and the doorway separating the two tanks was left closed to hinder any re-182 

distribution before the start of the experiment. The fish in each tank of the systems were fed at 1% of their 183 

total body weight (grams) from 08:00 to 20:00 using 12 hour automated belt feeders. After an acclimation 184 

period of a week, the doorway between the two tanks in each system was opened, allowing the fish to swim 185 
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freely between the two environments. The amount of feed given to each tank of the two-tank systems was 186 

kept at the same level as during the acclimation period.  187 

The number of fish in each tank was determined every three days. For practical reasons, this 188 

was done by counting the number of fish in the “dominant” tank and subtracting this count from the total 189 

number of known fish in the system. Before determining the number of fish in each tank, a subsample of six 190 

individuals from the “crowded” tank of each system were sacrificed by an overdose of anaesthetic (Ethylene 191 

glycol monophenyl ether). Blood samples were collected from the caudal vein using 1 ml syringes filled with 192 

EDTA (Ethylenedinitrilotetraacetic acid disodium salt dihydrate) powder. The blood samples were 193 

centrifuged and the plasma was separated into 1 ml eppendorf tubes and frozen at -80 °C for later analysis. 194 

Whole brains were dissected out from each fish and separated into four parts; brain stem, hypothalamus, 195 

telencephalon and optic lobes, frozen directly using liquid nitrogen and then stored in the -80 °C freezer for 196 

later analysis.  197 

 198 

2.5. Analysis of plasma cortisol and serotonin 199 

Cortisol was extracted from the plasma using ethyl ether, evaporated using a vacuum 200 

centrifuge and re-suspended in an extraction buffer (ELISA kit extraction buffer). Concentrations (ng ml 
-1

) 201 

were quantified using the ELISA kit standard method (Neogen, Product #402710).  202 

Frozen brain parts were homogenised in a homogenising reagent (4% perchloric acid, 0.2% 203 

Ethylenediaminetetraacetic acid, 40 ng ml 
-1

 dihydroxi benzylamine hydroxide solution) and centrifuged at 204 

10,000 rpm at 4 °C for 10 minutes to separate the supernatant. The supernatant was assayed using High 205 

Performance Liquid Chromatography (HPLC) with electrochemical detection, described in Andersson and 206 

Höglund (2012), to quantify 5-HIAA (metabolite) and 5-HT (monoamine). The supernatant (sample) was 207 

transported through the HPLC system by a mobile phase, which consisted of a buffer solution containing 208 

10.35 g l 
-1

 sodium phosphate, 0.3252 g l 
-1

 sodium octyl sulphate, 0.0037 g l 
-1

 ethylenediaminetetraacetic 209 

acid disodium salt dehydrate, 7% acetonitril in deionised water. The compounds in the sample were analysed 210 

using a computer program (software; Clarity, DataApex Ltd.). The sample 5-HIAA and 5-HT quantities were 211 
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compared with quantities from solutions of known concentration (standards) to determine the actual 212 

concentrations. 213 

 214 

2.6 Statistical analyses 215 

The percentage of the total number of fish in one tank was used as a measure of crowding. 216 

The difference in the proportions of fish occupying the “crowded” tank between density treatments (20, 40 & 217 

80 kg m 
– 3

), sampling time (“dark” and “light”), trial (1, 2 & 3), two-choice system (1, 2 & 3) and session (1 218 

& 2) was analysed with a generalised linear model (GENMOD). In addition to the mentioned variables (class 219 

variables) initial weight of the fish was used as a covariate. The response variable was number of fish in the 220 

crowded tank/total number of fish (binomial distribution).  221 

To determine if there was a difference in the concentrations of plasma cortisol, concentrations 222 

of 5-HIAA and 5-HT, and ratios of 5-HIAA/5-HT between density treatments (20, 40 & 80 kg m 
– 3

), 223 

sampling time (“dark” and “light”), trial (1, 2 & 3), and session (1 & 2), was determined using an ANCOVA, 224 

with fish weight (at the time of sampling) as the covariate. The log concentrations of plasma cortisol, log 225 

concentrations of 5-HIAA and 5-HT, or arcsin ratios of 5-HIAA/5-HT were used as the dependent variables. 226 

A Tukey’s post hoc test was used to determine between which treatments the significances occurred.  227 

 228 

3. Results 229 

3.1 Spatial distribution of fish  230 

3.1.1 Percentage of fish in the “crowded” tank 231 

The GENMOD did not indicate any differences between trials (p=0.986), two choice system 232 

(p=0.343), sampling time (p=0.143) or session (p=0.875). The percentage of the fish choosing to be in the 233 

crowded environment decreased with increasing total stocking densities (p<0.001, Fig. 1), with a significant 234 

difference between stocking densities 20 and 40 kg m 
– 3

 (p= 0.007), between 20 and 80 kg m 
– 3

 (p<0.001) 235 

and between 40 and 80 kg m 
– 3

 (p<0.001). At 80 kg m 
– 3

, of a total of 314 ± 23 individuals in the system, 236 

251 ± 27 occupied the “crowded” tank. At 40 kg m 
– 3

, 125 ± 11 out of a total of 144 ± 9 individuals 237 

occupied the “crowded” tank. At 20 kg m 
– 3

, 64 ± 6 out of a total of 77 ± 7 individuals occupied the crowded 238 
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tank. Furthermore, there was a positive relationship between initial fish weight and density in the crowded 239 

tank (p<0.001).  240 

 241 

3.1.2. Absolute density in the “crowded” tank 242 

 The absolute density (kg m 
– 3

) in the “crowded” tank of the two-tank systems was determined 243 

from the percentage of the fish occupying this tank. At stocking density 20 kg m 
– 3

 the mean absolute 244 

density in the “crowded” tank irrespective of sampling time was 32.5 ± 1.5 kg m 
– 3

 (Fig. 2). At “dark” and 245 

“light” the absolute density was 30.7 ± 2.3 kg m 
– 3

and 34.3 ± 2.1 kg m 
– 3

 respectively. At 40 kg m 
– 3

 the 246 

mean absolute density was 63.7 ± 2.4 kg m 
– 3

 (Fig. 2), and 57.4 ± 3.5 kg m 
– 3

 and 69.9 ± 3.3 kg m 
– 3

 in the 247 

“dark” and “light” respectively. At 80 kg m 
– 3

 the mean absolute density was 126.5 ± 3.7 kg m 
– 3

 (Fig. 2), 248 

and in the “dark” and “light” was 115.7 ± 5.5 kg m 
– 3

 and 137.4 ± 10.0 kg m 
– 3

 respectively. 249 

 250 

3.2 Neuroendocrine indicators of stress 251 

3.2.1 Plasma cortisol  252 

Despite a tendency for slight elevation in the plasma cortisol concentrations of individuals in 253 

the “crowded” tank at the highest total density stocked (kg m 
– 3

), there was no difference in the levels 254 

between the three densities stocked (20, 40 & 80 kg m 
– 3

; p=0.314; Fig. 3). There was also no significant 255 

difference between the “dark” and “light” (sampling time; p=0.140), between the first and second sampling 256 

session (session; p=0.077), between trials (p=0.948), two-choice system (p=0.128) or fish weight (p=0.217).  257 

 258 

3.2.2 Brain ratios (5-HIAA/5-HT)    259 

Generally, the serotonergic activity in the brain stem of the individuals in the “crowded” tank 260 

was higher in the “light” compared to the “dark” irrespective of stocking density (p=0.013) and higher in the 261 

first sampling session compared to the second sampling session irrespective of density (session; p=0.001). 262 

Moreover, there was a higher activity level in the individuals in the “crowded” tank of the system stocked at 263 

80 kg m 
– 3

, compared to the individuals in the two systems stocked at 20 and 40 kg m 
– 3

 (p<0.001; Fig. 4A). 264 

Specifically, there were no differences in activity levels between 20 and 40 kg m 
– 3

 (p=0.953), but 265 
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differences between 20 and 80 kg m 
– 3

 (p<0.001) and between 40 and 80 kg m 
– 3

 (p<0.001; Fig. 4A). 266 

Furthermore, there was an effect of trial (p=0.028). Fish weight showed a negative relationship with 267 

serotonergic activity (p=0.004).   268 

The serotonergic activity in the telencephalon of the individuals in the “crowded” tank 269 

followed a similar pattern. Activity levels were higher in the individuals in the “light” compared to the 270 

“dark” irrespective of density (sampling time; p≤0.001). In contrast to the brain stem, serotonergic activity 271 

was higher in the second sampling session compared to the first (session; p≤0.001). Furthermore, in the 272 

telencephalon there was only a trend towards higher serotonergic activity in the individuals in the “crowded” 273 

tank  of the system stocked at 80 kg m 
– 3

, compared to 20 and 40 kg m 
– 3

 (p=0.064; Fig. 4B). There was no 274 

effect of trials (p=0.919) or fish weight (0.518). 275 

The 5-HTergic activity in the hypothalamus of the individuals in the “crowded” tank, of all 276 

systems combined, did not differ between the “dark” and “light” (sampling time; p=0.127), between the first 277 

and second sampling session (p=0.064), between trial (p=0.058), fish weight (p=0.109) or the total densities 278 

stocked (p=0.263; Fig. 4C).  279 

  280 

3.2.3 Brain 5-HT and 5-HIAA    281 

The concentration of the main metabolite (5-HIAA) of serotonin and monoamine serotonin (5-282 

-HT) in the brain stem, telencephalon and hypothalamus between the three density treatments (20, 40, & 80 283 

kg m 
– 3

)
 
are given in Table 1.   284 

In the brain stem, there was a significant effect on 5-HIAA concentration by sampling time 285 

(p=0.013), session (p=0.001) and density treatment (p=0.012) and trial (p=0.011), but there was no effect of 286 

fish weight (p=0.468). There was a significant difference in 5-HT concentration between session (p<0.001) 287 

and trial (p=0.001), but not sampling time (p=0.301), fish weight (p=0.368) or density treatment (0.703).  288 

In the telencephalon, there was a difference in 5-HIAA concentration between sampling time 289 

(p=0.012), but not between trials (p=0.069), session (p=0.975), fish weight (p=0.329) or density treatment 290 

(p=0.345). A similar pattern was observed in 5-HT concentrations, where an effect of sampling time 291 
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(p<0.001) and trials (p<0.001) was observed. However, no effect of session (p=0.116), fish weight (p=0.846) 292 

or density treatment (p=0.146) were detected. 293 

In the hypothalamus, there was a difference in 5-HIAA concentration between sampling time 294 

(p=0.008), trials (p<0.001), session (p=0.044), but not fish weight (0.173) or density treatment (p=0.321). In 295 

5-HT concentrations there was a difference between session (p≤0.001), trials (p<0.001), but not sampling 296 

time (p=0.986), fish weight (p=0.643) or density treatment (p=0.798).    297 

 298 

4. Discussion 299 

In the present study, the distribution of the fish in the two-tank systems was unequal, 300 

irrespective of total density, with a few highly aggressive dominant individuals controlling one tank 301 

(“dominant” tank) and the majority of the fish preferring to occupy the second tank (“crowded” tank). This 302 

distribution pattern resembled an Ideal Despotic Distribution (IDD), first described in birds, where 303 

movement between patches was controlled by intraspecific competition (Fretwell, 1972). The IDD has 304 

previously been described in laboratory situations in Salmonids, where dominant individuals excluded other 305 

individuals from a favourable patch (Hakoyama and Iguchi, 2001; Maclean et al., 2005). In our study, 306 

although behavioural quantifications of the individuals in the “dominant” tank were not carried out, 307 

observation of the fish confirmed that they displayed agonistic behaviours towards other individuals in the 308 

tank and fish attempting to enter the tank. Furthermore, it was observed that with increasing density, apart 309 

from the few dominant aggressive individuals occupying the “dominant” tank, there was a spillover of 310 

individuals from the “crowded” tank entering the “dominant” tank that did not perform aggressive acts. 311 

These individuals stayed immobile and accumulated in the “dominant” tank close to the doorway between 312 

the two tanks, a behaviour which is typically observed in subordinate fish (Abbott et al., 1985; Øverli et al., 313 

1999; Winberg and Nilsson, 1993; Øverli et al., 1998). This distribution pattern was especially distinct in the 314 

two-tank system stocked with the highest total density, with the “dominant” tank occupied by a few 315 

dominant aggressive individuals and a gradual accumulation of subordinate individuals. The results indicated 316 

a negative relationship between the percentage of fish in the “crowded” tank and the total density stocked. 317 
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Specifically, the percentage of fish in the “crowded” tank decreased significantly with increasing total 318 

stocking density (20, 40 and 80 kg m 
– 3

). As a result of this distribution pattern in the tanks, irrespective of 319 

the time of day (sampling time, “dark” or “light”), the mean absolute density in the “crowded” tank stocked 320 

at a total density of 20 kg m 
– 3 

was 33 kg m 
– 3

, at 40 kg m 
– 3 

was 64 kg m 
– 3

, and 80 kg m 
– 3

 was 127 kg m 
– 321 

3
. Moreover, although not significantly different, the spatial distribution was observed to be more unequal 322 

during the hours when it was light (evening sampling) than during the hours when it was dark (morning 323 

sampling). During the day the fish were provided with a food resource to compete for, resulting in a few 324 

individuals monopolising this resource in one tank (“dominant” tank) and driving out the majority of the 325 

individuals into the second tank (“crowded” tank).  326 

Neuroendocrine indicators of stress were examined to support our behavioural observations. 327 

Interestingly, the significantly higher serotonergic activity found in the brain stem and telencephalon of the 328 

individuals in the “crowded” tank under light conditions, irrespective of density, indicated higher stress 329 

levels in these fish. This suggests that stronger social competition in the “dominant” tank during the day led 330 

to greater inequality in the observed distribution of the fish in the two-choice systems which resulted in 331 

higher stress levels in the “crowded” tank. Furthermore, we observed elevated serotonergic activity, as 5-332 

HIAA concentrations and 5-HIAA/5-HT ratios, in the brain stem and a tendency for elevated levels in the 333 

telencephalon of the individuals in the “crowded” tank of the system stocked at the highest density (80 kg m
 -334 

3
). Previous studies investigating social behaviour in pairs or small groups of fish found an elevation in 335 

serotonergic activity levels in individuals exposed to prolonged periods of social stress (socially subordinate 336 

individuals) (Øverli et al., 1999; Winberg et al., 1991; Winberg et al., 1992; Winberg and Nilsson, 1993), as 337 

indicated by elevated concentrations of 5-HIAA and 5-HIAA/5-HT ratios (Winberg and Nilsson, 1993; 338 

Winberg and Lepage, 1998). Often in parallel to this is an elevation in plasma cortisol concentration, 339 

suggesting a stimulatory role of 5-HT activity on the HPI axis (Øverli et al., 1999). However, this 340 

relationship tends to weaken during prolonged stress, where HPI axis reactivity decreases while 5-HT 341 

activity remains high (Winberg and Lepage, 1998). Indeed, the plasma cortisol levels found in the 342 

individuals in the “crowded” tank of the two-choice systems in the present study were generally low, and did 343 
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not co-vary with serotonergic activity. Nevertheless, these findings are not uncommon in Salmonids. Basal 344 

levels of plasma cortisol in unstressed fish below 5 ng ml 
-1

, usually between 1-2 ng ml 
-1

, have been found, 345 

and in chronically stressed individuals, below 10 ng ml 
-1 

(Pickering and Stewart, 1984; Pickering and 346 

Pottinger, 1989). In some cases, when subjected to chronic stress, plasma cortisol levels (10 ng ml 
-1

) 347 

eventually returned to basal levels (ng ml 
-1

) after a period of time, despite the continued presence of stress 348 

(Barton et al., 1980; Pickering, 1992; Strange and Schreck, 1978). Hence, in the present study, elevated 349 

levels of serotonergic activity and low concentrations of cortisol in the “crowded” tank of the two-choice 350 

system stocked at 80 kg m 
– 3

 should reflect chronic stress in a crowded situation.  351 

The positive relationship between density and fish weight suggested that larger fish accepted 352 

to be at a higher density than smaller individuals. The negative relationship between fish weight and 353 

serotonergic activity in the brain stem suggests that of the fish that have accepted to stay in the “crowded” 354 

tank, the smaller fish had higher stress levels compared to larger fish. Additional studies are needed to assess 355 

how fish size influences the distribution of fish, but our results indicate that fish size is an important factor to 356 

consider when investigating critical stocking densities. Furthermore, although water quality parameters were 357 

checked at a system level daily, they were not measured specifically at the tank level. It may be speculated 358 

that as there was such a high number of fish in the “crowded” tank of the system stocked at the highest 359 

density, the water quality may have been influenced. As a result, we cannot exclude the fact that the density 360 

effects observed on the neuroendocrine stress levels could be, in part, influenced by water quality. Therefore, 361 

additional studies are necessary to exclude the influence of this factor. 362 

 363 

5. Conclusion 364 

Here we have presented a method using two-tank systems to determine a level of crowding 365 

that showed signs of aversiveness in farmed rainbow trout. A negative relationship between stocking density 366 

and the percentage of fish occupying the “crowded” tank was observed. Furthermore, the neuroendocrine 367 

indicators of stress suggested the presence of chronic stress in the fish of the two-tank system stocked at the 368 

highest density (80 kg m 
– 3

), with low concentrations of plasma cortisol but elevated levels of serotonergic 369 

activity found in the brain stem of the individuals in the “crowded” tank of this system. Overall, these results 370 
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indicated that a level of aversiveness to crowding had been reached at the highest total density stocked, 371 

where the mean absolute density that was observed in the “crowded” tank was 126.5 ± 3.7 kg m 
– 3

. A follow 372 

up study is necessary to assess if being held at the densities accepted by the fish in the present study has an 373 

impact on indicators of welfare and performance in farmed rainbow trout.    374 
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8. Figure captions 446 

 447 

 448 

Figure 1. The percentage of fish in the “crowded” tank of the two-choice system between the three total 449 

densities (n=3). The letters (a, b & c) indicate a significant difference between treatments.   450 
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 452 

 453 

Figure 2. The absolute density (kg m 
– 3

) in the “crowded” tank at each total density (n=3).  454 

 455 

 456 

Figure 3. Plasma cortisol concentrations of individuals taken from the “crowded” tank at each total density 457 

(n=18). 458 
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 463 

Figure 4. Serotonergic activity (5-HIAA/5-HT) in the a) Brain stem, b) Telencephalon and c) Hypothalamus 464 

of individuals (n=18) in the “crowded” tank at each total density. The letters (a & b) indicate a significant 465 

difference between treatments. 466 

 467 

9. Table captions 468 

Table 1. The concentrations (mean ± SEM) of monoamine and metabolites in the different brain regions of 469 

the individuals (n=18) in the “crowded” tank at each total density.  470 

  

Density treatment (kg m3 -1) 

 
Brain region 

Metabolite 
and 

metabolite 
20 40 80 p value 

Brain stem 5-HIAA 363.1 ± 21.0 404.5 ± 23.4 438.9 ± 19.7 0.013 

 
5-HT 1419.5 ± 89.3 1574.7 ± 113.6 1444.9 ± 67.7 0.653 

Telencephalon 5-HIAA 1094.9 ± 55.7 1161.1 ± 51.3 1077.8 ± 47.9 0.398 

 
5-HT 

4954.33 ± 
297.4 

5201.8 ± 277.9 4550.1 ± 230.2 0.190 

Hypothalamus 5-HIAA 390.5 ± 17.3 410.7 ± 25.8 457.8 ± 29.5 0.439 

 
5-HT 5589.9 ± 373.0 5326.3 ± 372.0 5633.1 ± 420.9 0.850 
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