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Challenge and Motivation

• Wind power is the most important renewable energy 
source today.

• Goals for reduced CO2 emission, increased 
utilization of renewable energy, and phase out of 
fossil fuels.

• E.g. in Denmark: increase the share of wind power to 
50% of the electricity consumption by 2020 and fully 
cover the energy supply by renewable energy by 
2050.

• Wind power production fluctuates  flexible power 
consumption is needed (smart grid technologies).



Intelligent load-shifting and scheduling by storing “coldness” for:
 Peak avoidance (foreseeing peaks can reduce dimensioning of the system)

 Minimal power consumption (Cooling at colder periods is more efficient)

 Minimal cost (Energy prices may vary over the day)

 Flexible consumption (More renewable energy calls for flexible power consumption)

Example: Drive from A to B with minimal fuel consumption. 

Utilizing Thermal Mass
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Power Management

Example: Smart Grid (Flexible consumption).

Thermal energy storage
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Power Management

Example: Smart Grid (Flexible consumption).

Economic Model Predictive Control (MPC)
demonstrated on power distribution portfolio
including a cold storage with flexibility.
Presented at CDC 2010.
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Power Management
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Fast variations in power consumption 
(< 15min) 
″Short term load variations″
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Challenge and Motivation
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50% in 2020 !!!



Challenge and Motivation
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Challenge and Motivation
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A brief introduction:
 Ancillary service in order to balance production and consumption (stabilize frequency)

 Up-regulating power: increased production or decreased consumption

 Down-regulating power: decreased production or increased consumption

 Different types (amounts, activation times, automatic/manual)

Regulating Power
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Challenge and Motivation
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Regulating Power

Primary regulation:
 Automatic frequency dependent activation

 Uphold activated capacity for 15 min, re-establish in 15 min.

 No extra payment for activated power

 Availability payment independent of actual activation (non-symmetric up/down)
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Flexible consumption with intelligent load-shifting and scheduling 
by storing energy in the form of “coldness”:

1. Utilize thermal mass in e.g. stored goods in supermarkets.

2. Food temperatures allowed to vary within defined limits.

3. Our studies reveal electricity cost savings up to 30%.

But:

1. Food temperatures unknown!

2. Vast variety of systems!

3. Little computational power!

Supermarket Refrigeration

Tobias Gybel Hovgaard, April 201312

Supermarket or cold stores with high 
degree of HVAC & thermal storage capacity

Thermal energy storage



Supermarket Refrigeration

Tobias Gybel Hovgaard, April 201313

Disturbances

Control variables



Method
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Economic Model Predictive Control (MPC)

Controller cost function: 

• With e.g. for regulation:

MPC Control problem:                                      , s.t.



Method

Tobias Gybel Hovgaard, April 201315

Economic Model Predictive Control (MPC)

• Solve an optimization problem at each sample.

• Minimize an economic objective related to operation of the system.

• Repeat in a receding horizon manner

+ Incorporates predictions of future prices, temperatures, etc.

+ Handles constraints naturally.

+ Intuitive formulation of the cost of operation into a control problem.

- Relies on a model of the system and predictions of the disturbances.

- Can involve quite complicated numerical optimization problems.



Example: Uncertain predictions and models.

 Example: Drive from A to B with minimal fuel consumption. Stay on the road!

Uncertainty

A B

+/- 2%
90 HP +/- 5%
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Example: Uncertain predictions and models.

Uncertainty

+/- 2%
90 HP +/- 5%

Second Order Cone Programming (SOCP) for 
uncertainties in Economic MPC problems.
Presented at CDC-ECC 2011
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Our Solution
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Overall setup



Results

Tobias Gybel Hovgaard, April 201319

Simulations:

• Covering a full year (2010).

• Outdoor temperature from Denmark.

• Electricity prices from Nordpool.

• Uncertain heat load disturbances and thermal masses.

• Verified models from supermarket in operation in Denmark.

Implementation:

• Optimization problem solved iteratively

• Ultra fast solvers for real-time implementation.

• Soft constraints and back-off for robustness.

• Predictors trained on historical data (previous three years).



Results
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Temperature profile



Results
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Demand response



Results
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Temperature distributions



Results
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Price distributions



Results
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Key findings:

• Cost savings around 30 %

• Potential for additional savings by offering regulating power.

• Very simple predictors are sufficient.

• Prescient simulation improves total cost with less than 2%.

• Closed-loop performance  is quite robust against variations in model 
parameters.



Other results
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Additional results include:
• Robustness investigations:

• Advanced method with known probability distributions for the uncertainty.

• Simpler version with back-off tuned to make constraint violations very infrequent.

• Modeling of dynamical systems for optimization and MPC purposes.

• Analysis of “active thermal mass” in foodstuffs. 

• Experiments, identification, and validation on real systems in the lab.

• Investigation of optimization methods for industrial applications:

• Standard linear and non-linear solvers.

• Simplified problem formulations for linear solvers.

• Dedicated fast embedded optimization techniques.



Connecting to wind power
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Co-control of wind power plant and flexible power consumers:
• We prove a potential for combining 

• wind speed forecasts, 

• control of wind turbines

• and control of flexible power consumers (e.g. chains of supermarkets).

• Goals:

• Improve integrability (grid friendliness) of wind power to the grid.

• Obey tight grid codes.

• Reject disturbances from wind speed changes with minimal power loss.

• Avoid expensive energy storage solutions.



Connecting to wind power
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Co-control of wind power plant and flexible power consumers:



Connecting to wind power
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Co-control of wind power plant and flexible power consumers:

Nominal controller with real wind scenario



Connecting to wind power
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Co-control of wind power plant and flexible power consumers:

MPC controller with real wind scenario



Conclusions
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Findings in project:
1. Investigations and proof-of-concept for flexible power consumption in industrial refrigeration by 

use of Economic MPC.

2. Enabling load-shifting strategies and regulating power services with significant cost reductions.

3. Challenges in MPC for industrial systems tackled:

• Model accuracy, computational load, predictions, etc.

4. Synergy and co-control potential with wind energy revealed.
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