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A novel approach for navigational guidance of ships using onboard

monitoring systems

Ulrik Dam Nielsen∗ and Jørgen Juncher Jensen

Department of Mechanical Engineering,

Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Abstract. A novel approach and conceptual ideas are outlined for risk-based navigational guid-

ance of ships using decision support systems in combination with onboard, in-service monitoring

systems. The guidance has as the main objective to advise on speed and/or course changes; in

particular with focus on ship operations in rough weather. It is strived for to make use of a

probabilistic framework considering the mathematical procedures that the guidance relies upon.

The paper presents a novel concept which has the possibility to increase the reliability of the

provided guidance, although information about on-site sea state parameters not necessarily is in

complete agreement with the unknown and true wave parameters, nor may the hydrodynamical

models of the vessel give a perfect quantitatively description of the vessel in waves. The paper

includes an analysis of full-scale motion measurements and the proposed concept for navigational

guidance gives promising results.

Key words: Navigational guidance of ships; Decision support systems for safety; Wave estimation;

Risk-based approaches; Gaussian and Non-Gaussian processes; Uncertainty modelling.

1. INTRODUCTION

In recent years there has been increasing focus on the application of onboard, real-time guidance

for ships as well as offshore structures in terms of decision support systems. Decision support

systems (DSS) are studied, developed and applied in a wide range of contexts; e.g. to increase

the operational and navigational safety of ships, for improved safety with regards to ship-to-ship

operations, and within dynamic modelling of risk-based ship traffic prioritisation, see Huss and

Olander [15], Colwell and Stredulinsky [6], Chen et al. [5], Payer and Rathje [47], Tellkamp et al.

[56], Nielsen et al. [34], Pedersen et al. [48], Eide et al. [10], to mention but a few. It is often the

case that the DSS is an integrated part of an onboard, in-service system that monitors and records
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the data/responses which are of concern. With the increasing focus on energy consumption by and

gas emissions from ships it is also foreseen that DSS, in the future, are aimed at facilitating more

efficient ship operations with a resulting decrease in fuel consumption.

This paper deals exclusively with concepts and fundamentals of online (real-time) navigational

guidance to the master of a ship, where the overall goal is to supply advice with respect to, first

and foremost, course and/or speed changes relative to the waves. The support concerns decisions,

which should be made during navigation at open sea (in severe weather), to reduce critical response

levels of, say, the wave-induced acceleration(s) and the wave-induced hull girder bending moment.

The guidance does not concern manoeuvring aspects for collision avoidance of, say, other ships. In

this context, it is by guidance understood to provide the ship’s master with statistical predictions

of future response levels to be expected in a time horizon of 30-90 minutes from the moment of

action, in the event that a given combination of speed and heading is chosen. To make the guidance

as reliable as possible it is strived for to make use of probabilistic and risk-based approaches, where

uncertainties are kept track of during all processes/procedures, and so that risk acceptance criteria

can be established and introduced. Concepts and procedures of risk-based DSS have recently been

studied by e.g. Bitner-Gregersen and Skjong [4], Nielsen et al. [42] and Nielsen [41]. The idea of

risk-based DSS goes hand in hand with the general trend within the maritime transportation sector,

where focus is turned towards goal-based standards that are based on probabilistic and risk-based

methods, e.g. Skjong and Guedes Soares [51], Papanikolaou (Ed.) [52], and the FSA Guidelines [7].

In decision support systems used for navigational guidance, there is a continuous need for reliable

estimates of the sea state parameters or the wave energy spectrum at the exact position of the

advancing vessel. However, on-site estimation of sea state parameters forms a crucial and funda-

mental problem to which there has not been found any perfect solution yet. In the literature there

are reports on the estimation of sea state parameters using measured ship responses (e.g. motion

data) where the ship, to make an analogy, acts as a wave rider buoy; e.g. Iseki and Ohtsu [17],

Tannuri et al. [55], Nielsen [36], Pascoal et al. [46], and Pascoal and Guedes Soares [45]. Compared

to the alternative approach that exists in terms of a wave radar system (leaving out the use of

satellite data for on-site, real-time wave estimation), the wave buoy analogy offers an estimation

concept which is not influenced by meteorological conditions. Moreover, the concept is comprised

by a system with a low initial cost due to a simple instrumentation of sensor arrangements that

(usually) require little maintenance and are often installed on today’s ships anyway for monitoring

reasons. Although inherent problems of the wave buoy analogy with regard to filtering have been
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reported (e.g. Simos et al., [49]; Nielsen, [37]; Pascoal and Guedes Soares, [44]), the wave buoy

analogy is, in theory, capable of estimating exactly those waves which are of importance to the ship,

in the operational and navigational sense. That is, the wave buoy analogy estimates the waves to

which the ship responds (Nielsen, [39], [40]). In the end, it should, however, be remembered that no

matter what means - the wave buoy analogy or a wave radar system - is used to make estimation

of wave parameters from, it will be only a qualified guess of the true wave parameters. Experiences

with shipboard wave estimation by wave radar systems have, e.g., been presented in Stredulinsky

and Thornhill [54].

Typically, the underlying approach for navigational guidance builds on a pure mathematical model

only, where seakeeping characteristics of the ship, often given in terms of response amplitude op-

erators (RAOs), are combined with information about the on-site sea state using linear spectral

analysis to make statistical predictions of future responses to be expected (e.g. [15],[47],[34]). The

shortcoming of this approach is that it relies completely on a correct estimation of the on-site sea

state at the location of the ship. This means that the guidance might be useless/incorrect if the

estimated wave parameters are in poor agreement with the true and unknown parameters. At best,

this leads to conservative guidance but, at worst, it could have catastrophic consequences jeopar-

dising cargo and crew. The problem is that it is very difficult to say whether the guidance is the

one or the other, since the true wave parameters are indeed unknown for what reason the accuracy

of the estimated sea state is unknown.

This paper outlines conceptual ideas that can be used in the development of risk-based decision

support systems used for navigational guidance of ships. Furthermore, the paper presents a novel

procedure which has the possibility to increase the reliability of the given navigational guidance,

although the on-site sea state parameters may not, necessarily, have been determined/estimated

in complete agreement with the true parameters. Thus, predictions of future response levels will

be based on an integrated model using a mathematical model that has as input the estimated sea

state parameters, and using also the until-now-measured response data recorded by an onboard

monitoring system. The potential of the novel approach is investigated by analysing full-scale

motion measurements where information about the on-site sea state parameters is obtained by use

of the wave buoy analogy.



NAVIGATIONAL GUIDANCE OF SHIPS USING ONBOARD MONITORING SYSTEMS 4

2. ONBOARD MONITORING SYSTEMS AND GUIDANCE

2.1. Development of and interest in guidance systems. The development of in-service mon-

itoring systems for ship safety started in the 1970’s and some of the first papers published, Linde-

mann and Nordenstrøm [28] and Lindemann et al. [29], were based on an inquiry among Norwegian

navigators. Thus, the inquiry revealed that there was a large demand for more exact knowledge

of how ships respond to changes in speed and course. Today, this knowledge is still paramount

for the safe navigation of ships; however, as mentioned by Huss and Olander [15] already in the

mid-nineties, in recent days the commercial competition and the general technical development

have lead to more and more optimised ships. Consequently, such optimisations may imply a slow

drift towards the physical limits of a ship’s capability and survivability. The main issue is therefore

how to match safety with operationally optimised ships, and, in a paper on safety consequences of

optimised ships, Francescutto [11] concluded ”that the only way to overcome the many difficulties

lies in the development of a system for the time domain simulation of ship motions in a seaway,

including a detailed description of the environment...”.

The need for guidance and decision support with regards to navigation in a seaway is basically due

to a concern for non-desired effects which include among others (depending on ship type):

• Seasickness of passengers

• Damage to cargo due to large accelerations

• Local structural damage to forward structure due to slamming, wave impacts and green

water on deck

Figure 1. A ship mounted with a set of sensors used for response monitoring.
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• Shift or loss of cargo due to a combination of roll and accelerations

• Excitation of large roll motions (e.g. due to parametric roll)

• Loss of stability in following waves

• Hull girder damage due to extreme wave-induced loads

• Fatigue damage accumulation in critical structural details

Very often the non-desired effects can be associated to specific ship responses (or combinations

of these) and therefore it is typical to monitor and record these responses; an example of re-

sponses/sensors is sketched in Figure 1. Therefore, there is normally a close link between onboard

monitoring systems and decision support systems for ships.

2.2. Guidance by use of polar diagrams. One way to provide guidance is in terms of polar

diagrams, where estimates of response levels for specific responses are shown as function of, say,

speed and heading with colours used to indicate the different response levels. It is understood

that the diagrams apply to the very situation (for the actual sea state and operational conditions)

in which the ship is operating. Examples of polar diagrams can be found in, e.g., Colwell and

Stredulinsky [6], Tellkamp et al. [56] and Krüger et al. [25]; Figure 2 is from Nielsen et al. [34].

Figure 2. Examples of guidance plots from the SeaSense system. Nielsen et al. [34]
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There are several statistical measures that can be used as a response level indicator. One measure

is obtained from the standard deviation, as it is a good measure for detecting changes in trends of

the measured response(s). Thus, the standard deviation can be used as a means which alarms can

be built upon. In this way, the ship’s master is informed about increasing standard deviations in

a given (severe) situation and therefore indications are that course and/or speed changes relative

to the incoming waves might be necessary. Guidance may then be provided from calculations of

standard deviations for alternative combinations of speed and course, so that, say, a green colour in

a polar diagram indicates that the standard deviation for the alternative combination is reduced,

whereas a red colour would indicate the opposite. The standard deviation can be used to provide

the ship’s master with a qualitative picture of a given operational and navigational situation; both

in terms of trends and guidance. However, it is not easy to ”quantify” the danger - or the risk -

experienced in a severe situation from the number of the standard deviation. Therefore, by defining

risk as the expected loss L (FSA guideline [7]), an additional response level indicator may be based

on

L = νµT (1)

which is the expected loss associated to an event within time period T , if the event happens at a

mean outcrossing rate ν relative to some threshold value with an associated consequence (or cost)

µ in case of exceedance. The engineering task is here related to the calculation of the outcrossing

rate, whereas the consequence might be obtained from regulatory works. Based on risk acceptance

criteria it is possible to associate limits, or colours, to the expected loss.

In the next section the focus is on the estimation of future - expected - statistical values that can

be used to make guidance from. The consequences as well as the risk acceptance criteria that might

be associated to losses, cf. Eq. (1), or the actual presentation of guidance in terms of, e.g., polar

diagrams will not be dealt with any further.

3. A NOVEL CONCEPT FOR RISK-BASED DSS

In general, the fundamental tool in decision support systems is a mathematical model that describes

the physical behaviour of the system that needs decision support. In the present context, the inter-

est concerns navigational guidance of ships for increased safety which means that the mathematical

model must be able to describe how the ship behaves in a seaway. As a vital part of the mathe-

matical model it is therefore important to have a tool that can be used to evaluate the seakeeping

performance of the ship.
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This section outlines a novel concept for risk-based guidance of ships, where the ship responses

can be both of Gaussian and non-Gaussian nature. The presented details of the mathematical

model concerns the calculation of (expected) statistics on which guidance can be based. However,

the parts of the model concerning evaluation of seakeeping performance are only mentioned briefly

since, in general, it suffices to say that the actual seakeeping model should rely on state-of-the-art

hydrodynamics software, as also reported by Bitner-Gregersen and Skjong [4].

3.1. Statistics of Gaussian ship responses. On the assumption of linearity between wave excita-

tions and ship motions/responses, response amplitude operators (RAOs) in terms of complex-valued

frequency response functions Φ(ωe, χ) can be used, as a reasonable approximation, to evaluate sea-

keeping characteristics of a ship. In a stochastic seaway, the electric filter analogy (St. Denis and

Pierson [8]) yields the relationship between the response spectrum SR(ωe) and the directional wave

spectrum E(ωe, χ)

SR(ωe) =
∫ π

−π

|ΦR(ωe, χ)|2E(ωe, χ)dχ (2)

where ωe and χ are the encounter wave frequency and the relative wave heading, respectively. The

n-th order spectral moments are given by

mRn =
∫ ∞

0

ωn
e SR(ωe)dωe (3)

and, from the combined use of the spectral moments, statistics can easily be obtained for the

considered response, e.g. Jensen [19]; this include standard deviations, outcrossing rates and peak

distributions. For future reference, the standard deviation σR is given by

σ2
R =

∫ ∞

0

SR(ωe)dωe (4)

It is important to underline that Eqs. (2)-(4) apply only to ship responses that belong to the subset

of Gaussian processes.

3.2. Statistics of non-Gaussian ship responses. If the ship response does not belong to the

category of Gaussian processes, the evaluation of statistics cannot be obtained from linear spectral

analysis. Instead, more elaborate time domain procedures must be applied, where use can be made

of, e.g., Monte Carlo simulation (MCS) and the first order reliability method (FORM) known from

structural reliability theory (Madsen et al. [30] and Melchers [31]). Often, it is the case that the

relevant response can be described by a second-order, coupled differential equation as, for example,

the rolling motion of a ship. Specifically, the following simplified formulation, Jensen and Pedersen
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[23] and Jensen [20], can be used to study the time-domain behaviour of roll motions of a ship:

ϕ̈ + 2β1ωϕϕ̇ + β2ϕ̇|ϕ̇|+ β3ϕ̇
3

ωϕ
+

(g − ẅ)GZ(ϕ)
r2
x

=
Mϕ

Ixx
(5)

where ϕ is the roll angle, β1, β2 and β3 are damping terms, ωϕ is the natural roll frequency of the

ship, g is the acceleration of gravity, w is the heave motion, GZ(ϕ) is the GZ-value depending on

ϕ, rx is the radius of gyration about the longitudinal axis, Mϕ is the wave-induced roll moment,

and Ixx is the mass moment of inertia about the longitudinal axis of the ship.

The excitation of a ship in a seaway is controlled by the wave elevation H(X, t) and, assuming nor-

mally distributed waves, the variation with time t and space X in the direction of vessel propagation

is given by the sum

H(X, t) =
N∑

n=1

M∑
m=1

[Vmncmn(X, t) + Wmndmn(X, t)] (6)

where the variables (Vmn,Wmn) are uncorrelated, standard normal distributed, while the determin-

istic coefficients are determined as

cmn(X, t) = σmn cos(ωnt− knX)

dmn(X, t) = −σmn sin(ωnt− knX)

σ2
mn = S(ωn, χm)∆ω∆χ

(7)

Here S(ωn, χm) is the discretised wave energy spectrum, χm is the relative wave heading, and

the wave frequency ωn and the wave number kn are related through the (deep water) dispersion

relation. ∆ω and ∆χ are increments of the discretised range of wave frequencies and directions,

respectively.

In the probabilistic assessment of Eq. (5) it can be a specific task to calculate/estimate the mean

outcrossing rate relative to a given threshold. The straightforward approach includes brute force

time series simulations applying e.g. Monte Carlo simulation. Thus, realisations similar to that

in Figure 3 can be used to count the number of outcrossings. In practice, the mean outcrossing

0 20 40 60 80 100
−4

−2

0

2

4

time

Z
(t

,X
)

Figure 3. Level crossings relative to a threshold of an arbitrary process Z(t;X).
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rate can be estimated from an ensemble of k simulations of length [0; T0] in which the number of

outcrossings is counted. However, the counting should not start before stationary conditions (in a

statistical sense) are attained, so that the influence of initial conditions is avoided. In the actual

calculations, this means that only the last ∆tsimul seconds in each realisation should be used to

count the number of outcrossings; implying that the initial period ∆tinitial (T0 = ∆tinitial+∆tsimul)

is neglected. The mean value estimate of the outcrossing rate is then

ν̄(ϕcr) =
1

k∆tsimul

k∑

j=1

nj(ϕcr; ∆tsimul) (8)

where nj(ϕcr; ∆tsimul) denotes the number of outcrossings of the level ϕcr by time history no. j.

A fundamental problem of brute force simulations is that of exhaustive computational times for

small probability levels. Means to (partly) accommodate this inherent type of problem have been

studied in the literature for Monte Carlo simulation applied to extreme value predictions of offshore

structures; e.g. Naess et al. [32], Naess and Karlsen [33] and Gaidai and Naess [12]. In the future,

it will be of interest to investigate these means applied in the context of decision support systems

for ships. There are, however, other procedures which can be used to calculate the expected value

of the mean outcrossing rate. One of the procedures is based on FORM, as first suggested by Der

Kiureghian [24] and later specialised to wave induced loads by Jensen and Capul [22] (see also e.g.

Jensen [21], Jensen and Pedersen [23] and Nielsen and Jensen [43]). The main problem is the finding

of a so-called critical wave episode, specified by the design point (Vmn, Wmn) = (V ∗
mn,W ∗

mn), for

which the response value (e.g. the roll angle) exceeds a threshold value ϕcr at exactly time t = T0.

The details can be found in the literature mentioned above, but basically the problem is defined

through the limit state problem,

ϕcr − ϕ (t = T0|V11,W11, V21,W21, . . . , VMN ,WMN ) < 0 (9)

which is well-known within time-invariant reliability theory. As shown by Jensen and Capul [22],

with application to processes of wave induced loads, the mean outcrossing rate can be estimated

by use of the design point, so that, within a FORM approximation, the mean outcrossing rate of

level ϕcr can be written

ν̄(ϕcr) =
1
2π

exp(−1
2
β2)

√√√√
N∑

n=1

M∑
m=1

(α∗2mn + ᾱ∗2mn)ω2
n

{α∗mn, ᾱ∗mn} =
{V ∗

mn,W ∗
mn}

β

(10)
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where β - the reliability index - is the distance from the design point to the origin in the hyperspace

of the variables (Vmn, Wmn).

3.3. Uncertainty modelling of stochastic parameters. In what has been outlined above for

the statistics of Gaussian and non-Gaussian ship responses, the processes (and associated limit

states) depend explicitly on the wave excitation in terms of the stochastic seaway. Implicitly,

the responses and limit states depend, in general, on a number of (input) parameters such as

significant wave height, wave direction, loading condition, speed of vessel, material properties, to

mention but a few. Under real operational conditions many of these governing parameters are not

known exactly (e.g. Bitner-Gregersen and Hagen [2] and Bitner-Gregersen et al. [3]). Instead,

the parameters may be specified with uncertainty, so that the specific parameter is described by a

random variable with a given probability density function. This fact calls for probabilistic and risk-

based methods when evaluating the statistics of the ship responses. General concepts of risk-based

decision support systems have been given by, e.g., Bitner-Gregersen and Skjong [4] and Tellkamp

et al. [56], and specific means to be applied in the computational procedures of Gaussian and non-

Gaussian processes have been studied by, among others, Jensen [21], Krüger et al. [25], Spanos et al.

[53], Nielsen [38], Nielsen et al. [42], and Nielsen [41]. It is important to stress that the uncertainty

modelling should both seek to describe the kind of uncertainties - aleatory (natural and physical)

and/or epistemic (knowledge) - and to quantify the uncertainties in question (Bitner-Gregersen and

Hagen [2] and Skjong et al. [50]). The details of the computational procedures to evaluate, say,

mean outcrossing rates of Gaussian and non-Gaussian processes, including uncertainty modelling,

will not be outlined here. Instead, the mentioned literature should be consulted, where particularly

[41] and [42] deal with calculation algorithms for processes with stochastic input parameters.

3.4. Making the guidance more reliable. From the preceding sections it appears that statisti-

cal predictions of future responses of a ship operating at open sea can be estimated if the directional

wave spectrum is known, and assuming that the hydrodynamic behaviour and seakeeping charac-

teristics are described reasonable well by mathematical model(s). Focussing on the wave spectrum,

it is thus crucial with an accurate wave estimation at the location of the advancing vessel, since

otherwise the guidance is most likely unreliable. However, as discussed in the Introduction, there

exists no perfect/complete means to estimate wave parameters from an operating ship. In other

words, as reported by Colwell and Stredulinsky [6]: ”An accurate definition of the wave height,

frequency and directional parameters is critical for providing reliable tactical operator guidance;

however, this is not easy to accomplish with existing shipboard sensors”.
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In order to make the navigational guidance more reliable it is therefore suggested, in addition to

the mathematical model(s), to use statistics of the already-measured response data, recorded by an

onboard monitoring system. The idea is sketched in the diagram of Figure 4 where, traditionally,

there is no direct connection between the past measurements and the provided guidance (for what

reason the arrow between the ’past measurements’ and the ’mathematical model’ is dashed).

In this novel approach it is suggested to make use of calculations of the ratio of, say, the standard

deviation of a given response, where the ratio is obtained from standard deviations calculated for

either two different vessel speeds or two different wave headings; with both calculations being based

on the mathematical model using the estimated wave parameters at the current location of the

ship. It is here understood that the one, say, wave heading is the current (estimated) wave heading

whereas the other heading is the alternative choice that the ship’s master needs guidance about.

Now, if the mathematical model describes the seakeeping characteristics of the ship reasonably

well, and assuming that the estimated wave parameters are not significantly wrong from the ”true”

parameters, the calculated ratio of standard deviations can be used to approximate the same ratio

of measured standard deviations. That is, for a current wave heading χ1 and an alternative wave

heading χ2, the following expression is assumed to hold:

σcalculated
χ1

σcalculated
χ2

=
σmeasured

χ1

σestimated
χ2

(11)

where σmeasured
χ1

represents the standard deviation of the past measured data of the given response,

whereas σestimated
χ2

is the future expected/estimated standard deviation if the course is changed to

a relative wave heading χ2. This means that, e.g., polar diagrams for guidance on speed and/or

Past 
measurements

Output:
guidance

Future 
measurements

DSS:
Mat. model

+
wave estimation

Figure 4. Guidance is provided from a mathematical model and statistics of past

measurements are used to supplement shipboard wave estimations in the mathemat-

ical model.
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course may be established by calculating

σestimated
{χ2;U2} =

σcalculated
{χ2;U2}

σcalculated
{χ1;U1}

· σmeasured
{χ1;U1} (12)

for relevant combinations of wave heading and vessel speed {χ; U}, where index 1 designates the

current value whereas index 2 designates an alternative choice.

It is important to note that the calculated values of the standard deviations, σcalculated, are con-

ducted according to the risk-based approaches outlined in the preceding subsections. This means

that uncertainties in the actual estimation of wave parameters as well as uncertainties in the math-

ematical model(s) are taken into account.

3.5. Human factor disciplines and fault tolerant decision support systems. The outlined

conceptual ideas, including the novel approach for giving navigational guidance, have focussed on

calculation procedures for expected future values of statistical measures as well as focussed on

onboard estimation procedures of sea state parameters. Little attention has been given to the

development of the presentation of the actual guidance to a ship’s master. However, this issue is

very important for DSS to be useful in practice and therefore it is necessary also to include human

factor disciplines and issues of man-machine interfaces in the development of DSS, e.g. Wittkuhn

et al. [57]. Moreover, for DSS and the combined use of onboard monitoring systems there is also

a (foreseen) great potential in looking at ideas developed within control engineering with regard to

(automatic) fault monitoring and detection, so that the decision support system can be developed

as a fault tolerant system; studies in this area have begun, see Lajic et al. [26] and Lajic and Nielsen

[27].

4. ANALYSIS OF FULL-SCALE MOTION MEASUREMENTS

This section is devoted to the analysis of motion measurements obtained from full-scale trials. The

objective is to study and investigate the potential of the proposed - improved - method, Eq. (11),

in terms of its ability to deduce guidance from.

4.1. Motion measurements from full-scale experiments. The motion measurements have

been obtained from a set-up of full-scale experiments using the research vessel Shioji-Maru of Tokyo

University of Marine Science and Technology. The main dimensions of Shioji-Maru are given in

Table 1. The experiments were conducted in the sea outside Tokyo Bay, where specifically motion

measurements were recorded during three runs, A, B, and C, within the same confined area of sea
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Table 1. Main dimensions of the Shioji-Maru; research vessel of Tokyo University

of Marine Science and Technology.

Length, Lpp 46.0 m
Breadth, Bmld 10.0 m
Draught, T 2.65 m
Displacement 659 t

but with different speeds and courses. The individual runs lasted for six minutes and the time in

between the runs was in the order of 15 minutes. Table 2 presents the vessel’s speed and course for

each run, and the table shows also the recorded mean wind measurements as well as information

about the waves obtained from an onboard wave height meter and visual observations. The course

as well as the wind and wave directions are given relative to the compass directions, where North

is 000 deg., East is 090 deg., South is 180 deg., and West is 270 deg.

In the analysis, attention is given to three motion responses: roll, pitch and vertical acceleration

at the forward perpendicular (FP). All three responses are assumed to be linear with respect to

the incident waves, which means that the behaviour of the ship in waves can be approximated

by the use of RAOs, calculated by, e.g., strip theory. Specifically, the roll motion of a ship may

exhibit a strong non-linearly behaviour if large roll angles occur, as can happen in severe conditions,

whereas the heaving and pitching motions, in general, show less non-linearly behaviour. However,

the motion measurements of Shioji-Maru were carried out during relatively calm sea conditions, so

the use of RAOs is assumed to be valid and will not be discussed any further.

4.2. Estimation of on-site wave spectrum and modelling . The wave buoy analogy has been

mentioned in the Introduction as a means to estimate sea state parameters from measured ship

responses at the exact location of the operating ship. It is not the intention to favour the wave

buoy analogy to other estimation techniques; however, as Shioji-Maru was not fitted with a wave

Table 2. Measurement conditions. Vessel course as well as wind and wave direc-

tions are given relative to North (000 deg.).

Vessel Wind Waves

Run Speed Course Speed Dir. Height Period Dir.

A 8.5 kt 260 deg. 16 m/s 235 deg. 1.3 m 7.0 s 250 deg.
B 8.5 kt 270 deg. 17 m/s 230 deg. 1.6 m 7.0 s 235 deg.
C 7.0 kt 220 deg. 14 m/s 230 deg. 1.8 m 7.0 s 220 deg.
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radar system, the on-site wave spectrum estimation will be carried out by use of the wave buoy

analogy only. The details of the concept behind wave estimation using measured ship responses

can be found in the literature ([17],[18],[16],[55],[36],[39],[46],[45],[49]) where a lot of comparisons

with numerical and model-scale as well as full-scale data also can be found. However, Appendix A

outlines briefly the fundamentals of the concept and presents selected results too.

In the studied data, the wave estimation is based on recordings of the motions of pitch, roll and

vertical acceleration at FP. The justification for choosing these responses is purely subjective and,

in general, it is worth to consult the mentioned literature for a discussion about the selection of

specific/relevant responses used for wave estimation. In the literature, there is also a thorough

discussion about the cross spectral analysis that must be carried out as an initial task of the wave

buoy analogy; the discussion includes, among others, details about appropriate tools such as Fast

Fourier Transform (FFT) and multivariate autoregressive (MVAR) modelling ([36],[44]).

In the present analysis, the on-site wave spectrum is obtained by parametric modelling which means

that the complete frequency-directional spectrum is estimated through an optimisation problem.

The solution to, or the outcome of, the problem is a set of (optimised) wave parameters that, in

combination with a parameterised wave spectrum, characterise the sea state. The parameterised

directional wave spectrum is chosen to be a fifteen-parameter trimodal spectrum that allows for

mixed sea such as, say, wind and swell, since it is a summation of three spectra. Basically, the

spectrum is similar to the ten-parameter spectrum suggested by, e.g., Hogben and Cobb [14], which

is a summation of two parameterised five-parameter spectra. The applied parametric expression

reads

E (ω, θ) =
1
4

3∑

i=1

(
4λi+1

4 ω4
p,i

)λi

Γ(λi)
H2

s,i

ω4λi+1
A(si) ·

cos2si

(
θ − θmean,i

2

)
exp

[
−4λi + 1

4

(ωp,i

ω

)4
]

(13)

with Hs being the significant wave height, λ is the shape parameter of the spectrum, θmean is the

mean wave direction, ωp is the angular peak frequency, and s represents the spreading parameter.

A(s) =
22s−1Γ2(s + 1)

πΓ(2s + 1)
(14)

is a constant introduced to normalise the area under the cos2s curve and Γ denotes the Gamma

function. It should be noted that the spreading parameter(s) s is not included in the optimisation,

which means that a total of twelve parameters is to be optimised. The spreading parameter is

modelled as a function of wave frequency and as function of the principal parameter smax, cf. Goda
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Figure 5. Polar diagrams of estimated directional wave spectra in runs A, B, and

C; the vessel course - shown by the arrow - is 260 deg. (A), 270 deg. (B) and 220

deg. (C), respectively.

[13]

s =





ceil
[
(ω/ωp)

5
smax

]
, ω ≤ ωp

ceil
[
(ω/ωp)

−2.5
smax

]
, ω > ωp

(15)

where smax = 25 in all runs is chosen. This value characterises wind waves and/or swells with a

short decay distance, cf. Goda [13], which is assumed to be applicable for the given environmental

conditions and geographical area. In Eq. (15), ’ceil’ rounds towards plus infinity and is a numerical

technique utilised to stabilise the optimisation.

Based on the motion measurements of runs A, B, and C, the wave buoy analogy produces frequency-

directional wave spectra as presented in Figure 5. In the polar diagrams, the wave energy is shown

as ’approaching’ and relative to true North (000 deg.). The associated frequency spectra are seen

in Figure 6, and the estimated wave parameters are given in Table 3. It should be noted that the

wave period is given in terms of the zero-upcrossing period Tz, and notice also that the mean wave

Table 3. Estimated sea state parameters of the individual parameterised wave

spectra (1st, 2nd, 3rd) and the total significant wave height and zero-upcrossing

period as calculated from the spectral moments of the total spectrum. Units: Hs

[m]; Tz [s]; θ [deg.]; λ [-]

1st 2nd 3rd Total

Run Hs Tz θ λ Hs Tz θ λ Hs Tz θ λ Hs Tz

A 0.9 5.9 285 5.0 0.3 6.5 270 1.0 0.5 15.2 030 1.2 1.1 6.6

B 1.1 6.0 285 5.0 0.3 7.0 275 1.0 0.6 15.4 040 1.2 1.3 6.6

C 1.2 5.4 240 2.3 0.3 6.7 230 1.0 0.5 14.8 055 1.1 1.3 6.3
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direction θ is given relative to true North. It is difficult to comment on the values of the estimated

wave parameters, since no other spectral estimation technique has been applied. However, it is seen

that the estimated parameters deviate only slightly from each other in the three runs, which were

carried out in the same confined area of sea and within a relatively short time separation. Most

noteworthy is the deviation in wave direction which is observed when studying runs A and B versus

run C with a focus on the main energy peak, comprised by waves with a zero-upcrossing period of

about 6-7 s and coming from West (runs A and B) and West-South West (run C). In general, it

can be said that the estimated parameters agree fairly well with the reports from the onboard wave

height meter and the visual observations, cf. Table 2, although there is a slight discrepancy in the

wave energy as judged by the significant wave height. As a final word on the differences between

the estimated wave parameters of the individual runs, it should be remembered that each run lasts

(only) 6 minutes. This relatively short length of time might associate to some uncertainty in the

statistics.

4.3. Uncertainty modelling of random variables. For a ship operating at sea, all operational

and environmental parameters are, in principle, to be considered as random variables. In the

response calculations, which navigational guidance relies upon, the estimated wave spectrum is
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Figure 6. Estimated frequency wave spectra.
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Table 4. Uncertainty modelling of random variables. Mean: mean value; CoV:

coefficient of variation; Low: lower limit; Lim: lower and upper limits.

Parameter Unit Distribution Parameter values

Hs Significant wave height [m] Log-Normal Mean-CoV-Low

Tz Zero-crossing period [s] Log-Normal Mean-CoV-Low

χ Relative wave heading [deg.] Trunc-Normal Mean-CoV-Lim

λ Shape parameter [-] Log-Normal Mean-CoV-Low

U Speed of vessel [m/s] Log-Normal Mean-CoV-Low

combined with the hydrodynamic model of the ship, and the response statistics is thus carried

out as outlined in Section 3 with all parameters being random variables. In the present analysis,

uncertainty modelling will, however, be associated to only the estimated wave parameters of Eq.

(13) and to the speed of the vessel. The reason for including the vessel speed as a random variable

is due to the lack of knowledge about the speed made through water compared to the speed over

ground.

The actual modelling of uncertainties is introduced by means of given distributions for the indi-

vidual parameters, and Table 4 describes the distributions that are assumed to be applicable. The

parameter values that need to be specified in the probabilistic analysis using Proban (software for

general probabilistic analyses), DNV [9], are also given in the table. From the table, it is noted

that the relative wave heading χ has been introduced instead of the absolute wave direction, since

it is the former which is of interest in response calculations.

In the risk-based calculations, which follow in the next subsection, the distributions shown in Table

4 are applied to the corresponding parameters of Table 3, where each of the estimated values of

Table 3 enter into Table 4 as the mean value. With respect to the values of the coefficient of

variation (CoV) and the limit(s), these will be set completely subjective and no sensitivity analysis

will be conducted. The selected values of the CoVs, in particular, will have a (potentially) large

influence on results; however, the main idea of this paper does not concentrate on actual results, but

on a methodology for improved prediction of future expected response values. In the calculations,

the coefficient of variation is for all parameters, and in all runs, chosen to be CoV = 0.20 (which

may be regarded as a large CoV for the vessel speed). As lower limit for all parameters, except the

relative wave heading, is chosen a value taken to be 10% of the mean value of the given parameter

in question. With respect to the relative wave heading, the lower and upper limits are based on

the mean value minus/plus 30 degrees, respectively.
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It should be pointed out that the specific distributions in Table 4 are all based on rather intuitive

presumptions and do not reflect any data as for justification. It also is important to realise that

the uncertainty modelling of the variables does not associate to the aleatory uncertainties (e.g. the

long-term statistics) of the variables. Instead, the modelling relates to the epistemic uncertainties

which are associated to observation of the variables in a short-term sense, since this is of interest

when focus is on navigational guidance of ships. Moreover, it is noteworthy that no correlation are

assumed between the parameters.

4.4. Prediction of response values. The central idea of the following analysis is to combine the

wave estimate from a given run, say, A with the RAOs of the ship to see how well the response

statistics of the subsequent run B can be reproduced; with the objective to compare with what was

actually measured. The focus is on the standard deviation and, initially, it is therefore of interest

to report about the measured standard deviations of the responses in each of the runs. Thus, Table

5 lists the measured standard deviation of the pitch, the roll, and the vertical acceleration at FP in

the individual runs. In the table, the calculated values of the standard deviation of the responses

are also given, using Eq. (4) with input from Table 3 and assuming no uncertainty in the estimated

wave parameters. The relative deviation between the two has been included in the table. Ideally, the

relative deviation should be zero for all responses in the single runs, since the governing equations

of the wave buoy analogy, indeed, seek to equalise the (distribution of) energy of measured and

calculated responses (cf. Eq. (16), Appendix A). However, it is important to realise that the wave

buoy analogy yields estimates of wave parameters, i.e. optimised wave parameters, which, when

applied to Eq. (2), on average secures the equivalence of energy for the three considered responses.

Therefore, in practice, the wave buoy analogy comes up with a wave spectrum that - in the best

overall sense - fulfills the governing equations, which means that the differences, as reported in Table

Table 5. Measured and calculated standard deviation, including relative deviation,

of responses. The calculated values have been obtained with wave parameters as

estimated in the respective runs.

Pitch [deg.] Roll [deg.] Vert. Acc. [m/s2]

Run Meas. Calc. Dev. Meas. Calc. Dev. Meas. Calc. Dev.

A 0.79 1.14 45% 0.61 0.75 24% 1.37 1.14 -17%

B 1.10 1.48 35% 0.79 0.95 21% 1.89 1.45 -23%

C 1.17 1.38 18% 0.95 1.05 10% 1.88 1.31 -30%
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5, are to be expected (see also Nielsen [35]). The bottom line is that, although wave estimates of

the specific run are used, it is difficult to completely match measured and calculated response

statistics in the individual run, for what reason the improved methodology, Eq. (11), is suggested

for making response predictions of the future. As a final remark, it is important to mention that

similar comparisons - and agreements - of measured and calculated standard deviations are found

with wave parameters estimated by a wave radar system. A report is given by, e.g., Nielsen [35],

although for another set of full-scale measurements.

From subsection 4.2 it is clear that the estimated wave spectra are not (completely) identical in the

individual runs. In terms of operational decision support for navigational guidance, the situation is

therefore quite realistic. Tables 6, 7, and 8 present the estimated/predicted standard deviations of

the pitch, the roll and the vertical acceleration at FP, respectively. For each response comparisons

are made for all the runs using the different ways of calculating the standard deviation; namely, by

Eqs. (4) and (11) directly, and also by Eq. (11) where uncertainty modelling is applied according

Table 6. Comparison of predicted and measured standard deviation (Std) of

pitch. Predicted values calculated with Eq. (4) and Eq. (11).

Prediction using Std [deg.]

Run wave spectrum of Eq. (4) Eq. (11) Eq. (11)∗ Measured

A run B 1.49 1.11 1.10 0.79
A run C 1.17 0.99 0.98 0.79

B run A 1.12 0.77 0.77 1.10
B run C 1.03 0.87 0.89 1.10

C run A 1.10 0.76 0.76 1.17
C run B 1.36 1.00 1.01 1.17
∗ Calculations including uncertainty modelling.

Table 7. Comparison of predicted and measured standard deviation (Std) of roll.

Predicted values calculated with Eq. (4) and Eq. (11).

Prediction using Std [deg.]

Run wave spectrum of Eq. (4) Eq. (11) Eq. (11)∗ Measured

A run B 0.77 0.63 0.69 0.61
A run C 2.55 2.31 2.24 0.61

B run A 0.98 0.79 0.73 0.79
B run C 3.28 2.98 2.68 0.79

C run A 1.15 0.92 0.75 0.95
C run B 2.03 1.68 1.19 0.95
∗ Calculations including uncertainty modelling.
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Table 8. Comparison of predicted and measured standard deviation (Std) of ver-

tical acceleration at FP. Predicted values calculated with Eq. (4) and Eq. (11).

Prediction using Std [deg.]

Run wave spectrum of Eq. (4) Eq. (11) Eq. (11)∗ Measured

A run B 1.37 1.78 1.80 1.37
A run C 0.82 1.19 1.32 1.37

B run A 1.13 1.35 1.36 1.89
B run C 0.61 0.87 1.11 1.89

C run A 0.54 0.65 0.89 1.88
C run B 0.56 0.73 1.07 1.88
∗ Calculations including uncertainty modelling.

to Table 4. The tables (6, 7, 8) should be read line-wise, and considering, say, Table 6 it is seen

that by use of the estimated wave spectrum of run C, the predicted standard deviation of run A

is Std = 0.98 deg., if Eq. (10) is applied probabilistically, where uncertainty modelling is included.

This number should be compared to what was actually measured in run A for the pitch motion,

and with a measured value of Std = 0.79 deg., the relative deviation is 24%.

All the predictions, as presented in Tables 6-8, have also been compared graphically in Figures 7-9.

Figure 7 presents a situation where predictions are made of run A using the estimated wave spectrum

obtained from runs B and C, respectively. In Figure 8, predictions are made of run B, using runs

A and C, respectively, whereas Figure 9 presents the predictions of run C. In the individual plots,

normalised standard deviations are presented for the three responses, where a comparison can be

made between the predictions of each response using the outlined computational procedures; i.e.

Eq. (4) and Eq. (11) with and without uncertainty modelling. The normalisation has been made

with the actual measured standard deviations of the very run which is being predicted about. In

the optimal - and hypothetical - situation, all columns in the plots would therefore be of a height

equal to 1. As it appears from Tables 6-8, Figures 7-9 also reveal that in many cases, the prediction

of future response values are improved using Eq. (11) - the novel approach - compared to Eq. (4)

- the ”traditional” approach. There are, however, cases where Eq. (4) gives a better prediction of

what was actually measured.

In order to evaluate the different calculation/prediction procedures in an overall sense points are

assigned to the individual equation according to the agreement of the respective predicted values

with the actual measured values of the standard deviations, as they appear from Tables 6-8. One

way to do this, is to assign 2 points to the equation which has the best (absolute) agreement
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Figure 7. Predictions of standard deviations of responses in run A using the

estimated wave spectrum of runs B and C, respectively. The predicted standard

deviations are normalised with the measured standard deviations of run A.
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Figure 8. Predictions of standard deviations of responses in run B using the

estimated wave spectrum of runs A and C, respectively. The predicted standard

deviations are normalised with the measured standard deviations of run B.

with the measured value, and 1 point to the equation with the second best agreement, whereas

zero point is given for the worst agreement. In this way, it is found that Eq. (11), including

uncertainty modelling, scores the highest number of points with a total of 28 points. The second

highest score is obtained by Eq. (11), without uncertainty modelling, where the score is 18 points.

The lowest score is given to Eq. (4), which obtains 8 points. Although this comparison cannot

be used to quantitatively assess the prediction procedures’ ability to yield correct guidance, the
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Figure 9. Predictions of standard deviations of responses in run C using the

estimated wave spectrum of runs A and B, respectively. The predicted standard

deviations are normalised with the measured standard deviations of run C.

comparison gives a good qualitative picture of the specific procedures/methodologies for predicting

future responses. As judged by the studied data, runs A, B, and C, it is, indeed, evident that

the novel procedure for making guidance, i.e. Eq. (11), has the potential to improve navigational

guidance of operational decision support systems. In the same time, the guidance can be given in

a probabilistic framework, which should make the guidance more reliable in the average sense.

Although Eq. (11) (including uncertainty modelling) seems as the best calculation procedure to

make guidance from, it is important to note that in a few cases the predictions of response values

are in poor agreement with what was actually measured, irrespectively of the calculation procedure.

This is seen when the estimated wave spectrum of run C is used to predict about the roll motion

of runs A and B; cf. the right-hand side plots of Figures 7 and 8. The explanation for the poor

agreement in these cases is (presumably) the difference in the peak energy wave direction, which is

observed when the estimated wave spectra of runs A and B are compared to the estimated wave

spectrum of run C, cf. Figure 5 and Table 3. A similar difference in wave direction is reported

by the visual observations, cf. Table 2, and indications are therefore that the peak energy wave

direction, indeed, has changed during the runs. Therefore, it is to be expected that the roll standard

deviation is overpredicted in runs A and B, respectively, using the estimated wave spectrum of run

C. The reason is that using wave spectrum C, and choosing a course equal to 260 deg. (run A)

or 270 deg. (run B), the vessel experiences quite some beam seas, while in reality - in runs A

and B - the vessel was going straight head sea, relative to the peak wave energy. Obviously, it
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is not good when predictions of future - expected - response values are too far from what will

be actually measured. However, the considered situation is very difficult to deal with, since it is

not the calculation procedures that are to be blamed but instead the relative quickly changing sea

conditions; a phenomenon which is difficult to handle in the models of decision support systems.

It should be realised that there is only little disagreement for the predicted pitch motion and the

predicted vertical acceleration at FP in the considered cases, cf. the right-hand side plots of Figures

7 and 8. This is explained due to the fact that these motions are not as sensitive to deviations in

course changes as is the roll motion.

It has previously been noted that each run lasts (only) 6 minutes, which might associate to un-

certainties in the estimated wave parameters, due to the relatively short length of time that the

estimation is based upon. Similarly, considering Eq. (11), the uncertainty in the measured standard

deviations, due to consideration of only 6 minutes of data, will (negatively) influence the prediction

of future expected standard deviations. It is therefore expected that the performance by Eq. (11)

will be further improved by taking into account longer measurement periods of the data.

5. SUMMARY AND FINAL REMARKS

In decision support systems for navigational safety of ships there is a fundamental need of the on-

site sea state parameters at the location of the advancing vessel. However, it is not easy to obtain

this information with existing shipboard sensors, as mentioned by Colwell and Stredulinsky [6]. A

novel concept has therefore been proposed to make decision support more reliable. In this concept,

it is suggested to include statistics of the already-measured response data, recorded by an onboard

monitoring system, with the objective to improve the accuracy as well as the overall reliability of

the predicted response calculations. In the paper, an example of full-scale experiments has been

presented to study (and verify) the outlined novel approach. From the studied data, the potential

of the approach is promising, and comparisons with ”traditional” predictions (calculated directly

from spectral moments) reveal a better agreement with actual measured data applying the novel

approach. However, it is important to note that in the analysis a rather limited set of full-scale

data is studied, and therefore there is a need for further verifications of the novel approach. In the

near future the analysis of an extended full-scale measurement campaign will be initiated.
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Appendix A. FUNDAMENTALS AND RESULTS OF THE WAVE BUOY ANALOGY

A.1. Physical equations and modelling procedures. The very principle of the wave buoy

analogy is sketched in Figure 10: Measured response spectra are compared with calculated response

spectra and based on an error calculation (some) action is taken to minimise the error. Iteratively,

this procedure is repeated until convergence has been reached.

The physical equation, on which the error calculation is based, is derived from the assumption of

linearity between waves and ship responses,

Sij (ωe) =
∫ π

−π

Φi (ωe, χ)Φj (ωe, χ)E (ωe, χ) dχ (16)

similar to the electric filter analogy, cf. Eq. (2), but written here in complex numbers. In Eq. (16),

the left-hand side Sij (ωe) is the measured cross (response) spectrum of the ith and jth responses,

whereas the right-hand side is the calculated cross spectrum using the estimated wave spectrum

E (ωe, χ). The bar denotes the complex conjugate.

Figure 10. The fundamental idea in the estimation of wave spectra based on mea-

sured ship responses. Aschehoug [1]
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The speed-of-advance problem for a moving ship can be taken into account by imposing the re-

quirement

ωe = ω − ω2A , A =
U

g
cos χ (17)

where ω is the true wave frequency, U is the speed of the ship, and g is the acceleration of gravity.

In terms of matrix notation, Eq. (16) can be written

b = Af (x) (18)

where the vector function f (x) expresses the unknown wave spectrum E (ω, χ) that, by some

modelling, can be estimated from the minimisation of g2(x)

g2(x) ≡ ‖Af (x)− b‖2 (19)

where ‖·‖ represents the L2 norm. Traditionally, either parametric modelling or non-parametric

(Bayesian) modelling is employed, where the former assumes a parameterised wave spectrum (e.g.

JONSWAP) while the latter modelling solves for the complete discretised wave spectrum by im-

posing prior constraints.

A.2. Examples based on numerical data and full-scale measurements. The potential of

the wave buoy analogy has been studied extensively by use of numerical simulations, where the

underlying - true - wave spectrum is known. In particular, Nielsen [37], [40] has made thorough

studies, where motion responses for a moving ship have been numerically simulated, to investigate

the interesting phenomenon of filtering. Thus, a ship is, in general, only sensitive to wave excitations

characterised by wave lengths in a certain interval due to the finite vessel size and due to the

equivalent mass-spring-damper behaviour of a ship. From the studies ([37],[40]) it was seen that

wave estimations can be improved by considering a set of three responses which are not all sensitive

to the same frequency band of wave energy. For example, the relative motion (measured to the sea

surface) at a given position of a ship responds to high-frequency excitations of a seaway, which is

not the case of, say, the pitch motion.

The wave buoy analogy has also been applied to full-scale measurements, e.g. Iseki and Terada [18],

Iseki [16], and Nielsen [39]. Figure 11 shows the estimated frequency wave spectrum as obtained

from the wave radar system Wavex (legend: wavex) and from the wave buoy analogy (legend: bay),

respectively. The results are from [39], where measurements from an operating container ship have

been analysed. As it is seen from Figure 11, four spectra are shown and estimations have been

made under the conditions of beam sea (Data A), head sea (Data E), following sea (Data F), and



NAVIGATIONAL GUIDANCE OF SHIPS USING ONBOARD MONITORING SYSTEMS 29

bow quartering sea (Data H); where there is good agreement of the wave directions as estimated

from both Wavex and the wave buoy analogy. In the shown spectra the agreement between Wavex

and the wave buoy analogy is fairly good but there are also other cases where the agreement is less

good; not to say which one is the correct one.
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Figure 11. Wave estimation from full-scale measurements. (Note the difference

in scales.) Nielsen [39]


