Development of new catalysts for water electrolysis

Hernandez-Fernandez, Patricia; Paoli, Elisa Antares; Frydendal, Rasmus; Stephens, Ifan; Rossmeisl, Jan; Chorkendorff, Ib

Publication date:
2013

Citation (APA):
Development of new catalysts for water electrolysis

Patricia Hernández-Fernández¹, Elisa A. Paoli¹, Rasmus Frydendal¹, Ifan E.L. Stephens¹, Jan Rossmeisl², Ib Chorkendorff¹

¹Center for Individual Nanoparticle Functionality,
²Center for Atomic-scale Materials Design Technical University of Denmark

Symposium
Water electrolysis and hydrogen as part of the future Renewable Energy System
Outline

✓ Motivation
✓ Theoretical trends in oxygen evolution activity
✓ Corrosion protection mechanism
✓ Films preparation- Sputter deposition
✓ Nanoparticles- Cluster source
✓ Summary

Water electrolysis and hydrogen as part of the future Renewable Energy System
Motivation

Renewable sources

Electrical energy

Fuel Cells

Electrolysers

Chemical energy H_2

$H_2O \leftrightarrow \frac{1}{2} O_2 + H_2$

PEM
Motivation

Limitations of the efficiency of a PEM electrolyser

\[E_{\text{cell}} = E_0 + \eta_{\text{anode}} + \eta_{\text{cathode}} + \text{IR} \]
Theoretical trends in oxygen evolution activity

Ideal catalyst

ΔG [eV]

2H_2O(l) → O^* + H_2O(l) + e^- + H^+

HO^* + H_2O(l) → O^* + H_2O(l) + e^- + H^+

O^* + H_2O(l) → HO^* + H_2O(l) + e^- + H^+

HOO^* + 3(e^- + H^+) → 1.23 eV

O_2(g) + 4(e^- + H^+) → 1.23 eV
Theoretical trends in oxygen evolution activity

RuO$_2$ (110)
Theoretical trends in oxygen evolution activity

Composition of the earth crust

O, Si, Al, Fe, Ca, Na, Mg, K, Ti → 98.8%

Ru → 1E-7 %
Ir → 3E-8 %
Mn → 0.095%
Theoretical trends in oxygen evolution activity

H₂O + * → HO* + H⁺ + e⁻ ΔG₁
HO* → O* + H⁺ + e⁻ ΔG₂
O* + H₂O → HOO* + H⁺ + e⁻ ΔG₃
HOO* → O₂ + H⁺ + e⁻ ΔG₄

Descriptor of the oxygen evolving activity: ΔGₐ-O* - ΔGₐ-HO*

Scaling relations:

ΔE_{HOO} = ΔE_{HO} + 3.2 eV

Volcano plots

Perovskites, rutiles, anatase, MnₓOᵧ, Co₃O₄, NiO
Theoretical trends in oxygen evolution activity

Volcano plots for oxides

Garcia-Mota and col, Chem Cat Chem 3 (2011) 1159
Theoretical trends in oxygen evolution activity

MnO$_2$ → Stable from 1.1 to 1.7V at pH1

MnO$_2$ → η = 0.61 V

η_{RuO_2} → 0.37 V

η_{IrO_2} → 0.57 V

How to protect MnOx from corrosion
Protection from corrosion

↑ activity ($\eta = 0.42\text{V} \ @ 10\text{mA/cm}^2$)
↓ corrosion resistance (1.4 V at pH1)

RuO$_2$-IrO$_2$

↓ activity ($\eta = 0.58\text{V} \ @ 10\text{mA/cm}^2$)
↑ corrosion resistance (2.1 V at pH1)

Mann I., Thesis, 2010, DTU Physics
Protection from corrosion

IrO₂ + 2H₂O ⇌ IrO₄²⁻ + 4H⁺ + 4e⁻ \hspace{1cm} U₀ = 2.057V
RuO₂ + 3H₂O ⇌ H₂RuO₄ + 4H⁺ + 4e⁻ \hspace{1cm} U₀ = 1.4V

Ir segregates to the kink sites

Ir should be placed on the kink sites to protect Ru from corrosion

Mann, I. Thesis, 2011, DTU Physics
Film preparation - Sputter deposition

- **MnO$_x$-1**
 - 90 nm Mn at 5 mTorr Ar and 480°C
 - 100 W
 - Annealed in air at 480°C (Furnace)

- **MnO$_x$-2**
 - 1.5 nm Ti
 - 90 nm MnO$_x$ at 3 mTorr Ar/O$_2$ (10 sccm) and 150°C
 - 100 W
 - Annealed in air at 480°C (Furnace)
Film preparation - Sputter deposition

OER activity in N$_2$ sat. 0.1M KOH
1600 rpm 5mV/s

1.8V_{RHE} @ 10 mA/cm2

1.73 V_{RHE} @ 5 mA/cm2

MnOx-1

1.66 V_{RHE} @ 5 mA/cm2

Jaramillo et al., JACS 132 (2010) 13612

Table 1. Oxygen Electrode Activities

<table>
<thead>
<tr>
<th>Catalyst Material</th>
<th>ORR: E(V) at $I = -3$ mA·cm$^{-2}$</th>
<th>OER: E(V) at $I = 10$ mA·cm$^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 wt % Ir/C</td>
<td>0.69</td>
<td>1.61</td>
</tr>
<tr>
<td>20 wt % Ru/C</td>
<td>0.61</td>
<td>1.62</td>
</tr>
<tr>
<td>20 wt % Pt/C</td>
<td>0.86</td>
<td>2.02 (1.88)a</td>
</tr>
<tr>
<td>Mn oxide</td>
<td>0.73</td>
<td>1.77</td>
</tr>
</tbody>
</table>
Film preparation - Sputter deposition

MnOx-1 SEM MnOx electrodeposited

Corrosion protection → Acidic media

Jaramillo et al, JACS 132 (2010) 13612
Nanoparticles - Cluster source

- Size varies from 1 atom to 10 nm
- Size is function on the power and gas flow
- STM • TPD • ATM
- SEM • LEED
- ISS • TEM
Nanoparticles - Cluster source

OER activity in N$_2$ sat. 0.1M HClO$_4$
1600 rpm 20mV/s

Ru NP 4nm

$0.07 \mu g_{Ru}$
Nanoparticles - Cluster source

Ru NP 4nm → 1344 mA/mg\textsubscript{Ru} @1.48V

Ru NP 4nm → 1344 A/g\textsubscript{Ru} @1.48V

Corrosion protection
Summary

• RuO$_2$ is the most active catalysts for OER, but we need to protect it from corrosion \rightarrow Ir on the kink sites

• MnO$_2$ is a good candidate to replace RuO$_2$ because is active and abundant

• The catalytic activity of the MnO$_2$ films prepared by sputter deposition are comparable with the state of the art (alkaline)

• The mass activity of the Ru NP prepared in the cluster source is one order of magnitude higher than the state of the art
Development of new catalysts for water electrolysis

Patricia Hernández-Fernández¹, Elisa A. Paoli¹, Rasmus Frydendal¹, Ifan E.L. Stephens¹, Jan Rossmeisl², Ib Chorkendorff¹

¹Center for Individual Nanoparticle Functionality,
²Center for Atomic-scale Materials Design Technical University of Denmark

Symposium
Water electrolysis and hydrogen as part of the future Renewable Energy System
Theoretical trends in oxygen evolution activity

RuO$_2$ vs ideal catalyst

Theoretical trends in oxygen evolution activity

Ideal catalyst

\[\Delta G \text{[eV]} \]

- \(2H_2O(l) \)
- \(HO^* + H_2O(l) \)
- \(O^* + H_2O(l) \)
- \(HOO^* \)
- \(O_2(g) \)

\[+3(e^- + H^+) \]
\[+4(e^- + H^+) \]

U = 0 V
Theoretical trends in oxygen evolution activity

RuO₂ (110)
Theoretical trends in oxygen evolution activity

Free energy diagram:

\[\Delta G_3 - \Delta G_2 \sim 3 \text{ eV} \rightarrow O^* \text{ position} \]

\[\text{HO}^* \rightarrow O^* + H^+ + e^- \quad \Delta G_2 \]

\[O^* + H_2O \rightarrow \text{HOO}^* + H^+ + e^- \quad \Delta G_3 \]

\[\eta_{\text{RuO}_2} \rightarrow 0.37 \text{ V} \]

\[\eta_{\text{IrO}_2} \rightarrow 0.57 \text{ V} \]

\[\eta = 0.61 \text{ V} \]