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Abstract 

A dynamic model of Polymer Electrolyte Membrane Fuel Cell (PEMFC) system is developed to 

investigate the behaviour and transient response of a fuel cell system for automotive applications. 

Fuel cell dynamics are subjective to reactant flows, heat management and water transportation 

inside the fuel cell. Therefore, a control-oriented model has been devised in Aspen Plus Dynamics, 

which accommodates electrochemical, thermal, feed flow and water crossover models in addition to 

two-phase calculations at fuel cell electrodes. The model parameters have been adjusted specifically 

for a 21.2 kW Ballard stack. Controls for temperatures, pressures, reactant stoichiometry and flows 

are implemented to simulate the system behaviour for different loads and operating conditions. 

Simulation results for transitory load variations are discussed. Cell voltage and system efficiency 

are influenced by current density and operating temperature as well. Together, air blower and 

radiator consume 10% of the stack power at steady-state; nevertheless their power consumption 

could reach 15% during load surges. Furthermore, water crossover in the fuel cell has shown a 

significant impact on anode inlet flows, humidity and recirculation pump during these load changes. 

Also, amount of water saturation at cathode is found to be abruptly fluctuating and its removal from 

cathode is dependent on operating temperature and reactant stoichiometry. 

 

Key words: Dynamic simulation, system modeling, fuel cell, PEMFC, water crossover, system 

control. 

 

1. Introduction 

Fuel cell systems have received substantial attention in recent years and research on these systems 

has drastically increased mainly due to their inherent virtues of clean and efficient mode of 

operation. Existing fuel cell systems are categorized based on the type of electrolyte and preferred 

operating conditions. Among various types of fuel cells, the Proton Exchange Membrane Fuel Cells 

(PEMFC) is currently the best choice for portable power generation due to its relatively low 

operating temperature, quick start-up, high power density and efficiency to name a few. 

 

As a power source for automotive applications, PEMFC systems are usually subject to inflexible 

operating requirements when compared to stationary applications. These systems have to operate at 

varying conditions related to temperatures, pressures, power load and humidity. PEMFC dynamics 

are influenced by reactant flows, heat management and water content in the streams as well as 

within the fuel cell itself. All the auxiliary components, such as air and fuel supply system which 

include compressors and control valves, and the thermal control system which consists of heat 

exchangers, coolant pumps and air radiators need to be controlled for optimum operation of fuel cell 

when the system experiences varying load changes. Understanding the transient behaviour of a 

PEMFC therefore becomes very beneficial in dynamic modelling of these power modules at a 

system-level. 

 

Many PEM fuel cell models have been developed in recent years. However, very few of these 

models are published on dynamic modelling of complete PEMFC systems along with their BoP. 

Rabbani A. and Rokni M., 2013, “Dynamic characteristics of an automotive fuel cell 

system for transitory load changes”, SETA (Sustainable Energy Technology and 

Assessment), Vol. 1, pp. 34–43. 



Most of the available literature focuses on individual components of these systems, mainly on the 

fuel cell stack. While, steady-state models of these systems are present in abundance. A generalized 

dynamic model for fuel cell stack is reported by Amphlett et al. [1]. Another bulk dynamic model 

used for developing a control system is presented by Yerramalla et al. [2]. A simplistic dynamic 

model based on cathode kinetics was developed by Ceraolo et al. [3]. Pukrushpan et al. [4] 

presented a transient dynamic model and elucidated the dynamic characteristics of water transport 

in PEM fuel cells. A complete PEMFC system model was developed by Pathapati et al. [5] which 

included the dynamics of flow and pressure in the channels. Hu et al. [6] represented a three-

dimensional computational PEM fuel cell model with comparison of different flow fields. In recent 

years, several improved models were published by Park and Choe [7] and Jia et al. [8] to investigate 

fuel cell transient electrical responses under various operating conditions.  

 

Heat management in PEMFCs being a critical factor in its operations and performance is accounted 

for in open literature as well. Issues related to temperature dynamics are dealt and studied by Vasu 

and Tangirala [9], which could predict the effects of temperature and feed flows on system transient 

behaviour. Khan and Iqbal [10] proposed  a  transient  model  to  predict  efficiency  in  terms  of  

voltage  output, and a thermal model  including  heat  transfer  coefficients and energy  balance for 

the stack. Shan and Choe [11] analysed the temperature distribution on fuel cells by developing a 

two-dimensional model. Another control-oriented thermodynamic model is also proposed by del 

Real et al. [12].Coolant control strategies were suggested by Ahn and Choe [13] after investigation 

of temperature effects on the system. Jung and Ahmed [14] developed a stack model based on real-

time simulator in MATLAB/ Simulink environment and validated it with experimental setup of 

Ballard Nexa fuel cell. A thermal management system for a PEMFC was designed by Asghari et al. 

[15]. Influence of temperature on fuel cell’s characteristics is also reported by Beicha [16]. 

 

The model presented in this study aims at analysis and investigation of a complete PEMFC system 

and studies its transient response to varying load and operating conditions. According to authors’ 

literature survey, no studies have been conducted on system-level dynamic modelling of PEMFC 

system with all the necessary BoP components. Previous studies focus on transient response of fuel 

cell stack under different operating conditions; primarily on individual component analysis. 

Therefore, a need for a control-oriented dynamic system model is identified, which simulates a fuel 

cell stack under multiple varying operating conditions and changing auxiliary components outputs. 

Dynamic characteristics of PEMFC are also attributed to the heat management and water 

transportation that is scarcely reported in the open literature. Investigations for effects of heat 

exchangers on fuel cell stack performance and water crossover on anode recirculation operations 

are therefore selected to be one of the primary objectives here. 

 

Thereby in the entirety of this study, a sizeable focus has been set to devise a dynamic model of the 

fuel cell stack, which accommodates the electrochemical, thermal, feed flow and water 

transportation models. A complete system is constructed in Aspen Plus Dynamics by incorporating 

all the essential auxiliary components and implementing control strategies in order to emulate a real 

PEMFC system. Effects of these controls and other components are also investigated in this work. 

A thermal management strategy has been designed and its dynamic impact on fuel cell stack has 

been reported for the first time. Analysis of water crossover in the fuel cell and its impact on anode 

recirculation operations has been conducted and suitable findings are reported here. Moreover, two-

phase characteristics of concerning material streams are determined which provide suitable insight 

to saturated water issues in the fuel cell stack. This study also takes into consideration the BoP, such 

as air blower, valves, coolant pumps and air radiator; making it a thorough tool for predicting 

PEMFC dynamics and to provide important information for the design of control strategies.  

 



In the current study, the focus is on complete system with all necessary auxiliary components and 

their effect on system performance rather than effect of individual component on the system. Thus, 

it differs substantially from previous studies in the sense that not only dynamics of the fuel cell 

stack are included but responses of all other auxiliary components are also incorporated by applying 

a detailed control strategy design.   

 

2. System overview 

Layout of the proposed PEMFC system is shown in Fig. 1. The system comprises a PEMFC stack, 

air compressor, humidifier, pumps, heat exchangers and radiator for the cooling circuit, flow valves 

and controllers. Compressed air, which is fed into cathode of the stack is cooled and humidified 

prior to its entrance. Pressurized hydrogen from storage tank is regulated by a control valve into the 

fuel cell anode. Since the stack is not operated at dead-end mode, a higher fuel stoichiometry is 

maintained. Unutilized fuel from anode exhaust is recirculated back to the feed stream via a 

recirculation pump, thus allowing the fuel to be humidified. 

 

Figure 1. Schematic layout of a complete PEM fuel cell system with auxiliary components. 

 

In order to have a steady-state operation, the fuel cell stack needs to be maintained at a constant 

operating temperature. Therefore, heat rejected by the stack is absorbed by a liquid coolant which 

circulates in a circuit associated with the stack and a heat exchanger. An external cooling loop, 

connected to the aforementioned heat exchanger, in turn cools the water in the internal circuit. This 

circuit also consists of a heat exchanger to precool air entering the fuel cell and an air radiator for 

heat rejection. Flow of water is regulated by pumps in the respective circuits.  

 

In order to maintain reactant stoichiometry and fuel cell operating temperature at varying loads, PID 

controllers are deployed to regulate reactant and coolant flows. This emulates the behaviour of fuel 

cell in real time and helps in analysis of system response under varying operating conditions. Aspen 

Plus dynamics contains built-in PID controllers. These controllers collect data from various 

component inlet and outlets which are regarded as pressure, temperature and flow transmitters, and 

manipulate the corresponding components to reach the desired state. Due to this fact, current system 

responses and its behaviour are attributed to the formulated control strategy which is based on fuel 



cell stack limitations and recommendations by the manufacturer. Detailed control mechanisms are 

illustrated in subsection 2.6. Figure 1 only represents controllable connections initiating from the 

controller. In calculation as well as reality, the control unit collects information from various 

temperature, pressure and flow transmitters in addition to current and voltage data from the fuel 

cell. Here a simplified view of the system is presented.  

 

2.1 Fuel Cell stack 

A Ballard fuel cell stack [17] has been specifically adapted in the current study. The fuel cell stack 

contains 110 cells with a cell area equal to 285 cm
2
.  Operating temperature of the stack is 

maintained around 60-70°C with a pressure range of 1.1– 2.2 bar. Maximum power produced from 

the described stack is 21.2 kW corresponding to a current of 300A; however it is generally operated 

at lower current ranges to attain higher efficiencies by reducing ohmic and concentration 

overpotentials within the fuel cell stack. This model, which is based on equations adopted by 

Hosseinzadeh and Rokni [18], contains some parameters influencing physical characteristics of the 

system, as well as on operating conditions and membrane properties. Some of these parameters 

which are obtained for the Ballard stack are shown in Table 1. Here, focus has been set to build up a 

system which meets the requirements of actual stack running under recommended conditions. 

 

Table 1. Parameter estimation for Ballard Fuel cell stack 

Parameter Value 

Number of electrons transferred per mole of fuel, en  fuele molmol  2  

Number of electrons for the reaction rate, eln  fuele molmol  1 for cathode and 4 for anode   

Internal current density, ni  2cmA  0.002  

Symmetry factor,   0.5 

Membrane thickness, mt  cm  0.0183  

Density of the membrane-dry condition, dry  3cmg  3.28  

Molecular weight of membrane, mM  molKg  1.1  

 

 

 

  
Figure 2. Design validation data from Ballard (a) Nominal pressure drop of reactants within the 

fuel cell, (b) Reactant inlet pressures corresponding to current drawn. 
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During PEMFC steady-state operations, coolant pressure should be lower than reactant pressures 

whereas during start-up, coolant pressure may exceed reactant pressure. It is recommended to 

operate the anode at a higher pressure than the cathode. Ensuring that cathode pressure is lower than 

the anode pressure will minimize nitrogen crossover and improve cell stability. In a system with 

fuel recirculation, the consumption will be slightly above 1.0 stoichiometry as generally 1% to 2% 

of the flow will be required for purging. In the present study, purge occurrences are neglected. For a 

maximum service life and efficiency of the stack, Ballard suggests operating conditions within 

which the stack should operate [17], which are used in the current investigation. Recommended 

reactant inlet pressures and nominal pressure drops within the fuel cell stack are reported in Fig. 2. 

 

2.2 Humidifier 

Dehydration in fuel cell membrane is also a critical issue in PEMFC systems. In order to reduce 

ionic resistance in the fuel cell, a fully hydrated membrane is desired which enhances ionic 

crossover between the electrodes, as well as extends its life. Therefore, the reactants in PEMFC 

need to be humidified before entering the stack. In the proposed configuration, a humidifier is 

placed in conjunction of cathode inlet and exhaust, where it utilizes the water produced by chemical 

reaction inside the fuel cells to humidify inlet air. A simplistic energy and mass balance model is 

developed to cater for fuel cell cathode requirements. Although some empirical models could be 

considered, these vary over a wide range depending upon the types of humidifiers used. It is 

therefore assumed that inlet air is optimally humidified after passing through the humidifier. 

Relative humidity of air entering the cathode is arbitrarily set to 95% in the simulations. This 

assumption could be justified as it is very close to real operational conditions. On the anode side, 

fuel is humidified by means of water crossover through cell membrane and recirculation of anode 

exhaust into the inlet stream, thereby abandoning a need for separate humidifier. Moreover, it can 

be observed that water cross-over from cathode to anode through the membrane is adequate enough 

to raise the relative humidity in anode outlet to 100%. This exhaust, when recirculated and mixed 

with inlet stream maintains the desired humidity levels at anode inlet, which is further discussed in 

results section. 

 

2.3 Reactant feed systems 

Auxiliary components such as blowers, pumps and valves regulate flows of material streams in 

PEMFC systems. For hydrogen feed, a valve is placed between the hydrogen tank and inlet 

manifold of anode which enables or disables the hydrogen supply. This regulatory valve adjusts 

high hydrogen pressure of the tank to the desired operating pressure of the fuel cell. Since the 

system does not operate on dead-end mode, the amount of hydrogen regulated by this valve equals 

the stoichiometric hydrogen required by the fuel cell. An air blower regulates the flow and pressure 

of oxidant into the cathode. The amount of stoichiometric oxygen for fuel cell reaction is 

manipulated by a controller which regulates the electrical power of the blower, thereby controlling 

the compression and air flow into the system. 

 

2.4 Heat Exchangers and thermal management system 

For heat management of the prescribed system, a network of heat exchangers and radiators is 

deployed. These heat exchangers extract heat produced by the cell stack and maintain the selected 

operating temperature which is essential for performance and durability of the fuel cell. Although 

heat exchanger models used here are predefined in Aspen Dynamics, some of the parameters have 

been assumed on the basis of media entering the hot and cold sides of these heat exchangers. The 

heat exchanger, which is connected to the internal cooling loop, has liquid water on both its hot and 

cold side. Therefore, a UA value of 1.0 kW/K is assumed. Whereas, UA values for air pre-cooler 



and radiator are approximated to be 0.05 kW/K and 0.3 kW/K respectively. In performing the 

simulations, the pressure drop was assumed to be 0.05 on both sides of heat exchangers. The 

corrected LMTD is calculated in addition to the corresponding inlet and outlet temperatures of hot 

and cold streams. 

 

2.5 Pumps and Blowers 

In the above proposed system, air blower, anode recirculation pump and water pumps are one of the 

BoP components which are also regulated by the control system. Aspen Dynamics 
TM

 contains 

models of these units in its library as well. Since the nominal power of the PEMFC is only 21 kW, 

mass flow rates of fuel and air are very low.  For example, at an average load of 10 kW, fuel and air 

flows are around 0.00014 kg/s and 0.0088 kg/s respectively. Therefore, very low values of 

isentropic efficiencies are suggested in this paper. The efficiency of a blower ranges from 15% to 

48% in the calculations, depending on the air mass flow. Calculated pump efficiencies are also very 

low for the cooling water circuits and are determined to be around 70%. 

 

2.6 Control System 

In order to have a stable and efficient operation, the system requires an effective control strategy to 

regulate system parameters and operating conditions. Typical proportional-integral (PI) controllers, 

which are widely used in industrial control systems, are employed to regulate different components 

and flow streams. Key parameters to be controlled in the proposed system are reactant inlet 

stoichiometries, inlet pressures, coolant inlet and operating temperatures of the stack.  

 

Figure 3a shows fuel and air stoichiometries for the selected fuel cell stack which are proposed by 

Ballard and in Fig. 3b, recommended temperature difference between stack inlet and outlet is 

displayed.  

  
Figure 3. Recommended operating conditions by Ballard, (a) Reactant stoichiometry in the fuel 

cell, (b) stack inlet and outlet temperature difference maintained by coolant mass flow. 

It can be seen that at low current loads, high amounts of excess reactant flows are desired. This is 

due to the fact that at low power consumption and low pressures, water is formed by reactions in 

cathode side of the cells and it needs to be ejected out of the stack, which is done by supplying high 

amounts of reactants. While the amount of oxygen consumed depends on the stack current, the 

amount of oxygen supplied to a fuel cell is directly related to the blower power. Therefore, an 

algorithm based on the above figure is developed to be the process variable for PI controller, which 

regulates blower power to maintain the desired oxygen ratio. Similarly, an algorithm for controlling 
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hydrogen flow is devised along with a PI controller, which regulates the control valve opening for 

optimal fuel supply. 

 

Thermal management in PEMFC systems is of vital importance, basically due to the fact that heat 

produced in the selected fuel cell cannot be dissipated by convection and radiation through the stack 

surface. A consistent and stable operation of around 70°C thus requires a liquid cooling system. 

Since the operating temperature of the fuel cell is not very high, a low temperature difference with 

the ambient requires having a large heat transfer surface. Thus, an efficient thermal control system 

becomes of substantial importance to ensure optimum system performance. 

 

As shown in Fig.1, the cooling system for fuel cell consists of internal and external cooling circuits. 

Also mentioned earlier, the coolant mass flow rate defines the variance in the stack temperature or 

simply maintains the fuel cell operating temperature. In this case, temperature in the stack can be 

controlled by coolant flow rate which acts as an input signal and is adjusted by the PI controller. 

Based on data from Fig. 3b, equations defining stack temperature as a set-point for controller are 

developed. In addition, the controller simultaneously collects data from temperature transmitter at 

coolant outlet stream, which then changes the coolant flow accordingly by sending output signals to 

the driving pump. Employment of such algorithm in the system controller ensures a stable operation 

under normal steady-state conditions, however for system start-up scenario, a different approach is 

required.  

 

Temperature of the coolant entering the stack can similarly be controlled by flow of water in the 

external circuit. Control signal to the associated pump regulates electrical power of the pump and 

hence the coolant inlet temperature into the stack. In a similar fashion, temperature of water in the 

external circuit is dependent on radiator fan speed. PI controllers are used to regulate the fan speed 

as well. 

 

 

3. Fuel cell modelling 

The characteristics of the PEMFC system described above are implemented in Aspen Plus 

Dynamics
TM

 which is a simulation tool for process modelling and energy system analysis. The 

program contains a vast library of components and controls for standard energy processes. The 

PEMFC stack model presented in this study is based on a model developed by Hosseinzadeh and 

Rokni [18]. Concentration losses are neglected in the present study, which is justified by the fact 

that the system does not run at such high current densities where the concentration overpotentials 

becomes significant. Models for fuel cell and humidifier are also implemented into the code and are 

based on adopted mathematical models describing the voltages, current densities and their 

dependence on operating pressures, temperatures and stoichiometric ratios of the reactant gases. 

This model which incorporates governing equations for cell electrochemical, polarization 

overpotentials, heat transfers and water diffusion across the membrane is implemented into ASPEN 

Plus Dynamics and system controls are implemented in order to ensure stable operation of the plant 

during load changes. Thermodynamic efficiency and net power of the system are determined by the 

current drawn and voltage produced by the stack. Total energy into the fuel cell is consumed by 

electrical power output, heat removed by the coolant, heat loss at the stack surface and energy 

stored by the stack itself. In the current model, a lumped thermal model proposed by Khan and 

Iqbal [10] is considered. The stack is regarded as a single thermal mass with a heat capacity. With 

the assumption of stack temperature being equal to coolant temperature at the outlet, heat 

exchanged with the coolant and hence stack operating temperature could be determined. 

Subordinate components in the BoP, i.e. anode recirculation and water pumps, air compressor, 

mixers and heat exchangers are simulated by using default mathematical models contained in Aspen 



Plus Dynamics library. Table 2 shows a standard set of equations which constitute the model used 

in the current study.  

 

Table 2. Constitutive equations for PEMFC model. 
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4. Results and discussion 

Simulations for the prescribed system were carried out and reliability of the suggested model is 

verified and corroborated against design validation data by [17] at different power loads. Model 

characteristics of the same system at various operating temperatures and power loads have been 

studied in Hosseinzadeh and Rokni [18]. Figure 4a represents adaptation of the devised model 

which corresponds to the polarization curve obtained from operational data associated with the 

given PEMFC stack. The calculated relative error shows a good agreement between the model and 

date provided. As suggested by the manufacturer, stack temperature range of 60-70°C has been 

used in simulations of the current system. Selection of other parameters and operating conditions is 

based upon Fig. 2 and Fig. 3. 

 

  
Figure 4. (a) Comparison of Ballard operational data and calculated polarization curves for PEM 

fuel cell with relative error, (b) Overall system efficiency profile at operating current range. 

 

Fig. 4b exhibits profile of overall system efficiency at corresponding currents. A general trend of 

decreasing efficiencies with increasing loads can be observed, which is characterised by an increase 

in ohmic overpotentials in the stack and high power consumption of BoP for cooling of the system. 

However an exception to the contrary can be noticed at very low currents, where high parasitic 

losses in BoP render the system efficiency to be lower as well. Nevertheless, higher stack 

efficiencies at low loads assist the system efficiency to be not as low when compared to that at 

higher currents.  

 

Results for transitory effects under variable load changes (when a current corresponding to a 

specific power load is drawn from the stack and varied at any occurrence of time) are discussed 

below: 
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5.1 Cell voltage and temperature variations 

An instance of load change, when current is ramped from 60 A to 100 A at a rate of 20 amperes per 

second and vice versa, is presented in Fig. 5a and its effects on cell voltage are examined. It can be 

observed that the cell voltage reduces abruptly with current surge and vice versa. This decline in 

voltage potential at increase of current density is attributed to the cell overpotentials. However, it is 

also noticed that cell voltage is also a function of operating temperature and pressure. Since, 

pressures of the reactants are already regulated; here we will discuss temperature dependency of 

developed potential differences in the cell. Voltage increases with the elevation of operating 

temperature. This is due to fast reaction kinetics at the electrodes of individual cell sites when 

operating at higher temperatures. At the same instance of current ramp as more current is drawn; 

more heat is produced by the reactions at cell sites, thus elevating the stack temperature.  

Consequently, the voltage also increases after the initial dip and follows the decreasing profile with 

the stack temperature as it is controlled towards the desired operating temperature. The opposite 

could also be observed when the current is reduced back to 60A. 

 

(a)   Cell Voltage at current ramp
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.0 (b)  Thermal management
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Figure 5. Current ramp-up from 60-100A and vice versa: (a) Changes in cell voltages and 

operating temperature, (b) Changes in coolant flows to maintain the fuel cell operating 

temperature.  

 

Since, temperature affects the voltage and overall system efficiency, it becomes important to have a 

stable operating temperature and therefore an efficient thermal management system. As can be seen 

in the Fig. 5b, coolant flow rates in both cooling circuits and an air radiator maintain the 

temperature of the stack, though it is very slow compared to the reaction kinetics affecting the stack 

voltage. Ramping of current increases the operating temperature of stack thereby actuating controls 

to contemplate this increase. Flow in the internal cooling circuit, which is coupled with the fuel cell 

stack is increased to extract heat and maintain the desired temperature difference between the stack 

inlet and outlet. Flow in the external cooling circuit is pumped up to retain the inlet temperature to 

60°C. Air flow in radiator is also increased to maintain temperature of external cooling loop around 

50°C by rejecting the heat to the surroundings. Rate of coolant flows in respective streams is 

associated with the power consumed by coolant pumps and air radiator which ultimately affects the 

overall system efficiency. It is also observed that air radiator being a liquid-gas heat exchanger has 

the slowest reaction time out of the three. Since temperature controls are slow compared to 

electrochemical reactions, overall thermal control strategy has a fair impact on stack voltage which 

undergoes frequent load changes.  

 



5.2 System efficiency and power consumption 

As can be seen in the Fig. 6a, when the stack current is altered from 60A to 100A, there is a 

reduction in system efficiency, mainly due to the associated voltage drop. Overall efficiency of the 

system is as much affected by air blower and radiator fan, as by the fuel cell stack itself. It can be 

observed that power produced by the stack increases with current drawn. Also, power consumed by 

auxiliary components increases, thereby reducing system efficiency from 55.5% to 50%. Once 

decreased, there is an abrupt rise in efficiency due to increase in voltage and it fluctuates at around 

50% mark due to slow temperature controls and fluctuating power consumption by air radiator. 

 

Figure 6b elaborates on power consumption in the system. Being a major consumer in the system, 

power consumption of air blower rises with increase in current and this incremental profile can be 

associated to the increased mass flow of air required to maintain oxidant stoichiometry in the fuel 

cell. After the initial rise, power consumption of air blower becomes constant; however the 

consumption graph of air radiator takes more time to become stable. This is due to the fact that flow 

in air radiator is manipulated to control the temperature and is a slow process. Together, air blower 

and radiator consume 10% to that of stack power, whereas a coolant and recirculation pumps 

account for 1.0-1.3% when operating at 60A. 

 
(a) System efficiency and power
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Figure 6. (a) System efficiency, stack power output and power consumed, and (b) Auxiliary power 

consumption. 

 

On the other hand, at higher currents of 100 A, power consumed by air blower and radiator 

constitutes 15% of the total stack power. For a swift temperature control and a thermally stable 

operation, air radiator requires more power or a larger heat exchanger area which would further 

reduce efficiency during these load variations. Power consumption of coolant pumps is not shown 

in the above figure because increase in internal and external coolant flows affects the auxiliary 

power consumption to a very small extent as compared to air compressor and radiator. Anode 

recirculation pump also consumes very low power; however the peaks at current surge are a 

noticeable detail, which is addressed later in the results. 

 

5.3 Effects of water transportation in fuel cell 

In PEMFCs, water management is a critical issue since the performance of fuel cell is strongly 

influenced by its internal water distribution. Figure 7a shows net water diffusion in the cell when 

current is changed from 60A to 100A and back. In the figure, positive values for water crossover 

designate transportation of water from cathode to anode of the fuel cell and vice versa. With 



increasing currents, more water is produced in the cathode which supports back-diffusion towards 

the anode until the system reaches back to steady-state and there is almost no net water crossover. 

Some negative peaks are also observed at the start of current change, which are due to electro-

osmotic drag. As more current is drawn, there is a rapid increase in hydrogen ion flux towards the 

cathode, thereby supporting water crossover through electro-osmotic drag. Back-diffusion rate is 

increased with the production of water on the cathode side and subsequently water flux is directed 

towards fuel cell anode. The reverse can said to be true when current is ramped down from 100 A to 

60A. 

 

Effect of water distribution can also be observed in anode inlet and outlet relative humidity. 

Whereas for the cathode, since it is assumed that air enters at a constant relative humidity of 95%, 

the outlet humidity is always above 100%. Therefore, results for only anode are discussed here.  

 
(a) Water crossover in fuel cell
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(b) Anode Humidity Levels

Time (Seconds)

C
ur

re
n

tl
 (

A
)

A
no

d
e

 o
ut

le
t 

R
H

 (
%/

%)

A
no

d
e

 in
le

t 
R

H
 (

%/
%)

750.0 800.0 850.0 900.0 950.0 1000.0

0
.9

2
0

.9
6

1
.0

1
.0

4
1

.0
8

-8
0
.0

-4
0
.0

0
.0

4
0
.0

8
0
.0

1
2
0

.0

 

Figure 7. Current ramp-up from 60-100A and vice versa: (a) Water crossover through PEMFC 

membrane, (b) Effect of water transportation on anode RH. 

 

From Fig. 7b, it could be further observed that relative humidity at anode outlet decreases with a 

current surge, though an abrupt increase is detected at the start of this change. Sudden ramping of 

the current consumes more hydrogen, leaving higher molar fraction and partial pressure of water in 

the anode, thus the peak of high relative humidity. With the rise in stack temperature, water activity 

on anode side is reduced and water diffusion from cathode increases and consequently stabilizes to 

almost zero net-water crossover with the control of operating temperature. As there is no external 

humidification apparatus for fuel and recirculation of anode exhaust aides in humidifying the anode, 

water crossover has a significant impact on anode operations which are discussed below. 

 

5.4 Fuel and oxidant flows  

Figure 8 depicts the variations in reactant inlet flows when the load on fuel cell is varied. It is 

interesting to notice the fluctuations in the anode inlet and outlet. When the current is ramped up 

from 60A to 100A, more hydrogen is consumed increasing the utilization factor at that instance. 

This can be seen in Fig. 8b where mass flow at anode exhaust suddenly decreases. Changes in 

temperature can also be noted at these current surges as the air stream is cooled by external cooling 

circuit. 

 



(a) Stream properties at anode inlet
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(b) Stream properties at anode outlet
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(c) Fuel stoichiometry 
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.0 (d) Stream properties at cathode inlet
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Figure 8. Current ramp-up from 60-100A and vice versa:, (a) Stream properties at anode inlet and 

(b) outlet respectively, (c) Effect on fuel stoichiometry and recirculation pump, (d) Air flow into the 

cathode. 

 

Control of fuel stoichiometry takes some time to readjust to the desired level. Although, anode 

outlet flow is disturbed by fuel stoichiometry, it is also affected by the water content in anode outlet 

(70% mass fraction), which depends on the net water crossover within the cell. Initial peaks at both 

load changes are also attributed to the electro-osmotic drag which is a function of current density. 

Since anode inlet is supported by recirculation from anode exhaust, the changes within the stack 

influence it considerably. In Fig. 8a, fuel flow at anode inlet follows a similar trend to that of anode 

exhaust, as well as the inlet temperature. Rapid reduction in temperature is due to lower volume of 

recirculation which is at around 69°C whereas dry hydrogen from the tank is at 25°C.  Fluctuations 

in water content at anode inlet disturb fuel flow controls and relative humidity constantly; they 

remain within acceptable ranges however. Figure 8c shows the fuel stoichiometry changes and 

power consumed by recirculation pump, which are affected by the depletion of hydrogen at anode 

cell sites and water diffusion during the current surges. On cathode side (Fig. 8d), as expected, the 

air flow which is regulated by a controller increases when the current is ramped up and steadies 

along with the system. There is no specific temperature control of inlet air in this model, though 

external coolant flows manipulate the air temperature which is further preheated by the humidifier 

before entering the stack. Air temperature varies around 60°C which is equal to the controlled 

temperature for coolant entering the stack; however temperature difference at anode inlet is 

significantly higher during these load variations. Such temperature gradients incur adverse effects 

as they form thermal stresses in the stack with co-flow configuration and reduce its life cycle. 



 

5.5 Effects of water saturation at cathode 

Water removal from a fuel cell cathode is dependent on stack temperature and pressure drop. 

Temperature is more critical factor of the two, since at high temperature the water will be in vapour 

state and easier to remove. Stack water production increases with current and is also dependent on 

the number of cells. The exact amount of liquid water product depends on cathode outlet 

temperature. Inlet humidity also contributes to liquid water saturation in the fuel cell, as reported in 

Wong et al. [19]. Figure 9 provides information on the amount of liquid water at outlet of the 

cathode channel for two different current surge amplitudes.  

 

(a) Ramping of current: 60-100-60A

Time (Seconds)

H
ea

t 
ge

ne
ra

te
d

 (
k

W
)

C
ur

re
n

t 
(A

)

Li
q

ui
d

 f
ra

c
ti

o
n

750.0 800.0 850.0 900.0 950.0 1000.0

0
.1

0
.1

5
0

.2
0

.2
5

0
.3

0
.3

5

-2
.0

0
.0

2
.0

4
.0

6
.0

8
.0

1
0
.0

1
2
.0

1
4
.0

-1
0
0

.0
-5

0
.0

0
.0

5
0
.0

1
0
0

.0
1

5
0

.0

 

(b) Ramping of current: 60-120-60A
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Figure 9. Water crossover through PEMFC membrane; (a) Current ramp-up from 60A to 100A and 

vice versa, (b) Current ramp-up from 60A to 120A and back. 

 

It can be seen in Fig. 9a, that there is an abrupt increase in amount of liquid water at cathode when 

the current is ramped from 60A to 100A. When higher currents are drawn, reactions within the fuel 

cell are accelerated which demand more intake of fuel and oxidant. Consequently these reactions 

produce more water when compared to production at low currents. Since the stack temperature does 

not elevate till that instance, higher percentage of produced water is saturated at fuel cell cathode. 

Heat produced by cell reactions then elevates the stack temperature, thereby reducing saturated 

water at the outlet. Moreover, condensation of water at cell sites produces additional heat which 

rapidly increases the stack temperature. It can be further noticed in Fig. 9a that heat produced in the 

stack lowers as water liquid fractions drop. On the other hand, when current is reduced back to 60A, 

a similar but opposite profile is observed and the amount of liquid water tends to increase with a 

sink in stack temperature. Therefore, at low temperatures and currents, water removal is a dominant 

factor and stoichiometries are determined by the minimum flow rates required for water removal 

which in the present case are more than adequate to provide the necessary concentrations. Figure 9b 

shows water saturation results when ramping of current is set from 60A to 120A instead. Although 

the data profile is analogous to that of Fig. 9a, it is noted that amplitude of these peaks is higher 

when compared. Apparently, the amount of liquid water at cathode exit is same for both cases when 

the fuel cell is operating at steady state. Heat produced by condensation requires additional flow of 

coolant to maintain stack operating temperature, yet it does not affect the system efficiency to a 

greater extent as liquid pumps do not consume that much power. 

 

 



5. Conclusions 

In this study, a comprehensive dynamic model of a PEMFC system along with the auxiliary 

components is presented and a substantial emphasis has been set to devise a control-oriented 

dynamic model of the fuel cell stack, which accommodates the electrochemical, thermal, feed flow 

and water transportation models. Main contributions of the proposed model are ascribed to the 

dynamic system responses, which is characterized mainly by heat management and water 

transportation within the fuel cell.  

 

It is observed that thermal management strategy greatly influences voltage output and system 

efficiency which increase with stack operating temperature. Moreover, slow temperature controls 

affect the stability of fuel cell operations. In order to contemplate fast electrochemical changes in 

the stack, high coolant mass flow rates are applied. Power consumed by liquid coolant pumps is 

minimal and have no considerable effect on system efficiency, whereas air radiator consumes most 

of the power in thermal management system. Further, work is required on air radiator to ensure 

thermal stability of fuel cell operations and prolonged stack lifetime. A 5% increase in power 

consumption of air blower and radiator is observed during load variations for the cases presented 

here.  

 

Furthermore, water crossover in the fuel cell has shown a significant impact on PEMFC anode 

operations. Anode inlet flows, humidity and recirculation pump are influenced by net water 

diffusion during load changes. Temperature changes at anode inlet are considerably higher during 

load variations and have a negative impact as they generate thermal stresses in the stack and reduce 

its lifetime. Also, amount of saturated water at cathode is dependent on operating temperature 

which apparently pertains to thermal management strategy of the system. At low currents and 

temperatures, reactant stoichiometries are determined by the minimum flow rates required for water 

removal from the stack. 
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Nomenclature 

E  theoretical voltage  V  

cellV  average cell voltage  V  

elP  stack power  kW  

inP  energy into the fuel cell  kW  

outP  energy out of the fuel cell  kW  

lossQ  heat dissipated  kW  

tC  stack thermal capacitance  kW  

R  universal gas constant  molKJ  

T  temperature  K  
F  Faraday’s constant  molKC  

I  current  A  

cellN  number of cells    
0

fg  change in Gibbs free energy  molKJ  

2HP  hydrogen partial pressure    

2OP  oxygen partial pressure    

mM  mol. weight of membrane  molKg  

OHJ
2

 net water-diffusion flux  2scmmol  

D  water diffusion coefficient  scm2  

2Ha  hydrogen activity    

OHa
2

 water activity    

2Oa  oxygen activity    

i  current density  2cmA  

ni  internal current density  2cmA  

0i  exchange current density  2cmA  

ai ,0  anode exchange current density  2cmA  

ci ,0  cathode exchange current density  2cmA  

ak  anode reaction rate  2scmmol  

ck  cathode reaction rate  2scmmol  

en  electrons transferred  fuele molmol  

eln  number of electrons    

dragn  electro osmotic drag    

mt  membrane thickness  cm  

 

Greek symbols 

a  anode transfer coefficient    

c  cathode transfer coefficient    

  symmetry factor    

act  activation overpotential  V  



aact,  anode activation overpotential  V  

cact,  cathode activation overpotential  V  

conc  concentration overpotential  V  

ohmic  ohmic overpotential  V  

  membrane water content    

dry  membrane density  3cmg  

 

 


