
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 30, 2024

CMG-Biotools, a Free Workbench for Basic Comparative Microbial Genomics.

Vesth, Tammi Camilla; Lagesen, Karin; Acar, Öncel; Ussery, David

Published in:
P L o S One

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Vesth, T. C., Lagesen, K., Acar, Ö., & Ussery, D. (2013). CMG-Biotools, a Free Workbench for Basic
Comparative Microbial Genomics. P L o S One, 8(4), e60120.

https://orbit.dtu.dk/en/publications/5cd29084-19d3-4f93-bc48-4c2d164e22fd


CMG-Biotools, a Free Workbench for Basic Comparative
Microbial Genomics
Tammi Vesth1, Karin Lagesen2, Öncel Acar3, David Ussery1*
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Abstract

Background: Today, there are more than a hundred times as many sequenced prokaryotic genomes than were present in
the year 2000. The economical sequencing of genomic DNA has facilitated a whole new approach to microbial genomics.
The real power of genomics is manifested through comparative genomics that can reveal strain specific characteristics,
diversity within species and many other aspects. However, comparative genomics is a field not easily entered into by
scientists with few computational skills. The CMG-biotools package is designed for microbiologists with limited knowledge
of computational analysis and can be used to perform a number of analyses and comparisons of genomic data.

Results: The CMG-biotools system presents a stand-alone interface for comparative microbial genomics. The package is
a customized operating system, based on Xubuntu 10.10, available through the open source Ubuntu project. The system
can be installed on a virtual computer, allowing the user to run the system alongside any other operating system. Source
codes for all programs are provided under GNU license, which makes it possible to transfer the programs to other systems if
so desired. We here demonstrate the package by comparing and analyzing the diversity within the class Negativicutes,
represented by 31 genomes including 10 genera. The analyses include 16S rRNA phylogeny, basic DNA and codon statistics,
proteome comparisons using BLAST and graphical analyses of DNA structures.

Conclusion: This paper shows the strength and diverse use of the CMG-biotools system. The system can be installed on
a vide range of host operating systems and utilizes as much of the host computer as desired. It allows the user to compare
multiple genomes, from various sources using standardized data formats and intuitive visualizations of results. The
examples presented here clearly shows that users with limited computational experience can perform complicated analysis
without much training.
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Introduction

The number of microbial genome sequences has exploded due

to the lower cost of sequencing facilitated by advances in

sequencing technology making these services easier and faster.

There are now roughly a hundred times as many sequenced

prokaryotic genomes available as in 2000. The National Center

for Biotechnology Information (NCBI) has an online list of genome

sequences, complete and in progress. In 2000, 42 sequenced

genomes were available on the NCBI list, and this number had

grown to 4 189 in February 2012 (www.ncbi.nlm.nih.gov/

genomes/lproks.cgi). Further, recently a single study [1] has

compared genome sequences from 2 348 Mycobacterium tuberculosis

isolates, and there are many more studies in progress where

thousands of bacterial genome sequences are compared. As

a consequence, more experimental biologists with little to no

experience with bioinformatics find themselves in possession of an

enormous amount of sequencing data and in need of tools

necessary for analysis.

Analyzing the sequence of a single genome can confer a wide

range of knowledge [2,3]. It is possible to use alignment tools to

find a specific gene in a genome within seconds, for example to

identify a genetic marker for a specific phenotype. DNA structure

analyses can pinpoint chromosomal regions that lend themselves

to certain genes and genomic elements. Regions that show distinct

structural properties along the chromosome include clusters of

genes encoding surface-proteins (usually more AT rich), possible

phage insertions, regions likely to contain highly expressed genes

as well as potential genomic islands [4–6]. Based on the annotation

of a genome it is also possible to find the gene neighbors of

a specific gene, thus possibly identifying functionally connected

genes. The sequencing of individual genomes has facilitated

a whole new approach to wet lab experiments that until recently

were not possible. There is an enormous amount of information

just in a single genome sequence.

However, the real power of genomics is manifested through

comparative genomics. Even within a species, comparative

genomics has highlighted a diversity that would not have been
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detected otherwise. The diversity within Escherichia coli was

illustrated in a study from 2009, where the number of gene

families, in Escherichia coli was estimated to be 43 000 [7]; this

number is expected to become larger as more genomes are

sequenced. Another example of the power of comparative

genomics, this time within low diversity genomes, can be found

in a study of two Bacillus species, B. anthracis and B. cereus. These are

difficult to differentiate based on chromosomal markers [8], and

the difference in pathogenicity is solely determined by the strict

presence of two virulence plasmids, which both are required for

anthrax. The diversity of a species can be estimated by multiple

sequence comparisons across genomes calculating the pan genome

(all genes found in genomes) [9]. Comparative microbial genomics

(CMG) also allows for fast and inexpensive analyses, for example

phylogenetic relationships between organisms. Further, it is

possible to build up data from known organisms that would allow

for quick classification of an isolate of an unknown organism, just

from its genome sequence.

The CMG-biotools package presented here is designed for

microbiologists with limited knowledge of computational analyses

and comes with a basic introduction to Unix. Within this package

it is possible to do phylogenetic analysis, proteome comparisons,

DNA structure analysis and much more, just with a list of

genomes. Most of the analyses can be performed on FASTA

formatted DNA sequences from unpublished projects as well. The

CMG-biotools system presents a stand-alone interface for com-

parative microbial genomics. The package is a installable oper-

ating system, based on Xubuntu 10.10 available through the open

source Ubuntu project (www.xubuntu.org/get). This setup over-

comes problems with dependencies and platform specificity

allowing for all users to work in the same environment. Ubuntu

is a widely used, free of charge and open source operating system

with a large user community and thousands of free applications. As

of 2012, Ubuntu is the second most popular Linux distribution,

only surpassed by Mint [10]. It is a stand-alone operating system

and can be installed directly onto a local computer or on a virtual

computer using virtualization software. The CMG-biotools

operating system has been tested on a free virtualization

application, VirtualBox (www.virtualbox.org). This system ad-

dresses the problem of working with large amounts of data,

allowing for comparative analyses of multiple genomes, thereby

making use of the vast amount of sequence information that is now

available in laboratories all over the world.

Results and Discussion

To demonstrate the capabilities of the CMG-biotools (Com-

parative Microbial Genomics), analyses are performed on a set of

genomes from the class Negativicutes. The CMG-biotools operating

system was installed on an 8 Gigabyte virtual computer using

VirtualBox (www.virtualbox.org). Figure 1 illustrates the work and

data flow of the analyses.

Data Collection and Assessment
The first step of the analyses is to obtain genome data for a set of

organisms. In the example presented here, we obtain data from

the GenBank database [11] at the National Center for Bio-

technology Information (NCBI, www.ncbi.nlm.nih.gov/genome/

browse/) This database is part of the International Nucleotide

Sequence Database Collaboration (INSDC) and contains more

than 3000 bacterial genome projects. For the example, organisms

of the class Negativicutes were identified from NCBI genomes list

(www.ncbi.nlm.nih.gov/genome/browse/, ‘‘Prokaryotes’’, Negati-

vicutes (taxid:909932)) and GenBank INSDC numbers or whole

genome sequence numbers (WGS) were obtained. The genome

sequences of 6 complete (NCBI Genomes list, status: ‘‘Complete’’)

and 25 assembly genomes (NCBI Genomes list ‘‘Scaffolds/

contigs’’) were identified. NCBI GenBank INSDC numbers were

used for complete genomes while WGS numbers were used for

draft sequences. Using the program getgbk and the INSDC/WGS

numbers, each genome was downloaded in the NCBI GenBank

format (Figure 1, Step 1). A list of genome names and INSDC/

WGS numbers is found in Table 1. DNA sequences were

extracted from GenBank files and saved in FASTA format(saco_-

conver t [12], Figure 1, Step 2B).

Basic statistical parameters were calculated for the 31 genomes

(Figure 1, Step 3B), using whole genome DNA FASTA files as

input, and the results are shown in Table 2. The AT content

varied from 42 to 66% and the genome size ranged from 1.26 to

2.89 Mega bases (Mb). The percentage of unknown bases refers to

letters in the DNA code that are not A, C, T or G. These bases

might be the result of an assembly process or errors in sequencing.

Of the 31 genomes analyzed, 8 had non-canonical base letters in

the DNA sequences, ranging from 0.0001%. to 3.6%. The fraction

of the largest contig will be 100% for genomes with one

chromosome and therefore this measure is more useful for

identification of incomplete sequences. For the non-complete

genomes, the fraction made up by the largest sequence varied from

5% to 30%. It is seen the the fraction correlates with the number

of contigs, if the genome sequence is in many contigs, then the

largest sequence covers a small fraction of the entire genome.

These findings show a large variation in the dataset, both in the

context of biology (AT content and size) and data quality (number

of contigs and percentage of unknown bases).

Gene Finding
The next step in the analysis is to identify coding regions in

DNA sequences. Some genome projects have manually curated

and high quality annotations while others have no annotations at

all. Again others have been annotated using a genefinding

algorithm without any additional evaluation of the findings. The

CMG-biotools uses the program Prodigal [13] for genefinding and

has been incorporated into a pipeline called prodigalrunner. This

pipeline takes a genome DNA GenBank or FASTA file as input

(Figure 1, Step 2C) The output from prodigalrunner is a pre-

liminary GenBank file (.gbk), a general feature format file (.gff),

a FASTA formatted open reading frame file (genes,.orf.fna) and

a FASTA formatted protein file which contains the translations of

the genes (orf.fsa). Table 3 shows the number of published genes

compared to the number of genes found when using Prodigal for

genefinding.

This genefinder found between 1 206 (D. micraerophilus DSM

19965) and 2 886 (Thermosinus carboxydivorans Nor1) proteins in the

31 genomes. Compared to the published proteins from GenBank,

Prodigal finds roughly the same number of genes, except for two

genomes which did not have any published annotations. The

advantage of using an independent gene finder for all genome

sequences in an analysis is that the difference introduced by

annotators will be removed. As information on how genefinding

was performed is rarely available, doing local genefinding might

eliminate badly annotated projects. Whether to use published

annotations is up to the individual user but for obvious reasons,

genefinding will have to be done for projects with no published

annotations. For the remaining analysis in this paper, proteomes

predicted using prodigalrunner will be used.

CMG-BioTools
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Phylogenetic Analysis
The chromosomal DNA sequence, as extracted from the

GenBank files (FASTA format) is used as input for this analysis,

as illustrated in Figure 1, Step 2A. The whole genome DNA

sequence is searched for rRNA sequences using RNAmmer [14]

and a sequence from each genome is extracted (select16SrRNA,

Figure 1, Step 3A). The selection criteria for the extraction process

defaults to the highest scoring sequence found with a length

between 1 400 and 1 800 base pairs. This selection is not

necessarily the most correct way of selecting a 16S rRNA sequence

for phylogenetic analysis, but offers the opportunity to compare

genomes based on a single sequence. The alignment program

ClustalW [15] is used for multiple sequence alignment of the

sequences. From the alignment, a distance tree is constructed,

using 1 000 bootstraps [16] to find the best fitting distance tree (the

output is a file Phylip tree format.phb). Each node of the tree is

shown with a bootstrap value between 0 and 1 000, the number

indicating how many times this branching is seen out of 1 000 re-

samplings. The higher the number the more reliable the

branching. The visualization of the tree was done using njplot

[17] and is shown in Figure 2.

The results of the RNAmmer analysis yielded no rRNA

sequences for two genomes (Centipeda periodontii DSM 2778, 72

contigs, and Megamonas hypermegale ART12 1, 1 replicon).

Sequences from 6 genomes had lengths outside the default

thresholds - length between 1 400 and 1 800 base pairs (Table 4,

16S rRNA length and score for each genome). For this analysis the

thresholds were changed to include these 6 genomes (lower

threshold for sequence length was changed to 1 100 base pairs).

The genome of Megamonas hypermegale contains a large number of

unknown bases (found in 99 stretches of lengths between 141 and

1780 nucleotides, calculated using countUnknowns.pl). The

average length of these stretches was 804 nucleotide positions,

roughly half the length for a 16S rRNA sequence. It is here

hypothesized that such unknown base stretches can prevent

rnammer from identifying ribosomal RNA sequences, because

parts of the 16S rRNA sequence might be missing. The sequence

of Centipeda periodontii DSM 2778 does not contain any unknown

bases, but still no rRNA sequences were found in this sequence.

The genome is in 72 contigs and the largest sequence is 8.5% of

the total, numbers that are not extreme compared to other

genomes in this analysis (Table 3). It can be hypothesized that the

lack of 16S rRNA sequences in this genome might be a result of

the sequence assembly. Since ribosomal RNA sequences often are

repeated sequences, the assembly process might not be able to

conclusively place the rRNA in the DNA, and might discard the

sequences all-together.

The 16S rRNA tree (Figure 2) has been manually colored by

genus, where multiple genomes per genus was available. The

genomes show a general tendency to cluster within their

taxonomical groups. Furthermore, the tree shows three main

clusters with Acidaminococcus and Selenomonas as separate clusters

(cluster II and III). The last cluster contains the genomes of

Veillonella, Megasphaera and Dialister, all clustered in subgroups

according to taxonomy. The clustering of genomes according to

genera is expected since the taxonomic naming is based on 16S

Figure 1. Analysis workflow. Visual representation of the data flow through each of the steps in the CMG-biotools system. The figure shows the
analysis input and program name along with the analysis output type. Green arrows indicate data extraction from a GenBank file format, this data
needs to be available in the file for these steps to work. Red arrows indicate local genefinding which results in gene FASTA, protein FASTA and
GenBank files.
doi:10.1371/journal.pone.0060120.g001
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rRNA comparison [18]. It should be noted that the resulting trees

shown here should be considered as preliminary classification.

Genome Atlases (Structural DNA Atlas)
Genome atlases were constructed for each of the 6 complete

genomes using GenBank files generated by prodigalrunner(Table 1

and Figure 3, high resolution figure as supplemental Figure S1).

The input to this analysis is a GenBank file containing one

replicon of a genome (a single chromosome or plasmid, Figure 1,

Step 3E). The analysis is performed using the program

genomeAtlas, which is a collection of scripts that utilizes the

GeneWiz program [6]. The genome atlas shows three types of

information: base composition (AT content, GC skew), global

repeats within the replicon (direct and inverted), and DNA

structural properties (position preference, DNA stacking energy,

and curvature). Genes (blue for leading and red for lagging strand),

rRNAs and tRNAs are displayed as found in the GenBank

annotation. The DNA is used for simple base count information

includes AT content and GC skew. The atlas also shows a visual

representation of structural properties of the DNA molecule

(inverted and direct repeats, position preference [19], stacking

energy [20] and intrinsic curvature [21,22]). These different

structures can potentially influence gene expression, likelihood of

gene rearrangement and even evolutionary hotspots. The atlases

in Figure 3 show a range of different DNA structure properties.

Arrows and colors mark different important regions on each atlas

(added to the atlases manually).

Mobile elements sometimes have different base composition,

and can be indicated by areas of different curvature, stacking

energy and position preference, compared to the chromosomal

average (grey), as seen from the atlas of Acidaminococcus fermentans.

Highly expressed regions are sometimes regions which will not

Table 1. Genome information.

Tax Organism INSDC WGS WGS for download Status

591001 Acidaminococcus fermentans DSM 20731 CP001859 – – Complete

568816 Acidaminococcus intestini RyC-MR95 CP003058 – – Complete

563191 Acidaminococcus sp D21 – ACGB01 ACGB00000000 Scaffolds/contigs

888060 Centipeda periodontii DSM 2778 – AFHQ01 AFHQ00000000 Scaffolds/contigs

592028 Dialister invisus DSM 15470 – ACIM02 ACIM00000000 Scaffolds/contigs

888062 Dialister micraerophilus DSM 19965 – AFBB01 AFBB00000000 Scaffolds/contigs

910314 Dialister microaerophilus UPII 345-E – AENT01 AENT00000000 Scaffolds/contigs

158847 Megamonas hypermegale ART12 1 FP929048 – – Complete

907 Megasphaera elsdenii DSM 20460 HE576794 – – Complete

699218 Megasphaera genomosp type 1 str 28L – ADGP01 ADGP00000000 Scaffolds/contigs

706434 Megasphaera micronuciformis F0359 – AECS01 AECS00000000 Scaffolds/contigs

1000569 Megasphaera sp UPII 135-E – AFUG01 AFUG00000000 Scaffolds/contigs

1000568 Megasphaera sp UPII 199-6 – AFIJ01 AFIJ00000000 Scaffolds/contigs

500635 Mitsuokella multacida DSM 20544 – ABWK02 ABWK00000000 Scaffolds/contigs

626939 Phascolarctobacterium succinatutens
YIT 12067

– AEVN01 AEVN00000000 Scaffolds/contigs

749551 Selenomonas artemidis F0399 – AECV01 AECV00000000 Scaffolds/contigs

638302 Selenomonas flueggei ATCC 43531 – ACLA01 ACLA00000000 Scaffolds/contigs

585503 Selenomonas noxia ATCC 43541 – ACKT01 ACKT00000000 Scaffolds/contigs

879310 Selenomonas sp oral taxon 137 str F0430 – AENV01 AENV00000000 Scaffolds/contigs

864563 Selenomonas sp oral taxon 149 str 67H29BP – AEEJ01 AEEJ00000000 Scaffolds/contigs

546271 Selenomonas sputigena ATCC 35185 CP002637 ACKP02 ACKP00000000 Complete

401526 Thermosinus carboxydivorans Nor1 – AAWL01 AAWL00000000 Scaffolds/contigs

866776 Veillonella atypica ACS-049-V-Sch6 – AEDR01 AEDR00000000 Scaffolds/contigs

866778 Veillonella atypica ACS-134-V-Col7a – AEDS01 AEDS00000000 Scaffolds/contigs

546273 Veillonella dispar ATCC 17748 – ACIK02 ACIK00000000 Scaffolds/contigs

686660 Veillonella parvula ATCC 17745 – ADFU01 ADFU00000000 Scaffolds/contigs

479436 Veillonella parvula DSM 2008 CP001820 – – Complete

457416 Veillonella sp 3 1 44 – ADCV01 ADCV00000000 Scaffolds/contigs

450749 Veillonella sp 6 1 27 – ADCW01 ADCW00000000 Scaffolds/contigs

879309 Veillonella sp oral taxon 158 str F0412 – AENU01 AENU00000000 Scaffolds/contigs

944564 Veillonella sp oral taxon 780 str F0422 – AFUJ01 AFUJ00000000 Scaffolds/contigs

Table listing the genomes used in the analysis. Data was downloaded from NCBI GenBank database. Abbreviations: Tax: NCBI taxonomy id number, Organism: Name of
organism, INSDC: NCBI GenBank Accession number,WGS: NCBI Whole Genome Sequence Project number, Status: status of sequencing project. The WGS number can be
used for downloading whole genome sequencing projects by removing the last two numbers and adding 6 zeros (ACGB01 is downloaded using the number
ACGB000000).
doi:10.1371/journal.pone.0060120.t001
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easily condense around chromatin proteins (See atlas for

Acidaminococcus intestini RyC-MR95, very low position preference,

average stacking energy and position preference). Some regions

are often associated with rRNA sequences and these patterns are

also thought to correlate with high gene expression (See atlas for

Megasphaera elsdenii DSM 20460, less negative stacking energy (red,

melt easy) and low position preference (flexible)). Regions with

high curvature and stacking energy indicate a strongly curved

region with tendency to melt (See atlas for Selenomonas sputigena

ATCC 35185). This structure might be involved in a special DNA

structure, maybe where the chromosome attaches to the bacterial

cell membrane. On the chromosome of Veillonella parvula DSM

2008 are several regions with high curvature, stacking energy and

position preference, suggesting this region to be curved, rigid and

easily melted. The genes in this region might be highly expressed

but controlled by histone-like proteins that preferentially bind to

curved DNA. The draft chromosome of Megamonas hypermegale

ART12 1 is slightly different from the other atlases. For five of the

six atlases in Figure 3, the GC skew indicates the location of the

origin and terminus of replication, and changes from most G’s

(blue) to more C’s (pink). For most bacterial genomes, G’s are

biased toward the leading strand [23]. Note how the number of

genes on leading/lagging strand changes along with the GC skew

(more G’s, more minus strand genes). For the genome of

Megamonas hypermegale ART12 1, the GC skew lane is a mixture

of pink and blue, likely because this is a draft genome sequence.

The genome is also highly AT rich (66%) and contains three

regions with DNA structural patterns different from the rest of the

genome.

Table 2. Genome statistics.

Organism bp AT Std. AT Contig Unknown Largest N50

Acidaminococcus fermentans DSM 20731 2 329 769 44,16 – 1 – 100 2 329 769

Acidaminococcus intestini RyC-MR95 2 487 765 49,98 – 1 – 100 2 487 765

Acidaminococcus sp D21 2 238 973 49,80 0,03 79 – 6,2 43 082

Centipeda periodontii DSM 2778 2 650 230 44,02 0,04 71 – 8,4 72 349

Dialister invisus DSM 15470 1 895 860 54,50 0,03 2 – 99,9 1 894 898

Dialister micraerophilus DSM 19965 1 256 198 64,69 0,05 32 – 17,9 90 852

Dialister microaerophilus UPII 345-E 1 395 825 64,35 0,07 32 – 15,4 122 970

Megamonas hypermegale ART12 1 2 209 938 65,89 – 1 3,602 100 2 209 938

Megasphaera elsdenii DSM 20460 2 474 718 47,01 – 1 0,397 100 2 474 718

Megasphaera genomosp type 1 str 28L 1 726 197 53,95 0,03 34 – 12,2 156 177

Megasphaera micronuciformis F0359 1 765 374 54,56 0,04 49 – 24,8 142 252

Megasphaera sp UPII 135-E 1 440 762 61,19 0,04 46 0,001 12,0 63 822

Megasphaera sp UPII 199-6 1 242 998 53,26 0,04 38 – 12,0 96 055

Mitsuokella multacida DSM 20544 2 204 718 41,89 0,04 28 – 19,5 321 943

Phascolarctobacterium succinatutens YIT 12067 2 122 261 52,36 0,05 118 – 5,1 43 220

Selenomonas artemidis F0399 2 209 623 42,75 0,06 66 – 19,7 89 528

Selenomonas flueggei ATCC 43531 2 157 862 44,03 0,04 33 – 12,2 125 841

Selenomonas noxia ATCC 43541 2 039 467 44,13 0,05 56 – 14,2 106 401

Selenomonas sp oral taxon 137 str F0430 2 475 066 43,27 0,05 15 – 22,1 306 540

Selenomonas sp oral taxon 149 str 67H29BP 2 429 414 43,20 0,05 56 – 7,8 95 526

Selenomonas sputigena ATCC 35185 2 568 361 42,89 – 1 – 100 2 568 361

Thermosinus carboxydivorans Nor1 2 889 774 48,50 0,03 49 – 12,1 108 262

Veillonella atypica ACS-049-V-Sch6 2 053 871 61,03 0,04 63 – 10,3 80 793

Veillonella atypica ACS-134-V-Col7a 2 151 913 61,02 0,04 70 – 9,8 74 331

Veillonella dispar ATCC 17748 2 116 567 61,14 0,06 25 – 30,4 498 249

Veillonella parvula ATCC 17745 2 163 473 61,43 0,04 19 – 26,9 416 853

Veillonella parvula DSM 2008 2 132 142 61,37 – 1 – 100 2 132 142

Veillonella sp 3 1 44 2 156 561 61,36 0,04 31 – 18,0 282 953

Veillonella sp 6 1 27 2 169 785 61,33 0,04 22 – 15,8 257 597

Veillonella sp oral taxon 158 str F0412 2 176 752 61,05 0,04 21 – 19,3 366 615

Veillonella sp oral taxon 780 str F0422 1 731 014 60,55 0,03 75 – 14,0 73 892

Basic genome statistics for genome DNA sequences. Values of zero are marked by ‘‘2’’. Abbreviations: Organism: Name of organism. Status: sequencing status of
published project. bp: total number of base pairs in all DNA. AT: Percent of AT in DNA. Std. AT: Standard deviation in AT across DNA fragments. Contig: number of DNA
fragments corresponding to replicons or contigs. Unknown: percentage of unknown bases (not A, T, C or G). Largest: size of largest contig as a percentage of total
length. N50: weighted median statistic such that 50% of the entire assembly is contained in contigs or scaffolds equal to or larger than this value.
doi:10.1371/journal.pone.0060120.t002

CMG-BioTools

PLOS ONE | www.plosone.org 5 April 2013 | Volume 8 | Issue 4 | e60120



Amino Acid and Codon Usage
The input to the analysis of codon usage and bias in third codon

position is a gene FASTA file (DNA). The amino acid usage can be

performed on any set of proteins in FASTA format using

aminoacidUsagePlot (Figure 1, Step 3D). Here, both analyses

were run using the genes and proteins identified by prodigalrunner

(Figure 1, Step 2C). The program basicgenomeanalysis calculates

the bias in third position, codon and amino acid usage and the

output is a text file containing the values along with a PDF file with

plots. The bias is defined as 21 in the case of 100% A or T in third

position, +1 is the case of 100% G or C.

The bias in third position was analyzed and visualized for the 6

complete genomes (Figure 4). The genomes of V. parvula DSM

2008 and M. hypermegale ART12 1 have a high bias towards A/T in

third position (bias score, 20.3906 and 20.6256, respectively) and

also a very high AT content (66% and 61%, respectively). The

genomes of S. sputigena ATCC 35185 and A. fermentans DSM

20731, have low AT content and a bias towards G/C in third

position (bias score, 0.4719 and 0.4276, respectively). M. elsdenii

DSM 20460 and A. intestini RyC-MR95 have average AT content

but M. elsdenii has a clear bias in third position towards C (bias

score, 0.3175). This analysis shows the diversity of AT content

between these genomes and also illustrates how AT content

correlates with the nucleotide bias in third codon position.

The codon and amino acid usage was calculated for all 31

genomes and visualized in heatmaps created in R (Figure 5, genera

colors were added manually). The genera of Veillonella and

Selenomonas cluster together showing that each species have

a unique use of both codons and amino acids. The genomes

belonging to Megasphaera, Acidaminococcus and Dialister are less

conserved, and do not consistently cluster together. These two

trees show a different relationship than the 16S rRNA tree

(Figure 2). The amino acid usage tree shows three main clusters

with Selenomonas and Dialister forming their own clusters (cluster II

and III). The last cluster (cluster I) consists of Veillonella, Megasphaera

and Acidaminococcus. This is significantly different from the codon

Table 3. Genefinding and published genes.

Genome name GenBank Prodigal ID

Acidaminococcus fermentans DSM 20731 2 026 2 063 CP001859

Acidaminococcus intestini RyC-MR95 2 404 2 372 CP003058

Acidaminococcus sp D21 2 005 2 105 ACGB00000000

Centipeda periodontii DSM 2778 2 559 2 440 AFHQ00000000

Dialister invisus DSM 15470 1 954 1 765 ACIM00000000

Dialister micraerophilus DSM 19965 1 243 1 206 AFBB00000000

Dialister microaerophilus UPII 345-E 1 310 1 308 AENT00000000

Megamonas hypermegale ART12 1 2 118 2 759 FP929048

Megasphaera elsdenii DSM 20460 2 220 2 222 HE576794

Megasphaera genomosp type 1 str 28L 1 610 1 560 ADGP00000000

Megasphaera micronuciformis F0359 1 774 1 724 AECS00000000

Megasphaera sp UPII 135-E 1 310 1 291 AFUG00000000

Megasphaera sp UPII 199-6 1 151 1 112 AFIJ00000000

Mitsuokella multacida DSM 20544 2 142 1 942 ABWK00000000

Phascolarctobacterium succinatutens YIT 12067 2 150 2 012 AEVN00000000

Selenomonas artemidis F0399 2 195 2 024 AECV00000000

Selenomonas flueggei ATCC 43531 2 117 2 045 ACLA00000000

Selenomonas noxia ATCC 43541 2 020 1 955 ACKT00000000

Selenomonas sp oral taxon 137 str F0430 2 395 2 341 AENV00000000

Selenomonas sp oral taxon 149 str 67H29BP 2 407 2 313 AEEJ00000000

Selenomonas sputigena ATCC 35185 2 255 2 283 CP002637

Thermosinus carboxydivorans Nor1 2 750 2 886 AAWL00000000

Veillonella atypica ACS-049-V-Sch6 1 840 1 865 AEDR00000000

Veillonella atypica ACS-134-V-Col7a 1 903 1 923 AEDS00000000

Veillonella dispar ATCC 17748 1 954 1 941 ACIK00000000

Veillonella parvula ATCC 17745 1 929 1 945 ADFU00000000

Veillonella parvula DSM 2008 1 844 1 865 CP001820

Veillonella sp 3 1 44 0 1 922 ADCV00000000

Veillonella sp 6 1 27 0 1 936 ADCW00000000

Veillonella sp oral taxon 158 str F0412 2 000 2 029 AENU00000000

Veillonella sp oral taxon 780 str F0422 1 588 1 605 AFUJ00000000

Table listing genome name, number of published proteins (GenBank) and number of proteins found using Prodigal for genefinding (Prodigal). The column labeled ‘‘ID’’
refers to the INSDC or WGS id number as described in Table 1.
doi:10.1371/journal.pone.0060120.t003
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Figure 2. 16S rRNA tree. Each genome sequence was searched for 16S rRNA patterns and candidate sequences were extracted. The best sequence
from each genome was selected. For two genomes, no sequences were found, Centipeda periodontii DSM 2778, Megamonas hypermegale ART12 1.
For 6 additional genomes, the located sequences were shorter than the default acceptable length. The short sequences sequences are marked with
a ‘‘*’’. Length criteria was changed from minimum 1 400 to 1 100 and maximum 1 800 unchanged. The distance tree was made with 1 000 bootstraps.
doi:10.1371/journal.pone.0060120.g002

CMG-BioTools

PLOS ONE | www.plosone.org 7 April 2013 | Volume 8 | Issue 4 | e60120



usage tree which creates a cluster consisting of Veillonella and

Dialister with a single Megasphaera genome (cluster III), another

cluster of Selenomonas(cluster II) and the last cluster of Megasphaera

and Acidaminococcus (cluster I). None of the two methods makes

a consistent clustering of the Megasphaera genomes as the 16S

rRNA tree. In accordance, none of the three trees show the same

general clusters, however they all manage to cluster closely related

genomes, with the single exception of Megasphaera.

Proteome Comparisons Using BLAST
For this analysis, proteomes were constructed for all 31 genomes

using prodigalrunner for genefinding. Presented here are two

different types of proteome comparisons, both based on the

BLAST algorithm (Basic Local Alignment Search Tool) [24,25].

The first method is a BLAST matrix and shows a pairwise

proteome comparison by using BLAST to identify whether two

proteins are shared between genomes [26]. Two proteins are

considered to be in the same family if 50% of the alignment

consists of identical matches and the length of the alignment is

50% of the longest gene. The main part of the matrix consists of

pairwise genome comparisons; with fractions of shared proteins

shaded in green (more green, more protein families shared). The

row that would reflect self-comparison indicates internal homologs

(internal paralogs, shaded red) which are defined as a significant

hit within a genome to a protein other than the query protein

itself.

The program performing this analysis is called blastmatrix and

the input is an XML file (Figure 1, Step 3C). This file is created by

the program makebmdest by inputting the name of a directory

containing protein files. This program takes all the protein FASTA

files in a given directory, extracts relevant information and formats

it into an XML file which is read by the blastmatrix program. The

Table 4. Ribosomal RNA analysis using RNAmmer.

Organism Status Score Length (bp) Total seq.

Acidaminococcus fermentans DSM 20731 Complete 1 910.8 1 545 6

Acidaminococcus intestini RyC-MR95 Complete 1 920.1 1 545 3

Acidaminococcus sp D21 Scaffolds/contigs 1 920.1 1 545 1

Centipeda periodontii DSM 2778 Scaffolds/contigs – –* –

Dialister invisus DSM 15470 Scaffolds/contigs 1 836.1 1 557 3

Dialister micraerophilus DSM 19965 Scaffolds/contigs 1 878.8 1 555 1

Dialister microaerophilus UPII 345-E Scaffolds/contigs 1 197.2 1 325* 1

Megamonas hypermegale ART12 1 Complete – –* –

Megasphaera elsdenii DSM 20460 Complete 1 842.0 1 552 7

Megasphaera genomosp type 1 str 28L Scaffolds/contigs 1 860.0 1 557 1

Megasphaera micronuciformis F0359 Scaffolds/contigs 1 816.0 1 550 1

Megasphaera sp UPII 135-E Scaffolds/contigs 1 887.4 1 556 1

Megasphaera sp UPII 199-6 Scaffolds/contigs 1 868.7 1 556 1

Mitsuokella multacida DSM 20544 Scaffolds/contigs 1 915.8 1 549 2

Phascolarctobacterium succinatutens YIT 12067 Scaffolds/contigs 1 907.9 1 646 1

Selenomonas artemidis F0399 Scaffolds/contigs 6.368 1137* 1

Selenomonas flueggei ATCC 43531 Scaffolds/contigs 1 089.7 1 216* 1

Selenomonas noxia ATCC 43541 Scaffolds/contigs 1 364.8 1 296* 1

Selenomonas sp oral taxon 137 str F0430 Scaffolds/contigs 1 830.8 1 532 4

Selenomonas sp oral taxon 149 str 67H29BP Scaffolds/contigs 1 252.5 1 258* 1

Selenomonas sputigena ATCC 35185 Complete 1 861.4 1 543 4

Thermosinus carboxydivorans Nor1 Scaffolds/contigs 1 898.8 1 549 7

Veillonella atypica ACS-049-V-Sch6 Scaffolds/contigs 1 512.8 1 369* 1

Veillonella atypica ACS-134-V-Col7a Scaffolds/contigs 1 871.2 1 551 1

Veillonella dispar ATCC 17748 Scaffolds/contigs 1 870.5 1 551 3

Veillonella parvula ATCC 17745 Scaffolds/contigs 1 848.5 1 553 1

Veillonella parvula DSM 2008 Complete 1 859.5 1 551 4

Veillonella sp 3 1 44 Scaffolds/contigs 1 861.6 1 553 1

Veillonella sp 6 1 27 Scaffolds/contigs 1 862.2 1 551 1

Veillonella sp oral taxon 158 str F0412 Scaffolds/contigs 1 860.5 1 552 4

Veillonella sp oral taxon 780 str F0422 Scaffolds/contigs 1 877.1 1 550 4

The total number of identified 16S rRNA sequences is shown for each genome sequence. Length of highest scoring sequence and corresponding RNAmmer score is
given. Default settings is to select the sequence with the highest RNAmmer score and a length between 1 400–1 800 bases. For this analysis the criteria were changed
to a length range of 1 100–1 800, to include sequences from all genomes with 16S rRNA matches. Sequences with lengths shorter than the default acceptance threshold
are marked with a ‘‘*’’. Two organisms did not have any hits to the RNAmmer models, values of zero are marked by ‘‘2’’.
doi:10.1371/journal.pone.0060120.t004
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Figure 3. Genome atlases, DNA structures. A DNA structural atlas was generated for each of the 6 complete genomes. DNA, RNA and gene
annotations are from the published GenBank data. Each lane of the circular atlas shows a different DNA feature. From the innermost circle: size of
genome (axis), percent AT (red= high AT), GC skew (blue =most G’s), inverted and direct repeats (color = repeat), position preference, stacking energy
and intrinsic curvature. Orange arrows indicate changes in the skew of G and C, which frequently indicate origin and terminus of replication. Blue
arrows show the location of rRNA operons, as annotated in the GenBank file. Dark red arrows highlight areas of the genome that show significantly
different DNA structures than the rest of the genome. A higher resolution pdf is available as a supplemental figure. A high resolution figure can be
found as supplemental Figure S1.
doi:10.1371/journal.pone.0060120.g003

Figure 4. Bias in third position. The bias in third codon position is visualized for each of the 6 complete genomes. The bias was defined as 21 in
the case of 100% A or T in third position, +1 is the case of 100% G or C.
doi:10.1371/journal.pone.0060120.g004
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protein FASTA file can be obtained by extracting proteins from

a GenBank file (using saco_extract) or by using the Prodigal

genefinder (extract DNA from GenBank, saco_convert, and find

genes using prodigalrunner). A BLAST matrix comparison of the

31 Negativicutes genomes was calculated on the CMG-biotools

system, using 4 processors (calculation time was 9 hours).

The BLAST matrix (Figure 6, high resolution figure as

supplemental Figure S2) illustrates that the conservation between

genomes is generally higher within a genus than between genera

(for example Selenomonas, 53–57%, and Megasphaera, 33–81%). The

Selenomonas strains also show a high similarity to the genome of C.

periodontii DSM 2778, while the Megasphaera genus shows no higher

similarity to other genera. For both the genomes of Acidaminococcus

and Dialister, the similarity is varied with one comparison being

very similar and the others not (31–45%). Within the Veillonella

genus, the conservation is 64–84% with the exception of Veillonella

species oral taxon 780 str F0422 (conservation 36–38% to other

Veillonella). In comparison, a study performed on genomes from the

Vibrionaceae family showed that different strains of Vibrio cholerae

share between 70–80% proteins while the similarity to organisms

outside the species ranged from 30–45% [27]. From that same

study, the internal homology (red squares) ranges from 1.3–5.3%.

Other studies, such as a study on Vibrionaceae have shown numbers

ranging from 1.8–5%. Another study analyzed the similarity

between Enterobacteriaceae genomes, and found a 76–98.8%

similarity between 7 genomes of Escherichia coli [28] The same

study showed an internal homology of approximately 0.3–3% for

the 7 Escherichia coli.

The second method looks at the cumulative set of all genes,

shared across genomes (pan-genome) and the conserved set of

gene families across all genomes (core-genome) [29]. The pan- and

core-genomes are theoretical representations of a collective protein

pool and a conserved protein pool, respectively. When a protein

type is found in all genomes in a collection, it is called a core gene

of this collection. Here this is implemented in a pan- and core-

genome plot (Figure 7) where sequences are compared using

BLAST and the 50/50% cutoff described above. As the clusters

grow to more than two members, single linkage clustering is used

to assign a new sequence to a group. The program performing this

analysis is called pancoreplot and the input is a tab separated text

file representing a number of FASTA files containing amino acid

sequences (Figure 1, Step 3C). For this analysis, the input files and

directories are the same as described for the BLAST matrix.

For the first genome, the pan and core are identical, and the

core becomes smaller with the addition of a second genome, as

genes in this pool now need to be found in both genomes. If a gene

from the core is not found in a new genome it is removed from the

core, and is then only part of the pan-genome. The pan-genome is

the entire gene pool and as such includes the core genome. The

order of the genomes can change the course of the graph, but the

final shared gene pool (core and pan-genome) will be the same.

A pan- and core-genome plot analysis was performed for all 31

genomes (Figure 7). The final core genome was found to be 134

gene families and the pan genome contains 17 999 gene families.

For an average proteome size of around 1 900 within the

Negativicutes, a core genome of 134 is relatively small. Using the

output data from the pan- and core-genome it was possible to

analyze gene overlaps and intersections of the dataset. The core

genome of the Veillonella genomes is 936 protein families, less than

half of the average number of genes in these genomes. Of these

families, nly 210 are not found in any of the other genomes

(complimentary) while 802 families are not found in the core of the

other genomes (‘‘compinter’’). The pan-genome of the 31 genomes

is 17 999 families, indicating a large diversity and many accessory

genes in this class. Compared to similar analyses for genomes of

the Vibrionaceae family, pan- and core-genome sizes was 20 200 and

1 000 respectively [27]. The V. cholerae genomes have a core

genome of 2 500, more than 60% of the average size of these

genomes, 4 000 genes [27].

Materials and Methods

The CMG-biotools
CMG-biotools is a modified setup of the publicly available

Xubuntu 10.10 (www.xubuntu.org/get) operating system. Xu-

buntu is a community developed operating system that is well-

suited for laptops and desktops. It natively contains all applications

from word processing and email applications to web server

software and programming tools and is part of the Ubuntu project,

published under the GPL (GNU General Public License). A

number of bioinformatic tools have been added to the system to

allow for analysis of microbial genome sequence data and is here

called ‘‘CMG-biotools’’. CMG-biotools is an installable operating

system (disc image,.iso format). By installing the software, the user

accepts the terms of the license and agreements.

The CMG-biotools operating system can be installed on a local

computer or on a virtual computer application, such as VirtualBox

(www.virtualbox.org). A standard installation should take less than

25 minutes. The functionalities of CMG-biotools consists of a series

of compiled executables, Perl, Python and bash scripts contained

in a folder on the system (/usr/biotools/). These scripts can be

modified according to the individual licenses of the programs

(See.LICENSE files for this information). The CMG-biotools

system is made to run on a local laptop and uses one processor

by default. The computationally heavy programs, blastmatrix and

pancoreplot, have built-in options (-cpu) that allows the user to

increase the number of processors if available.

Download
The installable disk image file (.iso) containing CMG-biotools is

available from the webpage (www.cbs.dtu.dk/staff/dave/

CMGtools/). The tutorials for the courses taught on this platform

are available from the same webpage. The system has been tested

using VirtualBox, a free virtual computer application, on Windows

and Mac operating systems (www.virtualbox.org).

Programs
Data collection. The getgbk.pl script uses the Entrez E-utils

programmatic interface made available by the NCBI to fetch

sequence data. The script allows searching within the NCBI

nuccore or the new bioproject databases using Genbank Accession

identifiers or project identifiers respectively. Records identified in

bioprojects can be filtered to only fetch matches in RefSeq or

GenBank. Extraction of DNA from GenBank format is done using

saco_convert [12], which locates the DNA sequences in the

GenBank data labeled ‘‘ORIGIN’’ and prints the data in FASTA

Figure 5. Amino acid and codon usage heatmaps. Amino acid and codon usage were for all 31 genomes calculated based on the genes
identified by gene finding (Prodigal). The percentage of codon and amino acid usage was plotted in two heatmaps using R. The heatmaps were
clustered in 2D, thus reordering the organisms and the amino acids/codon to show the shortest distance between them. Dendograms were draw for
both and can be used to visualize the difference in usage between organisms.
doi:10.1371/journal.pone.0060120.g005
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format. Extraction of translated coding sequences from GenBank

is done using saco_extract [12]. This program accesses the

GenBank data labeled ‘‘translation’’, extracts the sequences and

prints them as FASTA format along with the gene identifier, also

obtained from the GenBank file. Some GenBank files do not have

annotated protein sequences and from these the extraction

procedure will not work. In such cases, genefinding should be

performed. The input arguments to the saco programs describes

input and output file formats, where the first indicates the input file

format (for instance GenBank) and the second the output format

(for instance FASTA).

Phylogenetic analysis. The RNAmmer [14] program is

used for the localization of rRNA sequences in genomic DNA

(FASTA format). DNA is extracted from GenBank files using

saco_convert and stored in FASTA format (Figure 1, Step 2B).

The program uses HMM models to search a DNA sequence for

sequences with significant similarity to models of rRNA sequences.

Models are included for 5S, 16S and 23S rRNA for bacterial

genomes (options TSU, SSU and LSU respectively). For the

examples in this paper, each genome sequence was compared to

the models for 16S rRNA only. Each sequence is searched and

possible rRNA sequences are stored as FASTA formatted DNA

sequences. The highest scoring sequence with acceptable length

(between 1 400 and 1 800) is extracted from each genome

(select16SrRNA) and stored in a FASTA formatted DNA file. It is

also possible to use all predicted sequence in stead of selecting the

highest scoring one. Some genomes have multiple 16S rRNA

sequences and they might yield slightly different phylogenetic

relationships. One sequence from each genome is compared in

a multiple alignment using ClustalW [15] and the resulting

alignment is used to construct a distance tree using 1 000 re-

samplings. The tree is visualized using njplot [17].

Genome atlases (structural DNA atlas). The genome atlas

presented here is an implementation of the atlas presented earlier

by Jensen et al. 1999 [4,6]. Below is a short description of each of

the parameters shown in the DNA atlases. Color scales for all

parameters follow the same system. The DNA sequence is read

and an output file is generated for the various calculated

parameters. For each nucleotide in the genome a numerical value

is calculated. This file is then read by the GeneWiz program,

which calculates the average and standard deviation for each

parameter, if the average value of the window is more than 3

standard deviations on either side of the overall average the

window is maximally colored. In order to plot the data on

a circular map a ‘‘window size’’ is used for longer genomes, which

effectively smooths the data for better graphics. For the parameters

Stacking Energy, Position Preference and Intrinsic Curvature, the window is

0.0026genome length. The window is 0.0016genome length for

Percent AT and GC skew. Each of these are calculated separately,

wrapped into a pipeline and visualized in a circular plot, called an

atlas. The gene annotations are taken directly from a GenBank

coding regions; if no such information is found the CDS2/+ lanes

will be blank. The following lists explanations to each of the lanes

in a genome atlas: Percent AT is the percent of A’s and T’s in the

genome. GC skew is calculated as ((G-C)/(G+C)), with a window

size of 10 000 bp and is useful for determining the origin and

terminus of replication [30,31]. Global Direct Repeats and

Global Inverted Repeats refer to a sequence that is present in

at least two copies on the same or opposite strands, respectively.

Intrinsic Curvature is a measure of DNA curvature and is

calculated using the CURVATURE program [21,22]. The values

are scaled from 0 (e.g. no curvature) to 1, which is the curvature of

DNA when wrapped around the nucleosome. Stacking Energy
is derived from the dinucleotide values provided by Ornstein et al

Figure 6. BLAST matrix. An all against all protein comparison was performed using BLAST to define homologs. A BLAST hit is considered
significant if 50% of the alignment consists of identical matches and the length of the alignment is 50% of the longest gene. Internal homology
(paralogs) is defined as proteins within a genome matching the same 50–50 requirement as for between-proteome comparisons. Self-matches are
here ignored. A comparison of 31 Negativicutes genomes was performed on the CMG-biotools system (9 hours). A high resolution figure can be found
as supplemental Figure S2.
doi:10.1371/journal.pone.0060120.g006
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[20]. The scale is in kcal/mol, and the dinucleotide values range

from 23.82 kcal/mol (will unstack easily) to 214.59 kcal/mol

(difficult to unstack). A positive peak in base-stacking (i.e., numbers

closer to zero) reflects regions of the helix which would de-stack or

melt more readily. Conversely, minima (larger negative numbers)

in this plot would represent more stable regions of the

chromosome. Position Preference is a measure of preferential

location of sequences within nucleosomal core sequences [19]. The

trinucleotide values range from essentially zero (0.003, presumably

more flexible), to 0.28 (considered rigid). Since very few of the

trinucleotide have values close to zero (e.g. little preference for

nucleosome positioning), this measure is considered to be more

sensitive towards the low (‘‘flexible’’) end of the scale.

Gene finding. Gene finding is performed using the program

Prodigal [13]. The program is wrapped into a formatting program

called prodigalrunner. The program reformats the raw output of

Prodigal to FASTA formatted open reading frames, DNA and

amino acids, along with a draft of a GenBank file and a raw

general feature formatted file, a.gff file. The Prodigal program

allows for different parameter modifications, including training

(prodigalrunner -t ,organism.) of the gene finder using given

data. This feature increases the computation time of the algorithm,

but for less known organisms this feature might improve gene

finding. It should be noted that the default behavior when

encountering N’s is not changed - the program treats runs of N’s as

masked sequence and does not build genes across them. The

CMG-Biotools system also comes with the native Prodigal

program, which can be used as published [13].

Amino acid and codon usage. The amino acid and codon

usage is calculated using BioPerl modules [32], and is a simple

calculation of the fraction of each amino acid or codon count of

the total count of amino acids or codons. The bias in third position

is found by counting the number of each base on each position in

each codon, divided by the total number of codons. The bias in

Figure 7. Core and pan genome using BLAST. A pan- and core-genome calculation was performed using BLAST. A BLAST cutoff of 50% identity
and 50% coverage of the longest gene was used. If two proteins within a genome matched according to the 50/50% cutoff, they were clustered into
one protein family. Protein families were extended via single linkage clustering. If a protein family includes proteins from all genomes in the
comparison, the family is a core protein family.
doi:10.1371/journal.pone.0060120.g007
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the third position between G/C and A/T was then calculated as

sum(GC)-sum(AT), so that 100% GC in third codon position is +1

and 21 for 100% AT. The plots are made using Perl and

Gnuplot.
Proteome comparisons using BLAST. The BLAST matrix

is a visual presentation of a pairwise proteome comparison using

BLAST (Basic Local Alignment Tool) [26]. All sequences are

compared to each other and a BLAST hit is significant when 50%

of the alignment is identical matches and the length of the

alignment is 50% of the longest gene in the comparison. If two

sequences are similar according to the cutoff, they are collected in

one ‘‘protein family’’. For the comparison of two genomes, protein

families are built through single linkage, so that each shared

connection must be between sequences from different genomes

(shaded green). Paralogs are traditionally defined as a gene which

has undergone duplication before speciation; in the BLAST

matrix, an internal hit significantly similar to the query protein is

grouped into the same gene family. The bottom row of the matrix

shows the number of proteins that have homologous hits within

the proteome itself (shaded red). The color scales are set

automatically from the highest to lowest value observed, but can

be changed manually. The procedure is implemented in the

program blastmatrix, which takes a XML formatted input file.

The input file is created by the program makebmdest.

The pan- and core-genome plot is a different use of BLAST for

comparing proteomes (using the 50/50 cutoff as described above).

The core-genome consists of protein families with representatives

found in all investigated genomes. The pan-genome is the entire

set of protein families from all genomes in the comparison. The

first genome in the analysis has a core-genome equal to the pan-

genome. The addition of an second genome reduces the core-

genome of the two genomes and increases the pan-genome. Each

sequence of a new genome is compared to a representative from

each of the existing gene-families. If the new sequence matches,

the family is a core-family, if the sequence does not match a family

it becomes a new protein family. When all new sequences have

been compared to existing gene-families, core families that did not

have a representative in the latest added genome are removed

from the core-genome of the genome comparison. The change in

the pan- and core-genome is followed as two lines (blue and red,

respectively). The number of new proteins, along with how many

new protein families that corresponds to, is indicated as gray bars

on the plot. The program (pancoreplot), produces a plot and

a table which can be used to look up the underlying values of the

plot.

The pan- and core-genome calculations can be used to extract

subsets of genes for different genome sets. The program that

implements this is called specificGenes and works on the BLAST

output from the pancoreplot program. The procedure is based on

mathematical set theory and works with intersections, unions and

complementary genesets. Each genome is treated as a set and the

intersection is the gene families that two or more sets have ‘‘in

common’’. The intersection of genome A and B, is the set of all

gene families which are found in both A and B. The union of two

or more sets refers to the gene families which are found in either

genome A or B. Calculating the complimentary families of

a genome refers to the set of all families which are members of A

but not members of B. In the comparative genomic analysis, the

sets usually consists of more than one genome, such as the

intersection of genome A, B and C while not found (complimen-

tary) in genome D, E and F. This will give families that are found

in A, B and C but not found in any of D, E or F. It is also possible

to calculate the situation where families are found in A, B and C

but not found in the intersection of D, E and F, this is referred to

as the ‘‘compinter’’. For more details, see the CMG-biotools

manual.

Supporting Information

Figure S1 Genome atlases, DNA structures (Figure 3 at
High-Resolution).

(PDF)

Figure S2 BLAST matrix (Figure 6 at High-Resolution).

(PDF)
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