Environmental Radioactivity in the North Atlantic Region including the Faroe Islands and Greenland 1987 Aarkrog, A.; Buch, E.; Chen, Q.J.; Christensen, G.C.; Dahlgaard, H.; Hansen, H.; Holm, E.; Nielsen, Sven Poul Publication date: 1989 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Aarkrog, A., Buch, E., Chen, Q. J., Christensen, G. C., Dahlgaard, H., Hansen, H., Holm, E., & Nielsen, S. P. (1989). *Environmental Radioactivity in the North Atlantic Region including the Faroe Islands and Greenland 1987*. Risø National Laboratory. Denmark. Forskningscenter Risoe. Risoe-R No. 564 #### General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. - Users may download and print one copy of any publication from the public portal for the purpose of private study or research. - You may not further distribute the material or use it for any profit-making activity or commercial gain - You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. # Environmental Radioactivity in the North Atlantic Region Including the Faroe Islands and Greenland. 1987 A. Aarkrog, E. Buch, Q.J. Chen, G.C. Christensen, H. Dahlgaard, H. Hansen, E. Holm, and S.P. Nielsen ## Environmental Radioactivity in the North Atlantic Region Including the Faroe Islands and Greenland. 1987 A. Aarkrog, E. Buch^o, Q.J. Chen, G.C. Christensen^{*}, H. Dahlgaard, H. Hansen, E. Holm^{**}, and S.P. Nielsen - ° The Greenland Fisheries and Environmental Research Institute, Denmark - * Institute for Energy Technology, Kjeller, Norway - ** International Laboratory of Marine Radioactivity, Monaco Abstract. Measurements of fallout radioactivity in the North Atlantic region including Faroe Islands and Greenland are reported. Strontium-90, cesium-137 and cesium-134 were determined in samples of precipitation, sea water, vegetation, various foodstuffs (including milk in the Faroes), and drinking water. Estimates are given of the mean contents of 90Sr and 137Cs in human diet in the Faroes and Greenland in 1987. 97Tc data on marine samples are reported. Data on plutonium and americium in sediments and biota collected at Thule in 1984 are presented. ISBN 87-550-1533-6 ISSN 0106-2840 ISSN 0900-8098 Grafisk Service, Risø, 1989 2 Risg-R-564 #### **CONTENTS** #### Abbreviations and Units 5 | | | | | _ | |---|---------|-------|-----------|------| | 1 | General | Inter | وزود مطاب | ~~ 7 | | 2. Environmental Radioactivity in the Faroe Islands in 1987 7 | |---| | 2.1. Introduction 7 | | 2.2. Results and Discussion 8 | | 2.2.1. Strontium-90 and Radiocesium in Faroese Precipitation 8 | | 2.2.2. Strontium-90 and Radiocesium in Faroese Grass 11 | | 2.2.3. Strontium-90 and Radiocesium in Faroese Milk 12 | | 2.2.4. Strontium-90 and Radiocesium in Faroese Terrestrial Animals 17 | | 2.2.5. Strontium-90 and Radiocesium in Faroese Sea Animals 19 | | 2.2.6. Strontium-90, Cesium-137 and Tritium in Faroese Drinking Water and Other Fresh Waters 20 | | 2.2.7. Strontium-90 and Radiocesium in Miscellaneous Faroese Samples 22 | | | - 2.2.7.1. Faroese Soil 22 - 2.2.7.2. Faroese Sea Water 23 - 2.2.7.3. Faroese Sea Plants 24 - 2.2.7.4. Faroese Vegetables 25 - 2.2.7.5. Faroese Bread 26 - 2.2.7.6. Faroese Eggs 27 - 2.2.8. Humans from the Faroes 27 - 2.2.8.1. Strontium-90 in Human Bone 27 - 2.2.9. Fodder from the Faroes 27 - 2.2.10. Moss and Lichen from the Faroes 28 - 2.3. Estimate of the Mean Contents of Strontium-90 and Cesium-137 in Faroese Humans Diet in 1987 28 - **2.4.** Conclusion *32* #### APPENDIX 2A Predictions and Observations of Strontium-90 and Cesium-137 in Faroese Samples in 1987 33 #### 3. Environmental Radioactivity in Greenland in 1987 34 - 3.1. Introduction 34 - 3.2. Results and Discussion 35 - 3.2.1.1. Strontium-90 in Greenland Precipitation 35 - 3.2.1.2. Radiocesium in Greenland Precipitation and Soil 37 - 3.2.2. Radionuclides in Greenland Sea Water 38 - 3.2.3. Strontium-90 and Radiocesium in Greenland Terrestrial Mammals 38 - 3.2.4. Strontium-90 and Radiocesium in Greenland Aquatic Animals 39 - 3.2.5. Radionuclides in Greenland Vegetation 41 - 3.2.6. Strontium-90, Radiocesium, and Tritium in Greenland Drinking Water 41 - 3.3. Estimate of the Mean Contents of Strontium-90 and Cesium-137 in the Human Diet in Greenland in 1987 43 - 3.4. Conclusion 47 Rise-R-564 3 - 4. Environmental Radioactivity in the North Atlantic Region 48 - 4.1. Monthly Surface Sea Water Samples from Utsira, Norway 48 - 4.2. Surface Sea water Samples Collected in West Greenland Waters in July 1987 by The Greenland Fisheries and Environmental Research Institute 50 - 4.3. »Polarstern« Cruise to the Greenland Sea June 1987 51 - 4.4. Transuranics in the Greenland Sea in »Polarstern Samples« Collected in June 1987 59 - 4.5. »Bjarni Sæmundson« Cruise to the Denmark Strait and the Southern Greenland Sea in September 1987 (GSP Project) 59 - 4.6. Cruise Godthåb-Thule by the Greenland Environmental Research Institute in August-September 1987 61 - 4.7. Summary of Radionuclides Determination in Greenland Sea Water Samples Collected in 1987 63 - 4.8. Radionuclides in Lichen Collected at a Norwegian Location 1985-1988 65 - 4.9. Thule Sediments Collected in 1984 65 Acknowledgements 79 References 80 #### **Abbreviations and Units** ``` joule: the unit of energy; 1 J = 1 Nm (= 0.239 cal) Gy: gray: th unit of absorbed dose = 1 \text{ J kg}^{-1} (= 100 rad) Sv: sievert: the unit of dose equivalent = 1 J kg⁻¹ (= 100 rem) Bq: becquerel: the unit of radioactivity = 1 \text{ s}^{-1} (= 27 pCi) ALI: annual limit of intake (according to ICRP) cal: calorie = 4.186 J rad: 0.01 Gy rem: 0.01 Sv Ci: curie: 3.7 \cdot 10^{10} Bq (= 2.22 \cdot 10^{12} dpm) E: exa: 10^s P: peta: 10¹⁵ T: tera: 10¹² G: giga: 10' M: mega: 10° kilo: 103 k: m: milli: 10-3 μ: micro: 10-6 nano: 10-9 n: pico: 10⁻¹² p: femto: 10-15 f: atto: 10-18 pro capite: per individual TNT: trinitrotoluol; 1 Mt TNT: nuclear explosives energy equival-nt to 10° kg TNT. a^{-l}: per annum, (yr-1) OR: observed ratio CF: concentration factor μR: micro-roentgen, 10-6 roentgen S.U.: pCi 90Sr (g Ca)-1 O.R.: observed ratio M.U.: pCi 137Cs (g K)-1 vertebrae V: male m: f: female nSr: natural (stable) Sr eqv. mg KCl: equivalents mg KCl: activity as from 1 mg KCl (\sim 0.88 \text{ dpm}).1 \text{ g K} \sim 28 \text{ Bq.} \sim 756 \text{ pCi.} S.D.: standard deviation: S.E.: standard error U.C.L.: upper control level ``` L.C.L.: lower control level Δ : one standard deviation due to counting S.S.D.: sum of squares of deviation: $\Sigma(x-x_i)^2$ f: degrees of freedom s²: variance v²: ratio of the variance in question to the residual variance P: probability fractile of the distribution in question η: coefficient of variation, relative standard deviation anova: analysis of variance Counting errors: given as relative standard deviation: no indication: < 20% A: 20-33% B: >33%, such results are not considered significantly different from zero activity B.D.L.: below detection limit d.w.: dry weight In the significance test, the following symbols were used: * : probably significant (P > 95%) ** : significant (P > 99%) ***: highly significant (P > 99.9%) 6 Rise-R-564 #### 1. General Introduction Since 1962 we have published separate annual reports on Environmental Radioactivity in the Faroes¹⁾ and Greenland²⁾. The reports for 1983 and after are contained in the new series: »Environmental Radioactivity in the North Atlantic Region. The Faroe Islands and Greenland included⁴⁾ of which the present report is the fifth. Chapter 2 in this report corresponds to the earlier report for the Faroes and Chapter 3 to the Greenland report. In Chapter 4 we report on marine environmental radioactivity studies from other parts of the North Atlantic region and, furthermore, include sea water data from the Faroe Islands and Greenland. Chapter 4 also includes results from samplings carried out in earlier years. Due to the burden of work after the Chernobyl accident in 1986, this report appears with several months delay. The "normal" sampling programmes in the Faroes and Greenland were expanded after the Chernobyl accident in order to evaluate the contamination from Chernobyl in these areas. ## 2. Environmental Radioactivity in the Faroe Islands in 1987 #### 2.1. Introduction #### 2.1.1. The fallout programme for the Faroes, which was initiated in 1962¹⁾ in close co-operation with the National Health Service and the chief physician of the Faroes, was continued with some adjustments due to the Chernobyl accident in 1986. A special sampling was carried out by Risø in July in order to compare the environmental behaviour of Chernobyl debris with that from old global fallout. Samples of human bone were obtained in 1987 from Dronning Alexandrine's Hospital in Thorshavn. #### 2.1.2. The present report will not repeat information concerning sample collection and analysis already given in Risø Reports Nos. 64, 86, 108, 131, 155, 181, 202, 221, 246, 266, 292, 306, 324, 346, 361, 387, 404, 422, 448, 470, 488, 510, 528, 541 and 550^{1,4}). #### 2.1.3. The mean diet of the Faroese used in this report is still based on the 1962 estimate given by the late Professor E. Hoff-Jørgensen. #### 2.1.4. The present investigation was carried out together with corresponding examinations of fallout levels in Denmark and Greenland, described in Risø Report No. 5493 and in Chapter 3 of this report, respectively. **Risg-R-564** 7 Fig. 2.1. The Faroe Islands. #### 2.2. Results and
Discussion #### 2.2.1. Strontium-90 and Radiocesium in Faroese Precipitation Tables 2.2.1.1 and 2.2.1.3 show the ⁹⁰Sr and radiocesium content, respectively, in precipitation collected at Højvig (near Thorshavn) and Klaksvig in 1987. The 90Sr fallout in 1987 was about 20 times lower than in 1986. In Denmark the 1987 levels were approximately 26 times less than the 1986 levels²). The mean deposition of ¹³⁷Cs in the Faroes was 105 Bq m⁻². This is a decrease by a factor of 12.5 compared to 1986. In Denmark the levels decreased by a factor of 37²). This suggests a higher resuspension in the Faroes than in Denmark. The ¹³⁷Cs Chernobyl fallout in 1987 was 3.7 times higher in the Faroes than in Denmark, while the ⁹⁰Sr fallout was 1.3 times lower. Table 2.2.1.1. Strontium-90 in precipitation in the Faroes in 1987. (Sampling area: 0.02 m²) | | Højvig | | | Klaksvig | | | | |------------|--------------------|--------------------|---------------|--------------------|--------------------|---------------|--| | | Bq m ⁻³ | Bq m ⁻² | mm
precip. | Bq m ⁻³ | Bq m ⁻² | mm
precip. | | | Jan-Mar | 2.5 | 0.67 | 268 | 0.81 A | 0.48 A | 598 | | | April-June | 1.0 A | 0.19 A | 191 | 0.4 A | 0.19 A | 476 | | | July-Sep | 1.65 | 0.42 | 252 | 0.1 B | 0.06 B | 591 | | | Oct-dec | 0.6 B | 0.12 B | 195 | 0.1 כ | 6 80.0 | 777 | | | 1987 | x 1.55 | Σ 1.40 | Σ 906 | x 0.33 | Σ 0.81 | Σ 2442 | | Fig. 2.2.1. Accumulated ⁹⁰Sr at Klaksvig and Højvig calculated from precipitation measurements since 1962. The accumulated fallout by 1962 was estimated from the Danish fallout data (cf. Risø Report No. 527³), Appendix D) and from the ratio of the ⁹⁰Sr fallout at the Faroese stations to the fallout in Denmark in the period 1962-1987 (cf. Table 2.2.1.2). Table 2.2.1.2. Fallout rates and accumulated fallout (Unit: Bq 90Sr m⁻²) in the Faroes 1950-1987 | | f | łöjvig | Klak | svig | |------|--------|--------------------|-----------------|--------------------| | | di | A ₁₍₂₉₎ | d _i | A ₁₍₂₉₎ | | 1950 | 1.08 | 1.06 | 2.15 | 2.10 | | 1951 | 5.21 | 6.12 | 10.34 | 12.14 | | 1952 | 10.21 | 15. 94 | 20.27 | 31.64 | | 1953 | 25.78 | 40.74 | 51.18 | 80.87 | | 1954 | 98.02 | 135.48 | 194.58 | 268.94 | | 1955 | 128.96 | 258.20 | 256.00 | 512.54 | | 1956 | 159.90 | 408.22 | 317.41 | 810.34 | | 1957 | 159.90 | 554.70 | 317.41 | 1101.12 | | 1958 | 221.82 | 758.18 | 440.34 | 1505.05 | | 1959 | 314.64 | 1047.48 | 624.58 | 2079.33 | | 1960 | 58.78 | 1080.14 | 116.69 | 2144.16 | | 1961 | 76.36 | 1129.19 | 151.59 | 2241.52 | | 1962 | 383.01 | 1476.48 | 760.31 | 2930.93 | | 1963 | 913.00 | 2333.65 | 1503. 00 | 4329.21 | | 1964 | 544.00 | 2809.10 | 1363.00 | 5557.77 | | 1965 | 181.00 | 2919.48 | 436.00 | 5852.21 | | 1966 | 112.00 | 2959.88 | 289.00 | 5996.17 | | 1967 | 94.70 | 2982.44 | 182.00 | 6032.25 | | 1968 | 44.00 | 2954.96 | 55.50 | 5943.97 | | 1969 | 41.10 | 2925.30 | 65.10 | 5867.15 | | 1970 | 53.60 | 2908.54 | 141.00 | 5866.25 | | 1971 | 101.00 | 2938.46 | 156.00 | 5880.02 | | 1972 | 34.40 | 2902.65 | 55.10 | 5794.94 | | 1973 | 24.20 | 2857.73 | 26.50 | 5683.95 | | 1974 | 33.80 | 2823.23 | 58.80 | 5607.12 | | 1975 | 34.40 | 2790.14 | 47.80 | 5521.36 | | 1976 | 8.88 | 2732.91 | 21.60 | 5412.05 | | 1977 | 27.40 | 2695.12 | 34.40 | 5317.81 | | 1978 | 37.30 | 2667.89 | 47.60 | 5238.69 | | 1979 | 13.90 | 2618.45 | 22.20 | 5136.64 | | 1980 | 9.55 | 2565.93 | 10.29 | 5025.36 | | 1981 | 18.37 | 2523.26 | 21.80 | 4927.96 | | 1982 | 6.33 | 2469.84 | 3.91 | 4815.38 | | 1983 | 2.75 | 2414.20 | 2.24 | 4703.84 | | 1984 | 5.53 | 2362.58 | 0.87 | 4593.60 | | 1985 | 0.98 | 2307.74 | 0.59 | 4485.68 | | 1986 | 12.80 | 2264.13 | 28.00 | 4407.74 | | 1987 | 1.40 | 2212.06 | 0.81 | 4304.45 | 1950-1961: are estimated values based upon HASL data (HASL Appendix 291, 1975) considering that the mean ratio of ⁹⁰Sr fallout in Denmark to New York was 0.7 in the period 1962-1974 and that the mean ratios of ⁹⁰Sr fallout in Höjvig to Denmark and Klaksvig to Denmark are 1.39 and 2.76, respectively⁵⁾. Table 2.2.1.3. Radiocesium in precipitation in the Faroes in 1987. (Sampling area: 0.02 m²) | | | Höjvig | | 1 | (laksvig | | |------------|--------|--------------------|-------|-----------------|--------------------|-------| | | 137 | 'Cs | 134Cs | 13 | 7Cs | 134Cs | | | Bq m⁻3 | Bq m ⁻² | 137Cs | Bq m-3 | Bq m ⁻² | 137Cs | | Jan-Mar | 250 | 67 | 0.43 | 112 | 67 | 0.46 | | April-June | 115 | 22 | 0.47 | 42 | 20 | 0.44 | | July-Sep | 111 | 28 | 0.38 | 2.2 | 1.3 | - | | Oct-Dec | 21 | 4.1 | 0.43 | 0.94 | 0.73 | - | | 1987 | x 134 | Σ 121 | | x 36 | Σ 88 | | #### 2.2.2. Strontium-90 and Radiocesium in Faroese Grass Grass samples were collected near Thorshavn in 1987. Table 2.2.2.1 shows the results of the regular samplings. The 1987 ¹³⁷Cs mean level in grass was one tenth of the 1986 level. The ⁹⁰Sr levels decreased by a factor of 8 from 1986 to 1987. As compared with Danish grass in 1987³), we found the ⁹⁰Sr level (Bq (kg Ca)⁻¹) in the Faroese grass in August to be higher by a factor of 2, which is a smaller difference than seen earlier. Table 2.2.2.2 shows the radionuclide levels in grass collected in July 1987 at various locations in the Faroes (cf. Fig. 2.1). The 90 Sr as well as the radiocesium concentrations in these samples were higher than those seen in our routine samples received from Thorshavn. The mean 137 Cs concentrations were 30 ± 13.5 Bq 137 Cs m⁻² (±1 S.D.; N = 4) or 196 ± 95 Bq 137 Cs kg⁻¹ dry weight or 11950 ± 4560 Bq 137 Cs (kg K)⁻¹. These levels were, respectively, 23, 15 and 41 times the corresponding Danish ones in July (cf. Risø-R-563, Table 5.10.2³). The mean 90 Sr concentrations were 6.4 ± 2.7 Bq 90 Sr kg⁻¹ dry weight (±1 S.D.; N = 4) or 2800 ± 1540 Bq 90 Sr (kg Ca)⁻¹. These were, respectively, 3.7 and 2.5 times the corresponding Danish values of September 1987. If we compare 134 Cs/ 137 Cs in Faroese grass with that in Danish grass we get 0.30 ± 0.06 (±1 S.D.; N = 4) and 0.37 ± 0.05 (±1 S.D.; N = 5), respectively. The theoretical Chernobyl 134 Cs/ 137 Cs in July 1987 was 0.37. This shows us that all radiocesium in Danish grass came from Chernobyl, whereas about 20 90 of the 137 Cs in Faroese grass came from Old global fallout in 1987. Table 2.2.2.1. Strontium-90 and radiocesium in grass from Thorshavn 1987 | Month | Bq ⁹⁰ Sr | Bq ⁹⁰ Sr | Bq ¹³⁷ Cs | Bq ¹³⁷ Cs | 134Cs | |--------|------------------------|-----------------------|------------------------|----------------------|-------| | | kg ⁻¹ fresh | (kg Ca) ⁻¹ | kg ⁻¹ fresh | (kg K)-1 | 137Cs | | June | 0.21 | 330 | 4.7 | 1520 | 0.32 | | August | 1.81 | 2300 | 3.4 | 670 | 0.28 | Table 2.2.2.2. Strontium-90 and radiocesium in Faroese grass samples collected by Risé in July 1987 | Location
(cf. Fig. 2.1) | Bq ⁹⁰ Sr
kg ⁻¹ dry | Bq ⁹⁰ Sr
(kg Ca) ⁻¹ | Bq ¹³⁷ Cs
m ⁻² | Bq ¹³⁷ Cs
kg ⁻¹ dry | Bq ¹³⁷ Cs
(kg K)-1 | 134Cs
137Cs | %
dry matter | kg m ⁻²
dry grass | |----------------------------|---|--|---|--|----------------------------------|----------------|-----------------|---------------------------------| | Thorshavn | 6.7 | 4300 | 19.1 | 147 | 16100 | 0.34 | 41 | 0.32 | | Klaksvig | 4.1 | 1200 | 46 | 305 | 14400 | 0.34 | 9 | 1.70 | | Vågø | 4.6 | 1890 | 19.0 | 92 | 5700 | 0.22 | 23 | 0.90 | | Tværå | 10.0 | 4000 | 37 | 238 | 11600 | 0.28 | 17 | 0.93 | #### 2.2.3. Strontium-90 and Radiocesium in Faroese Milk As was done previously¹⁾, weekly samples of fresh milk were obtained from Thorshavn, Klaksvig, and Tværå. Strontium-90 and ¹³⁷Cs were determined in bulked monthly samples. If we compare ^{134/137}Cs in Faroese milk with the corresponding ratio in Danish³⁾, the Faroese turns out to be 88% of the Danish. This shows that Faroese milk contains relatively more old global ¹³⁷Cs fallout than Danish, which is a result of a higher root uptake of the grass (and fodder in general) in the Faroes than in Denmark. From the ¹³⁴Cs/¹³⁷Cs in Faroese milk compared with the theoretical ratio in Chernobyl debris, it is possible to estimate the content of old global ¹³⁷Cs fallout in the milk. In 1986 the level was 1350 Bq m⁻³ and in 1987 it was 1310. Compared with the previous years (1982-1985), these levels correspond to an effective half-life of ¹³⁷Cs in Faroese milk from root uptake by the crops of 2.4 yr (cf. Fig. 2.2.3.4). In Denmark the ¹³⁷Cs content in milk decreased by a factor of 1.8³⁾ from 1986 to 1987. In the Faroese Islands the ¹³⁷Cs levels increased by a factor of 1.3. The Faroese ¹³⁷Cs levels in 1987 were approximately 13 times higher than the Danish. The Faroese ⁹⁰Sr milk levels were not influenced significantly by Chernobyl. The mean concentration in 1987 was 89% of the 1986 mean (Table 2.2.3.1). Tables 2.2.3.3-2.2.3.5 show the analysis of variance of the Bq 90 Sr (kg Ca) $^{-1}$, Bq 137 Cs (kg K) $^{-1}$, and Bq 137 Cs m $^{-3}$ figures, respectively. The highest levels were found in the milk from Tværå and Klaksvig, and the lowest from Thorshavn. Table 2.2.3.1. Strontium-90 in milk from the Faroes in 1987 (Unit: $Bq^{90}Sr(kgCa)^{-1}$) | | Thorshavn | Klaksvig | Tværå | Mean | |-------|-----------|----------|------------------|------| | Jan | 57 | 71 | 7u | 66 | | Feb | 57 | 69 | 63 | 63 | | March | 52 | 80 | 67 | 66 | | April | 58 | 83 | 62 | 68 | | May | 58 | 65 | (63) | 62 | | June | 63 | 69 | (67) | 66 | | July | 71 | 69 | (72) | 71 | | Aug | 69 | 59 | ` 5 4 | 61 | | Sept | 60 | 59 | (60) | 60 | | Oct | 55 | 71 | 74 | 67 | | Nov | 52 | 60 | 80 | 64 | | Dec | 51 | 59 | (56) | 55 | | Mean | 59 | 68 | 66 | 64 | Figures in brackets were calculated by VAR35). Figure 2.2.3.1 shows the quarterly Bq ⁹⁰Sr (kg Ca)⁻¹ values and Fig. 2.2.3.2 the quarterly Bq ¹³⁷Cs m⁻³ levels since 1962. Not since 1974 has the Feroese milk contained similar, high ¹³⁷Cs levels as those
observed in the third quarter of 1986. Figure 2.2.3.3 shows a comparison between the ⁹⁰Sr and ¹³⁷Cs levels in Faroese- and Danish-produced milk. It is evident that indirect contamination plays an important role for the ¹³⁷Cs levels in the Faroes, because the ratio of ¹³⁷Cs in Faroese to Danish milk increases when the fallout rate decreases. It decreases when the fallout rate (as has happened after Chernobyl) increases. The ratios of the ⁹⁰Sr levels in Faroese to Danish milk have shown a slight tendency to decrease through the years. In July a special milk sampling from Faroese farms was carried out by Risø. Table 2.2.3.6 shows the results. Compared with the ordinary sampling (Table 2.2.3.2), the whole milk contained nearly two times as much from Thorshavn and Klaksvig, whereas whole milk and consumers milk agreed for Tværå. The ¹³⁴Cs/¹³⁷Cs in whole milk was a little lower than in consumers milk. Compared with the grass levels (Table 2.2.2.2), the Faroese milk contained 0.95 ± 0.25 times (± 1 S.D.; N = 4) the Bq 137 Cs (kg K) $^{-1}$ in grass. Table 2.2.3.7 shows that the ratio of the concentrations in milk to that in grass was approximately 0.3 for 137 Cs as well as for 134 Cs. This corresponds to the ratio observed earlier in Denmark 5) and it shows that global fallout and Chernobyl debris behaved similarly with regard to radiocesium uptake in milk. Table 2.2.3.2. Radiocesium in milk from the Faroes in 1987 | | | Thorshav | /n | | Klaksvig | 3 | <u>-</u> | Tværå | | | Mean | | |-------|----------------------|----------------------|-------------------|----------------------|----------------------|-------------------|----------------------|----------------------|-------------------|----------------------|----------------------|-------| | Month | Bq ¹³⁷ Cs | Bq ¹³⁷ Cs | 134Cs | Bq ¹³⁷ Cs | Bq ¹³⁷ Cs | 134Cs | Bq ¹³⁷ Cs | Bq ¹³⁷ Cs | ¹³⁴ C5 | Bq ¹³⁷ Cs | Bq ¹³⁷ Cs | 134Cs | | | m-3 | (kg K)-1 | ¹³⁷ Cs | m-3 | (kg K)-1 | ¹³⁷ Cs | m-3 | (kg K)-1 | 137C3 | m-3 | (kg K)-1 | 137Cs | | Jan | 6200 | 3600 | 0.42 | 8900 | 5300 | 0.29 | 13900 | 7900 | 0.38 | 9600 | 56° 0 | 0.36 | | Feb | 5800 | 3400 | 0.39 | 7000 | 3900 | 0.38 | 12100 | 8000 | 0.40 | 8300 | 5100 | 0.39 | | Maich | 6200 | 3700 | 0.40 | 8000 | 4700 | 0.39 | 11500 | 6900 | 0.35 | 8500 | 5100 | 0.38 | | April | 5700 | 3700 | 0.35 | 10300 | 5700 | 0.36 | 11400 | 7100 | 0.37 | 9100 | 5500 | 0.36 | | May | 6400 | 3800 | 0.34 | 7500 | 4300 | 0.35 | (15000) | (9300) | (0.33) | 9600 | 5800 | 0.34 | | June | 5600 | 3600 | 0.34 | 5200 | 3000 | 0.32 | (11600) | (7000) | (0.32) | 7500 | 4400 | 0.33 | | July | 6200 | 3600 | 0.29 | 6200 | 3700 | 0.33 | (13300) | (8400) | (0.30) | 8600 | 5300 | 0.31 | | Aug | 5700 | 3600 | 0.24 | 4000 | 2300 | 0.28 | 12400 | 7900 | 0.25 | 7400 | 4600 | 0.26 | | Sept | 5000 | 3000 | 0.25 | 4900 | 2800 | 0.34 | (10600) | (6700) | (0.28) | 6800 | 4200 | 0.29 | | Oct | 3400 | 1890 | 0.24 | 4700 | 2600 | 0.32 | 10300 | 6500 | 0.26 | 6200 | 3600 | 0.27 | | Nov | 3000 | 1760 | 0.30 | 3100 | 1610 | 0 28 | 10800 | 6500 | 0.27 | 5600 | 2300 | 0.28 | | Dec | 2: 10 | 1750 | 0.28 | 3100 | 1810 | 0.33 | (6400) | (4100) | (0.29) | 4100 | 2500 | 0.30 | | Mean | 5200 | 3100 | • | 6100 | 3500 | | 11600 | 7200 | • | 7600 | 4600 | | Figures in brackets were calculated from VAR35) Table 2.2.3.3. Analysis of variance of $\ln Bq^{90}Sr$ (kg Ca)⁻¹ in Faroese milk in 1987 (from Table 2.2.3.1) | Variation | SSD | f | s² | v ² | Р | |-------------------|-------|----|-------|----------------|--------| | Between months | 0.095 | 11 | 0.009 | 0.54 | • | | Between locations | 0.152 | 2 | 0.076 | 4.80 | >97.8% | | Remainder | 0.269 | 17 | 0.016 | | | **Risø-R-564** 13 Table 2.2.3.4. Analysis of variance of $\ln Bq^{137}Cs$ (kg K)-1 in Faroese milk in 1987 (from Table 2.2.3.2) | Variation | SSD | f | s² | v² | Р | |-------------------|------|----|-------|------|----------| | Between months | 2.20 | 11 | 0.20 | 4.31 | >99.6 % | | Between locations | 3.37 | 2 | 1.68 | 36.4 | > 99.95% | | Remainder | 0.79 | 17 | 0.046 | | | Table 2.2.3.5. Analysis of variance of $\ln Bq^{137}Cs \ m^{-3}$ in Faroese milk in 1987 (from Table 2.2.3.2) | Variation | SSD | f | s² | v ² | Р | |-------------------|------|----|-------|----------------|----------| | Between months | 2.10 | 11 | 0.191 | 4.60 | > 99.7 % | | Between locations | 2.91 | 2 | 1.46 | 35.0 | > 99.95% | | Remainder | 0.71 | 17 | 0.042 | | | Fig. 2.2.3.1. Strontium-90 in Faroese milk, 1962-1987. Fig. 2.2.3.2. Cesium-137 in Faroese milk, 1962-1987. Fig. 2.2.3.3. A comparison between Faroese and Danish milk levels, 1962-1987. Fig. 2.2.3.4. The calculated global fallout ¹³⁷Cs concentrations (Bq m⁻³) in Faroese milk 1982-1987. The levels in 1986 and 1987 were calculated from the ¹³⁴Cs/¹³⁷Cs assuming this ratio to have been zero in global fallout and 0.55 in Chernobyl debris on April 26, 1986. Table 2.2.3.6. Radiocesium in whole milk collected by Risø at Faroese farms in July 1987 | Location
(cf. Fig. 2.1) | Bq ¹³⁷ Cs m ⁻³ | Bq ¹³⁷ Cs (kg K)-1 | 134Cs
137Cs | |----------------------------|--------------------------------------|-------------------------------|----------------| | Vågø | 4900 | 2900 | 0.28 | | Thorshavn | 12300 | 7700 | 0.29 | | Klaksvig | 12100 | 7800 | 0.29 | | Tværå | 15300 | 9500 | 0.29 | Table 2.2.3.7. Radiocesium in Faroese milk (Bq l^{-1}) divided by radiocesium in Faroese grass (Bq kg^{-1} fresh weight) in July 1987 (cf. Tables 2.2.2.2 and 2.2.3.6) | Location | 134Cs | ¹³⁷ Cs | | |-----------|-------|-------------------|--| | Vågø | 0.30 | 0.23 | | | Thorshavn | 0.17 | 0.20 | | | Klaksvig | 0.37 | 0.44 | | | Tværå | 0.39 | 0.38 | | | Mean | 0.31 | 0.31 | | | S.E. | 0.05 | 0.06 | | #### 2.2.4. Strontium-90 and Radioces. . in Faroese Terrestrial Animals If the ¹³⁴Cs/¹³⁷Cs in lamb is compared with the theoretical ratios in Chernobyl debris (Table 2.2.4), it appears that about 80% of the ¹³⁷Cs in the lamb samples from 1987 came from Chernobyl. This is a little less than found in Faroese milk (84%) from 1987. The mean contents in Faroese lambs in 1987 were 0.22 Bq 90Sr kg⁻¹ meat and 107 Bq ¹³⁷Cs kg⁻¹ meat and in bone 1020 Bq ⁹⁰Sr (kg Ca)⁻¹. Cs-137 measured in lamb in 1987 was similar to the mean of measurements made in 1986. Fig. 2.2.4.1. Strontium-90 (Bq $(kg\ Ca)^{-1}$)) in lamb bone collected in the Faroes, 1962-1987. Risø-R-564 17 Table 2.2.4. Radionuclides in lamb collected in the Faroes in 1987 | Position | | | Lamb meat | | | | Thecretica! | | | |------------|--------|-------|-----------|---------------------|----------|----------|-------------|---------------------|--------------------| | Location | N | W | Month | Bq ⁹⁰ Sr | Bq 137Cs | Bq 137Cs | 134Cs | Bq ⁹⁰ Sr | ⁻³~Cs | | | | | | kg-1 | kg⁻¹ | (kg K)-1 | 137Cs | (kg Ca)-1 | ™°Cs | | | | | | | | | | | in Champhyl debris | | Vidareide | 62,55, | 6°32' | Jan | | 35 | - | 0.43 | 280 | 0.44 | | Skuvoy | 61 46 | 6°49' | Jan | - | 12.8 | - | 0.45 | 640 | 0.44 | | Øravik | 61°32′ | 6°48' | Feb | - | 126 | • | 0.38 | - | 0.43 | | Kollefjord | 62°06' | 6°57′ | Oct | 0.114 | 249 | 62000 | 0.16 | 1610 | 0.35 | | Klaksvig | | | Oct | 0.038 | 42 | 12800 | 0.26 | 680 | 0. 3 5 | | Tværå | | | Oct | 0.50 | 178 | 46000 | 0.24 | 2100 | 0.35 | | Thorshavn | | | July | | | | - | 800 | - | Fig. 2.2.4.2. Cesium-137 (Bq $(kg\ K)^{-1}$) in lamb meat collected in the Faroes, 1962-1987. #### 2.2.5. Strontium-90 and Radiocesium in Faroese Sea Animals Table 2.2.5.1 shows the ¹³⁷Cs levels in fish collected in 1987 in the Faroes. The mean levels in Gadus aeglefinus and Gadus callarias were 0.63 Bq ¹³⁷Cs kg⁻¹ and 0.00077 Bq ⁹⁰Sr kg⁻¹. Chernobyl ¹³⁷Cs was detectable in most fish samples. On the average two-thirds of the ¹³⁷Cs in marine fish came from Chernobyl in 1987, but the variation between samples was large. Table 2.2.5.1. Strontium-90 and radiocesium in fish flesh from the Faroes in 1987 | Sampling
month | Species | Sample
type | Bq ⁹⁰ Sr
kg ⁻¹ | Bq ⁹⁰ Sr
(kg Ca)-1 | Bq ¹³⁷ Cs
kg ⁻¹ | Bq ¹³⁷ Cs
(kg K)- ¹ | ¹²⁴ Cs/ ¹³⁷ Cs | |-------------------|------------------|----------------|---|----------------------------------|--|--|--------------------------------------| | March | Gadus callarias | Cod | 0.00037 A | 4.8 A | 1.00 | 270 | 0.33 | | June | | | 0.00057 A 4.0 A | 0.27 | 76 | 0.13 | | | Sept | | | 0.00114 | 100 | 0.93 | 260 | 0.27 | | Dec | ,, | | 0.00114 | 12.2 | 0.61 | 191 | 0.29 | | 1987 | | | 0.00076 | 8.5 | 0.70 | 199 | | | March | Gadus aeglefinus | Haddock | 0.00004.4 | 7.4. |
0.75 | 220 | 0.35 | | June | " | | 0.00064 A | 7.4 A | 0.85 | 240 | 0.28 | | Sept | • | | 0.00000 | 44.4 | 0.165 | 56 | _ | | Dec | | | 0.00090 | 11.4 | 0.46 | 136 | 0.26 | | 1987 | | | 0.00077 | 9.4 | 0.56 | 163 | | Fig. 2.2.5.1. Cesium-137 levels in meat of cod (Gadus callarias) and haddock (Gadus aeglefinus) collected in the Faroes, 1962-1987. In Table 2.2.5.2 the activity content of a few other marine samples is shown. Two-thirds of the ¹³⁷Cs in the whale sample came from Chernobyl. Table 2.2.5.2. Strontium-90 and radiocesium in various marine animals collected in July 1987 | Species | Sample | Bq ¹³⁷ Cs | Bq ¹³⁷ Cs | 134Cs | Bq ³⁰ Sr | |---------------|--------|----------------------|----------------------|-------|---------------------| | | | kg ⁻¹ | (kg K)-1 | 137Cs | (kg Ca)-1 | | Whale | flesh | 0.80 | 400 | 0.25 | B.D.L. | | Puffin (June) | flesh | 0.146 A | 47 | • | • | | | bone | 2.9 | - | - | - | | Blue mussels | flesh | < 0.8 | < 800 | - | 6 B | | | sheil | < 0.25 | - | - | 1.3 B | ## 2.2.6. Strontium-90, Cesium-137 and Tritium in Faroese Drinking Water and Other Fresh Waters Drinking-water samples were collected as previously, but the samples were combined prior to the analysis as shown in Table 2.2.6.1. As in previous years, drinking water from Thorshavn contained more ⁹⁰Sr than that from Klaksvig and Tværå (cf.
the explanation in Risø Report No. 181¹⁾. The mean level in 1987 was 2.3 Bq ⁹⁰Sr m⁻³ (0.063 pCi l⁻¹), i.e. a little lower compared to 1986. Figure 2.2.6.1 shows the annual mean levels of ⁹⁰Sr in drinking water from the three locations since 1962. In Table 2.2.6.2 it appears that $82 \pm 7\%$ (± 1 S.D.; N = 3) of the ¹³⁷Cs in Faroese drinking water was from Chernobyl. Although the ¹³⁷Cs concentrations in Tværå were 3.3 times higher than in Klaksvig, the relative contribution from Chernobyl was only a factor of 1.14 times higher at Tværå than at Klaksvig. A sample of untreated raw water from Thorshavn contained 5.0 Bq ¹³⁷Cs m⁻³ and 1.7 A Bq ¹³⁴Cs m⁻³, which was not significantly different from the concentrations in the Thorshavn drinking water. In Table 2.2.6.3 concentrations in stream water are shown. The Chernobyl percentage of 137 Cs was $70 \pm 4\%$ (± 1 S.D.; N = 3), i.e. similar to that in Faroese drinking water. Lake water (Table 2.2.6.4) showed $53 \pm 15\%$ (± 1 S.D.; N = 2) 137 Cs from Chernobyl, which may be a little lower than the contributions seen in drinking water and stream water. The ¹³⁷Cs concentrations in the various fresh water samples varied significantly between locations, but apparently not between water types. Compared with the mean concentrations in rain water from the first half of 1987, the fresh water samples from July 1987 contained about 5% of the ¹³⁷Cs found in the rain. This shows that also Faroese soil, despite its low mineral content, retains radiocesium quite efficiently from the rain. All drinking water samples collected in the Faroes in 1987 contained less than 2 Bq ³H l⁻¹. Table 2.2.6.1. Strontium-90 and radiocesium in drinking water from the Faroes in 1987. (Unit: Bq m^{-3}) | Month | Thorshavn | | Klaksvig
90Sr 134Cs 137Cs | | | Tværå
90Sr 134Cs 137Cs | | | | |----------|-----------|-------|------------------------------|------|-------|---------------------------|------|-------------------|---------------| | | 90\$r | 134Cs | ¹³⁷ Cs | 90Sr | 134Cs | ¹³⁷ Cs | 90Sr | ¹³⁴ Cs | 137 Cs | | Jan-June | 4.4 | | 5.7 | 0.81 | | 2.1 A | 26 | | 3.1 | | July-Aug | 3.2 | | 3.6 | 0.85 | | 2.4 A | 2.2 | | 2.2 A | | 1987 | 3.8 | 1.55 | 4.7 | 0.83 | 0.63 | 2.2 | 2.4 | 0.82 | 2.6 | Fig. 2.2.6.1. Strontium-90 in drinking water from the Paroes, 1962-1987. Table 2.2.6.2. Radiocesium and tritium in drinking water from the Faroes collected by Rise in July 1987 | Location | ¹³⁴ Cs
Bq m ⁻³ | ¹³⁷ Cs
Bq m ⁻³ | 134Cs
137Cs | ³ H
kBq m ⁻³ | |-------------------|---|---|----------------|---------------------------------------| | Sørvaag/Vaagø | 2.4 | 8.7 | 0.27 | B.D.L. | | Thoraliavn/Strømø | 1.3 A | 5.5 | 0.24 | 0.9 ± 0.1 | | Klaksvig/Bordø | 0.91 | 3.2 | 0.29 | 1.1 ± 0.2 | | Tværå/Syderø | 3.0 | 10.4 | 0.29 | 1.3 ± 0 | Table 2.2.6.3. Radiocesium and tritium in stream water from the Faroes collected by Risø in July 1987 | Location | ^{,34} Cs | ¹³⁷ Cs | 134Cs | ³ H | |---|--------------------|--------------------|-------|---------------------| | | Bq m ⁻³ | Bq m ⁻³ | 137Cs | kBq m ⁻³ | | Sanda, south
of Thorshavn
Haydalsa, north | 1.4 | 5.8 | 0.25 | B.D.L. | | of Thorshavn | 2.7 | 10.6 | 0.26 | B.D.L. | | Stora/Syderø | 1.7 | 5.8 | 0.28 | B.D.L. | Table 2.2.6.4. Radiocesium and tritium in lake water from the Faroes collected by Risø in July 1987 | Location | 134Cs | ¹³⁷ Cs | 134Cs | ³ H | |-------------------|--------|--------------------|-------|---------------------| | | Bq m-3 | Bq m ⁻³ | 137Cs | kBq m ⁻³ | | Leynavatn/Strømø | 0.90 | 3.7 | 0.24 | B.D.L. | | Sørvagsvatn/Vaagø | 1.6 A | 9.9 | 0.16 | B.D.L. | #### 2.2.7. Strontium-90 and Radiocesium in Miscellaneous Faroese Samples #### 2.2.7.1. Faroese Soil In July 1987 Risø collected 4 soil samples in the Faroes (cf. Tables 2.2.7.1.1-2.2.7.1.4). The mean Chernobyl 137 Cs deposition was 1900 ± 640 Bq 137 Cs m⁻² (± 1 S.D.; N = 4). This mean agreed with that of the more extensive Faroese soil sampling in 1986 (Risø-R-564)⁴). The samples were as far as possible Table 2.2.7.1.1. Radiocesium in soil collected at Vaago by Riso (Vatns oyrar) in July 1987 | Layer | ¹³⁷ Cs | ¹³⁷ Cs | 134Cs | g K kg ¹ | Chernobyl | |---|---|---------------------------------------|----------------|---|-------------------------------------| | in cm | Bq m ⁻² | Bq kg ¹ | 137Cs | | ¹³⁷ Cs Bq m ² | | 0-5
5-10
10-20
20-30
30-40
40-50 | 2400
1210
1480
310
91
65 | 182
93
53
9.1
4.9
1.19 | 0.194
0.019 | 2.8
2.1
1.85
1.68
1.31
2.2 | 1270
62 | Table 2.2.7.1.2. Radiocesium in soil from Thorshavn/Højvig collected by Riso in July 1987 | Layer | ¹³⁷ Cs | ¹³⁷ Cs | 134Cs | g K kg ¹ | Chernobyl | |---|---|--|----------------|--|--------------------------------------| | in cm | Bq m ² | Bq kg ⁻¹ | 137Cs | | ¹³⁷ Cs Bq m ⁻² | | 0-5
5-10
10-20
20-30
30-40
40-50 | 4300
3700
550
300
104
97 | 410
200
19.4
6.8
2.4
1.59 | 0.130
0.006 | 3.6
3.5
3.8
3.2
2.8
2.7 | 1530
60 | Table 2.2.7.1.3. Radiocesium in soil from Bordø, Arnefjord collected by Risø in July 1987 (Klaksvig) | Layer
in cm | ¹³⁷ Cs
Bq m ⁻² | ¹³⁷ Cs
Bq kg ⁻¹ | 134Cs | g K kg ^{∞1} | Chernobyl
¹³⁷ Cs Bq m ⁻² | |----------------|---|--|-------|----------------------|---| | 0-5 | 3200 | 300 | 0.203 | 1.87 | 1760 | | 5-10 | 280 | 87 | 0.062 | 1.55 | 47 | | 10-20 | 350 | 20 | 0.074 | 1.47 | 71 | Table 2.2.7.1.4. Radiocesium in soil from Syderø, Tværå collected by Risø in July 1987 | Layer
in cm | ¹³⁷ Cs
Bq m ² | ¹³⁷ Cs
Bq kg ⁻¹ | 134Cs | g K kg ⁻¹ | Chernobyl
¹³⁷ Cs Bq m ² | |----------------------|--|--|----------------|----------------------|--| | 0-5
5-10
10-20 | 4800
1560
630 | 540
118
28 | 0.207
0.023 | 2.6
1.58
1.31 | 2700
97 | collected to a depth of 50 cm. Chernobyl radiocesium was normally not detectable below 10 cm. However, in the Klaksvig sample 134 Cs was found in the 10-20 cm layer also. Global fallout 137 Cs had possibly penetrated deeper than 50 cm, at least at Vaagø and Thorshavn. The year total 137 Cs deposit at the 4 locations was 6400 ± 2200 Bq m⁻² (± 1 S.D.; N = 4). Thus, Chernobyl contributed with 30% to the total 137 Cs in Faroese soil. The ratios of the drinking water concentrations (Table 2.2.6.2) to the 0-5 cm soil layer concentrations are calculated for ¹³⁷Cs from global fallout and Chernobyl. The latter ratios are nearly 3 times higher than the former. This may be because the global fallout ¹³⁷Cs has been fixed stronger to the soil than the Chernobyl ¹³⁷Cs, as it has been longer in the soil. It could also be because relatively more of the Chernobyl ¹³⁷Cs is found in the soil surface. Finally, some of the activity from Chernobyl may have come directly from the rain without any contact with the soil minerals. #### 2.2.7.2. Faroese Sea Water The ¹³⁷Cs mean concentration in Faroese sea water from Thorshavn was 3.5 Bq m⁻³. The ⁹⁰Sr level was 1.73 Bq m⁻³. The Chernobyl signal had thus disappeared in 1987. In Table 2.2.7.2.2 traces of ¹³⁴Cs from Chernobyl were present in two sea water samples containing some fresh water. Table 2.2.7.2.1. Strontium-90 and cesium-137 in Faroese surface sea water collected at Thorshavn (62°02'N 06°47'W) in 1987. (Unit: Bq m⁻³) | Sampling date | 90Sr | ¹³⁷ Cs | Salinity
in ‰ | |---------------|------|-------------------|------------------| | April | 1.96 | 3.7 | - | | August | 1.65 | 3.7 | 34.2 | | December | 1.57 | 3.1 | 34.9 | Fig. 2.2.7.2. Strontium-90 and cesium-137 in Faroese sea water 1962-1987. Table 2.2.7.2.2. Radiocesium in Faroese surface sea water collected by Risø in July 1987. (Unit: Bq m⁻³) | Location | Position
N W | ¹³⁷ Cs | 134Cs
137Cs | Salinity
in ‰ | |---|------------------------------|--------------------------|----------------|------------------------------| | Sørvåg/Vågø
Thorshavn/Strømø
Arnefjord/Bordø
Trangisvåg/Syderø | 62°05' 7°19'
62°00' 6°46' | 3.3
3.6
4.5
5.1 | 0.17 B
0.19 | 34.5
34.6
29.0
17.1 | #### 2.2.7.3. Faroese Sea Plants As for sea water, the Chernobyl signal had nearly disappeared from Faroese sea plants in 1987. The ¹³⁷Cs levels in Laminaria from Thorshavn in 1987 were 3-4 times lower than those in 1986, which corresponds to the decrease in the sea water concentrations. If we assume the concentration of 99 Tc in Fucus vesiculosus relative to sea water to be 10^3 , we may estimate the water concentration as 0.013 ± 0.002 Bq 99 Tc m⁻³ (± 1 S.E.; N = 4), i.e. a factor of 100 lower than in the Norwegian coastal current at Utsira (cf. Table 4.1). Table 2.2.7.3.1. Radionuclides in Faroese seaweed collected in 1987 (Unit: Bq kg⁻¹ dry weight) | Species | Date | ⁹⁰ Sr | 106Ru 110m | Ag ¹³⁴ Cs | ¹³⁷ Cs | K
g kg ¹ | Ca
g kg | |---|------------------------------|-------------------------------|------------|----------------------|--------------------------------|------------------------------|------------------------------| | Fucus disticus
Laminaria digitata
Fucus vesiculosus
Laminaria digitata | April
April
Aug
Aug |
0.22
0.39
0.196
0.24 | 3.6 A 1.09 | | 1.59
1.17 A
0.65
0.56 | 31.5
62.2
30.4
27.9 | 11.2
15.8
11.0
13.4 | Fig. 2.2.7.3. Strontium-90 (Bq $(kg\ Ca)^{-1}$) in sea plants collected at Thorshavn, 1962-1987. Table 2.2.7.3.2. Radionuclides in Faroese Fucus vesiculosus collected by Risø in July 1987. (Unit: Bq kg-1 dry weight) | Location | 30Sr | 99Tc | ^{110m} Ag | 134Cs | ¹³⁷ Cs | K
g kg ⁻¹ | Ca
g kg ⁻¹ | |----------------------|------|------|--------------------|-------|-------------------|-------------------------|--------------------------| | Sørvaag (Vågø) | 0.41 | 0.88 | 1. 27 A | | 0.99 A | 33.3 | 19.1 | | Nolsøfjord (Strømø) | 0.24 | 1.04 | | | 1.36 | 28.8 | 12.4 | | Arnefjord (Bordø) | | 1.36 | | 0.65 | 2.16 | 26.3 | | | Trangisvaag (Syderø) | 0.44 | 1.78 | | | 1.55 A | 26.5 | 13.9 | #### 2.2.7.4. Faroese Vegetables Five samples of potatoes were analysed in 1987. The mean content was 0.059 Bq 90 Sr kg⁻¹ (1370 Bq 90 Sr (kg Ca)⁻¹) and 3.6 Bq 137 Cs kg⁻¹ (890 Bq 137 Cs (kg K)⁻¹). 74 ± 11% (±1 S.E.; N = 5) of the 137 Cs in Faroese potatoes came from Chernobyl in 1987. Rhubarbs (Table 2.2.7.4.3) contained higher ⁹⁰Sr but lower ¹³⁷Cs concentrations than potatoes. Table 2.2.7.4.1. Radionuclides in Farves: potatoes collected in November 1987 | Location | Month | Βα ⁹⁰ Sr
kg⁻¹ | Bq ⁹⁰ Sr
(kg Ca) ⁻¹ | Bq ¹³⁷ Cs
kg ⁻¹ | Bq ¹³⁷ Cs
(kg K) ⁻¹ | 134Cs
137Cs | |-----------|----------|-----------------------------|--|--|--|----------------| | Thorshavn | November | 0.086 | 2100 | 1.44 | 380 | 0.124 | | Klaksvig | November | 0.086 | 1080 | 0.96 | 240 | 0.27 | | Tværå | November | 0.035 | 1450 | 11.31 | 2900 | 0.28 | Fig. 2.2.7.4.1. Cesium-137 in Faroese potatoes, 1962-1987. Fig. 2.2.7.4.2. Strontium-90 in Faroese potatoes, 1962-1987. Table 2.2.7.4.2. Radionuclides in Foroese potatoes collected by Risø in July 1987 (old potatoes from 1986) | Location | Bq ⁹⁰ Sr
kg ⁻¹ | Bq ⁹⁰ Sr
(kg Ca) ⁻¹ | Bq ¹³⁷ Cs
kg ⁻¹ | Bq ¹³⁷ Cs
(kg K) ⁻¹ | 134Cs
137Cs | |-----------------|---|--|--|--|----------------| | Thorshavn* | | | 4.0 | 810 | 0.26 | | Vaag-Lobra road | 0.028 | 830 | 0.42 | 96 | 0.38 | Table 2.2.7.4.3. Radionuclides in rhubarb collected by Risø at Vaag-Lobra road in July 1987 | 90Sr Bq kg-1 | 0.35 | i | |---|------|------| | 90Sr Bq (kg Ca)-1 | 1126 | | | ¹³⁷ Cs Bq kg ⁻¹ | 0.15 | 54 A | | ¹³⁷ C ₃ 3q (kg K)-1 | 54 | Α | | ¹³⁴ Cs/ ¹³⁷ Cs | - | | #### 2.2.7.5. Faroese Bread Rye bread and white bread were collected at Thorshavn in June. The levels in white bread were 0.113 Bq 90Sr kg⁻¹ and 0.61 Bq ¹³⁷Cs kg⁻¹. The rye bread collected in 1987 contained 0.18 Bq ⁹⁰Sr kg⁻¹ and 6.0 Bq ¹³⁷Cs kg⁻¹. The bread ¹³⁷Cs levels were 10 to 30 times higher than in 1986. All of the radiocesium in bread apparently originated from Chernobyl. Table 2.2.7.5. Strontium-90 and radiocesium i. Faroese bread in June 1987 | Sort | Bq ⁹⁰ Sr kg ⁻¹ | Bq ⁹⁰ Sr (kg Ca) ⁻¹ | Bq ¹³⁷ Cs kg ⁻¹ | Bq ¹³⁷ Cs (kg K) ⁻¹ | 134Cs
137Cs | |-------------|--------------------------------------|---|---------------------------------------|---|----------------| | White bread | 0.113 | 58 | 0.61 | 440 | 0.47 | | Rye bread | 0.180 | 172 | 6.0 | 2900 | 0.40 | #### 2.2.7.6. Faroese Eggs Eggs were collected from Thorshavn in 1987. The levels of hens eggs were 0.038 Bq 90Sr kg⁻¹ (56 Bq (kg Ca)⁻¹ and 1.05 Bq ¹³⁷Cs kg⁻¹ (680 Bq ¹³⁷Cs (kg K)⁻¹). About 90% of the ¹³⁷Cs was from Chernobyl. Table 2.2.7.6. Strontium-90 and radiocesium in Faroese eggs collected in 1987 | Date | Bg ^{⊊S} Sr kg ^{−1} | Bq ⁹⁰ Sr (kg Ca)-1 | Bq ¹³⁷ Cs kg ⁻¹ | Bq ¹³⁷ Cs (kg K) ⁻¹ | 134Cs
137Cs | |-------------------|--------------------------------------|-------------------------------|---------------------------------------|---|----------------| | June | 0.032 | 53 | 0.53 | 46J | 0.34 | | 28/2 + 6/6 + 15/6 | 0.044 | 59 | 1.57 | 890 | 0.31 | #### 2.2.8. Humans from the Faroes #### 2.2.8.1. Strontium-90 in Human Bone In 1987 six human bone samples were obtained from Dronning Alexandrine's Hospital in Thorshavn. Table $\angle .2.8.1$ shows the result. The mean concentration was 37 P $_{1}$ 90 Sr (kg Ca) $^{-1}$. In Denmark $^{3)}$ we found 20 in this age group in 1987. Table 2.2.8.1. Strontium-90 in human bone collected in the Faroes in 1987 | Age in years | Month of death | Sex | Bq ⁹⁰ Sr (kg Ca)-1 | |--------------|-------------------|-----|-------------------------------| | 71 | Jan | F | 55 | | 57 | Feb | F | 24 | | 89 | Mar | F | 46 | | 83 | Apr | F | 41 | | 93 | Apr | F | 25 | | 79 | Apr
Apr
Aug | F | 33 | #### 2.2.9. Fodder from the Faroes Various Faroese samples of fodder were collected by Risø in July 1987 (cf. Table 2.2.9). The samples of hay may be compared with those of grass from Thorshavn (cf. Tables 2.2.2.1 and 2.2.2.2). The 1987 hay contained 5800 Bq ¹³⁷Cs (kg K)⁻¹, which is 36% of the grass level in Table 2.2.2.2 but five times the concentrations in Table 2.2.2.1. The 1986 hay level was twice the grass level in 1986 (cf. Risø-R-550, Table 2.2.2.1)⁴). The conclusion is that it seems difficult to obtain representative grass and hay samples from a given location in the Faroes, due to large inhomogeneities in the activity content of grass. The silage and hay samples from 1986 show that 71% of the ¹³⁷Cs in these samples came from Chernobyl. In the hay from 1987, 88% of the ¹³⁷Cs came from Chernobyl. Risø-R-564 27 Table 2.2.9. Radiocesium in fodder collected in the Faroes by Rise in July 1987 | Species | Location | Date | Bq ¹³⁷ Cs
kg ⁻¹ | Bq ¹³⁷ Cs
(kg K) ⁻¹ | 134Cs
137Cs | |--------------|-------------|-------------|--|--|----------------| | Silage | Sund/Strømø | 24 Aug 1986 | 46 | 42000 | 0.39 | | Concentrates | Klaksvig | July 1987 | 2.8 | 270 | 0.32 | | Concentrates | | | | | | | with fish | Sund/Strømø | July 1987 | 2.6 | 250 | - | | Hay | Sund/Strømø | July 1986 | 290 | 26000 | 0.33 | | Hay | Sund/Strømø | July 1987 | 66 | 5800 | - | #### 2.2.10. Moss and Lichen from the Faroes Apparently all radiocesium in the moss and lichen samples shown in Table 2.2.10 came from Chernobyl. The very low 90 Sr/ 137 Cs ratios: 0.017 and 0.005, respectively, suggest that also the 90 Sr was Chernobyl derived. The 137 Cs deposit in moss (1590 Bq m⁻²) was close to the measured fallout from Chernobyl in 1986 (1700 Bq 137 Cs m⁻²)⁴). Table 2.2.10. Radionuclides in moss and lichen collected at Thorshavn in the Faroes by Risø in July 1987 | Species | Unit | ⁹⁰ Sr | 106Ru | ¹³⁴ Cs | ¹³⁷ Cs | 40K* | 134Cs
137Cs | |------------------|---|------------------|-----------|-------------------|-------------------|-------------|----------------| | Moss
Moss | Bq kg ⁻¹ dry
Bq m ⁻² | 10.1
27 | 67
178 | 220
580 | 600
1590 | 1.57 | 0.37 | | Lichen
Lichen | Bq kg ⁻¹ dry
Bq m ⁻² | 4.5
1.15 | - | 340
86 | 850
220 | 1.43 A
- | 0.40 | | *Unit: g k | g ⁻¹ dry. | | | | | | | ## 2.3. Estimate of the Mean Contents of ⁹⁰Sr and ¹³⁷Cs in the Faroese Human Diet in 1987 #### 2.3.1. Annual Quantities The annual quantities are still based on the estimate made by the late Professor E. Hoff-Jørgensen in 1962¹⁾ assuming a daily pro capite intake of approximately 3000 calories (12.6 MJ). #### 2.3.2. Milk and Cream 75% of the milk consumed in the Faroes is of local origin, and the remainder comes from Denmark. Hence the 90 Sr content in milk consumed in the Faroes in 1987 was 1.2 × (0.75 × 0.064 + 0.25 × 0.059) = 0.075 Bq 90 Sr kg⁻¹, and the 137 Cs content was 0.75 × 7.6 + 0.25 × 0.60 = 5.85 Bq 137 Cs kg⁻¹ (cf. 2.2.3 and Ref. 3). 1 kg milk contains 1.2 g Ca. #### 2.3.3. Cheese Nearly all cheese consumed in the Faroes is of Danish origin, and the Danish figures from ref. 3 were used: 0.50 Bq 90Sr kg⁻¹ and 0.43 Bq ¹³⁷Cs kg⁻¹. #### 2.3.4. Grain Products As most grain products are imported from Denmark, the D-nish figures for 1987³⁾ were used in the calculation of the Faroese levels. The mean daily consumption of grain products in the Faroes is, as in Denmark, 80 g rye flour, 120 g wheat flour, and 20 g grits. Hence the mean concentration of 90Sr in grain products consumed in the Faroes in 1987 is 0.23 Bq 90Sr kg⁻¹ and 3.2 Bq 137Cs kg⁻¹. #### 2.3.5. Potatoes All potatoes consumed in the Faroes are assumed to be of local origin. The values from 2.2.7.4 were used, i.e. 0.059 Bq ⁹⁰Sr kg⁻¹ and 3.6 Bq ¹³⁷Cs kg⁻¹. #### 2.3.6. Other Vegetables and Fruit As the amount of vegetables and fruit grown in the Faroes is limited, the Danish figures from 1987³⁾ were used. Thus the mean content in vegetables other than potatoes was 0.32 Bq ⁹⁰Sr kg⁻¹ and 0.064 Bq ¹³⁷Cs kg⁻¹. The mean content in fruit was 0.065 Bq ⁹⁰Sr kg⁻¹ and 0.16 Bq ¹³⁷Cs kg⁻¹. #### 2.3.7. Meat and Eggs Meat and egg consumption in the Faroes is estimated to consist of 50% locally produced mutton (or lamb), 25% local whale meat, and 25% sea birds and eggs. For lamb we use the mean of the samples obtained in 1987, i.e. 0.22 Bq 90 Sr kg⁻¹ and 107 Bq 137 Cs kg⁻¹. Whale meat contained 0 Bq 90 Sr kg⁻¹ and 0.80 3q 137 Cs kg⁻¹, sea birds contained 0 Bq 90 Sr kg⁻¹ and 0.15 Bq 137 Cs kg⁻¹, and eggs (cf. 2.2.4 and 2.2.7.6): 0.038 Bq 90 Sr kg⁻¹ and 1.05 Bq 137 Cs kg⁻¹. Hence we estimate the mean content of 90 Sr in meat and eggs consumed in 1987 to bc 0.50 × 0.22 + 0.25 × 0 + 0.25 × (0 + 0.038)/2 = 0.115 Bq 90 Sr kg⁻¹ and the 137 Cs content to be 0.50 × 107 + 0.25 × 0.80 + 0.25 × (0.15 + 1.05)/2 = 53.8 Bq 137 Cs
kg⁻¹. #### 2.3.8. Fish All fish consumed in the Faroes is of local origin, and the mean content in fish, obtained from subsection 2.2.5, was 0.00077 Bq %Sr kg⁻¹ and 0.63 Bq ¹³⁷Cs kg⁻¹. #### 2.3.9. Coffee and Tea The Danish figures for 1987³⁾ were used, i.e. 0.41 Bq ⁹⁰Sr kg⁻¹ and 1.29 Bq ¹³⁷Cs kg⁻¹. Risø-R-564 29 #### 2.3.10. Drinking Water The mean value found in Table 2.2.6.1 was used, i.e. 0.0023 Bq ⁹⁰Sr kg⁻¹. The ¹³⁷Cs content was estimated from a drinking water sampling in July 1987; the mean value was 0.007 Bq ¹³⁷Cs l⁻¹. Tables 2.3.1 and 2.3.2 show the diet estimates of 90Sr and 137Cs, respectively. Table 2.3.1. Estimate of the mean content of ^{90}Sr in the human diet in the Faroe Islands in 1987 | Type of food | Annual quantity in kg | Bq ⁹⁰ Sr
per kg | Total
Bq ⁹⁰ Sr | Percentage of
total Bq ⁹⁰ Sr
in food | |----------------|-----------------------|-------------------------------|------------------------------|---| | Milk and cream | 146 | 0.075 | 10.95 | 20.1 | | Cheese | 7.3 | 0.50 | 3.65 | 6.7 | | Grain products | 80 | 0.23 | 18.40 | 33.7 | | Potatoes | 91 | 0.059 | 5.37 | 9.9 | | Vegetables | 20 | 0.32 | 6.40 | 11.7 | | Fruit | 18 | 0.065 | 1.17 | 2.2 | | Meat and eggs | 37 | 0.115 | 4.26 | 7.8 | | Fish | 91 | 0.00077 | 0.07 | 0.1 | | Coffee and tea | 7.3 | 0.41 | 2.99 | 5.5 | | Drinking water | 548 | 0.0023 | 1.26 | 2.3 | | Total | | | 54.52 | | The mean annual calcium intake is estimated to be 0.6 kg (approx. 200-250 g of creta praeparata). Hence the ratio: Bq ⁹⁰Sr (kg Ca)-¹ in total Faroese diet was 91 (2.5 pCi ⁹⁰Sr (g Ca)-¹). Fig. 2.3.1. Strontium-90 in Faroese diet, 1962-1987. #### 2.3.11. Discussion Figures 2.3.1 and 2.3.2 show the Faroese diet levels since 1962. The 1987 **0Sr level in the total Faroese diet was equal to the 1986 concentration. The ¹³⁷Cs level was 80% of the 1986 level. A total diet sample was collected in Thorshavn by Risø in July 1987. The composition of the sample was that given in Tables 2.3.1 and 2.3.2. The sample contained 91.5 Bq **9Sr (kg Ca)**-1 corresponding to a daily intake of 0.109 Bq **9Sr and 1.19 g Ca. Compared with Table 2.3.1, the **9Sr/Ca level was in excellent agreement, but the daily intakes of **9Sr and Ca were both 1.37 times lower than estimated in the table. Table 2.3.2. Estimate of the mean content of ¹³⁷Cs in the human diet in the Faroe Islands in 1987 | Type of food | Annual quantity in kg | Bq ¹³⁷ Cs
per kg | Total
Bq ¹³⁷ Cs | Percentage of total Bq ¹³⁷ Cs in food | |----------------|-----------------------|--------------------------------|-------------------------------|--| | Milk and cream | 146 | 5.85 | 854.1 | 24.4 | | Cheese | 7.3 | 0.43 | 3.14 | 0.1 | | Grain products | 80 | 3.2 | 256.0 | 7.3 | | Potatoes | 91 | 3.6 | 327.6 | 9.3 | | Vegetables | 20 | 0.064 | 1.28 | 0 | | Fruit | 18 | 0.16 | 2.88 | 0.1 | | Meat and eggs | 37 | 53.8 | 1990.6 | 56.7 | | Fish | 91 | 0.63 | 57.3 | 1.6 | | Coffee and tea | 7.3 | 1.29 | 9.4 | 0.3 | | Drinking water | 548 | 0.007 | 5.84 | 0.2 | | Total | | | 3508.1 | | The mean annual intake of potassium is estimated to be approx. 1.2 kg. Hence the ratio: Bq 137 Cs (kg K) $^{-1}$ becomes 2900 (79 pCi 137 Cs (g K) $^{-1}$). Fig. 2.3.2. Cesium-137 in Faroese diet, 1962-1987. In the case of ¹³⁷Cs, the Thorshavn diet contained 1800 Bq ¹³⁷Cs (kg K)⁻¹ which was 62% of the estimate in Table 2.3.2. The daily intakes were 6.31 Bq ¹³⁷Cs, 1.08 Bq ¹³⁴Cs, and 3.49 g K. The ¹³⁷Cs level is 66% of that estimated in Table 2.3.2. The potassium intake is in agreement with that in Table 2.3.2. From the ¹³⁴Cs content in the diet sample, the annual intake of ¹³⁴Cs with total diet in the Faroes was estimated to be 17% of the ¹³⁷Cs intake. In 1986 it was 39%. In general, the total diet sample from Thorshavn seemed to contain less ³⁰Sr and ¹³⁷Cs than the estimated levels in Tables 2.3.1 and 2.3.2; this is probably because important components of the Thorshavn diet (milk, potatoes and lamb) are generally lower in radioactivity content than the Faroese average. The main contributors to the ⁹⁰Sr content in the Faroese diet were milk products, cereals and potatoes, which together accounted for approximately 70% of the total ⁹⁰Sr content in the diet in 1987. As regards ¹³⁷Cs, potatoes, milk products, and meat (lamb) were the most important contributors. In 1987, 91% of the total ¹³⁷Cs content in the diet originated from these products. The Faroese mean diet contained 0.93 times as much 90Sr and approximately 6 times as much 137Cs as the Danish diet in 1987³). The difference between the ¹³⁷Cs present in the Faroese and Danish diets became a little less after the Chernobyl accident, because increased in importance of direct deposition. This did not differ so much between the Faroes and Denmark as did indirect contamination, however. #### 2.4. Conclusion #### 2.4.1. The ⁹⁰Sr fallout rate in the Faroes in 1987 was approximately 1.1 Bq ⁹⁰Sr m⁻². The accumulated fallout by the end of 1' 87 was estimated to be approximately 3250 Bq ⁹⁰Sr m⁻² (90 mCi km⁻²) (the mean at Thorshavn and Klaksvig). The ¹³⁷Cs mean deposit was 105 Bq m⁻² in 1987, i.e. 5% of the original deposit from the Chernobyl accident. #### 2.4.2. The mean level of 90 Sr in Faroese milk was 64 Bq (kg Ca)-1. The 137 Cs concentration was 7600 Bq 137 Cs m⁻³. Lamb contained 107 Bq ¹³⁷Cs kg⁻¹ in 1987. Fish showed a mean level of 0.63 Bq ¹³⁷Cs kg⁻¹. The mean content of 90Sr in drinking water was 2.3 Bq m⁻³. The mean daily pro capite intakes resulting from the Faroese diet in 1987 estimated to be 0.15 Bq 90Sr and 9.6 Bq 137Cs. #### 2.4.3. The mean content of 137 Cs in the Faroese adult was estimated to be approximately 8700 Bq 137 Cs (kg K) $^{-1}$. This estimate is based on the diet estimate. #### 2.4.4. In terrestrial samples (grass, milk, lamb, drinking water, potatoes, eggs, and fodder) collected in the Faroes in 1987, 75-80% of the ¹³⁷Cs came from Chernobyl. In marine fish about two-thirds of the ¹³⁷Cs was from the Chernobyl accident. ## Appendix 2A ## Predictions and Observations of ⁹⁰Sr and ¹³⁷Cs in Faroese Samples in 1987 The models used for the predictions shown in Table 2A were based on data collected 1962-1976⁵). We observe that nearly all models overestimated the levels in 1987, except those for ¹³⁷Cs in cod fish and in lamb. The mean levels for these two sample tyres were, however, encumbered with large standard errors. Table 2A. Comparison between observed and predicted ⁹⁰Sr and ¹³⁷Cs concentrations in Faroese samples collected in 1987 | Sample | Unit | Observed ±1 S.E. | | Number of samples | Predicted | Obs./pre. | Model in ref. 5 | | |---------------------------|---|------------------|--------|-------------------|-----------|-----------------|--------------------|--| | Drinking water, Thorshavn | | 3.8 | ±0.6 | 2 | 9.4 | 0.40 ± 0.06 | C.1.4.1 No. 9 | | | Drinking water, Klaksvig | Bq 90Sr m-3 | 0.83 | ±0.02 | 2 | 1.77 | 0.47 ± 0.01 | C.1.4.1 No. 10 | | | Drinking water, Tværå | Bq 90Sr m-3 | 2.4 | ±0.2 | 2 | 2.4 | 1.00 ± 0.08 | C.1.4.1 No. 11 | | | Sea water | Bq 90Sr m-3 | 1.73 | ±0.12 | 3 | 1.90 | 0.91 ± 0.06 | C.1.5.1 No. 3 | | | Sea water | Bq ¹³⁷ Cs m ⁻³ | 3.5 | ±0.2 | 3 | 9.9 | 0.35 ± 0.02 | C.1.5.1 No. 3(×1.6 | | | Grass | Bq 90Sr (kg Ca)-1 | 2300 | ±640 | 6 | 4800 | 0.48 ± 0.13 | C.2.4.1 No. 4 | | | Grass | Bq ¹³⁷ Cs (kg K) ⁻¹ | 8300 | ±2700 | 6 | 24000 | 0.35 ± 0.11 | C.2.4.2 No. 3 | | | Potatoes | Bg 90Sr kg-1 | 0.069 | ±0.017 | 3 | 0.21 | 0.33 ± 0.08 | C.2.5.1 No. 11 | | | Potatoes | Bq ¹³⁷ Cs kg ⁻¹ | 4.6 | ±3.4 | 3 | 6.8 | 0.68 ± 0.50 | C.2.5.3 No. 8 | | | *Milk | Bq 90Sr (kg Ca)-1 | 59 | ±2 | 12 | 300 | 0.20 ± 0.01 | C.3.3.1 No. 1 | | | *Milk Thorshavn | Bq 137Cs (kg K)-1 | 2300 | ± 300 | 12 | 6400 | 0.36 ± 0.05 | C.3.3.2 No. 1 | | | *Milk Klaksvik | Bq 137Cs (kg K)-1 | 2200 | ±210 | 12 | 10600 | 0.21 ± 0.02 | C.3.3.2 No. 3 | | | *Milk Tværå | Bq 137Cs (kg K)-1 | 5500 | ± 570 | 12 | 12200 | 0.45 ± 0.05 | C.3.3.2 No. 5 | | | Cod fish | Bq 90Sr (kg Ca)-1 | 8.5 | ±3.7 | 2 | 18.3 | 0.46 ± 0.20 | C.3.5.1 No. 3 | | | Cod fish | Bq 137Cs kg-1 | 0.70 | ±0.17 | 4 | 0.23 | 3.04 ± 0.74 | C.3.5.2 No. 2 | | | Lamb meat | Bq 50Sr (kg Ca)-1 | 1480 | ±630 | 3 | 1060 | 1.40 ± 0.59 | C.3.4.1 No. 5 | | | Lamb meat | Bq 137Cs (kg K)-1 | 40000 | ±14500 | 3 | 6700 | 6.0 ± 2.2 | C.3.4.2 No. 5 | | | Lamb bone | Bq 90Sr (kg Ca)-1 | 1020 | ±280 | 6 | 1950 | 0.52 ± 0.14 | C.3.4.3 No. 1 | | ^{*&}quot;Milk year": June 1987 - May 1988. Risp-R-564 33 ## 3. Environmental Radioactivity in Greenland in 1987 #### 3.1. Introduction #### **3.1.1.** In 1987 the sampling programme was similar to that used in previous years, but the Chernobyl accident caused certain modifications in order to estimate the deposition of radiocesium. Fig. 3.1. Greenland #### 3.1.2. As hitherto, samples were collected through the local district physicians and the head of the telestations. However, we have also obtained samples collected by the Greenland Fisheries and Environmental Research Institute. A number of the Greenland food samples were obtained from K.N.I. (Kalaallit Niuerfiat) (Greenland Trade). #### **3.1.3**. The estimated mean diet in Grenland was the same as that in 1962, i.e., it agreed with the estimate given by the late Professor E. Hoff-Jørgensen. #### 3.1.4. The environmental studies in Greenland were carried out together with corresponding investigations in Denmark (cf. Risø Report No. 5633) and in the Faroes (cf. Chapter 2 in this report). #### 3.1.5. The present report does not repeat information concerning sample collection and analysis already given in ref. 2. #### 3.2. Results and discussion #### 3.2.1.1. Strontium-90 in Greenland Precipitation. Table 3.2.1.1 shows the results of the measurements. The ⁹⁰Sr fallout in 1987 at the Greenland stations were generally
lower as compared with 1986. Figure 3.2.1 shows the accumulated ⁹⁰Sr at the various stations in Greenland since measurements began in 1962. Table 3.2.1.1.1. Strontium-90 in precipitation in Greenland in 1987. (Sampling area: 0.02 m²) | Location
m precipitation | Unit | Jan-March | n April-June | July-Sept | Oct-Dec | 1987 | |-----------------------------|--------------------|-----------|--------------|-----------|---------|--------| | Godthåb | Bq m ⁻³ | _ | 3.2 | 0.09 B | 1.74 | 1.94 | | Σ 0.612 | Bq m ⁻² | | 3.79 | 0.01 B | 0.38 | 1.19 | | Scoresbysund | Bq m ⁻³ | 0.3 B | 1.05 A | 0.6 B | 0.09 B | 0.42 | | Σ 0.532 | Bq m ⁻² | 0.06 B | 0.110 A | 0.05 B | 0.01 B | 0.23 | | Danmarkshavn | Bq m-3 | 4.7 | 3 | 29 A | 5 B | 5.9 | | Σ 0.095 | Bq m-2 | 0.21 | 0.09 B | 0.20 A | 0.06 B | 0.56 | | Prins Chr.Sund | Bq m ⁻³ | | B.D.L. | 0.83 A | 0.35 B | (0.61) | | Σ (1.360) | Bq m ⁻² | | B.D.L. | 0.40 A | 0.14 B | (0.54) | Table 3.2.1.1.2. Fallout rates and accumulated fallout (Bq m^{-2}) in Greenland 1950-1987 | | | sbysund
Tobin) | Pr.Chr | Sund | God | dthåb | Uper | navik | |---------------|---------------|--------------------|------------|--------------------|---------------|--------------------|--------|--------------------| | | di | Ai ₍₂₉₎ | | 1950 | 0.37 | 0.36 | 2.04 | 1.99 | 0.57 | 0.56 | 0.20 | 0.20 | | 1951 | 1.76 | 2.06 | 9.79 | 11.50 | 2.77 | 3.25 | 0.97 | 1.14 | | 1 95 2 | 3.44 | 5.38 | 19.19 | 29.97 | 5.42 | 8.46 | 1.90 | 2.97 | | 1953 | 8.70 | 13.74 | 48.47 | 76.59 | 13.69 | 21.63 | 4.81 | 7.60 | | 1954 | 33.06 | 45.69 | 184.28 | 254.71 | 52.05 | 71.94 | 18.29 | 25.28 | | 1955 | 43.49 | 87.08 | 242.45 | 485.41 | 68.48 | 137.10 | 24.06 | 48.17 | | 1956 | 53. 93 | 137. 6 7 | 300.61 | 767.46 | 84.91 | 216.76 | 29.83 | 76.16 | | 1957 | 53.93 | 187.08 | 300.61 | 1042.85 | 84.91 | 294.54 | 29.83 | 103.49 | | 1958 | 74.81 | 255.70 | 417.04 | 1425,40 | 117.79 | 402.59 | 41.39 | 141.45 | | 1959 | 106.11 | 353.27 | 591.53 | 1969.29 | 167.07 | 556.21 | 58.70 | 195.43 | | 1960 | 19.82 | 364.28 | 110.51 | 2030.68 | 31.21 | 573.55 | 10.97 | 201.52 | | 1961 | 25.75 | 380.83 | 143.57 | 2122.90 | 40.55 | 599.60 | 14.25 | 210.67 | | 1962 | 129.17 | 497.95 | 720.07 | 2775.83 | 203.38 | 784.01 | 71.46 | 275.46 | | 1963 | 290.45 | 769.78 | 1545.12 | 4218.89 | 475.45 | 1229.72 | 160.58 | 425.75 | | 1964 | 180.93 | 928.26 | 929.07 | 5026.38 | 258.63 | 1453.19 | 100.27 | 513.59 | | 1965 | 68.82 | 973.53 | 383.32 | 5281.93 | 166.50 | 1581.44 | 38.11 | 538.67 | | 1966 | 37.37 | 987.02 | 207.94 | 5360.21 | 43.29 | 1586.36 | 20.72 | 546.18 | | 1967 | 18.13 | 981.41 | 73.63 | 5305.51 | 32.5 6 | 1580.68 | 12.21 | 545.20 | | 1968 | 24.42 | 982.08 | 136.16 | 5313.15 | 00 | 1579.48 | 13.32 | 545.33 | | 1969 | 18.13 | 976.59 | 72.89 | 5258.83 | 22.20 | 1563.85 | 6.73 | 539.03 | | 1970 | 33.30 | 986.03 | 59.20 | 5192.43 | 34.41 | 1560.51 | 12.58 | 538.58 | | 1971 | 15.17 | 977.56 | 122.84 | 5189.73 | 32.56 | 1555.44 | 8.14 | 533.81 | | 1972 | 12.58 | 96 6.75 | 55.50 | 5121.35 | 15.17 | 1533.52 | 4.07 | 525.17 | | 1973 | 3.40 | 947 24 | 17.91 | 5017.88 | 6.92 | 1504.06 | 2.78 | 515.48 | | 1974 | 12.21 | 936.79 | 45.88 | 4944.16 | 18.83 | 1486.92 | 13.14 | 516.13 | | 1975 | 4.48 | 919.04 | 86.21 | 4911.57 | 19.57 | 1470.91 | 8.44 | 512.18 | | 19 76 | 3.00 | 900.26 | 11.17 | 4806.47 | 4.85 | 1440.91 | 2.44 | 502.46 | | 1977 | 5.18 | 884.06 | 34.78 | 4726.91 | 14.06 | 1420.60 | 7.03 | 497.46 | | 1978 | 10.36 | 873.29 | 54.39 | 4668.38 | 14.43 | 1401.14 | 7.77 | 493 .30 | | 1979 | 2.81 | 855.41 | 10.36 | 4568.24 | 9.99 | 1377.80 | 3.70 | 485.26 | | 1980 | 2.57 | 837.72 | 5.74 | 4465.95 | 3.87 | 1349.04 | 3.02 | 476.75 | | 1981 | 4.50 | 822.33 | 27.79 | 4387.60 | 10.57 | 1327.50 | 4.53 | 469.91 | | 1982 | 1.97 | 804.83 | 5.19 | 4289.05 | 2.15 | 1298.24 | 1.27 | 460.05 | | 1983 | 1.18 | 786.97 | (10.1) | 4197.63 | 2.98 | 1270.49 | 1.53 | 450.68 | | 1984 | 0.87 | 769.23 | (1.65) | 4100.10 | 1.62 | 1242.06 | 1.79 | 441.78 | | 1 98 5 | 1.36 | 752.39 | (1.6) | 4004.82 | (1.7) | 1214.38 | (∼0.3) | 431.64 | | 1986 | 1.14 | 735.76 | ~1.5 | 3911.73 | 1.64 | 1187.34 | ~ 0.3 | 421.75 | | 1987 | 0.23 | 718.61 | ~ 1 | 3820.32 | 1.10 | 1160.46 | (~0.2) | 411.98 | Fig. 3.2.1. Accumulated ⁹⁰Sr at Prins Chr. Sund, Godthåb, Scoresbysund (Kap Tobin) and Upernavik calculated from precipitation measurements since 1962. The accumulated fallout by 1962 was estimated from the Danish data (cf. Risø Report No. 509³⁾, Appendix D) and from the ratio of the ⁹⁰Sr fallout at the Greenland stations to that in Denmark in the period 1962-1987. #### 3.2.1.2. Radiocesium in Greenland Precipitation and Soil. After the Chernobyl accident the rain water samples used for ⁹⁰Sr analysis were also analysed for ¹³⁷Cs and ¹³⁴Cs (Table 3.2.1.2.1). Chernobyl debris was present in the precipitation collected at Godthåb and Scoresbysund. As ex- Table 3.2.1.2.1. Cesium-137 in precipitation in Greenland in 1987. | Location | Unit | Jan-March | April-June | July-Sept | Oct-Dec | 1987 | |----------------|--|-----------------|------------------|------------------|------------------|------------------| | Godthåb | Bq m ⁻³
Bq m ⁻² | 9.2
1.6 | A
3 A | B.D.L.
B.D.L. | B.D.L.
B.D.L. | ~3* | | Scoresbysund | Bq m ⁻³
Bq m ⁻² | 10.2 A
2.4 A | 23
2.4 | B.D.L.
B.D.L. | B.D.L.
B.D.L. | ~ 7* | | Danmarkshavn | Bq m ⁻³
Bq m ⁻² | | | | | B.D.L.
B.D.L. | | Prins Chr.Sund | Ba m-3
Ba m-2 | | B.D.L.
B.D.L. | 2.2 B
1.0 B | B.D.L.
B.D.L. | | ^{*}Based upon measurements of combined samples for the whole year and assuming a chemical yield of the PtCl₆ precipitation of the AMP of 60%, which has been found for Faroese drinking water samples. pected, the levels were higher on the east than on the west coast of Greenland. The ¹³⁷Cs fallout in 1987 at Godthåb and Scoresbysund was about 3% of the original deposition from Chernobyl. This resuspension corresponded to that observed in Denmark in 1987³). A sample of soil was obtained from Godthåb collected October 1987. The contribution of Chernobyl ¹³⁷Cs in this sample was 83 Bq m⁻². Total ¹³⁷Cs was 440 Bq m⁻². #### 3.2.2. Radionuclides in Greenland Sea Water Table 3.2.2 shows the samplings carried out in 1987. Table 3.2.2. Radionuclides in surface sea water collected in Greenland in the autumn of 1987 | Location | Bq ¹³⁷ Cs m ⁻³ | Bq 90Sr m-3 | Salinity ‰ | |-----------------|--------------------------------------|-------------|------------| | Danmarkshavn | 6.0 | 3.6 | 22.3 | | Godthåb | 5.1 | 2.1 | 31.8 | | Prins Chr. Sund | 6.4 | 2.6 | 29.4 | #### 3.2.3. Strontium-90 and Radiocesium in Greenland Terrestrial Mammals Reindeer samples all contained Chernobyl radiocesium in 1987 (Table 3.2.3.1). Approximately 20% of the ¹³⁷Cs came from Chernobyl. The mean content in the reindeer samples was 50 Bq ¹³⁷Cs kg⁻¹ meat. ⁹⁰Sr was 0.16 Bq kg⁻¹ meat and 2700 Bq (kg Ca)⁻¹ in bone. A ptarmigan from Holsteinsborg contained 0.58 Bq ¹³⁷Cs kg⁻¹, 0.20 Bq ⁹⁰Sr kg⁻¹ and the bone contained 2300 Bq ⁹⁰Sr (kg Ca)⁻¹. Table 3.2.3.1. Radiocesium and strontium-90 in Greenland reindeer collected in 1987 | Location | Month | Samp'e | Bq ¹³⁷ Cs
kg ⁻¹
meat | 134Cs
137Cs | Bq ⁹⁰ Sr
kg ⁻¹
meat | Bq ⁹⁰ Sr
(kg Ca) ⁻¹
in bone | g K
kg ^{.1}
meat | g Ca
kg ^{.1}
meat | |----------------|----------|--------|--|----------------|---|---|---------------------------------|----------------------------------| | Godthåb | Feb | ŀ | 7 0 | 0.087 | | 4400 | 3.0 | | | -" - | ** | 11 | 68 | 0.088 | 1 | 4600 | 3.2 | 1 | | _"_ | •• | 111 | 52 | 0.092 | 0.21 | 2500 | 2.4 | 0.101 | | -"- | •• | IV | 70 | 0.084 | } | 4100 | 3.3 | } | | -"- | " | V | 67 | 0.087 | | 4400 | 2.9 | | | * _"_ | Aug-Sept | | 15.8 | 0.081 | | 2300 | 3.2 | | | *Hoisteinsborg | -"- | ; | 34 | - | 0.20 | 420 | 2.7 | 0.42 | | * .". | _"_ | 11 | 39 | - | 0.152 | 510 | 3.0 | 0.28 | | *KNI | | | | | 0.24 | | | 0.154 | | KNI | June | 1 | 41 | 0.058 | 0.057 | 1850 | 3.9 | 0.035 | | _"_ | " | 11 | 42 | 0.059 | 0.117 | 2200 | 3.5 | 0.060 | ^{*} Wild reindeer. Fig. 3.2.3. Cesium-137 in Greenland mutton, 1962-1987. #### 3.2.4. Strontium-90 and Radiocesium in Greenland Aquatic Animals Four of the aquatic animal samples (Table 3.2.4 1) contained Chernobyl ¹³⁷Cs: a whale from Holsteinsborg (11% Chernobyl ¹³⁷Cs), salmons from Holsteinsborg and Godthåb (43%, 18% and 22%, respectively). The mean concentrations in seals were 0.16 Bq ¹³⁷Cs kg⁻¹ and 0.002 Bq ⁹⁰Sr kg⁻¹. Whales contained 0.54 Bq ¹³⁷Cs kg⁻¹ and 0.001 Bq ⁹⁰Sr kg⁻¹. Fish contained 0.55 Bq ¹³⁷Cs kg⁻¹ and 0.13 Bq ⁹⁰Sr kg⁻¹, and shrimps contained 0.131 Bq ¹³⁷Cs kg⁻¹ and 0.027 Bq ⁹⁰Sr kg⁻¹. Table 3.2.4.1. Radiocesium in aquatic animals from Greenland in 1987 | Species | Location | Month | ¹³⁷ Cs
Bq kg ⁻¹ | 134 <u>Cs</u> | g K
kg⁻¹ | |-------------|---------------|----------|--|---------------|-------------| | Seal | Egedesminde | Feb | 0.25 | - | 1.46 | | ** | Godthåb | July | 0.078 | - | 1.32 | | Whale | Egedesminde | March | 0.27 | _ | 2.62 | | Piked whale | Holsteinsborg | July-Aug | 0.81 | 0.041 | 2.75 | | Salmon | Holsteinsborg | July | 0.31 | 0.16 A | 3.38 | | Salmon I | Godthåb | July | 0.80 | 0.068 A | 3.17 | | Salmon II | Godthåb | July | 0.53 | 0.081 A | 3.55 | | Shrimps | KNI | , | 0.131 | - | 1.37 | Table 3.2.4.2. Strontium-90 in aquatic animals from Greenland in 1987 | Species | Location | Month | ⁹⁰ Sr
Bq kg ⁻¹
flesh | ⁹⁰ Sr
Bq (kg Ca) ⁻¹
bone | g Ca kg ⁻¹
flesh | |-------------|---------------|----------|--|--|--------------------------------| | Seal | Egedesminde | Feb | 0.0017 B | 0.81 B |
0.077 | | ** | Godthåb | July | 0.0020 B | 1.70 | 0.048 | | Whale | Egedesminde | March | 0.0008 B | | 0.39 | | Piked whale | Ho'steinsborg | July-Aug | 0.0010 B | | 0.0035 | | Salmon | Holsteinsborg | July | 0.0007 B | 2.7 | 0.21 | | Salmon I | Godthåb | July | 0.29 | | 0.195 | | Salmon II | Godthåb | July | 0.103 | | 0.23 | | Shrimps | KNI | • | 0.027 | | 0.42 | Fig. 3.2.4. Cesiun-137 in seal and whale meat from Greenland 1962-1987. #### 3.2.5. Radionuclides in Greenland Vegetation Chernobyl ¹³⁷Cs was present in moss, lichen, and grass from Greenland in 1987. Moss and lichen contained about 5% and grass twice as much from Chernobyl. The deposition of Chernobyl ¹³⁷Cs at Egedesminde was estimated from the two moss samples to be 16 Bq ¹³⁷Cs m⁻². The lichen samples from Jacobshavn and Godthåb suggested Chernobyl depositions of 9 and 51 Bq ¹³⁷Cs m⁻², respectively. These estimates are one-third to one-half of those obtained from soil measurements in 1986⁴). Table 3.2.5.1 shows that ⁹⁹Tc was measurable in seaweed from Godthåb. Ascophyllum contained two times higher levels than Fucus, which is in agreement with earlier observations (cf. Risø-R 510)⁴⁾. The transfer factor from Sellafield to W-Greenland waters has been determined to be 0.4 Bq per PBq y⁻¹ 9) or in fucus 40 mBq kg⁻¹ d.w. per TBq y⁻¹. Hence the expected discharge observed should have been 150 TBq y⁻¹. This is close to the discharge in 1978 (179 TBq). The transit time from Sellafield to W-Greenland should then have been 9 years, which seems reasonable. Table 3.2.5.1. Radionuclides in seaweed collected at Godthåb in 1987 | Species | Date | ⁹⁰ Sr
Bq kg ⁻¹
dry | ⁹⁰ Sr
Bq
(kg Ca)-1 | ⁹⁹ Tc
Bq kg ⁻¹
dry | ¹³⁷ Cs
Bq kg ⁻¹
dry | g K
kg ⁻¹ dry | g Ca
kg ⁻¹ dry | |---------------------|------|--|-------------------------------------|--|---|-----------------------------|------------------------------| | Fucus vesiculosus | 8/8 | 0.24 A | 19.9 A | 5.9 | 0.48 | 20.8 | 11.9 | | Ascophyllum nodosum | 10/9 | • | 13.8 | 12.0 | 0.34 | 17.3 | • | Table 3.2.5.2. Radionuclides in lichen, moss, and grass collected in Greenland in 1987 | | | | 90 |)Sr | 134 | Cs | 137 | 'Cs | 134Cs | |---------|--------------|----------|----------------------------|--------------------|----------------------------|--------------------|----------------------------|--------|-------------------| | Species | Location | Month | Bq kg ⁻¹
dry | Bq m ⁻² | Bq kg ⁻¹
dry | Bq m ⁻² | Bq kg ⁻¹
dry | Bq m⁻² | ¹³⁷ Cs | | Moss | Egedesminde | July-Aug | 43 | 210 | 1.89 | 9.1 | 102 | 490 | 0.0186 | | Moss | Egedesminde | July-Aug | 44 | 196 | 0.71 | 3.1 | 100 | 440 | 0.0071 | | Moss | Danmarkshavn | Aug | 52 | 167 | | | 220 | 740 | | | Lichen | Danmarkshavn | Aug | 51 | 84 | | | 152 | 250 | | | Lichen | Jacobshavn | July | 16.6 | 17.9 | 3.0 | 3.2 | 115 | 124 | 0.026 | | Lichen | Godthåb | Aug | 66 | 210 | 5.9 | 18.9 | 470 | 1510 | 0.0126 | | Grass | Egedesminde | July | 6.1 | | 1.45 | | 33 | | 0.044 | | Grass | Godthåb | Aug | 3.1 | | 0.88 | | 27 | | 0.032 | ### 3.2.6. Strontium-90, Radiocesium, and Tritium in Greenland Drinking Water Quarterly samples of drinking water were collected from a number of locations in Grandand. Tables 3.2.6.1-3.2.6.3 show the results from 1987, and Fig. 3.2.6 the geometric annual ⁹⁰Sr means of all samples for the period 1962-1987. Table 3.2.6.1. Strontium-90 in drinking water collected in Greenland in 1987 (Unit: $Bq m^{-3}$) | Location | Jan-Mar | April-June | July-Sept | Oct-Dec | |-----------------|---------|------------|-----------|---------| | Danmarkshavn | 22 | 10.7 | 4.8 | 17.7 | | Scoresbysund | 17.2 | 15.3 | 12.3 | 10.6 | | Prins Chr. Sund | | 27 | 6.3 | 56 | | Godthåb | 8.3 | 9.6 | 6.8 | | | Upernavik | | 14.3 | 6.3 | | Fig. 3.2.6. Strontium-90 in Greenland drinking water (geometric mean), 1962-1987 Table 3.2.6.2. Cesium-137 in drinking water collected in Greenland in 1987 (Unit: $Bq m^{-3}$) | Location | Jan-Mar | April-June | July-Sept | Oct-Dec | |-----------------|---------|------------|-----------|---------| | Danmarkshavn | < 2.6 | < 4 | < 3 | < 4 | | Scoresbysund | 1 B | 3 B | | | | Prins Chr. Sund | | 4.7 | < 2.5 | 3.6 A | | Godthåb | 3.7 | 3.2 A | 3 B | | | Upernavik | | 3 B | < 3 | | Table 3.2.6.3. Tritium in drinking water collected in Greenland in 1987 (Unit: kBq m⁻³) | Location | Jan-March | | | |-----------------|-----------------|--|--| | Danmarkshavn | 1.61 ± 0.00 | | | | Scoresbysund | B.D.L. | | | | Prins Chr. Sund | B.D.L. | | | | Godthåb | 2.04 ± 0.05 | | | | Upernavik | 2.46 ± 0.10 | | | As in previous years, we found it most expedient to choose the geometric mean of all figures, i.e. 12.4 Bq 90Sr m⁻³ (0.34 pCi l⁻¹) as representative of the mean level of 90Sr in Greenland drinking water in 1987. This level was in agreement with observations of earlier years (Fig. 3.2.6). The levels in drinking water are still surprisingly high compared with present rain concentrations (cf. Table 3.2.1.1). We have suggested that evaporation from the drinking water reservoirs was responsible for the higher 90Sr levels. Tritium measurements show (Table 3.2.6.2) that Greenland drinking water shows similar tritium levels as rain from Denmark³⁾; hence evaporation seems to be a possible explanation. The high 90Sr levels may, however, also be due to the extraction of old deposited 90Sr activity from the soil by the water collected for drinking. This would also be compatible with "normal" tritium concentrations. If old ice (e.g. from the early sixties) had been the source, we would have expected high tritium concentrations. ## 3.3. Estimate of the Mean Contents of 90Sr and 137Cs in the Human Diet in Greenland in 1987 #### 3.3.1. The Annual Quantities The estimate of the daily pro capite intake of the different foods in Greenland is still based on the figures given in 1962 by the late Professor E. Hoff-Jørgensen, in Risø Report No. 65²). #### 3.3.2. Milk Products All milk consumed in Greenland was imported as milk powder from Denmark. The mean radioactivity content in milk prepared from Danish dried milk produced in 1987 was 0.071 Bq 90Sr kg⁻¹ and 0.60 Bq ¹³⁷Cs kg⁻¹ 3). Cheese was also imported from Denmark and contained 0.50 Bq 90Sr kg⁻¹ and 0.43 Bq ¹³⁷Cs kg⁻¹. #### 3.3.3. Grain Products All grain was imported from Denmark. It is assumed that only grain from the harvest of 1986 was consumed in Greenland during 1987. The daily pro capite consumption was: rye flour (100% extraction): 80 g; wheat flour (75% extraction): tion): 110 g; rye flour (70% extraction): 20 g; biscuits (rye, 100% extraction): 27 g, and grits: 25 g. The content of ⁹⁰Sr in these five products was 0.43, 0.08, 0.09, 0.32, and 0.23 Bq kg⁻¹, respectively. Hence the mean content of ⁹⁰Sr in grain products was 0.23 Bq kg⁻¹. The content of ¹³⁷Cs in the five products was 11.1, 0.29, 2.22, 8.22, and 0.37 Bq kg⁻¹. Hence the mean content of ¹³⁷Cs in grain products was 4.56 Bg l g⁻¹. The activity levels in rye flour (100% extraction), wheat flour (75% extraction), and grits were all taken from Tables 5.9.1 and 5.9.2 in Risø Report No. 540³⁾. The calculations of the ⁹⁰Sr level in rye flour (70% extraction) was made similarly to that of the level in wheat flour (75% extraction), i.e. as one-fifth of the whole- grain activity. The ¹³⁷Cs content in rye flour (70% extraction) was calculated as one-half of the whole-grain level in rye in analogy with the ratio of ¹³⁷Cs in whole wheat grain to wheat flour (75% extraction)³⁾. The ⁹⁰Sr and ¹³⁷Cs contents in biscuits were calculated by dividing the levels of the rye flour (100% extraction) by 1.35, since 1 kg flour yields 1.35 kg bread³⁾. #### 3.3.4. Potatoes, Other Vegetables, and Fruit The Danish mean levels for 1987 were used³⁾, since the local production is insignificant compared with imports from Denmark. The Danish mean levels were: in potatoes 0.044 Bq 90 Sr kg $^{-1}$ and 0.134 Bq 137 Cs kg $^{-1}$, in other vegetables 0.32 Bq 90 Sr kg $^{-1}$ and 0.064 Bq 137 Cs kg $^{-1}$, and in fruit 0.065 Bq 90 Sr kg $^{-1}$ and 0.16 Bq 137 Cs kg $^{-1}$. #### 3.3.5. Meat Nearly all meat consumed in Greenland is assumed to be of local origin. Approximately 10% comes from sheep, 5% from reindeer, 60% from seals, 5% from whales, and 20% from sea birds and eggs. The activities in reindeer were estimated from 3.2.3. Seal and whale were estimated from 3.2.4. The levels of lamb and sea birds (and eggs) were taken from last year's measurements (Risø-R-550)⁴⁾. Hence the mean levels in Greenland meat from 1987 were 0.019 Bq ⁹⁰Sr kg⁻¹ and 5.6 Bq ¹³⁷Cs kg⁻¹. ``` (^{90}\text{Sr}: 0.1 \times 0.097 + 0.05 \times 0.16 + 0.6 \times 0.002 + 0.05 \times 0.001 + 0.2 \times 0 = 0.019 Bq kg⁻¹) (^{137}\text{Cs}: 0.1 \times 29 + 0.05 \times 50 + 0.6 \times 0.16 + 0.05 \times 0.54 + 0.2 \times 0.44 = 5.6 Bq kg⁻¹) ``` #### 3.3.6. Fish All fish consumed was of local origin, and the mean levels from 1987 were used, i.e. 0.13 Bq 90Sr kg⁻¹ and 0.55 Bq ¹³⁷ Cs kg⁻¹. #### 3.3.7. Coffee and Tea The Danish figures for 1987^{3}) were used for coffee and tea, i.e. 0.41 Bq 90Sr kg^{-1} and 1.23 Bq 137Cs kg^{-1} . #### 3.3.8. Drinking Water The geometric mean calculated in 3.2.6 was used as the mean level of ⁹⁰Sr in drinking water, i.e. 12.4 Bq ⁹⁰Sr m⁻³. The ¹³⁷Cs content was approximately 3 Bq ¹³⁷Cs m⁻³. Tables 3.3.1 and 3.3.2 show the diet estimates of 90Sr and 137Cs, respectively. Table 3.3.1. Estimate of the mean content of 90 Sr in the human diet in Greenland in 1987 | Type of food | Annual quantity in kg | Bq ⁹⁰ Sr
per kg | Total
Bq ⁹⁰ Sr | Percentage of
total Bq ⁹⁰ Sr
in food | |----------------|-----------------------|-------------------------------|------------------------------|---| | Milk and cream | 78 | 0.071 | 5.54 | 9.2 | | Cheese | 2.5 | 0.50 |
1.25 | 2.1 | | Grain products | 95.6 | 0.23 | 21.99 | 36.7 | | Potatoes | 32.8 | 0.044 | 1.44 | 2.4 | | Vegetables | 5.5 | 0.32 | 1.76 | 2.9 | | Fruit | 13.5 | 0.065 | 0.88 | 1.5 | | Meat and eggs | 45.6 | 0.019 | 0.87 | 1.5 | | Fish | 127.6 | 0.013 | 16.59 | 27.7 | | Coffee and tea | 7.3 | 0.41 | 2.99 | 5.0 | | Drinking water | 548 | 0.012 | 6.58 | 11.0 | | Total | | | 59.89 | · | The mean annual calcium intake is estimated to be 0.56 kg (approx. 0.2-0.25 kg creta praeparata). Hence the ⁹⁰Sr/Ca ratio in Greenland total diet in 1987 was 107 Bq ⁹⁰Sr (kg Ca)⁻¹ or 2.9 pCi ⁹⁰Sr (g Ca)⁻¹ and the daily intake was 0.16 Bq ⁹⁰Sr or 4.4 pCi ⁹⁰Sr. Fig. 3.3.1. Strontium-90 in Greenland diet, 1962-1987. Table 3.3.2. Estimate of the mean content of ¹³⁷Cs in the human diet in Greenland in 1987 | Type of food | Annual quantity in kg | Bq ¹³⁷ Cs
per kg | Total
Bq ¹³⁷ Cs | Percentage of
total Bq ¹³⁷ Cs
in food | |----------------|-----------------------|--------------------------------|-------------------------------|--| | Milk and cream | 78 | 0.60 | 46.80 | 5.7 | | Cheese | 2.5 | 0.43 | 1.08 | 0.1 | | Grain products | 95.6 | 4.56 | 435.94 | 52.7 | | Potatoes | 32.8 | 0.134 | 4.40 | 0.5 | | Vegetables | 5.5 | 0.064 | 0.35 | 0 | | Fruit | 13.5 | 0.16 | 2.16 | 0.3 | | Meat and eggs | 45.6 | 5.6 | 255.36 | 30.9 | | Fish | 127.6 | 0.55 | 70.18 | 8.5 | | Coffee and tea | 7.3 | 1.23 | 8.98 | 1.1 | | Drinking water | 548 | 0.003 | 1.64 | 0.2 | | Total | | | 826.89 | | The mean annual potassium intake is estimated to be approx. 1.2 kg. Hence the 137 Cs/K ratio becomes 690 Bq 137 Cs (kg K) $^{-1}$ or 18.6 pCi 137 Cs (g K) $^{-1}$). The daily intake in 1987 from food was 2.27 Bq 137 Cs or 61 pCi 137 Cs. Fig. 3.3.2. Cesium-137 in Greenland diet, 1962-1987. #### 3.3.9. Discussion The most important 90Sr source in the Greenland diet is still grain products, which contribute 37% of the total 90Sr content in the diet. Approximately 60% of the 90Sr in the food consumed in Greenland in 1987 originated from imported (Danish) food. Meat is still an important ¹³⁷Cs source in the Greenland diet, contributing 31% of the total content in 1987. However, grain contributed with 53% to the intake of ¹³⁷Cs with Greenland diet in 1987, which was due to the Chernobyl contamination of Danish grain in 1986. Approximately 40% of the ¹³⁷Cs in the Greenland diet in 1987 came from local products. This is lower than had been observed earlier, because the Danish imported food, in particular grain and milk, was contaminated by Chernobyl ¹³⁷Cs. The 90Sr contents in the total diet in 1987 was 1.36 times the 1986 level. The ¹³⁷Cs level was twice that found in 1986. As discussed earlier²⁾, the great variations from year to year are primarily due to the variations in the ¹³⁷Cs levels in the lamb and reindeer samples obtained. The contribution of Chernobyl ¹³⁷Cs to Greenland meat was far less than these variations. The ⁹⁰Sr content of the Greenland diet in 1987 was equal to the Danish mean content³⁾, and 1.1 times the Faroese level¹⁾. The ¹³⁷Cs level in the total diet in Greenland was 1.45 times the Danish and 24% of the Faroese diet level. #### 3.4. Conclusion #### **3.4.1**. The ⁹⁰Sr fallout rate in 1987 was less than 1 Bq m⁻². The deposition of ¹³⁷Cs from the Chernobyl accident (resuspension) varied from nearly nil to 7 Bq m⁻². #### 3.4.2. The food consumed in Greenland in 1987 contained on the average 207 Bq. 90Sr (kg Ca)-1, and the daily mean intake of 137Cs was estimated as 2.27 Bq. The most important 90Sr contributor to the diet was grain products; these accounted for 36% of the total 90Sr content of the diet. Cesium-137 originated mainly from grain and meat (reindeer and lamb), contributing 84% of the total 137Cs content of the diet. Chernobyl radiocesium was detectable in Greenland food, but did not influence the 137Cs level significantly. #### 3.4.3. No ⁹⁰Sr analyses of human bone samples have hitherto been carried out on the population of Greenland. Considering the estimated ⁹⁰Sr levels in the diet, it seems probable⁴⁾, however, that the 1987 ⁹⁰Sr levels of humans in Greenland were on the average rather similar to those found in Denmark, i.e. the mean levels in human bone in Greenland were approximately 22 Bq ⁹⁰Sr (kg Ca)⁻¹ (vertebrae). From diet measurements, the ¹³⁷Cs content in Greenlanders was estimated as 2000 Bq ¹³⁷Cs (kg K)⁻¹. # 4. Environmental Radioactivity in the North Atlantic Region # 4.1. Monthly Surface Sea Water Samples from Utsira, Norway Institute of Energy Technology, Kjeller, Norway, collects monthly sea water samples at Utsira 59°19'N, 4°54'E in SW-Norway. From this station it is possible to monitor the radioactivity in the Norwegian Coastal Current, which carries the activity from the North Sea to the Arctic waters in the north Tables 4.1.1 and 4.1.2 show the results from 1987 and 1986. 45% of the ¹³⁷Cs in the sea water from Utsira in 1987 was from Chernobyl. This contribution was rather constant throughout the year (relative S.D.: 8%). Table 4.1.1. Radiocesium and strontium-90 in surface sea water collected in 1987 from Utsira, Norway. 59°19'N, 4°54'E. (Unit: Bq m⁻³) | _ | 222 | 1270 | 134Cs | Salinity | | |---------------|------|-------------------|-------|----------|------| | Date | 90Sr | ¹³⁷ Cs | 137Cs | in ‰ | 99Tc | | March 19 | 10.0 | | | | | | April 12 | 13.4 | 59 | 0.20 | 28.6 | lost | | May 16 | 11.2 | 56 | 0.162 | 31.3 | 0.62 | | June 19 | 10.8 | 50 | 0.171 | 33.2 | 1.04 | | July 27 | 13.3 | 54 | 0.184 | 32.0 | 1.26 | | Aug 31 | 14.0 | 52 | 0.147 | 30.8 | 1.19 | | Sept 28 | 13.0 | 48 | 0.161 | 32.3 | 1.46 | | Nov 3 | | 48 | 0.168 | 29.0 | 1.71 | | Mean | 12.2 | 52 | | 31.0 | 1.21 | | 1 S.D. | 1.54 | 4.2 | | 1.70 | 0.37 | | Relative S.D. | 13% | 8% | | 5% | 31% | Table 4.1.2. Technetium-99 in surface sea water collected in 1986 from Utsira, Norway. 59°19'N, 4°54'E. (Unit: Bq m⁻³) | Date | ⁹⁹ Tc
Bq m ⁻³ | Salinity in ‰ | | |-----------------|--|---------------|--| | April 23 | 1.68 | 32.3 | | | May 20 | 1.02 | 30.2 | | | June | 2.17 | 29.4 | | | July | 2.17 | 32.0 | | | October 28 | 1.40 | 32.4 | | | November 17 | 1.45 | 33.1 | | | December 5 | 1.56 | 33.0 | | | Mean | 1.64 | 31.8 | | | 1 S.D. | 0.42 | 1.42 | | | Relative S.D. % | 26% | 4% | | Fig. 4.1.1. Cesium-137 in surface sea water collected at Utsira (59°19'N, 4°54'E). (Unit: $Bq m^{-3}$). Fig. 4.1.2. Technetium-99 in surface sea water collected at Utsira (59°19'N, 4°54'E). (Unit: Bq m^{-3}). # 4.2. Surface Sea Water Samples Collected in West Greenland Waters in July 1987 by The Greenland Fisheries and Environmental Research Institute The sampling in 1987 was the sixth since this programme began in July 1983; 108 90Sr and 116 137Cs analyses have been carried out. The data were treated by two-sided anovas (cf. Tables 4.2.2-4.2.3). It appears that the variation between samplings was considerably larger for 90Sr than for 137Cs, although both were highly significant. Thus, from July 1983 to July 1987, the 90Sr concentrations decreased by a factor of 2.1, while the ¹³⁷Cs decreased by a factor of only 1.2. For ¹³⁷Cs the variation between locations was significant; the southern locations at 64°N contained 1.4 times higher concentrations than the northern at about 71°N. There was no significant local variation for 90Sr. The explanation for these significant differences between the distributions of 90Sr and 137Cs is that the discharges of 137Cs from Sellafield have partly compensated for the decrease in global fallout concentrations. This compensation does not take place for 90Sr. Hence we see a more rapid decrease in time for this nuclide. Furthermore, the Chernobyl accident also contributed to this compensation for ¹³⁷Cs in 1987. As the Sellafield input comes with the East Greenland Current, it makes sense that the highest ¹³⁷Cs concentrations are found at the southern stations at West Greenland because these stations first receive the water from the East Greenland Current. The 137Cs determinations of bulked samples in 1987 (cf. Table 4.2.1) show that the percentage of Chernobyl ¹³⁷Cs was nearly the same at the southern stations (~64°-67°N) as at the northern locations (68°-71°N), namely 8 and 7%, respectively (cf. also 4.6). Table 4.2.1. Strontium-90 and cesium-137 in surface sea water of West Greenland in July 1987 | Latitude
N | Longitude
W | Name of Location | ⁹⁰ Sr
Bq m ⁻³ | ¹³⁴ Cs
Bq m ⁻³ | ¹³⁷ Cs
Bq m ⁻³ | Salinity
in ‰ | |------------------|------------------|--|--|---|---|------------------| | 63°59′
63°55′ | 52°22′
53°07′ | Fylla Banke (Nuuk)
Fylla Banke (Nuuk) | 2.6
3.1 | | 4.6
lost | 31.9
lost | | 63°48' | 53°55′ | Fylla Banke (Nuuk) | 2.6 | } | 4.7 | 33.4 | | 65°06' | 53°00′ | Sukkertoppen (Maniitsog) | 2.4 | ļ | 5.0 | 32.7 | | 65°06' | 53°59' | Sukkertoppen (Maniitsog) | 2.6 | 0.131 | 4.6 | 33.5 | | 65°06' | 54°58' | Sukkertoppen (Maniitsoq) | 2.5 | 0.707 | 5.0 | 33.4 | | 66°53' | 54°08' | Holsteinsborg (Sisimiut) | 2.1 | | 4.2 | 33.4 | | 66°46' | 55°35' | Holsteinsborg (Sisimiut) | 2.3 | | 4.3 | 33.5 | | 66°41′ | 56°37' | Holsteinsborg (Sisimiut) | 2.4 | [| 4.1 | 33.5 | | 67°34′ | 57°10′ | Intermediate station | 2.6 | 1 | 4.2 | 33.2 | | 68°00′ | 55°00′ | Egedesminde (Aasiaat) | 2.3 | 1 | 3.7 | 33.8 | | 68°04' | 56°00′ | Egedesminde (Aasiaat) | 2.4 | ł | 4.1 | 33.5 | | 68°08' | 57°17′ | Egedesminde (Aasiaat) | 2.3 | ļ | 3.6 | 31.7 | | 68°14′ | 58°40′ | Egedesminde (Aasiaat) | 2.2 | j | 4.5 | 31.9 | | 68°32' | 58°10′ | Disko rende | 2.1 | ı | 4.3 | 32.5 | | 68°43' | 55°03' | Disko rende | 1.9 | 0.107 | 4.2 | 33.4 | | 69°08' | 58°25' | Disko rende | 2.0 | i | 3.6 | 32.6 | | 69°30' | 5 6 °00′ | Disko fjord | 2.3 | | 3.6 | 33.4 | | 70°45′ | 54°60′ | Nugssúag | 2.1
 | 2.9 | 32.0 | | 70°45' | 57°00' | Nugssuag | 2.1 | | 3.5 | 32.3 | | 70°41′ | 59°30′ | Nugssuag | 2.2 | } | 3. 9 | 31. 6 | Table 4.2.2. Anova of In Bq 90Sr m⁻³ surface water collected off West Greenland July 1983 - July 1987 (cf. Table 4.2.1 and Rise-R-510, 528 and 5414) | Variation | SSD | f | s² | v ² | Р | |-------------------|-------|----|-------|----------------|--------| | Between samplings | 6.312 | 5 | 1.262 | 58.40 | >99.95 | | Between locations | 0.624 | 31 | 0.020 | 0.931 | - | | Interaction | 1.513 | 70 | 0.022 | 1.07 | • | | Remainder | 0.020 | 1 | 0.020 | | | Table 4.2.3. Anova of ln Bq ¹³⁷Cs m⁻³ surface water collected off West Greenland July 1983 - July 1987 (cf. Table 4.2.1 and Risø-R-510, 528 and 541⁴)) | Variation | SSD | f | s² | v ² | Р | |-------------------|-------|------------|-------|----------------|--------| | Between samplings | 0.751 | 5 | 0.150 | 11.60 | >99.95 | | Between locations | 1.365 | 32 | 0.043 | 3.29 | >99.95 | | Interaction | 0.998 | 7 7 | 0.013 | 0.63 | - | | Remainder | 0.021 | . 1 | 0.021 | | | ### 4.3. »Polarstern« Cruise to the Greenland Sea June 1987 Figure 4.3.1 shows the distribution of ⁹⁰Sr in surface sea water in the Greenland Sea in 1987. A few deep water samples are also included. The input from Sellafield appears (in the lower right corner of the figure) around 70°N and 15°E. Input of Arctic Ocean water with enhanced global fallout concentrations is seen in the East Greenland Current (EGC) (cf. the upper left part of the map). The lowest 90 Sr concentrations are seen in the central part of the Greenland Sea ($\sim 75^{\circ}$ N, $\sim 0^{\circ}$). The ¹³⁷Cs concentrations are shown in Fig. 4.3.2. The contribution from Chernobyl decreases by an order of magnitude when we move westwards. Figure 4.3.3 shows the relative contribution of ¹³⁷Cs from Chernobyl. The relatively high contribution at 72°27'N, 8°11'W (48%) may be due to upwelling of deeper water with Chernobyl ¹³⁷Cs. In the EGC the Chernobyl signal is a few per cent of the total ¹³⁷Cs. Figure 4.3.4 shows the ¹³⁷Cs/⁹⁰Sr in the Greenland Sea. If we look at the non-Cernobyl ratios we notice that nearly all of them are greater than the expected ratio in global fallout in the Arctic, which is about 1.2-1.56). In the EGC closest to Greenland the ratio approaches that in global fallout. Figure 4.3.5 shows the ⁹⁹Tc concentrations. The highest levels were seen in the northern part of the Fram Strait around 80°N. A single high value was seen at 74°10′N 8°00′W (107 mBq m⁻³). Neighbouring samples collected at 200 m depth may suggest that upwelling of deeper water was due to the enhanced level found in this sample. Figure 4.3.6 shows the ⁹⁹Tc/⁹⁰Sr; these data support the theory of upwelling as the reason for the above-mentioned enhanced level. Table 4.3. Radionuclides in sea water collected in Fram Straits and Greenland Sea in June 1987 | Position | Date | Depth | Temp. | Salinity | 90Sr | 99TC | 134Cs | ¹³⁷ Cs | 23 6P u | 239.240Pu | 241 Am | |-----------------|---------|-------|-------------------|----------|------------|---------------------|--------|--------------------|----------------|-----------|--------------------| | N EorW | | in m | in ³ C | in ‰ | Bq m-3 | mBq m ⁻³ | Bq m·3 | Bq m ⁻³ | mBq m-3 | mBq m 3 | mBq m ³ | | 78°49° 00°10°W | lune 10 | | | 34 1 | 20 | 60 | 1 72 | 10.4 | | | | | 78 49 00 10 W | | 2 | 1.5
-1.5 | 32.4 | 2.9
4.2 | 69
47 ± 0 | 1.72 | 10.4
6.9 | | | | | 79°00° 12°25′W | | 2 | -1.6 | 32.4 | 4.3 | 147 | | 6.4 ± 0.1 | | | | | 79'52' 04'21'W | | 2 | -1.6 | 32.3 | 4.3
5.0 | 122 | 0.06 A | 10.2 | 0.52 | 125 | lost | | 80°00° 04°29°E | June 16 | 2 | 1.5 | 34.2 | 2.8 | 104 | 1.47 | 10.4 | 0.52 | 125 | 1031 | | 78°54' 06°43'E | | 2 | 4.0 | 34.5 | 2.5 | 86 | 2.4 | 12.4 | 0.69 | 15.0 | 2.0 | | 76°39° 02°14W | | 2 | 0.0 | 33.2 | 3.3 | 66 | 1.06 | 9.2 | 0.03 | 15.3 | 1.7 | | 75°30' 06°39W | | 2 | -0.5 | 33.1 | 3.5 | 98 | 0.65 | 9.3 | | 13.3 | •.• | | 75 33' 08' 49'W | | 2 | 0.8 | 33.0 | 4.3 | 90 | 0.35 A | 95 | | | | | 75 35' 11°22'W | | 2 | -1.7 | 32.4 | lost | 53 | 0.094 | 8.1 | | | | | 75°33' 11°39'W | | 215 | 1.5 | 34.9 | 2.4 | 110 | 0.034 | 7.0 | | | | | 75°26' 10°47'W | | 2 | -1.6 | 32.9 | 3.5 | 84 | 0.36 A | 8.8 | | | | | 75°26' 10°47'W | | 200 | 1.0 | 35.0 | 2.1 | 84 | 1.61 A | 10.9 | | | | | 75:09: 12:28'W | | 2 | -1.7 | 32.4 | 4.2 | 82 ± 20 | 0.075 | 8.0 | | | | | 74°10′ 08`00′W | | 2 | 2.7 | 33.8 | 2.5 | 107 | 0.54 | 71 | | 17.1 | 2.0 | | 72°27° 08°11′W | | 2 | 2.6 | 34.0 | 2.6 | 44 | 1.81 A | 100 | | | | | 71°21′ 08°36′W | | 2 | 2.9 | 34.1 | 2.8 | 57 | 0.49 | 89 | | 16 4 | 1 45 | | 72'00' 15'00'W | | 2 | | 32.9 | 2.4 | 70 | 0.52 | 6.5 | | | _ | | 72°22′ 16°47′W | | 2 | -0.6 | 32.2 | 36 | 41 | | 70 | | | | | 72°30′ 17 31′W | | 2 | 0.0 | 31.9 | 4.2 | 74 | 0.096 | 6.5 | | 12.0 | 2.3 | | 73°27′ 13°19′W | June 27 | 2 | 0.1 | 32.2 | 3.6 | 56 | 0.66 | 8.8 | | 11.3 | 20 | | 74°17′ 06°15′W | June 28 | 2 | 2.6 | 34.2 | 2.3 | 26 | | 5.8 | | | | | 74°30′ 02°35′W | June 28 | 2 | 2.2 | 34.7 | 2.2 | 37 | 0.21 | 5.6 | | 13.0 | B.D.L. | | 74°30° 02°35′W | June 28 | 3570 | -1.05 | 34.9 | 0.84 | | 0.12 A | 1.08 | | | | | 74°38' 01°03'E | June 29 | 2 | 1.9 | 34.8 | 2.1 | 31 | | 5.7 | | | | | 74°38′ 01°03′E | June 29 | 10 | 1.9 | 34.8 | 21 | | | 5.1 | | | | | 74'42' 03'46'E | June 29 | 10 | 2.8 | 34.9 | 2.7 | | | 6.4 | | | | | 73°32′ 08°23′E | June 30 | 10 | 6.0 | 34.9 | 3.1 | | 2.2 | 12.5 | | | | | 73°11' 09°43'E | June 30 | 10 | 5. 9 | 35.1 | 2.5 | | 26 | 126 | | | | | 72°51′ 11°03′E | June 30 | 10 | 6.3 | 35.1 | 2.6 | | 2.5 | 12.5 | | | | | 72°19′ 12°46′E | June 30 | 10 | 6.8 | 35.1 | 3.8 | | 3.5 | 160 | | | | | 71`57' 14`00'E | June 30 | 10 | 6.7 | 34.9 | 40 | | 4.8 | 21.7 | | | | | 71°35′ 15°16′E | June 30 | 10 | 6.7 | 34.9 | 3.8 | | 4.4 | 21.0 | | | | | 71 '07' 17°00'E | July 1 | 10 | 6.6 | 34.3 | 63 | | 8.6 | 40 | | | | | 70°38′ 18°33′E | July 1 | 10 | 6.4 | 34.2 | 6.3 | | 9.2 | 41 | | | | | 70°25′ 19°39′E | July 1 | 10 | 6.2 | 34.4 | 6.7 | | 8.3 | 40 | | | | | 70°09′ 20°15′E | July 1 | 10 | 5.7 | 34.3 | 6.6 | | 8.9 | 39 | | | | The error term is 1 S.E. of the mean of double determinations. Fig. 4.3.1. Strontium-90 in the Greenland Sea, June 1987. Surface water samples except where depths are given. Risø-R-564 53 Fig. 4.3.2. Cesium-137 in the Greenland Sea, June 1987. Measured total ¹³⁷Cs (upper figures) and calculated Chernobyl-derived ¹³⁷Cs based on ¹³⁴Cs measurements (lower figures). Surface water samples except where depth are given. The isolines show the ¹³⁷Cs-Chernobyl concentrations. Fig. 4.3.3. Fraction of 137 Cs originating from Chernobyl, Greenland Sea, June 1987. Based on data given in Fig. 4.3.2. Fig. 4.3.4. Cesium-137/strontium-90 ratios based on data given in Figs. 4.3.2 and 4.3.1. Upper figures refer to total ¹³⁷Cs; lower figures to Chernobyl-derived ¹³⁷Cs. The isolines show the ¹³⁷Cs/⁹⁰Sr non-Chernobyl ratios. Fig. 4.3.5. Technetium-99 in the Greenland Sea, June 1987. Surface water samples except where depths are given. Fig. 4.3.6. Technetium-99/strontium-90 ratios based on data given in Figs. 4.3.5 and 4.3.1. Greenland Sea, June 1987. # 4.4. Transuranics in the Greenland Sea in "Polarstern Samples" Collected in June 1987 Tables 4.3 and 4.4 show the results of Pu and Am analyses of total sea water and particulates in sea water samples obtained from filtration of the water through a 0.45 μ millipore cartridge filter. The particulate Pu fraction was determined in 7 samples. The mean fraction of particulate Pu was $15.0 \pm 5.2\%$ (± 1 S.D.); for 5 Am samples we found $10.4 \pm 6.3\%$. The mean concentration of 239,240 Pu in total sea water from the Greenland Sea was 14.1 ± 2.2 mBq m⁻³ (±1 S.D.; N = 8) and the mean 241 Am concentration was 1.91 ± 0.29 mBq m⁻³ (±1 S.D.; N = 6). Two samples were analysed for 238 Pu. The mean 238 Pu/ 239,240 Pu was $4.4\pm0.28\%$ (±1 S.D.) and the mean 241 Am/ 239,240 Pu was $13.5\pm4.0\%$ (±1 S.D.; N = 6). In July 19836) the mean 239,240 Pu concentration was 12 mBq m⁻³ in the Greenland Sea. Hence we conclude that the Pu concentrations have been rather constant in this area for the last four years. Table 4.4. Particulate transurant. in sea water collected on 0.45 μ . Millipore filters in the Fram Strait and Greenland Sea in June 1987 | Po:
N | sition
E or W | Date | Depth
in m | 238Pu
mBq m ⁻³ | 239,240Pu
mBq m ⁻³ | ²⁴¹ Am
mBq m ⁻³ | |----------|------------------|---------|---------------|------------------------------|----------------------------------|--| | 79°00′ | 12°25′W | June 13 | 2 | B.D.L. | B.D.L. | B.D.L. | | 79°52′ | 04°21′W | June 14 | 2 | B.D.L. | B.D.L. | B.D.L. | | 78°54′ | 06°43'E | June 17 | 2 | 0.11 B | 1.7 | 0.26 | | 76°39' | 02°14′W | June 18 | 2 | 0.14 B | 3.0 | 0.184 | | 74°10′ | 08°00'W | June 23 | 2 | 0.085 B | 2.1 | 0.126 | | 71°21′ | 08°36′W | June 25 | 2 | 0.30 B | 4.0 | 0.28 | | 72°30′ | 17°31′W | June 26 | 2 | 0.10 B | 1.19 | 0.064 | | 73°27′ | 13°19′W | June 27 | 2 | 0.18 B | 1.57 | B.D.L. | | 74°30′ | 02°35′W | June 28 | 2 | 0.044 B | 1.74 | B.D.L. | # 4.5. "Bjarni Sæmundson" Cruise to the Denmark Strait and the Southern Greenland Sea in September 1987 (GSP Project) Figure 4.5 and Table 4.5 show the results of the ⁹⁰Sr and radiocesium analyses from samples collected by "Bjarni Sæmundson" in September 1987. The lowest ⁹⁰Sr concentrations were observed around Iceland, the highest were seen in the East Greenland Current (EGC). The ¹³⁷Cs concentrations were also highest in EGC. Chernobyl ¹³⁷Cs was present in the eastern samples (cf. Table 4.5). The mean contribution from Chernobyl in these samples was 38%. A single sample from the Denmark Strait (64°04'N 52°09'W) contained surprisingly high radiocesium concentrations. The ¹³⁴Cs content in this sample suggested that about 90% of the ¹³⁷Cs in this sample was from Chernobyl. This seems high when we compare measured values of
this isotope with neighbouring samples and with the ⁹⁰Sr content in the sample. From the ⁹⁰Sr concentration we would expect a global fallout background of ¹³⁷Cs of # SEPT 1987 BJARNI SÆMUNDSON Fig. 4.5. Strontium-90 and cesium-137 in surface sea water collected in the Greenland Sea and Denmark Straits in September 1987. The isolines show the strontium-90 concentrations. (Unit: $Bq m^{-3}$). Table 4.5. Radionuclides in surface sea water collected from "Bjarni Sæmundsen" (Greenland Sea Project) in the Greenland Sea and Denmark Strait in September 1987. (Unit: Bq m⁻³) | Position
N W | ⁹⁰ Sr | ¹³⁴ Cs | ¹³⁷ Cs | Salinity
in ‰ | |-----------------------|--------------------|-------------------|-------------------|------------------| | 64°20′ 27°5 7′ | 1.64 | 4.18 | 12.6 | 34.9 | | 68°00′ 12°40′ | 1.60 | 0.74 A | 4.9 | 34.4 | | 69°28′ 15°26 | 2.17 | | 6.2 | 34.3 | | 71°00' 12°15 | 1.37 | 0.86 A | 6.4 | 34.5 | | 71°00′ 9°30′ | 1.48 | 0.93 A | 6.9 | 34.6 | | 72°03′ 16°18′ | 3.02 | 0.92 A | 8.4 | 29.3 | | 72°13′ 11°30 | 4.31 | 1.05 A | 6.5 | 31.8 | | 71°00′ 16°16 | 2.21 | | 7.7 | 34.3 | | 71°00′ 18°16 | 2.91 | | 7.0 | 32.3 | | 71°00' 20°06 | 5.92 | | 8.0 | 30.4 | | 70°00′ 17°56 | 2.49 | | 6.5 | 33.9 | | 70°15′ 21°52 | 3.78 | | 7.2 | 28.5 | | 70°00' 21°47 | 3.81 | | 7.9 | 30.5 | | 67°10′ 22°52 | ' 1.9 9 | | 3.3 | 34.6 | | 68°30′ 25°55 | 3.76 | | 6.7 | 30.6 | | 68°30′ 22°35 | 3.24 | 0.4 B | 7.8 | 33.6 | | 68°30′ 28°55 | 1.93 | | 5.1 | 34.2 | | 69°31′ 21°16 | 4.05 | | 7.2 | 32.5 | | 65°14′ 27°30 | 1.75 | | 3.0 | 35.0 | $1.45 \times 1.64 = 2.4$ Bq m⁻³. If the remaining ¹³⁷Cs was from Chernobyl, i.e. 10.2 Bq m⁻³, the ¹³⁴Cs/¹³⁷Cs in the Chernobyl debris would be 4.18/10.2 = 0.41. The theoretical ratio in September 1987 was 0.36. Thus, considering the uncertainties of the ¹³⁴Cs and ¹³⁷Cs determinations we cannot exclude the high Chernobyl contribution in this sample. # 4.6. Cruise Godthåb - Thule by the Greenland Environmental Research Institute in August-September 1987 Surface sea water samples were collected in August from Godthåb to Thule and back again in September by the Greenland Environmental Research Institute (Table 4.6 and Fig. 4.6). The samples collected in August were combined into one sample for the ¹³⁴Cs determination, and so were the September samples. The contributions of ¹³⁷Cs from Chernobyl in the two sets of samples were 17% and 18%, respectively. The contribution of Chernobyl ¹³⁷Cs in West Greenland sea water increased from 7-8% in July to 17-18% in September (cf. 4.2). The samples collected on the way home from Thule in September were closer to land than those collected on the way out. The ¹³⁷Cs concentrations were lower in the coastal samples than in those farther from land. In general, this was the case for ⁹⁰Sr as well. Table 4.6. Radionuclides in surface sea water collected off West Greenland in August-September 1987. (Unit: Bq m⁻³) (These samples were obtained from Rune Dietz, The Greenland Environmental Research Institute) | Positio | on | Date | 90Sr | 134Cs | 137Cs | Salinity | |----------------|--------|-----------------|------|-------|-------|----------| | N | W | | | | | in ‰ | | 64°04′ | 52°09' | 24/8 | 2.85 | | 4.0 | 27.7 | | ee 。30. | 54°49' | 25/8 | 2.70 | | 4.6 | 32.5 | | 69°41' | 55°08' | 26/8 | 2.53 | | 3.9 | 33.0 | | 71°39' | 59°20′ | 27 <i>/</i> 8 | 2.74 | İ | 3.5 | 29.9 | | 74°26′ | 62°41′ | 28/8 | 2.43 | 0.156 | 3.7 | 30.5 | | 76°09′ | 69°29' | 29/8 | 2.42 | 1 | 3.1 | 30.0 | | 76°35′ | 69°00' | 30/8 | 2.35 | Ì | 3.1 | 29.0 | | 77°32' | 68°30′ | 1/9 | 2.62 | | 2.8 | 30.4 | | 74°24′ | 59°15′ | 5/ 9 | 2.62 | l | 3.6 | 30.8 | | 72°44′ | 55°40′ | 8/9 | 1 57 | 0.155 | 3.4 | 31.9 | | 71°14′ | 53°26' | 11/9 | 2.22 | ļ | 2.8 | 31.2 | | 70°16′ | 53°26′ | 12/9 | 2.57 | - | 2.6 | 32.4 | | 67°11′ | 52°13′ | 15/9 | 2.60 | | 4.4 | 32.0 | | 64°14' | 51°27' | 17/9 | 2.78 | | 3.1 | 24.9 | Fig. 4.6. Strontium-90 and cesium-137 concentrations in West Greenland surface sea water collected in September 1987. # 4.7. Summary of Radionuclide Determination in Greenland Sea Water Samples Collected in 1987 Figure 4.7 and Table 4.7 show the mean ⁹⁰Sr and ¹³⁷Cs concentrations in surface sea water collected in 5° latitude bands in the coastal waters around Greenland in 1987. The figure shows that the input of ¹³⁷Cs as well as of ⁹⁰Sr comes in the Fram Strait in the northeast. In the case of ¹³⁷Cs, there are 3 sources to the enhanced levels in the northeastern Greenland waters: 1) global fallout in the Arctic Ocean, 2) discharges from Sellafield, which have reached these waters with the Norwegian and West Spitbergen Currents, and 3) fallout in the NE Atlantic from the Chernobyl accident. In the case of 90Sr, the main source is global fallout. From observations in the East Greenland Current^{2,4})made in earlier years, we may estimate the global fallout backgrounds in 1987. This is done by extrapolation of the exponential decreasing concentrations measured at Danmarkshavn, Angmagssalik and Prins Christians Sund (cf. Fig. 3.1). In the Arctic water (from the East Greenland Current) we estimate 3.9 Bq 137Cs m⁻³ and 3.3 Bq ⁹⁰Sr m⁻³. In a similar way, we may estimate the background levels in the NE Atlantic Ocean from Faroese observations¹⁾ as 2.5 Bq ¹³⁷Cs m⁻³ and 1.75 Bq ⁹⁰Sr m⁻³. From Fig. 4.7 it appears that the ¹³⁷Cs and ⁹⁰Sr concentrations observed along the west coast of Greenland are between the above estimates for Arctic and Atlantic water. Table 4.7. Strontium-90 and cesium-137 mean concentrations in surface sea water with salinities ≥ 30% in 5° latitude bands collected around Greenland in 1987 | | | В | q m ⁻³ ±1 S. | D. (N) west of | 0° | | |------------------|--------------------|--------------------|-------------------------------------|--------------------|--------------------|-----------------| | | \ | Nest Greenlan | d | | East Greenland | | | Latitude
band | ⁹⁰ Sr | ¹³⁷ Cs | ¹³⁷ Cs/ ⁹⁰ Sr | 90Sr | 137Cs | 137Cs/90Sr | | 60-65 | 2.8 ± 0.29 (3) | 4.7 ± 0.07 (2) | 1.68 ± 0.18 | 1.64 (1) | 12.6 (1) | | | 65-70 | $2.3 \pm 0.22(18)$ | 4.2 ± 0.43(18) | 1.83 ± 0.26 | 2.6 ± 0.97 (8) | 5.5 ± 1.76 (8) | 2.12 ± 1.04 | | 70-75 | 2.2 ± 0.35 (8) | $3.3 \pm 0.47(8)$ | 1.50 ± 0.32 | $3.0 \pm 1.14(17)$ | $7.2 \pm 1.17(17)$ | 2.40 ± 0.99 | | 75-80 | $2.5 \pm 0.14(2)$ | 3.0 ± 0.21 (2) | 1.20 ± 0.11 | 3.9 ± 0.65 (9) | $8.7 \pm 1.32(10)$ | 2.23 ± 0.50 | Fig. 4.7. Strontium-90 and cesium-137 in Greenland surface sea water (Unit: Bq $m^{-3} \pm 1$ S.E. (n)). All data are west of 0°, and salinities below 30% are excluded. ## 4.8. Radionuclides in Lichen Collected at a Norwegian Location 1985-1988 Every summer since 1985 lichen samples (Cladonia stellaris) have been collected 30 km southeast of Alvdal at Belling (62°02'N, 10°48'E) in Norway. The sampling site is an open plateau covered with a thick carpet of lichen. Table 4.8 shows the results. The ratios of other radionuclides relative to ¹³⁷Cs were all decay corrected to April 26, 1986, when the Chernobyl accident began. It appears that ¹⁰⁶Ru and ^{110m}Ag shows a shorter biological half-life in the lichen carpet than ¹³⁷Cs. It is also evident that the ¹³⁷Cs levels in the lichen from this location were vary variable. The effective half-life of ¹³⁷Cs in the lichen carpet (Bq m⁻²) was 3 years. The effective half-life of the decay-corrected ¹⁰⁶Rü/¹³⁷Cs was 2.5 years, and for ^{110m}Ag/¹³⁷Cs we found 7.5 years. Table 4.8. Radionuclides in Norwegian lichen collected 1985-1988 at 62°02'N 10°48'E | Year
& | Bq ¹³⁷ Cs
kg ⁻¹ | Bq ¹³⁷ Cs
m ⁻² | g K
kg ⁻¹ . | Bq ¹³⁷ Cs
(kg K) ⁻¹ | 137Cs | ⁶⁰ Co | 95Zr
137Cs | ¹⁰³ Ru
¹³⁷ Cs | 106Ru
137Cs | 137Cs | 137Cs | ¹⁴⁴ Ce | |---------------|--|---|---------------------------|--|-------|------------------|---------------|--|----------------|--------|--------|-------------------| | date
————— | | | | | | | | at 26 Api | il 1986 — | | | | | 20 Aug 1985 | 80 | 160 | 10.7 | 7.5 | • | | - | - | - | • | | - | | 20 July 1986 | 5500 | 5200 | - | - | 0.57 | 0.0002 B | 0.073 | 0.28 | 0.077 | 0.0112 | - | 0.063 | | 21 Aug 1987 | 1810 | 4400 | 0.60 | 3000 | 0.58 | 0.00152 | - | • | 0.069 | 0.0108 | - | 0.054 | | 24 Aug 1988 | 4000 | 2500 | 1.34 | 3000 | 0.59 | 0.00046 | - | - | 0.055 | 0.0094 | - | | | 24 Aug 1988 | 5800 | 3200 | 1.31 | 4400 | 0.59 | 0.00035 | - | - | 0.045 A | 0.0091 | - | - | | 8 July 1986* | 3600 | 3900 | 2.63 | 1370 | 0.58 | 0.0002 B | 0.03 B | 0.38 | 0.100 | 0.0101 | 0.0121 | - | #### 4.9. Thule Sediments Collected in 1984 Tables 4.9.1-4.9.39 show the results of Pu, Am and ¹³⁷Cs determinations of Thule sediments collected in August 1984. Some of the results have been reported earlier (Risø-R-528⁴). The collection of sediment samples always imply a risk of transferring contaminated material to uncontaminated deeper sediment layers. In order to overcome this, two box core samples were collected and horizontal samples were taken after having carefully shaved the sides of the box sample. Table 4.2.39 shows analysis of two such "clean" samples. The layers sampled were about 25 cm and we would expect them to be free of accident Pu. This was apparently the case. The first sample was from location S4, 3.07 km from the point of impact (cf. Table 4.2.8). The ^{239,240}Pu deposition at this station (down to 15 cm) was 5400 Bq m⁻² and already in the 12-15 cm depth the accident Pu had disappeared. The 25-30 cm layer contained 0.0114 Bq ^{239,240}Pu kg⁻¹ and the mean level was significantly different from zero. This concentration was 30 times lower than found in the 12-15 cm layer. The ²⁴¹Am mean concentration in the 25-30 cm layer did not differ from zero activity. We conclude that there probably was a little global fallout Pu present in the 25-30 cm layer but no accident Pu. The
other sample was collected at the point of impact, where the total deposit down to 15 cm has been measured to 102 000 Bq ^{239,240}Pu m⁻² (Table 4.2.1). The mean ^{239,240}Pu concentration in the 22-25 cm layer was 0.026 Bq kg ⁻¹, this level was not significantly different from zero. The ²⁴¹Am mean concentration was 0.0085, and this level was probably significantly greater than zero activity. The ratio: ²⁴¹Am/^{239,240}Pu suggests that, if any Pu was present in this layer, it came from global fallout. Bioturbation had thus not been able to transfer accident Pu down to 25 cm in 16 years. Fig. 4.9. Sampling locations at Thule in August 1984. Table 4.9.1. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location V (1386) (cf. Fig. 4.2) 76°31'3 N 69°17'4 W. Depth 185 m. Distance from point of impact: 0 km | Depth
in cm | 239.2 | 40Pu | 137Cs | | 24:Am | | 241Am | 238Pu | Total | |----------------|---------|--------------------|---------|--------------------|--------------------|-------|-----------|-----------------------|----------| | | Bq kg-1 | Bq m ⁻² | Bq kg-1 | Bq m ⁻² | Bq m ⁻² | 137Cs | 239.240PU | 239.240P _U | <u>g</u> | | 0-3 | 470 | 5600 | 9.1 | 108 | 760 | 52 | 0.136 | 0.016 | 172 | | 3-6 | 1280 | 25300 | 8.9 | 177 | 2200 | 144 | 0.087 | 0.012 | 287 | | 6-9 | 540 | 12700 | 9.2 | 215 | 1380 | 59 | 0.109 | 0.012 | 338 | | 9-12 | 450 | 12300 | 8.1 | 223 | 1250 | 56 | 0.102 | 0.012 | 400 | | 12-15 | 1500 | 45600 | 5.4 | 164 | 3700 | 280 | 0.081 | 0.011 | 442 | | Σ | | 102000 | | 887 | 9300 | | | | | Table 4.9.2. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location S5 (1375) (cf. Fig. 4.2) 76°31' N 69°17' W. Depth 235 m. Distance from point of impact: 0.58 km | Depth | 239.2 | ⁴⁰ Pu | ¹³⁷ Cs | | ²⁴¹ Am | | ²⁴¹ Am | 238Pu | Total | |-------------|---------------------|------------------|-------------------|--------------------|-------------------|-------|-------------------|-----------|-------------| | in cm | Bq kg ⁻¹ | Bq m-2 | Bq kg-1 | Bq m ⁻² | Bq m⁻² | 137Cs | 239.240Pu | 239.240Pu | g | | 0-3 | 280 | 2900 | 12.6 | 130 | 240 | 22 | 0.083 | 0.010 | 150 | | 3- 6 | 200 | 3600 | 13.8 | 247 | 490 | 14.5 | 0.135 | 0.016 | 260 | | 6-9 | 60 | 1670 | 7.8 | 152 | 136 | 7.7 | 0.081 | 0.014 | 281 | | 9-12 | 19.6 | 400 | 2.8 | 58 | 49 | 7.0 | 0.123 | • | 29 5 | | 12-15 | 40 | 900 | 1.12 | 25 | 210 | 36 | 0.23 | 0.016 | 325 | | 15-18 | 8.5 | 159 | - | <u>-</u> | 17.1 | • | 0.108 | _ | 273 | | Σ | - | 9600 | | 612 | 1140 | | | | | Table 4.9.3. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location Y (1382) (cf. Fig. 4.2) 76°31' N 69°18'5 W. Depth 200 m Distance from point of impact: 0.73 km | Depth | 239.7 | ⁴⁰ Pu | 137Cs | | ²⁴¹ Am | 239.240P _U | 241Am | 238Pu | Total | |-------|---------|------------------|---------|----------|-------------------|-----------------------|-----------|-----------|-------| | in cm | Bq kg-1 | Bq m-2 | Bq kg-1 | Bq m-2 | Bq m-2 | 137Cs | 239,240Pu | 239.240Pu | 9 | | 0-3 | 67 | 430 | 9.7 | 62 | 46 | 6.9 | 0.11 | 0.016 A | 92 | | 3-6 | 88 | 1590 | 12.6 | 226 | 182 | 7.0 | 0.11 | 0.015 | 261 | | 6-9 | 24 | 530 | 6.0 | 132 | 65 | 4.0 | 0.12 | 0.011 | 320 | | 9-12 | 3.6 | 72 | 3.0 | 62 | 11.0 | 1.2 | 0.15 | 0.05 B | 296 | | 12-15 | 0.55 | 14 | 1.08 | 27 | 2.1 | 0.51 | 0.15 | - | 369 | | 15-18 | 0.13 | 3.6 | - | <u> </u> | 4.5 A | | 1.26 A | -
 | 404 | | Σ | | 2600 | | 534 | 310 | | | | | Table 4.9.4. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location X (1378) (cf. Fig. 4.2) 76°31' N 69°15' W. Depth 195 m. Distance from point of impact: 0.98 km | Depth | | ⁴⁰ Pu | | ⁷ Cs | ²⁴¹ Am | 239.240Pu | 241Am | 238Pu | Total | |-------|---------------------|--------------------|---------------------|--------------------|-------------------|-------------------|-----------|-----------|-------| | in cm | Bq kg ⁻¹ | Bq m ⁻² | Bq kg ⁻¹ | Bq m ⁻² | Bq m-2 | ¹³⁷ Cs | 239.246Pu | 239,240Pu | | | 0-3 | 182 | 2090 | 6.2 | 71 | 260 | 29 | 0.12 | 0.015 | 166 | | 3-6 | 370 | 6400 | 7.3 | 126 | 710 | 51 | 0.11 | 0.011 | 253 | | 6-9 | 2800 | 66000 | 8.4 | 198 | 4800 | 330 | 0.073 | 0.008 | 343 | | 9-12 | 530 | 13600 | 6.8 | 177 | 1490 | 78 | 0.11 | 0.013 | 374 | | 12-15 | 183 | 2200 | 6.9 | 83 | 280 | 27 | 0.13 | 0.012 | 175 | | Σ | | 90000 | | 655 | 7540 | | | | | Table 4.9.5. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location 1332 (between H and X) (cf. Fig. 4.2) 76°32' N 69°15' W. Depth 182 m. Distance from point of impact: 1.66 km | Depth | 239,2 | ⁴⁰ Pu | 137 Cs | | ²⁴¹ Am | 239,240Pu | ²⁴¹ Am | ²³⁸ Pu | Total | |-------|---------------------|--------------------|---------------------|--------------------|--------------------|-------------------|-------------------|-----------------------|-------| | in cm | Bq kg ⁻¹ | Bq m ⁻² | Bq kg ⁻¹ | Bq m ⁻² | Bq m ⁻² | ¹³⁷ Cs | 239,240Pu | 239,240P _U | g | | 0-3 | 129 | 1260 | 6.2 | 60 | 151 | 21 | 0.120 | 0.015 | 141 | | 3-6 | 640 | 13100 | 6.5 | 132 | 1590 | 98 | 0.121 | 0.013 | 294 | | 6-9 | 420 | 8100 | 7.9 | 152 | 1000 | 53 | 0.123 | 0.015 | 280 | | 9-12 | 163 | 3300 | 9.3 | 188 | 320 | 17.5 | 0.097 | 0.014 | 295 | | 12:15 | 1260 | 35000 | 6.3 | 174 | 5100 | 200 | 0.146 | 0.017 | 400 | | Σ | | 61000 | | 706 | 8200 | | | | | Table 4.9.6.1. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location K (1328) (cf. Fig. 4.2) 76°32' N 69°20' W. Depth 173 m. Distance from point of impact: 1.72 km | Depth | 239,2 | 40Pu | 13 | ⁷ Cs | 241Am | 239,240Pu | ²⁴¹ Am | 238Pu | Total | |------------|---------------------|--------|---------------------|--------------------|--------------------|-------------------|-------------------|-----------|-------| | in cm | Bq kg ⁻¹ | Bq m⁻² | Bq kg ⁻¹ | Bq m ⁻² | Bq m ⁻² | ¹³⁷ Cs | 239,240Pu | 239,240Pu | g | | 0-3 | 39 | 230 | 4.1 | 24 | 29/27 | 9.5 | 0.13/0.117 | 0.016 | 84 | | 3-6 | 12.1 | 280 | 2.9 | 66 | 155/35 | 4.2 | 0.55/0.125 | - | 332 | | 6-9.5 | 25 | 560 | 5.1 | 114 | 220/55 | 4.9 | 0.40/0.098 | 0.010 A | 322 | | Σ | | 1060 | | 203 | 400/117 | | | | | Table 4.9.6 2. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location K (1327) (cf. Fig. 4.2) 76°32' N 69°20' W. Depth 173 m. Distance from point of impact: 1.72 km | Depth
in cm | 239,2 | ⁴⁰ Pu | 137Cs | | 241 Am | 239,240Pu | ²⁴¹ Am | 238Pu | Total | | |----------------|---------|--------------------|---------------------|--------------------|--------------------|--------------|-------------------|-----------|-------|--| | in cm | Bq kg-1 | Bq m ⁻² | Bq kg ⁻¹ | Bq m ⁻² | Bq m ⁻² | 137Cs | 239,240Pu | 239,240Pu | g | | | 0-3 | 42 | 510 | 4.2 | 51 | | 10.0 | | 0.019 A | 177 | | | 3-6 | 54 | 1340 | 2.9 | 72 | | 18. 6 | | 0.015 B | 363 | | | 6-9 | 74 | 1830 | 1.22 | 30 | | 61 | | 0.013 B | 355 | | | 9-12 | 3.6 | 79 | 0.87 | 19 | 8.7 | 4.1 | 0.11 | 0.027 B | 320 | | | Σ | | 3800 | | 172 | | | | | | | Table 4.9.7. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location 1223 (S-E of S5) (cf. Fig. 4.2) 76°30' N 69°16' W. Depth 186 m. Distance from point of impact: 2.48 km | Depth | 239.2 | 40Pu | 137Cs | | ²⁴¹ Am | 239,240Pu | 241Am | 238PU | Total | |-------|---------|--------------------|---------------------|--------------------|--------------------|-----------|----------------|-----------------------|-------| | in cm | Bq kg-1 | Bq m ⁻² | Bq kg ⁻¹ | Bq m ⁻² | Bq m ⁻² | 137Cs | 239.240Pu | 239,240P _U | 9 | | 0-3 | 46 | 480 | 7.1 | 73 | 73 | 6.5 | 0.152 | 0.018 | 150 | | 3-6 | 16.1 | 320 | 3.7 | 75 | 40 | 4.4 | 0.125 | 0.023 A | 293 | | 6-9 | 34 | 850 | 4.0 | 100 | 103 | 8.5 | 0.121 | 0.013 A | 364 | | 9-12 | 26 | 660 | 6.0 | 152 | 71 | 4.3 | 0.108 | 0.015 | 366 | | 12-15 | 75 | 2300 | 7.4 | 222 | 290 | 10.1 | ር.1 2 6 | 0.018 | 438 | | Σ | | 4600 | - | 622 | 580 | | | | | Table 4.9.8. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location S4 (1230) (cf. Fig. 4.2) 76°30' N 69°13' W. Depth 245 m. Distance from point of impact: 3.07 km | Depth | 239,2 | 40Pu | 13 | ⁷ Cs | ²⁴¹ Am | 239,240PU | ²⁴¹ Am | 238Pu | Total | |-------|---------------------|--------|---------------------|--------------------|-------------------|-------------------|-------------------|-----------------------|-------| | in cm | Bq kg ⁻¹ | Bq m-2 | Bq kg ⁻¹ | Bq m ⁻² | Bq m⁻² | ¹³⁷ Cs | 239,240Pu | 239,240P _U | g | | 0-3 | 46 | 390 | 12.7 | 106 | | 3.6 | | 0.018 | 122 | | 3-6 | 250 | 4800 | 18.5 | 350 | 620 | 13.5 | 0.129 | 0.015 | 275 | | 6-9 | 8.5 | 157 | 8.3 | 153 | 24 | 1.02 | 0.153 | 0.016B | 266 | | 9-12 | 1.17 | 23 | 1.92 | 37 | 6.5 | 0.61 | 0.283 | - | 282 | | 12-15 | 0.35 | 6.5 | 1.03 | 19.3 | - | 0.34 | | - | 272 | | Σ | | 5400 | | 666 | | | | | | Table 4.9.9. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location S6 (1215) (cf. Fig. 4.2) 76°30' N 69°22' W. Depth 250 m. Distance from point of impact: 3.12 km | Depth | 239,2 | ⁴⁰ Pu | 13 | ⁷ Cs | ²⁴¹ Am | 239,240Pu | 241Am | 238Pu | Total | |-------|---------------------|--------------------|---------------------|-----------------|--------------------|-------------------|-----------|-----------|-------| | in cm | Bq kg ⁻¹ | Bq m ⁻² | Bq kg ⁻¹ | Bq m-2 | Bq m ⁻² | ¹³⁷ Cs | 239,240Pu | 239,240Pu | g | | 0-3 | 64 | 640 | 11.1 | 111 | 86 | 5.8 | 0.134 | 0 015 | 146 | | 3-6 | 83 | 1310 | 12.5 | 198 | 167 | 6.6 | 0.127 | 0.016 | 230 | | 6-9 | 13.6 | 285 | 6.9 | 145 | 32 | 2.0 | 0.112 | 0.028 | 304 | | 9-12 | 3.9 | 94 | 1.71 | 41 | - | 2.3 | - | 0.028 | 349 | | 12-15 | 4.1 | 90 | <1 | - | | - | | - | 314 | | 15-18 | 7.9 | 98 | 0.75 | 9.3 | 12.3 | 10.5 | 0.126 | 0.022 | 180 | | Σ | | 2500 | | 505 | 300 | | | | | Table 4.9.10. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location H (1300) (cf. Fig. 4.2) 76°33' N
69°17' W. Depth 195 m. Distance from point of impact: 3.15 km | Depth | 239,2 | ⁴⁰ Pu | 13 | ⁷ Cs | ²⁴¹ Am | 239,240Pu | ²⁴¹ Am | 238P _U | Total | |-------|------------|--------------------|---------------------|-----------------|--------------------|-------------------|-------------------|-------------------|-------| | in cm | Bq kg-1 | Bq m ⁻² | Bq kg ⁻¹ | Bq m⁻² | Bq m ⁻² | ¹³⁷ Cs | 239.240Pu | 239,240Pu | g | | 0-3 | 140 | 1080 | 11.7 | 90 | 116 | 12.0 | 0.11 | 0.013 | 111 | | 3-6 | 290 | 4800 | 11.4 | 185 | 540 | 25 | 0.11 | 0.013 | 236 | | 6-9 | 96 | 1840 | 8.7 | 166 | 250 | 11.0 | 0.14 | 0.015 | 277 | | 9-12 | 6 5 | 1240 | 6.8 | 130 | 143 | 9.6 | 0.12 | 0.011 A | 278 | | 12-15 | 86 | 1840 | 5.6 | 119 | 250 | 15.4 | 0.14 | 0.017 | 310 | | 15-18 | 99 | 1240 | 3.9 | 48 | 153 | 25 | 0.12 | 0.015 | 181 | | Σ | | 12000 | | 738 | 1450 | | | | | Table 4.9.11. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location R (1240) (cf. Fig. 4.2) 76°31' N 69°10' W. Depth 240 m. Distance from point of impact: 3.24 km | Depth
in cm | 239,240Pu | | ¹³⁷ Cs | | ²⁴¹ Am | 239.240Pu | 241 Am | 238Pu | Total | |----------------|------------|--------------------|---------------------|--------|-------------------|-------------------|-----------|-----------|-------| | | Ba kg-; | Bq m ⁻² | Bq kg ⁻¹ | Bq m⁻² | Bq m-2 | ¹³⁷ Cs | 239.240Pu | 23º.240Pu | g | | 0-3 | 49 | 570 | 13.0 | 149 | 62 | 3.8 | 0.108 | 0.012 | 166 | | 3-6 | 113* | 1890* | 17.5 | 290 | 220 | 6.5 | 0.116 | 0.014* | 241 | | 6-9 | 20 | 380 | 19.2 | 360 | 44 | 1.04 | 0.115 | 0.025 | 272 | | 9-12 | 6.6 | 129 | 7.9 | 154 | 23 B | 0.84 | 0.178 | 0.010 | 283 | | 12-15 | 0.4 | 6.8 | 2.2 | 36 | - | 0.18 | | - | 242 | | Σ | | 3000 | | 989 | 350 | | | | | | *Doubl | e determir | ations | | | | | | | | | | 5400* | 90000* | | | | 5100* | | 0.008* | | Table 4.9.12. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location L (1256) (cf. Fig. 4.2) 76°32' N 69°10' W. Depth 140 m. Distance from point of impact: 3.45 km | Depth
in cm | 239,240Pu | | ¹³⁷ Cs | | ²⁴¹ Am | 239,240Pu | ²⁴¹ Am | 238Pu | Total | |----------------|---------------------|--------------------|---------------------|--------------------|--------------------|-------------------|------------------------|-----------------------|-------| | | Bq kg ^{−1} | Bg m ⁻² | Bq kg ⁻¹ | Bq m ⁻² | Bq m ⁻² | ¹³⁷ Cs | 239,24 ⁰ Pu | 239,240P _U | g | | 0-3 | 56 | 880 | 5.0 | 80 | 90 | 11.2 | 0.102 | 0.015 | 230 | | 3-6 | 48 | 1070 | 5.9 | 130 | 114 | 8.1 | 0.107 | 0.008 | 320 | | 6-9 | 12.6 | 280 | 4.2 | 94 | 42 | 3.0 | 0.150 | 0.018 | 326 | | 9-12 | 3.6 | 67 | 1.07 | 20 | 13.2 A | 3.4 | 0.197 A | 0.022 | 269 | | 12-15 | 0.41 | 6.8 | - | | | - | | | 240 | | Σ | | 2300 | | 324 | 260 | | | | | Table 4.9.13. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location P (1204) (cf. Fig. 4.2) 76°30' N 69°25' W. Depth 260 m. Distance from point of impact: 4.07 km | Depth | 239.2 | ⁴⁰ Pu | 13 | ⁷ Cs | ²⁴¹ Am | 239,240Pu | ²⁴¹ Am | 238Pu | Total | |-------|---------------------|--------------------|---------------------|--------------------|-------------------|-------------------|-----------------------|-----------|-------| | in cm | Bq kg ⁻¹ | Bq m ⁻² | Bq kg ⁻¹ | Bq m ⁻² | Bq m⁻² | ¹³⁷ Cs | 239.240P _U | 239.240Pu | g | | 0-3 | 152 | 2100 | 10.1 | 137 | 220 | 15.1 | 0.105 | 0.014 | 196 | | 3-6 | 117 | 2300 | 14.0 | 280 | 290 | 8.4 | 0.126 | 0.015 | 287 | | 6-9 | 17.5 | 360 | 10.0 | 210 | 59 | 1.75 | 0.164 | 0.015 | 299 | | 9-12 | 5.1 | 112 | 3.8 | 82 | 17.8 | 1.34 | 0.159 | 0.067 | 316 | | 12-15 | 1.27 | 28 | 0.94 | 21 | 12.8 | 1.35 | 0.457 | | 326 | | Σ | | 4900 | | 730 | 600 | | | | | Table 4.9.14. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location 1325 (cf. Fig. 4.2) 76°31' N 69°27' W. Depth 150 m. Distance from point of impact: 4.18 km | Depth | 239,2 | ⁴⁰ Pu | ¹³⁷ Cs | | ²⁴¹ Am | | ²⁴¹ Am | 238Pu | Total | |-------|---------|------------------|-------------------|--------------------|--------------------|-------|-------------------|-----------------------|-------| | in cm | Bq kg-1 | Bq m⁻² | Bq kg-1 | Bq m ⁻² | Bq m ⁻² | 137Cs | 239,240Pu | 239,240P _U | g | | 0-3 | 24 | 380 | 4.0 | 63 | 37 | 6.0 | 0.097 | 0.023 | 230 | | 3-6 | 54 | 1160 | 4.2 | 88 | 134 | 12.9 | 0.116 | 0.017 | 308 | | 6-9 | 30 | 900 | 4.4 | 128 | 90 | 6.8 | 0.099 | 0.012 | 428 | | 9-12 | | | 2.4 | 68 | | | | | 411 | | Σ | | 2440 | | 347 | 261 | | | | | Table 4.9.15. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location 1347 (S-E of L) (cf. Fig. 4.2) 76°32' N 69°08' W. Depth 215 m. Distance from point of impact: 4.26 km | Depth | 239,2 | ²⁴⁰ Pu | 13 | ⁷ Cs | ²⁴¹ Am | 239,240P _U | ²⁴¹ Am | 238Pu | Total
g | |-------|---------|-------------------|---------------------|--------------------|--------------------|-----------------------|-------------------|-----------|------------| | in cm | Bq kg-1 | Bq m⁻² | Bq kg ⁻¹ | Bq m ⁻² | Bq m ⁻² | ¹³⁷ Cs | 239.240Pu | 239.240Pu | | | 0-3 | 47 | 390 | 14.0 | 117 | | 3.4 | | 0.015 | 122 | | 3-6 | 84 | 1330 | 16.0 | 260 | | 5.3 | | 0.015 | 231 | | 6-9 | 18.2 | 300 | 13.6 | 230 | | 1.34 | | 0.016 | 241 | | 9-12 | 1.55 | 29 | 5.2 | 96 | 7.5 | 0.30 | 0.26 | • | 271 | | 12-15 | 0.23 | 3.7 | - | • | • | - | | - | 231 | | 15-16 | 2.3 | 13 | <u>-</u> | - | 1.7 | | 0.13 | - | 84 | | Σ | | 2070 | | 700 | | | | | | Table 4.9.16. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location 1249 (cf. Fig. 4.2) 76°32' N 69°06' W. Depth 240 m. Distance from point of impact: 5.09 km | Depth | 239,2 | 40Pu | 13 | ⁷ Cs | ²⁴¹ Am | 239.240Pu | ²⁴¹ Am | 238Pu | Total | |-------|---------------------|--------------------|---------|--------------------|-------------------|-----------|-----------------------|-----------|-------| | in cm | Bq kg ⁻¹ | Bq m ⁻² | Bq kg⁻¹ | Bq m ⁻² | Bq m-2 | 137Cs | 239.240P _U | 239,240Pu | 9 | | 0-3 | 112 | 1000 | 13.5 | 120 | 90 | 9.3 | 0.090 | 0.012 | 130 | | 3-6 | 570 | 9200 | 14.7 | 240 | 640 | 39 | 0.070 | 0.010 | 235 | | 6-9 | 15.7 | 290 | 6.5 | 121 | 34 | 2.4 | 0.117 | 0.030 | 268 | | 9-12 | 31 | 600 | 2.2 | 43 | 45 | 14.1 | 0.075 | 0.013 | 283 | | 12-15 | 2.7 | 52 | 1.52 | 30 | 5.9 | 1.8 | 0.113 | - | 281 | | 15-18 | 0.25 | 4 | - | - | - | - | · | - | 219 | | Σ | | 11100 | | 550 | 810 | | | | | Table 4.9.17. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location 1334 (cf. Fig. 4.2) 76°34' N 69°13' W. Depth 200 m. Distance from point of impact: 5.35 km | Depth | 239,2 | ²⁴⁰ Pu | 13 | ⁷ Cs | ²⁴¹ Am | 239.240Pu | ^{24†} Am | 238Pu | Total | |-------|---------------------|--------------------|---------------------|-----------------|--------------------|-------------------|-------------------|-----------|-------| | in cm | Bq kg ⁻¹ | Bq m ⁻² | Bq kg ⁻¹ | Bq m-2 | Bq m ⁻² | ¹³⁷ Cs | 239.240Pu | 239.240Pu | g | | 0-3 | 280 | 2400 | 13.1 | 113 | 310 | 21.4 | 0.13 | 0.017 | 125 | | 3-6 | 250 | 3700 | 14.2 | 210 | 270 | 17.6 | 0.07 | 0.014 | 215 | | 6-9 | 106 | 1850 | 14.0 | 240 | 200 | 7.6 | 0.11 | 0.014 | 253 | | 9-12 | 240 | 4300 | 9.1 | 161 | 480 | 26 | 0.11 | 0.013 | 255 | | 12-15 | 65 | 1260 | 4.1 | 79 | 191 | 15.9 | 0.15 | 0.013 | 281 | | 15-18 | 2.8 | 30 | 1.8 | 19.5 | 6.9 A | 1.56 | 0.23 A | 0.036 | 157 | | 18-21 | 1.81 | 37 | 2.5 | 22 | 5.4 | 0.72 | 0.15 | | 296 | | Σ | | 13600 | , | 845 | 1460 | • | | | | Table 4.9.18. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location S7 (1194) (cf. Fig. 4.2) 76°29' N 69°25' W. Depth 280 m. Distance from point of impact: 5.38 km | Depth | 239.2 | ⁴⁰ Pu | ¹³⁷ Cs | | ²⁴¹ Am | | 241Am | 238Pu | Total | |-------|---------------------|------------------|-------------------|--------------------|---------------------------------------|-------------------|-----------------------|-----------|-------| | in cm | Bq kg ⁻¹ | Bq m⁻² | Bq kg-1 | Bq m ⁻² | Bq m-2 | ¹³⁷ Cs | 239,240P _U | 239,240Pu | 9 | | 0-3 | 37 | 470 | 8.8 | 112 | 53 | 4.2 | 0.113 | 0.019 | 185 | | 3-6 | 66 | 1570 | 9.0 | 210 | 186 | 7.3 | 0.118 | 0.017 | 344 | | 6-9 | 17.1 | 330 | 3.8 | 74 | 45 | 4.5 | 0.136 | 0.016 | 282 | | 9-12 | 25 | 500 | = | - | 111 | - | 0.222 | 0.016 | 292 | | 12-15 | 1.28 | 24 | | - | · · · · · · · · · · · · · · · · · · · | | <u>.</u> | | 275 | | Σ | | 2900 | | 400 | 400 | | | | | Table 4.9.19. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location I (1288) (cf. Fig. 4.2) 76°33' N 69°07' W. Depth 160 m. Distance from point of impact: 5.48 km | Depth | 239,2 | ⁴⁰ Pu | 13 | ⁷ Cs | ²⁴¹ Am | 239,240Pu | ²⁴¹ Am | 238Pu | Total | |-------|---------------------|------------------|---------|-----------------|-------------------|-------------------|-------------------|-----------|-------| | in cm | Bq kg ⁻¹ | Bq m-2 | Bq kg⁻¹ | Bq m-2 | Bq m⁻² | ¹³⁷ Cs | 239,240Pu | 239,240Pu | 9 | | 0-3 | 55 | 550 | 10.3 | 103 | 64 | 5.3 | 0.116 | 0.017 | 145 | | 3-6 | 13.2 | 280 | 5.8 | 121 | | 2.3 | | - | 303 | | 6-9 | 2.8 | 71 | 1.72 | 44 | | 1.62 | | 0.014 | 369 | | 9-12 | 0.47 | 11.2 | - | - | - | - | _ | - | 364 | | Σ | | 910 | | 270 | | | | | | Table 4.9.20. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location: south of J (cf. Fig. 4.2) (1325). Position: 76°31' N 69°27' W. Depth 150 m. Distance from point of impact: 4.2 km | Depth | 239,2 | ⁴⁰ Pu | 13 | ⁷ Cs | ²⁴¹ Am | 239,240Pu | ²⁴¹ Am | 238Pu | Total
g | |-------|---------------------|--------------------|---------|--------------------|--------------------|-------------------|-------------------|-----------|------------| | in cm | Bq kg ⁻¹ | Bq m ⁻² | Bq kg-1 | Bq m ⁻² | Bq m ⁻² | ¹³⁷ Cs | 239.240Pu | 239,240Pu | | | 0-3 | 23.9 | 380 | 4.0 | 6 3 | 37 | 5.98 | 0.097 | 0.023 | 230 | | 3-6 | 54.5 | 1160 | 4.2 | 88 | 134 | 12.98 | 0.116 | 0.017 | 308 | | 6-9 | 30.4 | 900 | 4.4
 128 | 90 | 6.91 | 0.099 | 0.012 | 428 | | 9-12 | - | | 2.4 | 68 | | - | - | - | 411 | | Σ | | 2440 | | 347 | 261 | | | | | Table 4.9.21. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location: north of S2 (cf. Fig. 4.2) (1345). Position: 76°32' N 69°05' W. Depth 220 m. Distance from point of impact: 5.5 km | Depth | 239,2 | ⁴⁰ Pu | 13 | ⁷ Cs | ²⁴¹ Am | 239,240P _U | ²⁴¹ Am | 238Pu | Total | |-------|---------------------|--------------------|---------|-----------------|--------------------|-----------------------|-------------------|-----------------------|-------| | in cm | Bq kg ⁻¹ | Bq m ⁻² | Ba kg⁻¹ | Bq m-2 | Bq m ⁻² | ¹³⁷ Cs | 239,240Pu | 239,240P _U | g | | 0-3 | 6 0 | 370 | 13.4 | 82 | 37 | 4.5 | 0.101 | 0.014 | 89 | | 3-6 | 61 | 880 | 15.8 | 225 | 104 | 3.9 | 0.119 | 0.015 | 207 | | 6-9 | 56 | 940 | 17.2 | 285 | 118 | 3.3 | 0.126 | 0.014 | 241 | | 9-12 | 40 | 660 | 13.4 | 220 | 79 | 3.0 | 0.120 | 0.015 | 239 | | 12-15 | 4.1 | 82 | 4.9 | 96 | 13.4 | 0.84 | 0.163 | 0.028 | 286 | | 15-18 | 1.69 | 33 | 1.0 | 20 | 7.7 | 1.69 | 0.23 | • | 288 | | 18-20 | 3.7 | 40 | 3.3 | 35 | 5.9 | 1.12 | 0.148 | | 155 | | Σ | | 3000 | | 963 | 370 | | | | - | Table 4.9.22. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location: J (cf. Fig. 4.2) (1305). Position: 76°32' N 69°30' W. Depth 100 m. Distance from point of impact: 5.6 km | Depth | 239.2 | ⁴⁰ Pu | 13 | ⁷ Cs | ²⁴¹ Am | 239 240Pu | ²⁴¹ Am | 238Pu | Total | |-------|---------------------|--------------------|---------------------|--------------------|--------------------|-------------------|-------------------|-----------|-------| | in cm | Bq kg ⁻¹ | Bq m ⁻² | Bq kg ⁻¹ | Bq m ⁻² | Bq m ⁻² | ¹³⁷ Cs | 239.240Pu | 239,240Pu | 9 | | 0-3 | 12.9 | 300 | 4.5 | 105 | 32 | 2.87 | 0.107 | 0.011 | 336 | | 3-6 | 24.8 | 800 | 3.6 | 115 | 68 | 6.89 | 0.085 | 0.026 | 468 | | 6-9 | 3.4 | 124 | 1.5 | 56 | 14.6 | 2.27 | 0.118 | 0.041 | 523 | | Σ | | 1224 | | 276 | 115 | | | | | Table 4.9.23. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location: between O & P (cf. Fig. 4.2) (1317). Position: 76°30' N 69°32' W. Depth 176 m. Distance from point of impact: 6.8 km | Depth | 239.2 | 40Pu | 13 | ⁷ Cs | ²⁴¹ Am | | 241Am | ²³⁸ Pu | Total
9 | |-------|---------|--------|---------|--------------------|--------------------|-------------------|-----------|-----------------------|------------| | in cm | Bq kg-1 | Bq m-2 | Bq kg⁻¹ | Bq m ⁻² | Bq m ⁻² | ¹³⁷ Cs | 739.240Pu | 239,240P _U | | | 0-3 | 32.0 | 105 | 8.8 | 29 | 10 | 3.64 | 0.090 | 0.012 | 48 | | 3-6 | 15.1 | 306 | 4.5 | 91 | 31 | 3.36 | 0.100 | 0.013 | 295 | | 6-9 | 4.3 | 144 | 1.3 | 44 | 18 | 3.30 | 0.126 | 0.027 | 487 | | 9-12 | - | - | 1.2 | 27 | - | | | - | 339 | | Σ | | 555 | | 191 | 59 | | | | | Table 4.9.24. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location: west of G (cf. Fig. 4.2) (1336). Position: 76°35' N 69°10' W. Depth 190 m. Distance from point of impact: 7.6 km | Depth | 239,2 | 40Pu | 13 | ⁷ Cs | ^{24†} Am | 239,240Pu | ²⁴¹ Am | 238Pu | Total | |-------|---------------------|--------------------|---------|-----------------|--------------------|-----------|-------------------|-----------|-------| | in cm | Bq kg ⁻¹ | Bq m ⁻² | Bq kg-1 | Bq m⁻² | Bq m ⁻² | 137Cs | 239,240Pu | 239,240Pu | 9 | | 0-3 | 116 | 900 | 11.9 | 92 | 87 | 9.7 | 0.097 | 0.015 | 112 | | 3-6 | 114 | 2060 | 12.7 | 228 | 240 | 9.0 | 0.118 | 0.016 | 261 | | 6-9 | 40 | 725 | 9.2 | 167 | 93 | 4.3 | 0.129 | 0.017 | 264 | | 9-12 | 25 | 475 | 5.8 | 111 | 50 | 4.3 | 0.106 | 0.014 | 274 | | 12-15 | 106 | 2100 | 3.8 | 73 | 260 | 28 | 0.122 | 0.018 | 285 | | 15-18 | 10 | 210 | 2.7 | 56 | 26 | 3.7 | 0.123 | 0.012 | 299 | | Σ | | 6500 | | 727 | 760 | | | | | Table 4.9.25. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location: north of S9 (cf. Fig. 4.2) (1183). Position: 76°29' N 69°32' W. Depth 244 m. Distance from point of impact: 7.6 km | Depth | 239 | .240P _U | 13 | ³⁷ Cs | 241 Am | 239.240Pu | ²⁴¹ Am | 238Pu | Total | |-------|---------------------|--------------------|---------|--------------------|--------------------|-------------|-------------------|-----------|----------| | n cm | Bq kg ⁻¹ | Bq m⁻² | Bq kg-1 | Bq m ⁻² | Bq m ⁻² | 137Cs | 239.240Pu | 239,240Pu | <u>g</u> | | 0-3 | 36 | 670 | 9.4 | 177 | | 3.86 | | 0.015 | 275 | | 3-6 | 51 ± 7 | 1210 ± 160 | 9.2 | 217 | 165 | 5. 5 | 0.136 | 0.016 | 341 | | 6-9 | 3.2 | 95 | 2.0 | 60 | | 1.62 | | 0.012 | 424 | | 9-12 | 0.73 | 19 | <1 | < 30 | | < 0.73 | | 0.043 | 384 | | Σ | | 1990 | | ~ 480 | | | | | | Table 4.9.26. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location: south of S1 (cf. Fig. 4.2) (1271). Position: 76°33' N 69°01' W. Depth 227 m. Distance from point of impact: 7.8 km | Depth | 239.2 | ⁴⁰ Pu | 13 | ² Cs | ²⁴¹ Am | 239.240Pu | ²⁴¹ Am | 238Pu | Total
9 | |-------|---------|--------------------|---------|-----------------|-------------------|-------------------|-------------------|-----------|------------| | in cm | Bq kg-1 | Bq m ⁻² | Bq kg-1 | Bq m-2 | Bq m-2 | ¹³⁷ Cs | 239,240Pu | 239,240Pu | | | 0-3 | 58 | 460 | 14.2 | 112 | 44 | 4.1 | 0.095 | 0.015 | 115 | | 3-6 | 51 | 890 | 17.3 | 298 | 111 | 2.9 | 0.124 | 0.013 | 251 | | 6-9 | 38 | 700 | 20.6 | 381 | 81 | 1.85 | 0.115 | 0.018 | 268 | | 9-12 | 19.8 | 350 | 15.7 | 274 | 35 | 1.26 | 0.101 | 0.012 | 253 | | 12-15 | 2.6 | 45 | 4.9 | 83 | 7.2 | 0.53 | 0.16 | 0.021 | 248 | | Σ | | 2400 | | 1148 | 280 | | | | | Table 4.9.27. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location: between G&S1 (cf. Fig. 4.2) (1340). Position: 76°34' N 69°02' W. Depth 168 m. Distance from point of impact: 8.3 km | Depth | 239,2 | ⁴⁰ Pu | 13 | ⁷ Cs | ²⁴¹ Am | 239.240Pu | ²⁴¹ Am | 238P _U | Total
g | |-------|---------|--------------------|---------|-----------------|--------------------|-------------------|-----------------------|-------------------|------------| | in cm | Bq kg-1 | Bq m ⁻² | Bq kg-1 | Bq m⁻² | Bq m ⁻² | ¹³⁷ Cs | 239,240P _U | 239,240Pu | | | 0-3 | 43 | 530 | 11.7 | 146 | 57 | 3.6 | 0.107 | 0.017 | 181 | | 3-6 | 5.5 | 88 | 5.7 | 92 | 12 | 0.96 | 0.136 | 0.011 | 234 | | 6-9 | 1.43 | 25 | 1.45 | 25 | 3.6 | 1.00 | 0.146 | - | 252 | | 9-12 | 0.70 | 6 | 1.44 | 12 | 0.93 | 0.50 | 0.160 | - | 120 | | Σ | | 650 | | 275 | 74 | | | | | Table 4.9.28. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location: G (cf. Fig. 4.2) (1282). Position: 76°35' N 69°05' W. Depth 187 m. Distance from point of impact: 8.7 km | Depth | 239,2 | ⁴⁰ Pu | 13 | ⁷ Cs | ²⁴¹ Am | 239.240Pu | ²⁴¹ Am | 238Pu | Total | |-------|---------|------------------|---------------------|--------------------|-------------------|-------------------|-----------------------|-----------------------|-------| | in cm | Bq kg-1 | Bq m-2 | Bq kg ⁻¹ | Bq m ⁻² | Bq m⁻² | ¹³⁷ Cs | 239,240P _U | 239.240P _U | 9 | | 0-3 | 42 | 450 | 13.1 | 139 | 51 | 3.2 | 0.113 | 0.015 | 154 | | 3-6 | 33 | 540 | 10.9 | 176 | 6 5 | 3.0 | 0.120 | 0.017 | 235 | | 6-9 | 27 | 510 | 2.8 | 52 | 84 | 9.6 | 0.160 | 0.017 | 272 | | 9-12 | 1.2 | 25 | < 0.9 | < 20 | 8.2 | > 1.3 | 0.33 | - | 303 | | 12-15 | 0.15 | 4 | < 0.9 | < 25 | - | > 0.2 | | | 396 | | Σ | | 1530 | | <412 | 210 | | | | | Table 4.9.29. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location: S11 (cf. Fig. 4.2) (1181). Position: 76°28' N 69°41' W. Depth 285 m. Distance from point of impact: 11.9 km | Depth | 239.2 | 240Pu | 13 | ³⁷ Cs | ²⁴¹ Am | 239.240Pu | ²⁴¹ Am | 238Pu | Total | |-------|---------|-------------------|---------------------|------------------|-------------------|-----------|-----------------------|-----------|-------| | in cm | Bq kg-1 | Bq m ² | Bq kg ⁻¹ | Bq m-2 | Bq m⁻² | 137Cs | 239.240P _U | 239.240Pu | g | | 0-3 | 5.6 | 23 | 4.2 | 46 | - | 1.34 | | 0.033 | 159 | | 3-6 | 5.7 | 163 | 4.5 | 127 | | 1.27 | | 0.016 | 414 | | 6-9 | 6.8 | 183 | 4.7 | 128 | | 1.53 | | 0.017 | 393 | | Σ | | 370 | | 301 | | | | | | Table 4.9.30. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location: S12 (cf. Fig. 4.2) (1177). Position: 76°27' N 69°42' W. Depth 285 m. Distance from point of impact: 13.3 km | Depth | 239,2 | 240Pu | 13 | ¹⁷ Cs | ²⁴¹ Am | | ²⁴¹ Am | 238Pu | Total
g | |-------|---------|--------|---------------------|--------------------|--------------------|-------------------|-------------------|-----------|------------| | in cm | Bq kg-1 | Bq m-2 | Bq kg ⁻¹ | Bq m ⁻² | Bq m ⁻² | ¹³⁷ Cs | 239.240Pu | 239,240Pu | | | 0-3 | 18.8 | 80 | 5.1 | 22 | | 3.7 | | 0.018 | 62 | | 3-6 | 13.2 | 342 | 5.0 | 129 | | 2.6 | | 0.019 | 376 | | 6-9 | 43 | 1540 | 5.2 | 182 | | 8.4 | | 0.011 | 513 | | Σ | | 1962 | | 333 | | | | | | Table 4.9.31. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location: S13 (cf. Fig. 4.2) (1170). Position: 76°26' N 69°43' W. Depth 300 m. Distance from point of impact: 14.8 km | Depth | 239,2 | ⁴⁰ Pu | 13 | ³⁷ Cs | ²⁴¹ Am | 239,240Pu | 241 Am | 238Pu | Total | |-------|---------|------------------|---------|------------------|-------------------|-------------------|-----------|-----------|-------| | in cm | Bq kg-1 | Bq m-2 | Bq kg-1 | Bq m⁻² | Bq m-2 | ¹³⁷ Cs | 239.240Pu | 239,240Pu | g | | 0-3 | 20.4 | 180 | 5.2 | 46 | | 3.9 | | 0.019 | 128 | | 3-6 | 4.3 | 149 | 3.8 | 131 | | 1.13 | | 0.030 | 504 | | 6-9 | 4.0 | 82 | 4.2 | 86 | | 0.95 | | 0.025 | 296 | | Σ | | 411 | | 263 | | | | | | Table 4.9.32. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location D (cf. Fig. 4.2) (1402). Position: 76°39' N 69°00' W. Depth 85 m. Distance from point of impact: 16.1 km | Depth | 239.2 | 40Pu | 13 | ³⁷ Cs | 241 Am | 239.240Pu | 241 Am | 238Pu | Total | |-------|---------|--------
---------------------|------------------|--------|-------------------|-----------|-----------|-------| | in cm | Bq kg⁻¹ | Bq m-2 | Bq kg ⁻¹ | Bq m-2 | Bq m-2 | ¹³⁷ Cs | 239.240Pu | 239,240Pu | 9 | | 0-3 | 3.8 | 62 | 3.0 | 49 | 6.1 | 1.27 | 0.099 | 0.018 | 240 | | 3-6 | 0.25 | 5.4 | 1.7 | 36 | 1.7 B | 0.15 | 0.31 B | - | 308 | | 6-9 | 0.22 | 5.1 | 0.7 B | 16 | - | 0.3 | - | - | 330 | | 9-12 | 0.14 | 12.5 | 0.9 B | 27 | - | 0.15 | - | - | 455 | | 12-15 | 0.36 | 11.7 | 1.0 B | 32 | 1.8 A | 0.4 | 0.15 A | • | 467 | | 15-18 | 0.091 | 3.8 | u.4 B | 17 | • | 0.2 | • | | 604 | | Σ | | 100 | | 178 | 10 | | | _ | | Table 4.9.33. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location: S 14 (cf. Fig. 4.2) (1169). Position: 76°25' N 69°43' W. Depth 250 m. Distance from point of impact: 16.1 km | Depth | 239,2 | ⁴⁰ Pu | 13 | 7Cs | ²⁴¹ Am | 239.240Pu | ²⁴¹ Am | 238Pu | Total
g | |-------|---------------------|-------------------|---------------------|--------|-------------------|-------------------|-------------------|-----------|------------| | in cm | Bq kg ⁻¹ | Bq m ² | Bq kg ⁻¹ | Bq m-2 | Bq m-2 | ¹³⁷ Cs | 239,240Pu | 239,240Pu | | | 0-3 | 12.8 | 142 | 5.5 | 61 | | 2.33 | | 0.007 | 161 | | 3-6 | 2.5 | 75 | 2.3 | 70 | | 1.09 | | 0.042 | 435 | | 6-9 | 1.62 | 38 | 1.4 | 33 | | 1.16 | | - | 343 | | Σ | | 255 | · · · · · · | 164 | | | | | | Table 4.9.34. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location: C (cf. Fig. 4.2) (1404). Position: 76°40' N 69°30' W. Depth 110 m. Distance from point of impact: 17.0 km | Depth | 239.2 | 40Pu | 13 | ⁷ Cs | 241 Am | 239,240Pu | ²⁴¹ Am | 238Pu | Total
9 | |-------|---------|--------|---------|-----------------|--------|-------------------|-----------------------|-----------|------------| | in cm | Bq kg-! | Bq m-2 | Bq kg-1 | Bq m-2 | Bq m-2 | ¹³⁷ Cs | 239,240P _U | 239,240Pu | | | 0-3 | 36 | 470 | 9.8 | 130 | 58 | 3.7 | 0.122 | 0.016 | 192 | | 3-6 | 4.9 | 97 | 6.5 | 130 | 12.8 | 0.75 | 0.132 | 0.017 | 289 | | 6-9 | 1.7 | 32 | 3.6 | 68 | 4.9 | 0.47 | 0.151 | - | 275 | | 9-12 | 0.17 | 3 | < 0.9 | < 18 | - | >0.2 | | - | 292 | | Σ | | 600 | | < 346 | 76 | - | | | | Table 4.9.35. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location: 1411 (cf. Fig. 4.2). Position: 76°40' N 69°42' W. Depth 60 m. Distance from point of impact: 19.3 km | Depth | 239.2 | 40Pu | 13 | ¹⁷ Cs | ²⁴¹ Am | 239.240Pu | 241 Am | 238Pu | Total | |-------|---------|--------|---------|--------------------|-------------------|-------------------|-----------|-----------|-------| | in cm | Bq kg 1 | Bq m⁻² | Bq kg-1 | Bq m ⁻² | Bq m-2 | ¹³⁷ Cs | 239,240PU | 239,240Pu | g | | 0-3 | 0.70 | 6.1 | 2.1 | 18.0 | 1.7 | 0.33 | 0.277 | 0.028 | 127 | | | 1.31 | 11.5 | ** | | - | 0.62 | | 0.031 | " | Table 4.9.36. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location: B (cf. Fig. 4.2) (1409). Position: 76°40' N 70°00' W. Depth 100 m. Distance from point of impact: 24.4 km | Depth | 239,2 | ²⁴⁰ Pu | 13 | ¹⁷ Cs | ²⁴¹ Am | | ²⁴¹ Am | 238Pu | Total | |-------|---------------------|-------------------|---------|--------------------|--------------------|-------------------|-------------------|-----------|-------| | in cm | Bq kg ⁻¹ | Bq m ² | Bq kg⁻₁ | Bq m ⁻² | Bq m ⁻² | ¹³⁷ Cs | 239.240Pu | 239.240Pu | g | | 0-3 | 0.71 | 13.3 | 4.1 | 76 | - | 0.17 | - | 0.020 | 271 | | | 2.3 | 43 | •• | ** | 8.2 | 0.56 | 0.191 | 0.025 | " | | 3-6 | 3.5 | 18.3 | 7.3 | 38 | | 0.48 | - | 0.020 | 76 | Table 4.9.37. Radionuclides in sediments collected with a 145 cm² corer at Thule in ¹ugust 1984. Location: 1407 (cf. Fig. 4.2). Position: 76°38' N 70°17' W. Depth 120 m. Distance from point of impact: 28.5 km | Depth | 239.2 | ⁴⁰ Pu | 13 | 7Cs | ²⁴¹ Am | 239.240Pu | ²⁴¹ Am | ²³⁸ Pu | Tota! | |-------|---------------------|--------------------|----------------|--------|--------------------|-----------|-------------------|-----------------------|-------| | in cm | Bq kg ⁻¹ | 3q m ⁻² | Bq kg 1 | Bq m 2 | Bq m ⁻² | | 239.240Pu | ^{239,240} Pu | g | | 0-3 | 0.97
± 0.10 | 7.2
±0.7 | 1.78 | 13.2 | 0.17
± 0.01 | 0.55 | 0.168
±0.012 | 0.023
± 0.001 | 108 | (\pm 1 S.E. of double determinations). Table 4.9.38. Radionuclides in sediments collected with a 145 cm² corer at Thule in August 1984. Location: SW Kap Atholl (cf. Fig. 4.2) (1412). Position: 76°10' N 70°48' W. Depth 625 m. Distance from point of impact: 55.9 km | Depth | 239,2 | 40Pu | 13 | ⁷ Cs | ²⁴¹ Am | 239.240Pu | ²⁴¹ Am | ²³⁸ Pu | Total | |-------|---------|--------|---------------------|--------------------|--------------------|-----------|-------------------|-------------------|-------| | in cm | Bq kg 1 | Bq m-2 | Bq kg ⁻¹ | Bq m ⁻² | Bq m ⁻² | 137Cs | 239,240Pu | 239,240Pu | 9 | | 0-3 | 1.24 | 10.3 | 6.3 | 52 | | 0.20 | | | 120 | | 3-6 | 0.50 | 5.9 | 4.2 | 49 | | 0.12 | | | 170 | | 6-9 | 0.21 | 2.9 | 2.9 | 39 | | 0.07 | | | 199 | | 9-12 | 0.17 | 2.5 | 1.4 | 21 | | 0.12 | | | 214 | | 12-15 | 0.107 | 1.8 | 1.2 | 20 | | 0.09 | | | 241 | | Σ | | 23.4 | | 181 | | | | | | Table 4.9.39. Plutonium and americium in "clean" deep sediment samples collected at Thule in August 1984 | Loca | ation | Depth | Sediment layer | Bq ^{239,240} Pu | Bg ²⁴¹ Am | ²⁴¹ Am | Station | |--------|--------|-------|----------------|--------------------------|----------------------|-------------------|---------| | N | W | m | cm | kg ¹ | kg ¹ | 239,240Pu | | | 76°30′ | 69°13′ | 245 | 25-30 | 0.0088 | • | | S4 | | " | " | " | " | 0.0104 A | 0.0020 A | 0.197 A | " | | ** | ** | " | " | 0.0110 | • | | " | | " | ** | " | " | 0.0153 A | 0.0087 B | 0.57 B | " | | " | " | " | " | x 0.0144** | 0.0054 | | " | | | | | | S.D. 0.0028 | 0.0047 | | | | 75°31′ | 69°17' | 185 | 22-25 | 0.0146 | • | | V | | " | ,, | " | | 0.0076 A | 0.0064 A | 0.84 A | ,, | | " | ** | ** | " | 0.036 | 0.0094 | 0.26 | " | | " | " | " | " | 0.045 | 0.0097 A | 0.22 | " | | " | " | | ** | x 0.026 | 0.0085* | | " | | | | | | S.D. 0.0176 | 0.0018 | | | ## Acknowledgements The authors wish to thank the staff of Health Physics Department for their conscientious performance of the work reported here. Our thanks are due also to the Institute of Hygiene in Thorshavn, to the district physicians in Greenland and the telestations, GTO and all other persons and institutions in the Faroe Islands, Greenland and Denmark who have contributed by collecting samples. In particular we convey our gratitude to R.V. "Polarstern" from the Alfred Wegener Institute for Polar Research, Bremerhafen, to R.V. Bjarni Sæmundson from the Marine Research Institute in Iceland, and to Rune Dietz from the Greenland Environmental Research Institute who collected samples along northern West Greenland in 1987. The present study was partly sponsored by the C.E.C. Radiation Protection Research Programme and by the Danish National Research Council, Danish Council for Scientific and Industrial Research and Nordic Council of Ministers (The Greenland Sea Project). Finally we acknowledge the help of the Commission for Scientific Research in Greenland for granting permission to collect samples in Greenland. Rise-R-564 79 ## References - Environmental Radioactivity in the Faroes 1962-1982. Risø Reports Nos. 64, 86, 108, 131, 155, 181, 202, 221, 246, 266, 292, 306, 324, 346, 362, 387, 404, 422, 448, 470 and 488 (1963-1983). - Environmental Radioactivity in Greenland 1962-1982. Risø Reports Nos. 65, 87, 109, 132, 155, 182, 203, 222, 247, 267, 293, 307, 325, 347, 363, 388, 405, 423, 448, 471 and 489 (1963-1983). - 3) A. Aarkrog, L. Bøtter-Jensen, Q.J. Chen, H. Dahlgaard, Heinz Hansen, Elis Holm, Bente Lauridsen, S.P. Nielsen, and J. Søgaard-Hansen, Environmental Radioactivity in Denmark in 1987. Risø Report No. 563 (1989). - Environmental Radioactivity in the North Atlantic Region. The Faroe Islands and Greenland included. 1983-1986. Risø Reports Nos. 510, 528, 541 and 550 (1984-1988). - A. Aarkrog, Environmental Studies on Radioecological Sensitivity and Variability. Risø-R-437 (June 1979). - 6) A. Aarkrog, H. Dahlgaard, H. Hansen, E. Holm, L. Hallstadius, J. Rioseco and G. Christensen. Radioactive Tracer Studies in the Surface Waters of the northern North Atlantic including the Greenland, Norwegian and Barents Seas. Proceedings from a Nordic Symposium on Chemical Tracers for Studying Water Masses and Physical Processes in the Sea in Reykjavik Aug 28-Sept 1, 1984. RIT FISKIDEILDAR 9. 37-42 (1985). - 9) A. Aarkrog, S. Boelskifte, H. Dahlgaard, S. Duniec, L. Hallstadius, E. Holm and J.N. Smith. Technetium-99 and Cesium-134 as long distance tracers in Arctic waters. Estuarine, Coastal and Shelf Science 24, 637-647 (1987). - A. Aarkrog, H. Dahlgaard, K. Nilsson and E. Holm. Further studies of plutonium and americium at Thule, Greenland. Health Physics 46, 29-44 (1984). - A. Aarkrog, H. Dahlgaard, L. Hallstadius, H. Hansen, and E. Holm. Radiocesium from Sellafield Effluents in Greenland Waters. Nature 304, p. 49-51 (1983). - 12) R.S. Cambray. Annual discharges of certain long-lived radionuclides to the sea and to the atmosphere from the Sellafield works, Cumbria 1957-1981. AERE-M 3269 (1982). - 13) BNFL 1978-1985. Annual Report on Radioactive Discharge and Monitoring of the Environment. British Nuclear Fuels Limited, Risley, Warrington, Cheshire, U.K. - A. Aarkrog. Risk Assessment of long-lived radionuclides in the marine environment. Invited paper to International Symposium on the behaviour of long-lived radionuclides in the marine environment. La Specia, 28-30 Sept. 1983, p. 419-442. - 23) H. Kautsky, Deutschen Hydrographischen Zeitschrift 26, 242-246 (1973). - 24) A. Aarkrog, H. Dahlgaard, S. Duniec, P. Guequeniat, and E. Holm. The application of seaweeds as bioindicators for radioactive pollution in the Channel and southern North Sea. To be published in the proceedings from International Symposium on radioactivity and oceanography, June 1-5,
1987, Cherbourg. - 25) A. Aarkrog (editor). Bioindicator studies in Nordic waters. Risø-M-2517 (1985). 80 Risø-R-564 Title and authors Environmental Radioactivity in the North Atlantic Region Including the Faroe Islands and Greenland. 1987 Edited by A. Aarkrog, E. Buch, Q.J. Chen, G.C. Christensen, H. Dahlgaard, H. Hansen, E. Holm, and S.P. Nielsen | ISBN | | ISSN | | | | |---------------------------|-----------|-------------------|---------------------|--|--| | 87-550 | -1533-6 | | 0106-2840 | | | | | | 0900-8098 | | | | | Dept. or g | roup | Date
July 1989 | | | | | Health | Physics D | | | | | | Groups own reg. number(s) | | | Project/contract no | | | | Pages | Tables | Illustrations | References | | | | | | | 15 | | | Abstract (Max. 2000 characters) Measurements of fallout radioactivity in the North Atlantic region including the Faroe Islands and Greenland are reported. Strontium-90, cesium-137 and cesium-134 were determined in samples of precipitation, sea water, vegetation, various foodstuffs (including milk in the Faroes), and drinking water. Estimates are given of the mean contents of 90 Sr and 137 Cs in human diet in the Faroes and Greenland in 1987. 99 Tc data on marine samples are reported. Data on plutonium and americium in sediments and biota collected at Thule in 1984 are presented. ## Descriptors INIS/EDB ACCIDENTS; AMERICIUM 24; ANIMALS; AQUATIC ORGANISMS; ATMOSPHERIC PRECIPITATIONS; CESIUM 134; CESIUM 137; CHERNOBYLSK-4 REACTOR; COASTAL WATERS; DIET; DRINKING WATER; ENVIRONMENT; FALLOUT DEPOSITS; FAEROE ISLANDS; FOOD; FOOD CHAINS; GLOBAL FALLOUT; GREENLAND; MAN; NORWAY; PLANTS; PLUTONIUM 238; PLUTONIUM 239, PLUTONIUM 240; RADIOACTIVITY; RUTHENIUM 103; RUTHENIUM 106; SEAWATER; SEDIMENTS; SOILS; STATISTICAL DATA; STRONTIUM 90; TECHNETIUM 90; TRITIUM Available on request from Rise Library, Rise National Laboratory, (Rise Bibliotek, Forskningscenter Rise), P.O.Box 49, DK-4000 Roskilde, Denmark. Telephone 42 37 12 12, ext. 2268/2269 Telex 43 116. Telefax 46 75 56 27. Sales distributors: G.E.C. Gad Strøget Vinnmelskaftet 32 DK-1161 Copenhagen K, Denmark Available on exchange from: Risø Library, Risø National Laboratory, P.O. Box 49, DK-4000 Roskilde, Denmark Phone +45 42 37 12 12 ext. 2268/2269 Telex 43 116, Telefax +45 46 75 56 27 ISBN 87-550-1533-6 ISSN 0106-2840 ISSN 0900-8098