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ABSTRACT 

In this paper a new traction–separation law is developed that represents the constitutive 

relation of ductile adhesive materials in Mode I, II and III. The proposed traction–separation laws 

model the elastic, plastic and failure material response of a ductile adhesive layer. Initially, the 

independent-mode proposed laws (loading and fracture in Mode I, II and III) are mathematically 

described and then introduced in a developed formulation that simulates the interdependency of the 

mixed-mode coupled laws. Under mixed-mode conditions, damage initiation is predicted with the 

quadratic stress criterion and damage propagation with the linear energetic fracture criterion. For 

verification and validation purposes of the proposed laws and mixed-mode model, steel adherends 

have been adhesively bonded with a structural ductile adhesive material in order to fabricate a series 

of single and double strap adhesive joint configurations. The specimens have been tested under uni-

axial quasi-static load and the respective force and displacement loading history have been recorded. 

Corresponding numerical and experimental results have been compared for each joint case, 

respectively. Additionally, the developed stress fields (peel, in-plane and out-of-plane shear) are 

presented as they evolve during the loading of both joint cases. 

 

Keywords: Mixed-mode fracture, Ductile adhesives, Cohesive elements, Cohesive Zone Modelling, 
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Introduction 

 Many methods exist for bringing together similar or dissimilar structural materials, in terms 

of the joining technique utilized. Conventional mechanical joints, such as bolted, pinned or riveted 

are preferred due to their simplicity and the disassembly ability that they offer for joining metal or 

composite materials. However, when a mechanical joint is loaded, local damage is induced at the 

fastener holes due to stress concentrations. This fact leads to the structural degradation of a joint 

and jeopardizes the structural integrity of the assembly structure. 

 Alternately, adhesive bonding techniques offer many advantages for joining metal or 

composite materials and have been adopted by many industries instead of fastener joints [1]. 

Adhesive joints offer high strength-to-weight ratio and, when properly designed, up to three times 

higher strength under shear loading compared to fastener joints. Stress concentrations are reduced, 

since peel and shear stresses are being developed with a relatively uniform way over the adhesive 

bondline [1]. 

 In the framework of analysis and design of adhesive joints, two geometric configurations are 

utilized in the literature for the study of the adhesive material and its cooperation with given 

adherends, that is a Single Lap Joint (SLJ) and a Double Strap Joint (DSJ) [2]. These types of joints 

are preferred because many closed-form solutions are available in the literature regarding the 

developed stress and deformation field in both the adhesive and adherend materials [3, 4].  

 Adhesive joints in practical applications are characterized by their complex geometry which 

cannot be treated with analytical tools. Instead, numerical solutions resulting from Finite Element 

Methods can be utilized. The latter provide predictions for the behavior of adhesive joints that 

incorporate inherent geometrical or material non-linearities of the adherends or/and the adhesive. 

Conventional Finite Element Analysis (FEA) of structural adhesive joints involves continuum finite 

elements for the representation of the adherends and the adhesive materials. This technique leads to 

accurate predictions of the deformation and stress field in the entire adhesive material domain.   
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Under the framework of the continuum mechanics approach, the maximum values of stress, 

strain or strain energy, predicted by the FE analyses, are usually used in the failure criterion and are 

compared with the corresponding material allowable values. Initially, the maximum principal 

stresses were proposed for very brittle materials whose failure mode is at right angles to the 

direction of maximum principal stress. This criterion ignores all the other principal stresses, even 

though they are not nil. Establishing the failure modes in lap joints bonded with brittle adhesives, 

Adams et al. in [1] have extensively used this criterion to predict joint strength with success. 

However, because of the singularity of stresses at re-entrant corners of joints, the stresses depend on 

the mesh size used and how close to the singular points the stresses are taken.  

Von Mises yield criterion has been used to study the strength of adhesive joints [5]. 

However, this criterion is more applicable to material yielding than strength. Since adhesive joints 

are mostly shear-type joints several researchers have used the maximum shear stress criterion to 

predict joint strength [6, 7]. da Silva et al. in [3,4] showed for single lap joints that this criterion is 

only valid for brittle adhesives and short overlaps. This approach ignores the normal stresses 

existing in lap joints and therefore it overestimates the joint strength. 

When ductile adhesives are used, criteria based on stresses are not appropriate because joints 

can still endure large loads after adhesive yielding. For ductile adhesives, Adams and Harris in [8] 

used the maximum principal strain as failure criterion for predicting the joint strength. This criterion 

can also predict the failure mode. However, it is equally sensitive to the mesh size, as previously 

discussed for the maximum principal stress approach.  

 Plastic energy density has also been used as a failure criterion [9], being similar to the total 

strain energy criterion but it only takes the plastic part of the deformation into account. Zhao et al. 

in [10] applied a criterion whereby if the average plastic energy density over a certain distance 

within the single lap joint reached a critical value, then the joint was deemed to have failed. The 
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specific energy is not so sensitive to the size of the integration zone, as it is 'averaged' over an area 

(2D analyses) or volume (3D analyses).  

 Stresses are being transferred from one adherend to the other through the adhesive layer and 

via the adhesive/adherend interface. Cracks are prone to develop at the bi-material interfaces of an 

adhesive joint when the adhesive strength is higher than the interfacial strength (adhesive failure). 

On the other hand, when the adhesive strength is lower than the interfacial strength, cracks develop 

within the adhesive material (cohesive failure). Thus, conventional FEA techniques cannot 

explicitly predict the load carrying capacity (strength) of an adhesive joint, since cracks and hence 

fracture mechanics are not involved.  

 This gap was initially bridged with the utilization of the Virtual Crack Closure Technique 

(VCCT) within the framework of Linear Elastic Fracture Mechanics [11, 12, 13, 14]. A physical 

crack is modeled either in the adhesive layer or in the bi-material adhesive/ adherend interface or in 

both of them and a given load case is applied on the adhesive joint. The internal nodal forces are 

calculated at the crack tip together with the relative displacements of the adjacent nodes, which are 

later utilized for the calculation of the energy release rate G in each fracture mode, respectively. 

Crack propagation occurs if the energy release rate magnitude is greater than the experimentally 

measured fracture toughness Gc of the material system, in a respective fracture mode.  

For ductile materials, a large amount of material yielding occurs and the crack may 

propagate stably before final failure. Thus, LEFM does not work anymore for such materials. The 

HRR (Hutchinson Rice Rosengreen) solution developed by Hutchinson in [15] and by Rice and 

Rosengren [16] has, however, been extensively used in ductile fracture. Another important 

parameter governing failure is the so-called crack tip opening displacement [17]. However, a strain 

singularity still exists for ductile materials, even though the stress singularity has disappeared. The 

fracture of adhesive joints inherently takes place under mixed mode because of the varying 

properties between different materials and the complex stress system. Failure criteria for mixed 
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mode fracture can be developed in a way analogous to the classical failure criteria, although the 

fracture surface (or envelope) concept must be introduced. Various mathematical surface functions 

have been proposed to fit the experimental results, such as the 3D criterion [18].  

 A step forward has been made with the introduction of the well-known cohesive elements to 

the simulation of adhesive joints, under the framework of Cohesive Zone Modeling (CZM) 

techniques [19, 20, 21, 22, 23, 24, 25]. This methodology allows the study of the debonding 

initiation and propagation process, without considering the presence of initial flaws and leads to the 

calculation of the load carrying capacity of the considered adhesive joint [2]. The available 

techniques for damage modelling can be separated into local or continuum approaches. In the local 

approach, damage is confined to a zero volume line or a surface, allowing the simulation of an 

interfacial failure between the adhesive bond and the adherend or/and of a cohesive failure [21,22]. 

By the continuum approach, the damage is modelled over a finite region along an adhesive bond to 

simulate a cohesive fracture of the adhesive bond [23]. 

 The constitutive relation of cohesive elements is described by cohesive laws, that relate the 

tractions σ with the corresponding separations δ (relative displacements between the two planes of 

the cohesive elements) i.e. traction–separation or T-S laws, σ-δ. In general, a cohesive law is 

described by two parts, a traction strengthening part and a traction softening part, either of which 

may be linear or non-linear. In CZM techniques, the two approaches that can be used regarding the 

cohesive law type are the intrinsic and the extrinsic approach [26]. In the intrinsic approach, the 

tractions, starting from the origin, have a hardening (rising) part that denotes an increasing 

resistance of the cohesive surface to separation. The slope of this part of the cohesive law controls 

the stiffness of the cohesive area modeled. At a given separation, the cohesive traction reaches a 

maximum value σc, corresponding to the cohesive strength. After that point, the traction–separation 

curve follows a softening (decreasing) path associated with the failure process. Tractions are being 

reduced until δ reaches a critical value δc, from which point onwards tractions are set to zero, thus 
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leading to the creation of a traction–free surface (i.e. a physical crack). The energy release rate is 

the key parameter in the formulation of a cohesive law, since the area under the traction–separation 

curve corresponds to the fracture toughness Gc of the adhesive joint system. This approach was first 

introduced within the context of finite element methods by Needleman [27], who used a polynomial 

form for the traction–separation law in the modeling of void nucleation associated with particle 

debonding. In order to couple the fracture modes, Needleman utilized a polynomial based potential 

that has a periodic shear dependence and is given in terms of opening (Mode I) and sliding (Mode II) 

separations. Hence, by differentiating the global potential with respect to the opening and sliding 

separations, the normal and shear tractions where obtained, respectively, in a complex function of 

the separations. 

 Prior to the utilization of the CZM techniques to the numerical analysis of adhesive joints, 

the technology of cohesive laws has matured with the simulation of delamination growth in Mode I 

[28] and Mode II [29] of fibrous layered composite materials.  

 On the other hand, the extrinsic approach relies on the modeling of the softening (decreasing) 

part of the cohesive law only. The area under the curve also corresponds to the fracture toughness 

Gc of the cohesive zone. However, a steep ascend (very high stiffness) is included in the cohesive 

law for numerical purposes and prior to the softening part, without affecting the total area (Gc) 

under the law. The most common extrinsic model which is embedded in most commercial finite 

element software, is a linear one used extensively in a variety of fracture simulations. The extrinsic 

model requires the introduction of a separate criterion for the initiation of the failure process, 

whereas in the intrinsic model a damage initiation criterion is inherently included. 

 In the framework of CZM techniques, several cohesive laws are available that can be 

categorized into the following groups, based on their shape: polynomial, piece-wise linear, 

exponential and rigid-linear [30]. A methodology which relies on intrinsic cohesive laws for the 

numerical prediction of the loading and fracture behavior of adhesive joints is based on the 
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Embedded Process Zone (EPZ) approach, introduced by Thouless and his co-workers [31, 32, 33]. 

According to the EPZ, the adhesive layer works as the continuum which provides and transfers 

tractions between the adherends (CZM continuum approach). From the numerical point of view, the 

adhesive material is totally represented by interface or cohesive elements that can model the 

kinematics incorporated in the EPZ. The constitutive relations are given in terms of opening and 

shear traction–separation laws under pure Mode I [31] and pure Mode II [33] loading and fracture, 

respectively.  

The EPZ approach has been also applied in finite element models to simulate mixed - mode 

loading and fracture [32, 34, 35, 36]. Yang and Thouless [32] used the EPZ approach for the 

numerical prediction of geometries that undergo extensive plastic deformation under mixed - mode 

loading e.g. T-peel and single-lap specimens. The authors utilized a failure criterion together with 

the introduction of a phase angle to relate the pure Mode I and Mode II trapezoidal T-S laws and 

thus to develop a mixed-mode EPZ model. On the other hand, Campilho and his co-workers [34, 35, 

36, 37] developed a cohesive mixed-mode damage model to predict the behavior of ductile 

adhesives with a trapezoidal shape T-S law representing loading and fracture of each fracture mode, 

within the framework of Elastic Plastic Fracture Mechanics.  

The trapezoidal model has been proven to be an effective T-S law that can adequately model 

the coupling between the behavior of the adhesive/adherend interface and the behavior of the 

adhesive itself, namely the adhesive failure and plasticity, respectively.  

Additionally, Paulino and his co-workers have conducted significant research on CZM 

techniques by developing new cohesive laws and by studying the effectiveness of the most common 

ones that are used for simulating the behavior of adhesive joints under various types of loading and 

fracture conditions [38, 39, 40]. More specifically, in [39, 40] the authors have conducted a 

comparative numerical-experimental study, in order to show the influence of the shape of three 

intrinsic cohesive laws (triangular, trapezoidal and exponential) to the Mode I fracture of pre-
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cracked adhesively bonded Double Cantilever Beam specimens. One of the authors' major 

conclusions is that the triangular and trapezoidal laws yield promising results in the undamaged 

region of cracked adhesive joints since the pre-peak slope of the corresponding traction–separation 

laws can be controlled (intrinsic type). 

This paper presents a new T-S law which describes the Mode I, II and III loading and 

fracture of a ductile adhesive material constrained between adherends that form a structural 

adhesive joint. The current work is an extension of the proposed T-S law developed by Anyfantis 

and Tsouvalis in [20] which accounts for Mode I and II in a 2-dimensional space. It is noteworthy 

that the proposed model cannot distinguish between the fracture type (cohesive or adhesive), since 

the entire adhesive layer is modelled by cohesive elements that do not provide stress variations 

through-the-adhesive thickness. 

The proposed model is based on the embedded process zone and considers the elastic, 

plastic and fracture behavior of ductile adhesive materials in a 3-dimensional space. In the present 

study the proposed T-S law is referred as proposed EPZ law. Initially, the independent-mode 

proposed laws (loading and fracture in Mode I, II and III) are mathematically described and then 

introduced in a developed formulation that simulates the interdependency of the mixed-mode 

coupled laws. For the numerical validation of the proposed EPZ laws and the mixed-mode model, 

two typical joint geometries have been adopted, that is a Single Lap Joint (SLJ) and a Double Strap 

Joint (DSJ). The response of the specimens was experimentally measured and numerically predicted. 

Additionally, for reasons of comparison, numerical results obtained from the already known 

trapezoidal laws are presented.  

 

2. Proposed mixed-mode EPZ model 

  In this section the mathematical description and the numerical formulation of the intrinsic 

proposed traction–separation law is presented, which addresses the loading and fracture behavior of 
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a ductile adhesive material in either pure Mode I, II and III or in mixed-mode conditions. The 

development of a cohesive model includes first the definition of the traction–separation law shapes 

and corresponding parameters in pure mode loading and fracture, and then their incorporation into a 

mixed-mode model that accounts for their interdependency under mixed-mode conditions. The 

latter formulation utilizes damage and failure criteria for the prediction of damage initiation and 

propagation, respectively. The proposed traction–separation laws and mixed-mode model have been 

implemented in Abaqus 6.10 FE software user element subroutine (UEL) as the constitutive relation 

of 16 node user-programmed plane cohesive elements. The formulation of the latter is based on the 

work reported in [41]. 

 

2.1 Pure mode EPZ laws 

 In this description, the proposed cohesive law is referred as proposed EPZ law, since it is 

based on the embedded process zone approach, described in the introduction. The proposed EPZ 

laws are formulated so as to be utilized for the 3-dimensinal simulation of adhesive joints and thus 

all three loading and fracture modes are included (Mode I, II and III). Figure 1 presents a graphical 

representation of the shape and parameters of the proposed EPZ laws.   

The σΙ tractions that are used to describe loading and fracture in the Mode I EPZ law, 

express the normal to the adhesive bondline stresses, known as peel or cleavage stresses, whereas 

σΙΙ and σΙΙΙ tractions describe the in-plane and out-of-plane shear stresses, respectively. The traction 

strengthening part of the proposed laws is defined by an exponential function, which aims at 

describing the elastoplastic behavior of a ductile adhesive layer. This part differentiates the 

proposed EPZ law from the trapezoidal law which describes this region with an elastic – perfectly 

plastic approach, i.e. tractions are maintained constant after the initial linear elastic region (first 

inflexion point) until they enter the softening part (second inflexion point). For the description of 

the traction softening part (damage propagation) a linear function is utilized, as also given in the 
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trapezoidal law. The selection of this particular shape of the proposed EPZ laws has been done on 

the basis that these two functions are very good analytical fits of experimentally measured traction–

separation laws obtained from steel-to-steel adhesive joints, which will be shown later in this 

section. The reversibility of the laws (unloading paths) has been included in the following 

formulation, as shown in Figure 1 by the linear unloading paths, for both traction strengthening and 

softening parts (dotted lines). 

The analytical function utilized for the description of the elastoplastic behavior of a ductile 

adhesive material including its reversibility is given by the following equation: 

 ( ) c, ,max

,max c,

1 expi i i
i i i

i i

kσ δ
σ δ δ

δ σ

  
= − −      

      for     0,0 i iδ δ≤ <  (1) 

where subscript i equals to I, II or III. The magnitude σc,i represents the critical stress and the 

magnitude δ0,i is its corresponding separation at damage initiation under pure mode loading and 

fracture conditions. Magnitude δi,max is equal to the maximum separation calculated at a converged 

time step of the non-linear analysis procedure. Thus, during loading, both δi and δi,max magnitudes 

are equal and together increasing and tractions follow the exponential function. However, if at given 

time step the calculated δi is less than δi,max, unloading is detected and hence δi,max remains constant 

and equal to the last value of δi. As aforementioned, during unloading, tractions follow the linear 

paths to conclude to the origin (see Figure 1).  

In order to avoid interpenetration between the, adjacent to the cohesive elements, continuum 

elements, a penalty contact algorithm has been included only in the formulation of Mode I EPZ law 

(see Figure 1). The contact algorithm is activated when δi becomes less than zero and hence 

tractions are described by: 

 ( )I I p Ikσ δ δ=       for     I 0δ <  (2) 
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where kp is the penalty magnitude (≈105 ÷ 106 MPa/mm, [28]). It is assumed that negative stresses 

do not induce damage but treated only as contact conditions. The initial slope of Equation (1) is 

equal only to magnitude ki, which is called initial stiffness, as seen from the following equation. 

 
0i

i
i

i

k
δ

σ
δ

=

∂
=

∂
 (3) 

This characteristic of the current exponential form is advantageous with regards to the 

development of the mixed-mode loading and fracture model, which will be described in the 

following. The initial stiffness ki is directly defined for each mode by dividing the corresponding 

elastic constant of the adhesive material with the adhesive thickness [34, 35, 36, 37], kI = Ea / ta, kII 

= Ga / ta and kIΙI = kIΙ, where Ea and Ga is the Young and shear modulus of the adhesive, 

respectively. Mode II corresponds to in-plane shear stresses whereas Mode III corresponds to out-

of-plane shear stresses (scissoring deformation). For an isotropic adhesive material, as the one 

utilized herein, both shear Mode II σII and Mode III σIII stresses are proportional to shear strains: σII 

= GγII and σIII = GγIII via the adhesive’s shear modulus Ga. Since, Ki is defined as the ratio of the 

corresponding elastic constant to the adhesive thickness, this explicitly yields that KII = KIII.  

Magnitude δ0,i can be directly defined or implicitly calculated, considering that the 

exponential form of Equation (1), on a theoretical basis, tends asymptotically to the horizontal 

asymptote σc,i. Thus, the corresponding ordinate is selected equal to (1-e)σc,i, where (1-e) is the 

tolerance and e is the numerical error between the asymptote σc,i and the corresponding value 

utilized in the numerical analysis, as depicted in Figure 2.  

Substituting the left hand side of Equation 1 with the term (1-e)σc,i and solving with respect 

to δ0,i, the following relation is obtained:    

 c,
0,

ln( )
i

i
i

e

k

σ
δ = −  (4) 
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As aforementioned, damage initiation and propagation is described by a linear traction 

softening function in the proposed EPZ laws. The term damage includes every type of degradation 

occurring within the adhesive layer, i.e. porosity nucleation, micro-cracking development etc. The 

linear softening function utilized in the formulation laws, from the critical traction point to the 

traction–free regime is given by Equation (5).  

 ( ) c, c, c,

c, 0, c, 0,

(1 ) (1 )i i i
i i i

i i i i

e eσ σ δ
σ δ δ

δ δ δ δ
− −

= − +
− −

      for    0, c,i i iδ δ δ≤ <   (5) 

where δc,i is the critical separation. In order to include reversibility (unloading) in the softening part, 

a control parameter of the damage extension D has been introduced which varies within the range 

[0,1]. 

 
( )
( )

0, c, ,max

,max c, 0,

1 i i i

i i i

D
δ δ δ

δ δ δ

−
= −

−
  (6) 

 At this point Equation (5) can be rewritten in the following form, which includes both loading 

and unloading: 

 ( ) c,
0,

(1 ) (1 ) i
i i i

i

D e δσ δ σ
δ

= − −   for     0, c,i i iδ δ δ≤ <   (7) 

Beyond the critical separation, the corresponding tractions are set to zero, hence leaving behind new 

traction–free surfaces (physical cracking). 

 ( ) 0i iσ δ =       for     c,i iδ δ≥   (8) 

The total energy consumed at the end of the proposed EPZ law is given by the definite integral (area) 

of its curve. 
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 ( )
c ,

c, 0,
c 0, c, c, c, c, 0,

0 c,

1exp
2

i
i i i

i i i i i i i i i i
i i

k
J d k

k

δ σ δ
σ δ δ σ σ σ δ δ

σ

  
  = = − + − + −

    
∫   (9) 

 Figure 3 presents the analytical fitting of a typical experimental T-S law (obtained from DCB 

and ENF tests [42, 43]) with the proposed EPZ laws (equations (1) and (5)), for both pure Mode I 

and pure Mode II, respectively. Despite the fact that the experimental T-S laws have been obtained 

for different adhesive systems (LOCTITE Hysol 9460 for the DCB tests and DOW Betamate 

XW1044-3 for the ENF tests) the mechanical behavior of both adhesive materials is characterized 

as ductile. According to Figure 3, the traction increasing part has been fitted with great accuracy by 

Equation (1), yielding a coefficient of determination (R2) equal to 0.98 and 0.99 for the Mode I 

(Figure 3a) and Mode II (Figure 3b) case, respectively. Having calculated the analytical fittings of 

the experimental traction increase parts and thus having obtained the corresponding to the Mode I 

and Mode II ki, σc,i and δ0,i magnitudes (i = I or II), e parameters can be easily derived through 

Equation (4). Hence, a value equal to 0.08% and 0.1% has been calculated for e parameter in Mode 

I and Mode II laws, respectively. 

 On the other hand, the experimentally measured traction softening part (damage propagation 

region) has a linear trend with a local non-linearity at the beginning of the descent in Mode I, 

whereas in Mode II a highly non-linear behavior is attained. However, it is impossible to formulate 

the coupling (interdependency) between a linear and a highly non-linear softening response within a 

numerical scheme, in order to yield a mixed-mode constitutive model. Additionally, several studies 

[20, 22, 31, 32, 33, 34, 35] state that a linear softening is adequate for modelling the physical 

phenomena occurring during damage propagation in the EPZ. For this purpose, within the present 

study, no efforts were made to utilize a non-linear softening function and thus a linear description 

(Equation (5)) has been adopted.  
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2.2 Coupling of the pure mode EPZ laws 

 Having defined the proposed EPZ laws in pure mode loading and fracture (Mode I, II and 

III), the next step is to formulate their interdependency under the framework of a mixed-mode 

model. The proposed mixed-mode model is presented in Figure 4. Two cases are considered 

according to the sign of the normal tractions σΙ, since positive tractions contribute to the loading 

and fracture and negative tractions denote contact in the adhesive bondline. Thus, one case 

considers the Mode I, II and III mixity (positive σΙ) and the remaining one considers only Mode II 

and III mixity (negative σΙ). 

 

2.2.1 Mode I, II and III mixed-mode model 

The guiding parameters for the formulation of the mixed-mode model are the mode mixity 

ratios: 

 
δ

β
δ
ΙΙ

ΙΙ
Ι

=    and   
δ

β
δ
ΙΙΙ

ΙΙΙ
Ι

=  (10) 

and the resultant total separation δm 

 2 2 2
m

δ δ δ δ
Ι ΙΙ ΙΙΙ

= + +   (11) 

The current formulation is based on Equation (10) and Equation (11) for the composition of 

the mixed-mode EPZ laws for given pure mode EPZ laws, under constant mode mixity ratios. The 

same basic equations combined with damage initiation and propagation criteria are utilized for the 

definition of the parameters that characterize the three decomposed mixed-mode EPZ laws 

calculated from the mixed-mode model.  

Damage initiation under mixed-mode loading is predicted with the use of the quadratic 

stress criterion [34]: 
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2 2 2

cm, cm, cm,

c, c, c,

1
σ σ σ

σ σ σ
Ι ΙΙ ΙΙΙ

Ι ΙΙ ΙΙΙ

     
     + + =
     
     

  (12) 

where σcm,I, σcm,II and σcm,IIΙ are the critical stresses of the decomposed mixed-mode EPZ laws (see 

Figure 4). Solving Equation (4) with respect to σc,i and σcm,i (for i = I, II and ΙΙΙ) separately and 

substituting to Equation (12), the stress criterion is written as: 

 

2 2 2

0m,I 0m,II 0m,IIΙ

0,I 0,II 0,IIΙ

1
δ δ δ

δ δ δ

     
     + + =
     
     

  (13) 

where δ0m,I, δ0m,II and δ0m,IΙI are the obtained mixed-mode separations denoting the actual damage 

initiation point. Substituting Equation (10) and (11) into Equation (13), the resultant total separation 

δ0m is obtained:  

 
2 2

0m 2 2

2 2 2
0, 0, 0,

1
1

β βδ
β β

δ δ δ

ΙΙ ΙΙΙ

ΙΙ ΙΙΙ

Ι ΙΙ ΙΙΙ

+ +
=

+ +
  (14) 

Substituting Equation (10) and (11) into Equation (14) the decomposed separation in Mode I 

loading and fracture is obtained: 

 0,m
0m,I 2 21

δ
δ

β β
ΙΙ ΙΙΙ

=
+ +

  (15) 

and in Mode II and III loading and fracture: 

 
0m,IΙ 0m,I

δ β δ
ΙΙ

=    and   
0m,IΙ 0m,I

δ β δ
ΙΙΙ

=   (16) 
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Having calculated δ0m,I, δ0m,II and δ0m,IIΙ the decomposed critical stresses σcm,i may be 

calculated for each Mode i, by utilizing Equation (4). 

 0m,
cm, ln( )

i i
i

k

e

δ
σ = −   (17) 

The decomposed EPZ laws maintain their initial slope ki (and thus their initial linear elastic 

stiffness) from the respective pure mode loading and fracture laws, as shown in Figure 4. This fact 

proofs the advantage of the selected exponential form (Equation (3)), according to which the linear 

elastic response is modeled regardless the mode-mixity ratios. 

The linear energetic fracture criterion has been selected for the prediction of damage 

propagation within the adhesive layer, which provides the needed coupling between the fracture 

energies in Mode I (
I

J ), Mode ΙΙ (
IΙ

J ) and Mode III (
IΙΙ

J ), [34].  

 I II IΙI

Ic IIc IIΙc

1
J J J
J J J

+ + =  (18) 

From the physical point of view, the satisfaction of the preceding criterion denotes the 

elimination of the tractions within the embedded process zone and thus new traction–free surfaces 

are being generated. Fracture energies 
i

J  are being calculated, as in Equation (9), through the 

definite integral of the decomposed mixed-mode EPZ laws: 

 ( )
cm,

cm, 0m,
0m, cm, cm, cm, cm, 0m,

0 cm,

1exp
2

i
i i i

i i i i i i i i i i
i i

k
J d k

k

δ σ δ
σ δ δ σ σ σ δ δ

σ

  
  = = − + − + −

    
∫  (19) 

Substituting Equation (9) and Equation (19) into Equation (18), an exact calculation of the 

decomposed critical separations δcm,I, δcm,IΙ and δcm,IΙΙ is obtained, respectively: 
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Ic IIc IIΙc I IIc IΙIc II Ic IΙIc IΙI Ic IIc 0m,I IΙI c IIc cm,I 0m,II IcΙΙIc cm,II 0m,IΙI Ic ΙIc cm,IΙ I

cm, I
IIc IIΙc cm,I Ic IIΙc cm,IΙ Ic IΙc cm,ΙIΙ

2 2 2 2J J J C J J C J J C J J J J J J J J

J J J J J J

δ σ δ σ δ σ
δ

σ β σ β σ
ΙΙ ΙΙΙ

− − − + + +
=

+ +
 (20a) 

cm, IΙ cm, I
δ β δ

ΙΙ
=  (20b) 

cm, IΙΙ cm, I
δ β δ

ΙΙΙ
=  (20c) 

where Ci (i = I, II and ΙΙΙ) is the area under the decomposed EPZ laws that is given from the 

exponential function. 

 ( )cm, 0m,
0m, cm, cm,

cm,

expi i i
i i i i i

i i

k
C k

k

σ δ
δ σ σ

σ

   
  = + − −         

   (21) 

Magnitude δcm is calculated through Equation (11). 

 2 2 2
cm cm, cm, cm,

δ δ δ δ
Ι ΙΙ ΙΙΙ

= + +  (22) 

Having calculated all necessary parameters involved in the mixed-mode EPZ laws, their 

computational implementation is provided. Loading and unloading is also considered in the mixed-

mode laws. The traction increasing part is given from the following equation, which is similar to 

Equation (1):  

 ( ) cm, ,max
m,

,max cm,

1 expi i i
i i i

i i

kσ δ
σ δ δ

δ σ

  
= − −      

      for     0m,0 i iδ δ≤ <   (23) 

A damage parameter is also used that controls the extension of failure D within range [0,1]: 

 
( )
( )

0m cm m

m cm 0m

1D
δ δ δ

δ δ δ

−
= −

−
  (24) 
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The softening part is given by the following function:  

 ( )m, cm,
0m,

(1 )(1 ) i
i i i

i

D e δσ δ σ
δ

= − −  for 0m m cmδ δ δ≤ <   (25) 

Lastly, tractions after the critical separations are being totally released: 

 ( )m, 0i iσ δ =  for m cmδ δ≥   (26) 

2.2.2 Mode II and III mixed-mode model. 

In the case where tractions σΙ are negative and assuming that these negative tractions do not 

induce any damage but act only as contact stresses, coupling between only Mode II and III loading 

and fracture is present.  The coupling of the two modes is given by one mode mixity ratio:  

 
c

II

δ
β

δ
ΙΙ

Ι

=  (27) 

and, consequently, the resultant total separation δm is given by: 

 2 2
m

δ δ δ
ΙΙ ΙΙΙ

= +   (28) 

For the prediction of damage initiation, the quadratic stress criterion is being utilized: 

 

2 2

cm, cm,

c, c,

1
σ σ

σ σ
ΙΙ ΙΙΙ

ΙΙ ΙΙΙ

   
   + =
   
   

  (29) 

 Solving Equation (4) with respect to σc,i and σcm,i (for i = II and ΙΙΙ) separately and 

substituting to Equation (29), the stress criterion is written as: 
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2 2

0m,II 0m,IIΙ

0,II 0,IIΙ

1
δ δ

δ δ

   
   + =
   
   

 (30) 

Substituting Equation (27) and Equation (28) into Equation (30) the resultant total separation δ0m is 

obtained:  

 
2
c

0m 2
c
2 2
0, 0,

1
1

βδ
β
δ δΙΙ ΙΙΙ

+
=

+
  (31) 

Separations δ0m,II and δ0m,III are calculated through Equations (27), (28) and (30): 

 
0m,IΙ c 0m,III

δ β δ=    and   0,m
0m,IΙΙ 2

c
1

δ
δ

β
=

+
  (32) 

The decomposed critical stresses are calculated with the use of Equation (17) for i = II or III. 

Damage propagation is predicted again with the use of the linear energetic criterion: 

 II IΙI

IIc IIΙc

1
J J
J J

+ =  (33) 

By substituting Equation (9) and Equation (19) into Equation (33), an exact expression is 

derived for δcm,IΙ and δcm,IΙΙ, respectively: 

 IIc IIΙc II IΙIc IΙI IIc 0m,II ΙΙIc cm,II 0m,IΙI Ι Ic cm,IΙI
cm,III

IIc cm,IΙΙ c IIΙc cm,IΙ

2 2 2J J C J C J J J

J J

δ σ δ σ
δ

σ β σ

− − + +
=

+
 (34α) 

 
cm,II c cm,III

δ β δ=   (34β) 

where Ci (i = II and ΙΙΙ) is given by Equation (21). 
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3. Experimental work 

 Two typical metal-to-metal adhesive joint configurations have been taken under 

consideration for the numerical validation of the proposed EPZ mixed-mode model, that is a Single 

Lap Joint (SLJ) and a Double Strap Joint (DSJ) geometry. In both joint cases, the adhesive material 

is loaded under mixed-mode conditions (Mode I and II dominant fracture modes) [2].   

 Figure 5 presents the geometry and the nominal dimensions of the SLJ and DSJ specimens 

considered for experimental evaluation. The actual width of the SLJ and DSJ specimens is 28.5 mm 

and 23.5 mm, respectively. Typical mild (normal marine grade) steel has been utilized for all metal 

adherends (strap and inner adherends). The structural adhesive system utilized for the fabrication of 

the adhesive joints is Araldite 2015, a relatively stiff two-component epoxy adhesive provided by 

Huntsman Container Corporation Ltd. The nominal thickness of the adhesive layer was 0.5 mm and 

spacers had been placed in-between the adherends during manufacturing to keep this value constant 

for all specimens. Prior to the fabrication of the DSJs, the two inner 10 mm adherends were placed 

in contact, without any adhesive in-between them and thus avoiding the creation of a butt joint.  

 Three specimens from each joint configuration (six in total) were tested under a tensile 

loading using a MTS hydraulic testing machine at room temperature under displacement control 

with a rate of 0.1 mm/min. The experimental setup is shown in Figure 6 for each joint case.  The 

experimental measurements are presented in the next section, together with the numerical ones. 

 

4. Numerical analysis of the Single Lap and Double Strap joints. 

 The numerical simulation of the experimental tests of the SLJ and the DSJ has been 

conducted in Abaqus 6.10 commercial finite element software. The main aim is to validate the 

proposed mixed-mode EPZ model and provide predictions of the loading and failure behavior of the 

adhesive joints considered. 
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4.1 Finite element modeling 

 Figure 7 and Figure 8 present the finite element models constructed for the simulation of the 

SLJ and DSJ joints, respectively. For the case of the SLJ geometry, loading and boundary 

conditions have been applied on the areas of the tabs that are constrained in the grips of the testing 

machine, as shown in Figure 7. As far as the DSJ case is concerned, the 1/4 part has been modeled 

due to its geometrical, loading and boundary conditions symmetry, and the corresponding 

constrains have been applied to its boundary domain, as depicted in Figure 8. Quadratic 20-node 

brick elements (C3D20) available in the Abaqus element library have been utilized for the metal 

adherends in both cases. The whole adhesive layer is represented by cohesive elements (placed 

between adjacent continuum elements in the overlap areas) and the proposed EPZ mixed-mode 

model has been utilized for the description of their constitutive relation. Cohesive elements are not 

so sensitive as far as their mesh density is concerned [20, 21, 22]. However, a mesh sensitivity 

analysis has been conducted by taking under consideration three different cohesive element 

dimensions, i.e. (0.2 x 0.2) mm2, (0.5 x 0.5) mm2 and (1 x 1) mm2. Their effect to the joints’ 

strength was less than 3%. The results provided herein are based on models which have cohesive 

elements with constant dimensions equal to (0.5 x 0.5) mm2 in the entire overlap area. This was 

decided since this value has yield better stress resolutions on the adhesive domain rather than 

utilizing (1 x 1) mm2. On the other hand the models with (0.2 x 0.2) mm2 cohesive element 

dimensions are CPU cost ineffective and at the same time yield identical stress results as the (0.5 x 

0.5) mm2 cohesive elements do. Thus, the SLJ model contains 84000 continuum elements and 2500 

cohesive elements, whereas the DSJ model contains 60900 continuum elements and 5000 cohesive 

elements. 

For the numerical integration of the stiffness matrix and the internal force vector of the 3D 

cohesive elments, a 3 x 3 Gaussian quadrature rule has been used. The Newton-Raphson method 
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has been utilized for the solution of the displacement control non-linear problem augmented by the 

line search algorithm. 

 The implementation of the proposed mixed-mode EPZ model, within the framework of the 

cohesive finite element formulation, requires the definition of the parameters of the proposed pure 

mode EPZ laws (Mode I, II and III loading and fracture), that characterize the structural ductile 

adhesive material modeled (HUNTSMAN Araldite 2015). The accurate definition of a numerical 

cohesive law is based on experimental measurements obtained from an adhesively bonded Double 

Cantilever Beam (DCB) and End Notch Flexure (ENF) test, for the derivation of the corresponding 

parameters in Mode I and II loading and fracture, respectively. Given the fact that such experiments 

are not available in the current work, corresponding information has been taken form the literature 

([37], [42]). The parameters utilized for the definition of the proposed pure mode EPZ laws are 

listed in Table 1.  

For the calculation of the initial elastic stiffness kI, kII and kIII in Mode I, II and III loading, 

Ea was taken equal to 1850 MPa, Ga equal to 711.5 MPa and ta equal to 0.5 mm. The parameters 

used for the Mode II law are also used for the Mode III law. The critical stresses σc,I and σc,IΙ have 

been taken equal to the tensile and shear strength of the adhesive, respectively, as these are provided 

by its manufacturer [44]. Fracture toughness JIc has been also taken from the manufacturer's data 

sheet, calculated from steel-to-steel experiments, whereas fracture toughness JIIc has been taken 

from reference [37]. Since, crack propagation is an energy based prediction, then magnitude Jic 

should correspond to the steady-state fracture toughness level. Nevertheless, the adhesive material 

used herein, Araldite 2015, does not have a typical R-curve for Mode I and Mode II, meaning that 

the initial and steady-state fracture toughness levels cannot be distinguished, as concluded in [37, 

45]. 

 Additionally, parameters δ0,Ι, δ0,ΙΙ and δ0,ΙΙΙ (δ0,ΙΙ = δ0,ΙΙΙ) are needed for the complete 

definition of the proposed EPZ laws. Since, experimental information about these specific values is 
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not provided, Equation (4) has been utilized for their derivation. As described in section 2.1, these 

parameters are defined through the error e, which is a numerical parameter without a physical 

interpretation. Thus, their values are calculated through a best fit analysis between the 

corresponding numerical and experimental results, which has led to a common value of 0.1% 

utilized for the prediction of both joint geometries. It is noteworthy to mention that the experimental 

cohesive laws that describe Mode I [43] and Mode II [44] loading and failure, even though obtained 

from different ductile adhesive systems (LOCTITE Hysol 9460 for the DCB tests and DOW 

Betamate XW1044-3 for the ENF tests) than the one utilized in this work (Huntsman Ltd. Araldite 

2015), yield an error e equal to 0.08% and 0.1%, respectively, as derived through a best fit analysis 

(see Figure 3).  Despite the fact of the different adhesive systems used, the value of e obtained from 

the best fit analysis of both SLJ and DSJ models is equal to the corresponding one calculated from 

the best fit analysis of the Mode II experimental law (0.1%) and close enough to the one obtained 

from the Mode I law (0.08%). This is good evidence that the error value obtained from the best fit 

analysis of the SLJ and DSJ models is not arbitrary. A sensitivity analysis regarding the effect of the 

error e value to the finite element predictions is given later on this work. 

For reasons of comparison, the trapezoidal model described in reference [36] has been also 

programmed and the corresponding numerical results have been compared with the ones obtained 

from the proposed EPZ mixed-mode model. The trapezoidal laws have an additional parameter δ2,i 

(i = I, II and III) that needs to be defined, which corresponds to the second inflexion point. These 

parameters have been taken equal to the respective δ0,i (i = I, II and III) parameters calculated 

through the error e, since, from the physical point of view, both refer to the damage initiation point.  

Thus, δ2,Ι and δ2,ΙΙ (δ2,ΙΙI = δ2,ΙΙ) have been taken equal to 0.0691 mm and 0.898 mm, respectively, 

for both joint models. 
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4.2 Results 

 The applied force (reaction force resulting from the prescribed displacement) on the SLJ and 

DSJ models is being transferred from one adherend to the other through the adhesive layer, which is 

modeled with cohesive elements and its material response is described by the proposed mixed-mode 

EPZ model. The calculated separations (δI, δII and δIΙI) at a given Gaussian point of a cohesive 

element laying at the adhesive bondline determine the stress state (elasticity, plasticity or damage) 

of the current material point of the adhesive layer, as described in section 2. Within the linear elastic 

region, where the developed tractions are analogous to the separations through the kI, kII and kIΙΙ 

stiffness constants, the resulting von Mises equivalent stresses developed at the steel adherends of 

the SLJ and DSJ configurations are presented in Figure 9.  

The global response of the SLJ and DSJ configurations, as experimentally registered and 

numerically evaluated, is presented in Figure 10. The experimental measurements from all three 

specimens tested for each case are plotted. Table 2 and Table 3 list the experimental and numerical 

maximum attained force and displacement levels for the SLJ and DSJ case, respectively. As regards 

to the experimentally obtained global responses of both cases (see Figure 10), they can be separated 

in three regions. The first region is described by a linear behavior, followed by gradually increasing 

non-linearities up to the load carrying capacity level of each joint, which bounds the second region 

of the curves. The third region is described by a softening behavior, which denotes the inability of 

each joint to carry further load. In this region failure mechanisms are developing in the 

adhesive/adherend system, i.e. void nucleation in the adhesive, debonding at the adhesive/adherend 

interface, micro-cracking, etc. The proposed model is formulated to predict the load bearing 

capacity of an adhesive joint, which is a result of the adhesive’s ductility and both damage initiation 

and propagation process. For the joints utilized in this work, where the adherends are stiff (steel 

material and thick), the entire adhesive layer enters plasticity prior to damage propagation, as will 
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be shown in section 4.4 through the presentation of corresponding stress variations. The joints reach 

their ultimate capacity because the entire adhesive layer has entered plasticity. 

Figure 10 includes also the numerical predictions obtained from the trapezoidal and the 

proposed mixed-mode model. The proposed EPZ laws and mixed-mode model predict with great 

accuracy the initial linear and the following non-linear region of the global responses of both joints. 

It is concluded that this behavior depends strongly on the adhesive material elastoplastic response, 

described by the exponential behavior of the EPZ laws. On the other hand, the corresponding FEA 

results obtained with the trapezoidal laws capture the initial linear region but fail to capture the 

experimental non-linear region, in both cases. However, both models predict accurately the strength 

(load carrying capacity) of each joint, having a percentage difference from the average experimental 

value equal to 2.96 % for the proposed and 4.24 % for the trapezoidal mixed-mode model, for the 

SLJ case. For the DSJ case, a corresponding percentage difference of 1.52 % and 1.99 % has been 

calculated. 

 The predicted softening behavior (region after the joints' strength) by both the proposed and 

the trapezoidal mixed-mode models is not accurate compared to the corresponding experimental 

behavior, for both joint geometries. The experimental softening is characterized as sudden and 

dynamic. This leads to the conclusion that crack initiation and propagation (debonding process) in 

the adhesive layer is dynamic. As shown in section 4.4, at the maximum attained force of both joint 

configurations, shear stresses have become plastic in almost the entire domain of the adhesive layer. 

After that point, shear stresses reduce in magnitude according to the proposed mixed-mode model 

and the linear softening function, in a stable and uniform manner. This inconsistency with the 

experimental recordings is attributed to the fact that the numerical formulation of the current FE 

analysis of the joints does not account for inertia and dynamic effects (time dependency of 

equations of motion), but only the steady-state evolution of the phenomena is modeled. Thus, 

accurate predictions of the dynamic fracture and debonding (softening region) cannot be established. 
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However, for the current adhesive joints considered and within a general analysis and design 

framework, the joint strength and its loading region are the issues of major interest.  

 As far as the maximum attained displacement, both the proposed and the trapezoidal EPZ 

model underestimate and overestimate the corresponding experimental values in the SLJ and DSJ 

predictions, respectively, as shown in Figure 10 and listed in Table 2 and Table 3. This is of 

insignificant importance, when designing an adhesive joint towards its strength (load capacity). 

 The aforementioned predictions are obtained with a common value of the error parameter e 

equal to 0.1% for both the SLJ and the DSJ models. The corresponding δ0,i (i = I, II and III) 

parameters of the proposed EPZ laws are set equal to the δ2,i (i = I, II and III) parameters of the 

trapezoidal laws, for reasons of comparison. The following section deals with a sensitivity analysis 

of the effect of error e on the corresponding FEA results, in order to show the effectiveness of the 

proposed EPZ laws and mixed-mode model. 

 

4.3 Sensitivity analysis of error e 

As aforementioned, the physical parameters of the proposed EPZ pure mode laws utilized in 

the numerical predictions of the SLJ and DSJ are listed in Table 1. However, the parameters δ0,i (i = 

I, II and ΙΙΙ) are unknown since corresponding experimental values are not available and hence they 

are calculated through Equation 4 by introducing the error parameter e. According to Figure 3 and 

the corresponding description given in section 2.1 and section 4.1, an error parameter e equal to 

0.1% has been utilized. However, for reasons of completeness, a parametric finite element analysis 

is reported herein regarding the sensitivity of error parameter e. The corresponding results are 

presented in Figure 11 in terms of the global response of the SLJ and DSJ models. Given the 

parameters of Table 1, three values have been considered regarding error e for each geometrical 

configuration: 

• e = 1% 
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• e = 0.1% 

• e = 0.01% 

It is noteworthy that in all three cases considered the values of the fracture toughness Jci (i = 

I, II and ΙΙΙ) utilized are common. According to Figure 11, it can be concluded that, for both cases, 

there is a small effect of error e on the maximum attained load (strength) but a higher effect on its 

corresponding displacement. Thus, a value of error e less than 1% yields accurate strength 

predictions and conservative predictions regarding the corresponding displacement. This conclusion 

is in agreement with the corresponding one reported in reference [20], where the simulation of the 

adopted adhesive joints is based on a 2-dimensional space and thus only Mode I and II loading and 

fracture are present. When designing an adhesive joint with respect to its strength, the proposed 

EPZ model yields very promising results, since an error e value ranging from 0.01 to 1% does not 

affect the linear and the non-linear load path (see Figure 11) up to the strength limit. This is 

significant during the analysis and design of a ductile adhesive joint, because yield initiation (point 

where the non-linear region initiates in the P-u plots) is usually taken as the load allowable limit. 

 

4.4 Stress distributions on the bond area 

 This section aims at providing the calculated stress fields on the adhesive area domains of 

the SLJ and DSL models, as calculated with the proposed EPZ mixed-mode model. The Embedded 

Process Zone approach, under which the proposed model was formulated, does not distinguish 

between the separate fracture modes. This is because the entire adhesive layer is modelled with 

cohesive elements that do not provide a through-the-adhesive thickness description of the 

displacement and stress field. Thus, the calculated stresses are interpreted as the average stresses 

developing in the middle line of the adhesive thickness.   

Peel stress σz, in-plane shear τxz and out-of-plane shear τyz stresses correspond to the Mode I, 

II and III loading and failure modes, respectively. For the presentation of the calculated stress fields, 
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2-dimensional contour graphs have been utilized with normalized axes, as schematically shown in 

Figure 12 for the SLJ and the DSJ configurations. It is reminded that, since 1/4 of the DSJ 

configuration has been modeled, corresponding results are presented on half of the DSJ bond area. 

Figures 13 and 14 present the σz and τxz stress variations at three levels throughout the non-linear 

loading history of the SLJ model; at 0.01 mm (very early, linear phase), at 0.1 mm (when response 

starts to deviate from linearity) and at 0.2 mm (near the maximum load). Figure 15 presents the out-

of-plane shear stress τyz variation only for the last level, since these stress values are very small. 

At a first glance, the peel and in-plane shear stresses are symmetrical both with respect to x 

direction (at y/w = 0.5) and with respect to y direction (at x/L = 0.5). On the other hand, out-of-plane 

shear stresses are anti-symmetrical, a behavior which is reasonable since the SLJ geometry is anti-

symmetric by nature. The linear elastic σz and τxz stress variations (Figures 13a and 14a) present a 

peak at the middle of the two opposite x-edges (x/L = 0 and 1), reducing in a non-linear manner as 

x/L tends to 0.5. More specifically, in this early stage peel stresses are negative in most of the 

adhesive area, a fact that denotes contact conditions, whereas in-plane shear stresses are very small. 

At the next evaluation point (u = 0.1 mm, Figures 13b and 14b), negative peel stresses cover a 

slightly smaller area than before, whereas in-plane shear stresses have redistributed and peak at the 

four corners of the adhesive area. At the maximum joint strength point (u = 0.2 mm, Figures 13c 

and 14c), lower value peel stresses are generally obtained, with the negative stresses denoting 

contact developing in a quite smaller area than before. The corresponding in-plane shear stresses 

attain their maximum values (18.5 MPa) in most of the adhesive area, becoming lower near the 

edges in x-direction (x/L = 0 and 1). This maximum value is equal to the shear strength of the 

adhesive σc,II (see Table 1), a fact that shows that the SLJ configuration is shear dominated. 

The out-of-plane shear stresses τyz, presented in Figure 15, remain at very low levels (0.75 

MPa) and thus can be characterized as elastic during the whole SLJ's loading history. In fact τyz  

stresses do not contribute significantly to the loading and failure of the adhesive layer. 
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Figure 16 presents the contribution of the σz, τxz and τyz stresses to the satisfaction of the 

quadratic stress criterion (see Equation 12 and Equation 29), utilized for modelling damage 

initiation. Each sequential term of the criterion corresponds to subplot (a), (b) and (c) of Figure 16, 

respectively, which all refer to the maximum attained load of the SLJ model. The denominator of all 

terms is equal to σc,i (1-e), since the actual utilized value of the critical stress is multiplied by the 

tolerance (1-e), as described in the formulation part of the mixed-mode model.  By adding all terms 

(maximum value of each subplot’s colour map), one can easily see that the criterion is satisfied in 

the entire adhesive domain. Mostly responsible are the shear stresses.  

 Same as before, Figures 17 and 18 present the peel, σz, and  the in-plane shear, τxz, stress 

variations at three levels throughout the non-linear loading history of the DSJ model; at 0.01 mm 

(very early, linear phase), at 0.07 mm (when response starts to deviate from linearity) and at 0.11 

mm (near the maximum load). Figure 19 presents the out-of-plane shear, τyz , stress variation only 

for the last level, since these stress values are very small. As a general observation, the peel and in-

plane shear stresses are symmetrical both with respect to x direction (at y/w = 1) and with respect to 

y direction (at x/L = 0.5), reminding that only half of the bond area is shown in these figures.  The 

out-of-plane shear stresses however, are symmetrical with respect to x direction (at y/w = 1) and 

anti-symmetrical with respect to y direction (at x/L = 0.5). The linear elastic σz stresses (Figure 17a) 

peak at the middle of the adhesive's free edge (x/L = 0, y/w = 0.5) and are being reduced in a non-

linear manner as x/L tends to 0.2. These stresses are negative in most of the adhesive area, a fact 

that denotes contact conditions. Within the area between x/L = 0.51 and x/L = 0.76, positive peel 

stresses develop, that remain in low levels compared to the maximum ones. The in-plane elastic 

shear stresses τxz (Figure 18a) develop in the entire bond area and peak at the middle of the joint (at 

x/L = 1).  

 At the second evaluation point (u = 0.07 mm), positive peel stresses (Figure 17b) develop in 

a larger area near the adhesive edge (from x/L = 0 to 0.33) when compared to the corresponding 
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stress field in Figure 17a. Also, the positive peel stress area between x/L = 0.51 and x/L = 0.76 

vanishes. The peak values of the in-plane shear stresses at that point (Figure 17b) are again 

constrained at the middle of the joint (at x/L = 1) and are being reduced towards position x/L = 0.5.  

 At the maximum joint strength point (u = 0.11 mm, Figures 17c) peel stresses maintain their 

peak values at x/L = 0 and develop in an extended area up to x/L = 0.4. The peak stresses at x/L = 0 

are equal to 8.6 MPa, small compared to the tensile strength of the adhesive σc,I, which is equal to 

30 MPa (see Table 1). The in-plane shear stresses τxz redistribute in a way that are reduced in the 

vicinity of x/L = 0 and x/L = 1 and maximize in the internal bond area (from x/L = 0.15 and x/L = 

0.91). The maximum τxz values are equal to 18.31 MPa, a value close enough to the shear strength 

of the adhesive σc,II (18.5 MPa). According to this last note, DSJ geometry can be characterized as a 

shear dominated joint type. The out-of-plane shear stresses τyz, presented in Figure 19, remain at 

very low levels (0.99 MPa) and thus can be characterized as elastic during the whole DSJ's loading 

history. As was the case for the SLJ configuration too, stresses τyz do not significantly contribute to 

the loading and failure of the adhesive layer. 

Figure 20 presents the contribution of the σz, τxz and τyz stresses to the satisfaction of the 

quadratic stress criterion at the maximum attained load of the DSJ model. Again, by adding all 

terms (maximum value of each subplot’s colour map), one can easily see that the criterion is 

satisfied in the entire adhesive domain, due to shear stresses. 

 

 

5. Conclusions 

 This work presents a novel traction–separation law that describes the behavior of a ductile 

adhesive material constrained between two continua, that is its elastic, plastic and failure behavior. 

The proposed EPZ laws aim at describing the embedded process zone (EPZ) formed within the 

adhesive bond area during the loading and failure of a structural adhesive joint. Therefore, its 
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formulation is based on the Mode I, Mode II and Mode III loading and fracture and their 

interdependency that accounts for mixed-mode conditions. Initially the mathematical description of 

the pure mode laws is presented, followed by their incorporation in a developed mixed-mode model, 

which is based on damage and fracture criteria. The main difference of the proposed laws compared 

to the already known in the literature trapezoidal laws, is the shape of the stress strengthening part 

until failure initiation, which in our case is an exponential function instead of the bi-linear behavior 

included in the trapezoidal laws. For validation and verification reasons, a series of single lap and 

double strap joint configurations have been fabricated and tested and the corresponding finite 

element models have been constructed in a 3-dimensional space, for the prediction of their response. 

The proposed EPZ mixed-mode model has been utilized as the constitutive relation of the cohesive 

elements embedded in the adhesive area (interphase between adherends).  

 The trapezoidal law predicts accurately the linear elastic region and strength but fails to 

capture the nonlinear elastoplastic region of the tested joints. More specifically, the trapezoidal law 

predicts higher loads for a given value of applied displacement when compared to the 

corresponding results obtained from the proposed law and the experimental measurements, at least 

for the cases studied in this work where thick steel adherends and a ductile adhesive material have 

been utilized. This difference increases for values of load approaching the strength of the joints. 

This is a major conclusion, since, when designing a structural part that includes an adhesive joint, 

the proposed laws predict the global response and the stress distributions of the joint with higher 

accuracy than the trapezoidal law at this part of the joint response. Additionally, the proposed EPZ 

model predicts with great accuracy the experimentally measured average strengths of both joint 

cases, as occurs also with the trapezoidal model. 

 Four parameters are needed for defining each law in pure Mode i (i = I, II and III). 

Specifically, the initial stiffness (ki), the critical stress (σc,i), its corresponding separation (δ0,i) and 

the critical separation (δc,i) or the fracture toughness (Jic). The critical stress, its corresponding 
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separation and the fracture toughness are obtained from experimental cohesive laws, whereas the 

initial stiffness can be calculated easily by considering the elastic properties of the adhesive material 

given by the manufacturer. However, a numerical parameter, namely error e, has been defined that 

leads to the indirect calculation of the physical parameter δ0,i through an analytic formula. Since, 

experimental cohesive laws were not available in our case, a best fit analysis on both joint 

configurations has yielded a common error e value, which was further utilized for the prediction of 

the behavior of both joints considered.  

 The effect of this parameter to the FE results has been investigated through a sensitivity 

analysis, which has led to the conclusion that accurate predictions of the strength and conservative 

predictions of the corresponding displacement at failure are obtained, when considering a value of 

error e equal to 1% or less. Thus, it can be concluded that the proposed EPZ laws can be referred to 

as two-parameter laws when designing towards the strength of an adhesive joint with a ductile 

adhesive material. However, when designing towards maximum attained displacement, the 

proposed laws are three-parameter laws. 

 The constitutive model presented here provides an alternative capability for the simulation 

and design of structures with bonded components which involve a ductile adhesive material. The 

validity of the proposed law can be further investigated for different adhesive joints and under 

different loading conditions that would lead the adhesive layer to stresses with a higher mode-

mixity, including also the effect of Mode III loading and fracture. 
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List with figure legends 

Figure 1: Proposed EPZ laws for the prediction of Mode I (a) and Mode II or III (b) loading and 

fracture.  

Figure 2: Exponential form utilized for the traction strengthening part of the proposed EPZ law. 

Figure 3: Analytical fitting with the proposed numerical EPZ law of a typical experimental T-S law 

in Mode I (a) and Mode II (b) loading and fracture.   

Figure 4: Proposed mixed-mode EPZ model. 

Figure 5: Geometrical configuration (dimensions in mm) of the SLJ (a) and the DSJ (b) specimens. 

Figure 6: Experimental setup in the testing machine of a SLJ (a) and a DSJ (b) specimen. 

Figure 7: Finite element model of the SLJ – boundary conditions and detail of the overlap area. 

Figure 8: Finite element model of the DSJ (1/4 of the full DSJ, with appropriate symmetry 

boundary conditions). 

Figure 9: Von Mises stress distributions calculated within the linear elastic range of the adhesive 

material of the SLJ (a) and DSJ (b) model. 

Figure 10: Experimental and numerical load-displacement curves for the SLJ (a) and DSJ (b) 

geometries.    

Figure 11: Numerical results obtained from the sensitivity analysis of error parameter e for the SLJ 

(a) and DSJ (b) case. 

Figure 12: Dimensions and coordinate system of the overlap area of the SLJ (a) and the DSJ (b) 

configurations. 

Figure 13: Peel stresses σz distributions over the adhesive area of the SLJ model for applied 

displacement u equal to 0.01 mm (a), 0.1 mm (b) and 0.2 mm (c).  

Figure 14: In-plane shear stresses τxz distributions over the adhesive area of the SLJ model for 

applied displacement u equal to 0.01 mm (a), 0.1 mm (b) and 0.2 mm (c).  
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Figure 15: Out-of-plane shear stresses τyz distributions over the adhesive area of the SLJ model for 

applied displacement u equal to 0.2 mm. 

Figure 16: Distributions over the adhesive area domain of the separate terms of the quadratic stress 

criterion (see Equation 12 and Equation 29) that is satisfied at the maximum load capacity of the 

SLJ joint; contribution of σz (a), τxz (b) and τyz (c) stresses to the failure of the SLJ joint.   

Figure 17: Peel stresses σz distributions over the adhesive area of the DSJ model for applied 

displacement u equal to 0.01 mm (a), 0.07 mm (b) and 0.11 mm (c).  

Figure 19: In-plane shear stresses τxz distributions over the adhesive area of the DSJ model for 

applied displacement u equal to 0.01 mm (a), 0.07 mm (b) and 0.11 mm (c).  

Figure 19: In-plane shear stresses τyz distributions over the adhesive area of the DSJ model for 

applied displacement u equal to 0.11 mm. 

Figure 20: Distributions over the adhesive area domain of the separate terms of the quadratic stress 

criterion (see Equation 12 and Equation 29) that is satisfied at the maximum load capacity of the 

DSJ joint; contribution of σz (a), τxz (b) and τyz (c) stresses to the failure of the DSJ joint.   
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Tables 

 

Table 1: Physical parameters of the proposed pure mode EPZ laws. 

Mode i ki (N/mm3) σc,i (MPa) Jic (N/mm) 

I 3700 30.0 4.0 

II 1423 18.5 4.7 

III 1423 18.5 4.7 

 

 

 



 39 

Table 2: Experimentally measured and numerically predicted failure load Pmax and corresponding 

displacement umax for the SLJ case. 

 Exp. 1 Exp. 2 Exp. 3 
Exp. 

Average 

FEA 

proposed 
Diff. % 

FEA 

trapezoidal 
Diff. % 

Pmax (kN) 13.20 12.90 14.30 13.47 13.07 2.96 12.90 4.24 

umax (mm) 0.240 0.237 0.247 0.241 0.199 17.40 0.160 33.6 
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Table 3: Experimentally measured and numerically predicted failure load Pmax and corresponding 

displacement umax for the DSJ case. 

 Exp. 1 Exp. 2 Exp. 3 
Exp. 

Average 

FEA 

proposed 
Diff. % 

FEA 

trapezoidal 
Diff. % 

Pmax (kN) 42.98 43.66 41.00 42.55 43.20 1.52 43.40 1.99 

umax (mm) 0.111 0.105 0.099 0.105 0.139 32.3 0.149 41.9 
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Figure 1: Proposed EPZ laws for the prediction of Mode I (a) and Mode II or III (b) loading and 

fracture.  
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Figure 2: Exponential form utilized for the traction strengthening part of the proposed EPZ law. 
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Figure 3: Analytical fitting with the proposed numerical EPZ law of a typical experimental T-S law 

in Mode I (a) and Mode II (b) loading and fracture.   
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Figure 4: Proposed mixed-mode EPZ model. 
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(a) 

 

 

(b) 

Figure 5: Geometrical configuration (dimensions in mm) of the SLJ (a) and the DSJ (b) specimens. 

 

 

 

        

 (a) (b) 

Figure 6: Experimental setup in the testing machine of a SLJ (a) and a DSJ (b) specimen. 
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Figure 7: Finite element model of the SLJ – boundary conditions and detail of the overlap area. 
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Figure 8: Finite element model of the DSJ (1/4 of the full DSJ, with appropriate symmetry 

boundary conditions). 
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Figure 9: Von Mises stress distributions calculated within the linear elastic range of the adhesive 

material of the SLJ (a) and DSJ (b) model. 
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Figure 10: Experimental and numerical load-displacement curves for the SLJ (a) and DSJ (b) 

geometries.    
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Figure 11: Numerical results obtained from the sensitivity analysis of error parameter e for the SLJ 

(a) and DSJ (b) case. 
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Figure 12: Dimensions and coordinate system of the overlap area of the SLJ (a) and the DSJ (b) 

configurations. 
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Figure 13: Peel stresses σz distributions over the adhesive area of the SLJ model for applied 

displacement u equal to 0.01 mm (a), 0.1 mm (b) and 0.2 mm (c).  
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Figure 14: In-plane shear stresses τxz distributions over the adhesive area of the SLJ model for 

applied displacement u equal to 0.01 mm (a), 0.1 mm (b) and 0.2 mm (c).  
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Figure 15: Out-of-plane shear stresses τyz distributions over the adhesive area of the SLJ model for 
applied displacement u equal to 0.2 mm. 
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Figure 16: Distributions over the adhesive area domain of the separate terms of the quadratic stress 
criterion (see Equation 12 and Equation 29) that is satisfied at the maximum load capacity of the 

SLJ joint; contribution of σz (a), τxz (b) and τyz (c) stresses to the failure of the SLJ joint.   

Contact stresses < 0 
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Figure 17: Peel stresses σz distributions over the adhesive area of the DSJ model for applied 

displacement u equal to 0.01 mm (a), 0.07 mm (b) and 0.11 mm (c).  
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Figure 18: In-plane shear stresses τxz distributions over the adhesive area of the DSJ model for 

applied displacement u equal to 0.01 mm (a), 0.07 mm (b) and 0.11 mm (c).  
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Figure 19: In-plane shear stresses τyz distributions over the adhesive area of the DSJ model for 

applied displacement u equal to 0.11 mm. 
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Figure 20: Distributions over the adhesive area domain of the separate terms of the quadratic stress 
criterion (see Equation 12 and Equation 29) that is satisfied at the maximum load capacity of the 

DSJ joint; contribution of σz (a), τxz (b) and τyz (c) stresses to the failure of the DSJ joint.   
 

Contact stresses < 0 
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