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Abstract

Several methods for aeroelastic modal analysis of a rotating wind turbine are de-
veloped and used to analyse the modal dynamics of two simplified models and a
complex model in isotropic and anisotropic conditions.

The Coleman transformation is used to enable extraction of the modal frequen-
cies, damping, and periodic mode shapes of a rotating wind turbine by describing
the rotor degrees of freedom in the inertial frame. This approach is valid only for an
isotropic system. Anisotropic systems, e.g., with an unbalanced rotor or operating
in wind shear, are treated with the general approaches of Floquet analysis or Hill’s
method which do not provide a unique reference frame for observing the modal
frequency, to which any multiple of the rotor speed can be added. This indetermin-
acy is resolved by requiring that the periodic mode shape be as constant as possible
in the inertial frame. The modal frequency is thus identified as the dominant fre-
quency in the response of a pure excitation of the mode observed in the inertial
frame.

A modal analysis tool based directly on the complex aeroelastic wind turbine
code BHawC is presented. It uses the Coleman approach in isotropic conditions
and the computationally efficient implicit Floquet analysis in anisotropic condi-
tions. The tool is validated against system identifications with the partial Floquet
method on the nonlinear BHawC model of a 2.3 MW wind turbine.

System identification results show that nonlinear effects on the 2.3 MW turbine
in most cases are small, but indicate that the controller creates nonlinear damp-
ing. In isotropic conditions the periodic mode shape contains up to three harmonic
components, but in anisotropic conditions it can contain an infinite number of har-
monic components with frequencies that are multiples of the rotor speed. These
harmonics appear in calculated frequency responses of the turbine. Extreme wind
shear changes the modal damping when the flow is separated due to an interaction
between the periodic mode shape and the local aerodynamic damping influenced
by a periodic variation in angle of attack.
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Resumé

Denne afhandling har udviklet flere metoder til aeroelastisk modalanalyse af en ro-
terende vindmølle og har brugt dem til at analysere modaldynamikken for to for-
simplede modeller og en avanceret model under isotropiske og anisotropiske betin-
gelser.

Coleman-transformationen bruges til at bestemme modale frekvenser, dæmp-
ninger og periodiske modalformer for en roterende vindmølle ved at beskrive ro-
torens frihedsgrader i inertialsystemet. Denne fremgangsmåde gælder kun for iso-
tropiske systemer. For anisotropiske systemer, der fx har en ubalanceret rotor eller
er påvirket af en vindgradient, bruges en generel metode som Floquet-analyse eller
Hill’s metode, som ikke definerer en unik referenceramme hvori modalfrekvensen
bestemmes. Der kan derimod lægges et vilkårligt multiplum af rotorhastigheden til
frekvensen. Denne ubestemthed afklares ved at sørge for at den periodiske modal-
form er så konstant som muligt i inertialsystemet. Modalfrekvensen bliver dermed
den dominerende frekvens i responset for den rent anslåede modalform observeret
i inertialsystemet.

Et værktøj til modalanalyse baseret direkte på det avancerede aeroelastiske vind-
mølle-beregningsværktøj BHawC præsenteres i afhandlingen. Det bruger Coleman-
fremgangsmåden under isotropiske betingelser og implicit Floquet-analyse, som er
en beregningsmæssigt effektiv metode, under anisotropiske betingelser. Værktøjet
er blevet efterprøvet ved sammenligning med en systemidentifikation med den par-
tielle Floquet-metode anvendt på en ikke-lineær BHawC-model af en vindmølle på
2.3 MW.

Resulter af systemidentifikationen viser at de ikke-lineære effekter for denne
vindmølle i de fleste tilfælde er små, men de viser til gengæld at møllestyringen
kan skabe en ikke-lineær dæmpning. Under isotropiske betingelser har den periodi-
ske modalform op til tre harmoniske komponenter, mens den under anisotropiske
betingelser kan have et uendeligt antal harmoniske komponenter med frekvenser,
som er et multiplum af rotorhastigheden. Disse harmoniske komponenter indgår i
møllens beregnede frekvensrespons. En ekstrem vindgradient ændrer modaldæmp-
ningen når strømningen er separeret som følge af et samspil mellem den periodiske
modalform og den lokale aerodynamiske dæmpning, som er påvirket af en periodisk
variation af angrebsvinklen.
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Nomenclature

Symbols are presented in the text. only the most common notation is listed here.

Notation

x scalar
x vector (lowercase)
X matrix (uppercase)
XT transpose
ẋ time derivative
x̃ approximate quantity

Symbols

a aerodynamic state vector
A state matrix
AL Lyapunov-Floquet transformed state matrix
C damping/gyroscopic matrix
i imaginary unit,

p
−1

jk integer identifying the modal frequency
K stiffness matrix
L Lyapunov-Floquet (L-F) transformation
M mass matrix
N number of state variables
p nodal positions
q nodal quaternions
t time
T rotor period
u vector of degrees of freedom
uk periodic mode shape
V eigenvector matrix
x perturbation to aerodynamic state vector
y perturbation to degrees of freedom or state vector
Λ eigenvalue (characteristic exponent) diagonal matrix
ϕ fundamental solution
ψ azimuth angle
ωk frequency of mode k
Ω rotor speed
ϕ fundamental solution
σk damping rate of mode k
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Mode names

Index Component Direction

1 T tower LO longitudinal
2 E rotor edgewise LA lateral

...

F rotor flapwise Y yaw
DRV drivetrain T tilt

V vertical
H horizontal
S symmetric
BW backward whirling
FW forward whirling



Chapter 1

Introduction

Wind turbines are a proven and mature technology for generation of electricity from
renewable sources. But the ongoing effort of lowering the cost of energy compared
to traditional sources depends on the continuous optimisation of the turbines. This
optimisation consists of increasing the efficiency of the turbine through better aero-
dynamics of the rotor, smaller loss in the drivetrain and energy conversion, and
more intelligent control. On the other hand it also consists of making the turbines
cheaper by minimising the material needed for the structure to withstand the aero-
dynamic and inertial loads or by minimising the load itself. Both the assessment
of the loads and the design of control algorithms require a thorough understanding
of the dynamics of the turbines. A decomposition of the turbine dynamic response
into modal contributions, which is the subject of this thesis, is indeed an effective
way to gain this understanding of the dynamics and the factors contributing to the
loads.

This chapter introduces the basic concepts related to modal analysis of a rotating
wind turbine, gives a summary of the state of the art on this subject, and details the
motivation for and structuring of this thesis.

1.1 Concepts

A wind turbine in operation is subjected to loads from a variety of sources. The
wind deflects the blades and the tower, and the rotation produces strong centrifu-
gal forces in the blade. The wind is, however, not constant: it varies with the height
due to wind shear and in general due to turbulence. These factors generate a very
dynamic loading scenario. In the design process this scenario is determined by a
standard suite of time simulations of the response to the varying loading. The time
simulations yield detailed, important design loads, but they disclose little of the un-
derlying phenomena causing the loads. A modal analysis divides a small-amplitude
free response to perturbations about a steady state into modal contributions. Each
contribution is characterised by a modal frequency, modal damping, and a mode
shape. These results, which are in the frequency domain, directly show if the steady
state equilibrium is stable and can be used to explain frequency spectra determined
from time simulations.
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Chapter 1. Introduction

Figure 1.1: Siemens 3.0 MW prototype direct drive wind turbine with 101 m rotor.

In this section the fundamental concepts used in this thesis are defined. The
terminology might be slightly different from that used in the publications appended
to this thesis, illustrating that this has been a progressive work.

Modal analysis of numerical models consists of three steps:

1. Location of a steady state operating condition;

2. Linearisation of the equations of motion about the steady state;

3. Modal decomposition of the linearised system providing modal frequencies,
modal damping, and mode shapes.

The nature of the steady state depends on the characteristics of the rotor and the
external, or environment, conditions. Isotropic external conditions are defined as a
uniform wind field constant in time and aligned in tilt and yaw to be perpendicular
to the rotor plane and no gravity present, or the academic special case of the rotor
rotating in vacuum. An isotropic rotor is defined as being polarly symmetric and bal-
anced. The presence of these two conditions of isotropy result in a stationary steady
state with constant deflections of the turbine members. In the general case of an-
isotropic external conditions, an anisotropic rotor, or simply anisotropic conditions
in case either is present, the resulting steady state is periodic. In a periodic steady
state the deflections of the turbine members are periodic with the rotor period, and
the rotor speed varies periodically with the mean rotor speed determined by the ro-
tor period. Non-periodic effects like turbulence are not included in the steady state,
but rather considered a source of excitation of different modes under the assump-
tion that the turbulence does not change the mean rotor speed significantly. Lar-
ger non-periodic variations in the rotor speed must be modelled by different steady
states.

2



The linearisation of the equations of motion about the steady state is necessary
to make the linear concept of modal decomposition possible. It can either be done
analytically or approximately by considering small perturbations to the steady state
calculated with a nonlinear model.

The equations of motion for a wind turbine in steady state operation have peri-
odic coefficients caused by the rotor rotation. Therefore, a coordinate transforma-
tion that yields an equivalent set of equations of motion with constant coefficients,
must be performed before the modal properties, consisting of a modal frequency,
modal damping, and a mode shape for each mode, can be extracted by eigenvalue
analysis. In isotropic conditions, defined by isotropic external conditions and an iso-
tropic rotor, such a transformation is known a priori as the Coleman transformation,
which describes the blade degrees of freedom in the inertial frame, or ground-fixed
frame. The resulting mode shapes are constant for degrees of freedom on the sup-
porting structure. For degrees of freedom on the blade the mode shapes are peri-
odic, containing as many harmonic components as the number of blades, which
can result in whirling motion of the blades. In anisotropic conditions, the coordin-
ate transformation is included implicitly in a general method such as Floquet ana-
lysis or Hill’s method. The resulting periodic mode shapes can contain an infinite
number of harmonics both on the supporting structure and on the blades, allowing
for more complex motion.

Modal analysis predicts the stability of the steady state equilibrium determined
by the lowest modal damping. Stability analysis is often used to denote a modal ana-
lysis including aerodynamics, because the aerodynamic forces are the most com-
mon cause of instabilities. In other cases stability analysis refers to the search for
stability boundaries under variation of some parameter. In this thesis the term is
avoided, and modal analysis is used about any structural or aeroelastic system.

On three-bladed wind turbines the anisotropy mainly stems from wind shear
and a possible yaw error, making the effect modest. Two-bladed turbines, on the
other hand, have inherently anisotropic rotors, resulting in a significantly different
dynamic behaviour. This thesis, however, focuses on three-bladed horizontal-axis
wind turbines because they are the most commercially viable type.

1.2 State of the art

The methods for modal analysis of wind turbines, build to a large extent on methods
developed in other fields, which include general rotating systems and in particular
helicopters. This section presents selected literature from these fields to give an idea
of the chronology and span of the approaches.

1.2.1 Theoretical foundations

The theory for solution of differential equations with periodic coefficients has been
known for over a century. Floquet (1883) is the first to show that the solution to a
system of homogeneous linear ordinary differential equations with periodic coeffi-
cients consists of a product of a purely periodic term and a time-dependent expo-
nential term, determined from a set of fundamental solutions to the system. His
achievement has since become known as Floquet theory, allowing modal analysis of
periodic equations. While calculating the motion of the lunar perigee, Hill (1886)
solves an equation with periodic coefficients by setting up a determinant of infinite

3



Chapter 1. Introduction

size containing the terms of a series expansion of the coefficients. He shows that
the eigenvalues calculated from the determinant converge when the determinant is
truncated, an idea that subsequently has developed into Hill’s method. Lyapunov
(1896) is the first to specifically mention a coordinate transformation as a way to
form the solution derived by Floquet, and it has been aptly named the Lyapunov-
Floquet transformation.

These theories are now standard material in text books on mathematical ana-
lysis and on dynamics, see, e.g., Whittaker and Watson (1927), Coddington and Lev-
inson (1955), Meirovitch (1970), Yakubovich and Starzhinskii (1975), and Nayfeh and
Balachandran (1995).

Coleman (1943) derives the first example of a Lyapunov-Floquet transformation
for bladed rotors. The Coleman transformation introduces multi-blade coordinates
describing the rotor motion in the inertial frame of reference, thereby eliminating
the periodic coefficients in the equations of motion for systems with isotropic rotors.

1.2.2 Analytical modelling approaches

The earliest modal analyses on bladed rotor systems are carried out for simplified,
analytical models of helicopters. Coleman and Feingold (1947) apply Hill’s method
to determine the stability of an anisotropic two-bladed rotor on an anisotropic sup-
port, where the equations of motion still have periodic coefficients after introduc-
tion of the Coleman transformation. Hill’s method is basically a harmonic balance
method, which is described by, e.g., Krylov and Bogolyubov (1947) or Nayfeh and
Mook (1979).

The advent of the digital computer in the second half of the 20th century allows
performing modal analyses of more complex models. Early Floquet analyses are
performed by Lowis (1963) who determines the stability of a helicopter rotor system
by numerical integration of the equations of motion to find the transition matrix,
which maps the fundamental solution from one point in time to another. Peters
and Hohenemser (1971) study the stability properties of a helicopter rotor where
they obtain the transition matrix using a predictor-corrector integration scheme.
In this thesis a distinction is made between the terms Floquet theory and Floquet
analysis: the theory states the form of the solution, and the analysis is a practical
application of the theory, which typically means that the fundamental solution is
obtained numerically. Hill’s method also sees advantage of the computer, applied
by Crimi (1969) to the problem of stability of a rotor blade which is in forward flight,
thus introducing anisotropy.

Floquet analysis is applied to calculate the aeroelastic modal parameters of a
wind turbine by Kirchgässner (1984) who uses mode shape expansion of tower and
blades separately to obtain a model with a small number of generalised degrees of
freedom.

The computational effort in performing Floquet analysis on these models is still
substantial, and to allow the treatment of models with more degrees of freedom, im-
provements to the numerical schemes are suggested by several researchers. Peters
(1994) introduces Fast Floquet Theory where it is only necessary to compute the
transition matrix over 1/B of a rotor period, where B is the number of blades on the
isotropic rotor. Sinha and Pandiyan (1994) approximate the transition matrix based
on an expansion of the equations of motion in Chebyshev polynomials, thereby con-
verting the differential equations into a small set of algebraic equations. Bauchau
and Nikishkov (2001) develop the implicit Floquet analysis, which approximates the

4



lowest damped modes from a partially calculated fundamental solution, and they
apply it to a large finite element model where the transition matrix is furthermore
calculated using a nonlinear model, avoiding the task of linearising the equations of
motion.

Another approach to handling small periodic terms in the equations of motion,
caused by anisotropic effects, is taken by Johnson (1972) who solves the problem of
helicopter rotor flapping stability using the perturbation method of multiple scales.
The equations of motion are described in the rotating frame with the anisotropy
caused by forward flight, and the advance ratio (the ratio of the helicopter forward
speed to the rotor tip speed; equivalent to yaw error for a wind turbine) is used as
the small parameter in the perturbation analysis.

1.2.3 System identification

An alternative to the analytical modelling of the rotor systems is enabled by ad-
vances in experimental modal analysis made by, e.g., Hammond and Doggett (1975)
who determine the damping of helicopter rotor systems by analysis of the time re-
sponses to a random excitation of the system. Similar methods are used by Carne
and Nord (1983) in NExT (Natural Excitation Technique) to identify the modal prop-
erties of a vertical axis wind turbine with the advantage that the excitation is pro-
vided by the turbulence in the wind and that it is not necessary to measure the ex-
citation force. This technique is subsequently refined as operational modal analysis
and applied by, e.g., Hansen et al. (2006) who determine the damping of edgewise
modes using measured response signals from an operating wind turbine and com-
pare it to results from an analytical model.

These system identification approaches suffer from being based on theoretical
models that do not take effects of anisotropy into account. Liu (1997) derives a
methodology for system identification of linear time-varying systems, and in par-
ticular periodically varying systems, which, however, requires the measurement of
both input and output. It is not always straightforward to obtain a linear version
of a complex analytical model, which leads Wang and Peters (1998) and Fuehne
(2000) to introduce generalised Floquet theory. They use elements of experimental
signal analysis to eliminate noise from modelled nonlinearities or measurements
and approximate the modal parameters from the free response to an excitation. The
method is subsequently refined by Bauchau and Wang (2008) in the partial Floquet
analysis. The assumption of a free response causes some difficulties in the applica-
tion of these methods to measurements from wind turbines in operation because of
turbulence acting as a source of excitation.

A system identification method that successfully combines time-variance, ad-
mits input from natural excitations, and only requires measurement of the system
response has, to the author’s knowledge, yet to be derived.

1.2.4 Benchmark tools

There already exists a number of tools able to calculate the modal parameters of a
rotating wind turbine, which the work in this thesis must be held up against. These
methods are best compared by considering them using the following framework.
The starting point of a bottom-up approach is the solution procedure, which limits
the complexity of the model to allow for an exact solution. In this way the results are
based on sound physical and mathematical principles and are easy to interpret, but
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more complex effects cannot be modelled. An example of a bottom-up approach is
an isotropic model solved using the Coleman transformation. On the other hand, a
top-down approach starts off with a given model (or experiment) with all its com-
plexities and obtains an approximate solution based on a practical solution proced-
ure. This approach can deal with complex effects, but it can be more difficult to tell
whether the results are physically based or are artefacts of the method, because the
model and solution procedure are inconsistent. An extreme case of a top-down ap-
proach would be a black-box system identification where no knowledge of the phys-
ical system is assumed. Most existing tools are based on a compromise between a
bottom-up and a top-down approach.

All current wind turbine modal analysis tools considered here are based on the
Coleman transformation. The most bottom-up approach is HAWCStab (Hansen,
2004), which models a wind turbine with an isotropic rotor using linear finite beam
elements where three identical elements on each blade are formulated directly in
the inertial frame by the Coleman transformation. Unsteady aerodynamic forces
are derived from a blade element momentum (BEM) method providing for isotropic
external conditions. TURBU (van Engelen and Braam, 2004) is based on a nonlin-
ear structural model with spring- and damper-connected rigid bodies and a BEM
aerodynamic model, performing modal analysis for an isotropic system. Bir and
Jonkman (2007) use the mode shape-based structural model FAST coupled to the
aerodynamic code AeroDyn and obtain the modal properties after application of the
Coleman transformation (MBC). The periodicity remaining in the Coleman trans-
formed system equations due to anisotropy from external conditions or the rotor is
averaged over a rotor rotation to allow an approximate modal analysis of an aniso-
tropic system from a standard eigenvalue problem. Riziotis et al. (2004) base their
stability tool on the GAST nonlinear aeroelastic code, which features aeroelastic fi-
nite beam elements with both structural and aerodynamic degrees of freedom. The
periodic steady state due to a general inflow is found by time simulation, and an
eigenvalue problem is set up after averaging over a rotor rotation. In case of an in-
stability the steady state is obtained as the periodic part of the response.

The tools mentioned above and the tool presented in this thesis together with
some of the approaches mentioned in the previous sections are inserted approxim-
ately on a ‘bottom-up/top-down’ scale in Figure 1.2.

1.3 Motivation

The motivation behind the work contained in this thesis is two-fold, relating to its
status as an Industrial PhD project: on the practical side, Siemens Wind Power has
wished to gain the ability to apply aeroelastic modal analysis on operating turbines;
on the scientific side, the goal has been to develop methodologies for modal ana-
lysis of complex models of rotating wind turbines and through these models to gain
additional insight into the dynamics of wind turbines influenced by anisotropic ef-
fects.

Aeroelastic modal analysis of an operating wind turbine has not yet seen much
use in the industry. This situation has arisen because the modal analysis tools are
most often based on simplified models obtained separately from the complex aer-
oelastic codes used for time simulation, necessitating a fitting of the models used
for modal analysis and causing a possible discrepancy between results from modal
analysis and time simulation. Also, there is a lack of experience with the practical

6



TOP-DOWNApproaches

Complex model +
Black box system identification

Complex model +
Generalised/partial Floquet

Analytical model +
Implicit Floquet

Analytical model +
Coleman transformation

6

?

Tools

BHawC (modal analysis)

GAST (stability analysis)
FAST + AeroDyn +MBC

TURBU

HAWCStab

BOTTOM-UP

Figure 1.2: Selected approaches and tools inserted approximately on a ‘bottom-
up/top-down’ scale characterising the modelling and solution procedure.

use of aeroelastic modal analysis in the industry, where the focus has been mostly
on time simulations mandated by the certification standards.

Even though modal analysis of rotating systems has been researched for more
than half a century, the focus has been mostly on the question of stability and not
so much on the physical understanding of the motion causing the behaviour. The
effects of anisotropy are more apparent in the periodic mode shape, determining the
local motion, than in the modal damping, dictating increase or decrease of motion
amplitude over a period. There is still a need for a more thorough understanding of
what is the importance of the periodic mode shape, and whether anisotropic effects
need be investigated at all.

The work on which this thesis is based has sought to provide a state of the art
aeroelastic modal analysis tool based directly on the aeroelastic code BHawC used
at Siemens Wind Power. In this process, analysis methods novel in the wind tur-
bine community, have been used to obtain a tool that is able to correctly handle
anisotropic effects. This tool is placed higher on the bottom-up/top-down scale in
Figure 1.2 than existing tools for wind turbines, because it is built on a complex mo-
del not designed for modal analysis and because approximate solution methods are
used. As a side-effect this frequency-domain tool can provide a means of validation
and insight into the BHawC code. The tool is used for modal analysis of operating
wind turbines and for examining the effects of anisotropy on the modal parameters.

The methods presented in this thesis can be applied to examine instability phe-
nomena like stall-induced edgewise vibrations and flutter described by, e.g., Hansen
(2007). This thesis does not, however, contain an investigation into these phenom-
ena because the focus has been on the implementation of methods for modal ana-
lysis of anisotropic systems and the effects on the dynamics that the anisotropy has.

1.4 Structure

The goal of this thesis is to provide a coherent overview of the material contained
in the papers [P1–P5] and also to present material that did not make it into these
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papers. Writing this thesis has been an exercise in logically dividing three years’
work. The outcome is a separation of modal analysis methods and their perform-
ance, which are covered in Chapters 2 to 4, and the modal dynamics of wind tur-
bines, which is covered in Chapters 5 and Chapter 6.

Chapter 2 describes the three models used to illustrate the modal analysis meth-
ods: a simple model of flapwise vibrations, a simple model of edgewise vibrations,
and the BHawC model. Chapter 3 defines modal analysis on a periodic system and
describes the methods of Floquet analysis, Hill’s method, the Coleman transform-
ation approach, and partial Floquet analysis for a generic model. In Chapter 4 the
implementation of the main analysis tool based on the linearised BHawC model
and the approaches of Coleman transformation and implicit Floquet analysis is de-
scribed in more detail. Chapter 5 describes the modal dynamics of wind turbines
in isotropic conditions. In Chapter 6 the effects of an anisotropy on the rotor or the
external conditions are assessed. Chapter 7 contains the conclusions and sums up
suggestions for future work.

The original contributions of this thesis are:

1. a rigourous application of periodic modal analysis to an existing complex aer-
oelastic wind turbine code, which is the subject of Chapters 2 to 4, and

2. a survey of the modal dynamics in anisotropic conditions, which is the subject
of Chapter 6.
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Chapter 2

Wind turbine models

This chapter presents the three different models of a wind turbine that are used in
this thesis. A simple model with flapwise vibrations is used as a testbed for the mo-
dal analysis methods. Another simple model with edgewise vibrations is used to
simulate the lowly damped edgewise modes that are most easily identifiable on a
realistic model. Finally, the aeroelastic BHawC model including a linearised version
is presented.

2.1 Simple model of flapwise vibrations

A simple model that still represents some of the essential dynamics of a wind tur-
bine is very useful for obtaining an understanding of the dynamics and for testing
different solution methods with a minimum of implementation effort and compu-
tation time. Figure 2.1 shows such a model containing flapwise blade motion and
a coupling between the blades through tilt and yaw of the nacelle for a total of five
degrees of freedom. The nacelle and blades are modelled as rigid bodies connected
by rotational springs and dampers. The model is purely structural.

The equations of motion are derived using Lagrange’s equation, then linearised
analytically around the steady state of zero deflections and written as

M(t ) ü+C(t ) u̇+K(t )u= 0 (2.1)

θx

θ1

θ2

θ3

Jx

Jb

Jb

Jb

G1, G2, G3 Gx Ls
θz

Gz

Jz

ψ1

ψ2

ψ3

Figure 2.1: Simple model of wind turbine with five rotational degrees of freedom:
flapwise blade deflections θ1, θ2, and θ3, and nacelle tilt θx and yaw θz . From [P1,
Fig. 1]
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mt
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ψ1

θ1
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θ2

kbcb

Jb, S,mb

θ3kb

cb

Jb, S,mb

Figure 2.2: Simple model of wind turbine with four degrees of freedom: edgewise
blade deflections θ1, θ2, θ3, and tower top lateral displacement u t. From [P5, Fig. 2].

where M, C, and K are the mass, damping/gyroscopic, and stiffness matrices, re-
spectively, given in [P1, App. A.2], u is the vector of degrees of freedom, and (̇) = d/dt
denotes a time derivative. To simplify the notation in Equation 2.1 and onwards the
time-dependence of the degrees of freedom or state variables is not explicitly stated.

This model is used in [P1], and in [P2] it is formulated in multi-blade coordinates.
The parameters of the model are fitted to represent the dynamics of a generic multi-
MW wind turbine [P1, Tab. 1].

2.2 Simple model of edgewise vibrations

A model derived similarly to that presented in the previous section but with edge-
wise blade deflections is used in [P5] for modelling the edgewise rotor modes and
lateral tower mode that are lowly damped and thus easily identifiable on a real tur-
bine. Figure 2.2 shows the purely structural model consisting of three blades mod-
elled as rigid bodies connected with rotational springs and dampers to a tower top
mass which can move laterally, for a total of four degrees of freedom. The linearised
equations of motion are of the form given in Equation (2.1) with the matrices given
in [P5, Sec. 3.1.1] in non-dimensional form.

This model is used in [P5] in a linearised version and also with cubic damping
and stiffness terms to examine the effects of nonlinearities. The non-dimensional
parameters of the model are chosen to represent the dynamics of a generic wind
turbine [P5, Sec. 3.2].

2.3 The aeroelastic code BHawC

The nonlinear aeroelastic code BHawC has been developed in-house at Siemens
Wind Power over the last eight years. It is used for design and certification of wind
turbines, and it is continuously being validated against measured data. BHawC is a
complex entity; this section serves to provide an overview of the underlying theory
and the features most relevant for the modal analysis tool.

The main purpose of BHawC is to simulate the dynamic response of and calcu-
late the loads on three-bladed wind turbines. The model consists of substructures
for foundation, tower, nacelle, drivetrain, shaft, hub, and blades as shown in Fig-
ure 2.3. The structure is modelled primarily with finite beam elements and the aero-
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Figure 2.3: Sketch of BHawC model substructures. From [P3, Fig. 1].

dynamics is modelled using blade element momentum theory. The code is coupled
to a controller identical to that on the real turbine.

2.3.1 Structural formulation

The finite beam element model in BHawC uses a co-rotational formulation where
each element has its own coordinate system that rotates with the element. BHawC
uses linear two-node Timoshenko beam elements derived by Petersen (1990) with
12 degrees of freedom: three positions and three rotations in each node. Special
elements are introduced where bearings are present, and the drivetrain consists of
purely torsional elements.

The substructures are connected through a predefined, direct kinematic coup-
ling. The structural degrees of freedom for all elements are given relative to a co-
ordinate system fixed at the turbine base (tower or foundation bottom), i.e., the
coordinates are absolute and global. The configuration of the turbine is given by
the nodal positions p and nodal orientations q, and their velocities and accelera-
tions. In a model valid for arbitrarily large rotations of the elements, special care
must be taken of the representation of the orientations. In BHawC the orientations
of the nodes are expressed as quaternions, a four-parameter equivalent to a rota-
tion matrix (Krenk, 2009, Nikravesh, 1988), as a practical way of handling the non-
commutativity of finite rotations. The derivatives of the orientations are expressed
as angular velocities and accelerations about the three axes represented by the re-
spective quaternions. Velocities and accelerations of the positions and orientations
are collected in the vectors u̇ and ü, respectively.

The equilibrium equation is stated in global coordinates as

finer(p, q, u̇, ü)+ fdamp(q, u̇)+ fint(p, q) = fext(p, q, u̇, ü) (2.2)

where finer is the inertial force vector, fdamp is the structural viscous damping force
vector, fint is the internal force vector corresponding to elastic deformation, and fext

is the external force vector. The inertial force vector is written as

finer(p, q, u̇, ü) = M̄(q) ü+ C̄(q, u̇) u̇+ finer,stiff(p, q, u̇, ü) (2.3)

where M̄ and C̄ are mass and gyroscopic matrices, respectively, and finer,stiff is the in-
ertial stiffness force. In element coordinates M̄ is constant, C̄ depends on the angular
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Chapter 2. Wind turbine models

velocities of the elements, and finer,stiff is due to elastic deformation and depending
on the angular velocities and accelerations. All three terms are transformed into
global coordinates using rotation matrices represented by the nodal quaternions q.
Because the formulation is in global coordinates M̄ provides the majority of the iner-
tial forces, and the two last terms in Equation (2.3) are in fact negligible. The damp-
ing force is obtained as fdamp(q, u̇) = Cdamp(q) u̇, where Cdamp is a combined mass
and stiffness proportional damping matrix transformed into global coordinates us-
ing the quaternions. To obtain the element internal force, an equilibrium format is
used to retrieve the elastic deformation separated from the rigid body motion (Krenk
et al., 1999). The equilibrium displacement is found from the nodal positions and
orientations, and the internal force vector is transformed into global coordinates us-
ing the quaternions. The external force vector consists of aerodynamic, gravity, and
applied forces and is dependent on the configuration of the turbine.

For a given configuration (p, q, u̇, ü) and a given external force fext, say an initial
guess, the system might not be in equilibrium, i.e., Equation (2.2) might not be sat-
isfied. To find this equilibrium, increments of the positions and orientations δu,
velocities δu̇ and accelerations δü are found using the tangent relation, obtained
from a variation of the equilibrium equation (2.2) and written as

M(q)δü+C(q, u̇)δu̇+K(p, q, u̇, ü)δu= r (2.4)

where M, C, and K are the tangent matrices for mass, damping/gyroscopic forces,
and stiffness, respectively, and r= fext− finer− fdamp− fint is the residual. The tangent
mass and damping/gyroscopic matrices are largely equal to M̄ and C̄ in the equi-
librium equation (2.2) but contain contributions from the inertial force, which are
negligible because the formulation is in global coordinates. The tangent stiffness
matrix consists of constitutive stiffness, geometric stiffness due to both internal and
external forces, and inertial stiffness. The updating of the configuration is accom-
plished through Newton-Raphson iteration using Equation (2.4) combined with a
suitable solution procedure (the Newmark method, generalised-α method (Chung
and Hulbert, 1993), or a steady state solution (described in Section 4.1)) to predict
velocities δu̇ and accelerations δü and reduce the problem to the determination of
δu. In each step the tangent matrices and the residual including the external force
are updated to reflect the new configuration. The Newton-Raphson procedure is
continued until equilibrium is sufficiently satisfied around r≈ 0. In this way a geo-
metrically nonlinear model is achieved from a linear finite element model through
the updating of the orientation and length of the elements. Increments to the ro-
tations in δu, which are assumed infinitesimal, are for each node represented as a
rotation pseudo-vector, whose direction determines the axis of rotation and whose
length determines the magnitude of rotation. The quaternion for node number i is
updated as

qi := quat(δui ,rot) ∗qi (2.5)

where δui ,rot contains three rotations that are assumed infinitesimal and thus com-
mute, and where this rotation vector is transformed by the function termed quat
into a quaternion, which is used to update the nodal quaternion qi employing the
special quaternion product denoted by ∗ which maintains the unity of the qua-
ternion (Krenk, 2009). The nodal positions p and nodal velocities u̇ and acceler-
ations ü are updated by regular addition of the positional part of δu, δu̇ and δü,
respectively, as determined by the solution procedure.

12



2.3.2 Aerodynamics

The aerodynamic force in BHawC is calculated in a number of points on the blades
positioned independently of the structural nodes with finer spacing near the blade
tips. Blade element momentum theory is applied to determine the tangential and
axial induced velocities in these aerodynamic calculation points, and Prandtl’s tip
loss correction as well as a correction for the thrust at high induction values are
implemented. The blade element momentum theory is expanded to allow a skewed
inflow and an unsteady inflow by filtering the induced velocities as described by
Björck (2000).

The aerodynamic force is based on 3D corrected stationary airfoil data with lift,
drag, and moment coefficients, but is corrected by a Beddoes-Leishman-type dy-
namic stall model described by Petersen et al. (1998). The dynamic stall model takes
the circulatory and impulsive loading into account, and the effects of trailing edge
separation of the flow are determined from an expression for the lift as function of
the separation point position due to Øye (1991), replacing the original expression by
Leishman and Beddoes (1986). For each calculation point the flow is described by
four state variables. In addition, BHawC contains a model for the tower shadow, and
it also calculates the aerodynamic forces on the nacelle and tower.

The unsteady effect of trailing edge separation is modelled by the position of the
separation point f , related to the lift coefficient CL as

CL =CL,fa(α) f +CL,fs(α)(1− f ) (2.6)

where CL,fa is the lift curve for fully attached flow, CL,fs is the lift curve for fully sep-
arated flow, and α is the angle of attack. The dynamics of the flow separation is
modelled as

ḟ =
2W

τfc
( f st(α)− f ) (2.7)

where W is the relative wind speed, c is the chord length, τf is a constant, and f st is
the stationary separation point position obtained from Equation (2.6) with CL taken
as the stationary value.

2.3.3 Linearised model for modal analysis

The tangent relation in Equation (2.4) describes small perturbations to the equilib-
rium configuration and can therefore by used as the linearised equations of motion
for the structural part in modal analysis [P3]. The linearisation of the aerodynamic
force, contributing with aerodynamic damping and stiffness and a coupling to the
aerodynamic state variables, is performed numerically [P4]. In the current imple-
mentation only the unsteady aerodynamic effect of trailing edge separation is in-
cluded in the linearised model. The separation point positions f for all calculation
points are collected in the vector a, and the linearised version of Equation (2.7) is
written as

ẋ=Ad(p, q, u̇, a)x+Cua(p, q, u̇, a) ẏ+Kua(p, q, u̇, a)y (2.8)

where Ad is the aerodynamic system matrix, and Cua and Kua are the aerodynamic
velocity and displacement coupling matrices, respectively, all determined by nu-
merical linearisation about the equilibrium configuration (p, q, u̇, ü, a) [P4]. The de-
grees of freedom y contain perturbations to both positions p and orientations q, its
derivatives ẏ and ÿ contain perturbations to u̇ and ü, respectively, and x contains
perturbations to the aerodynamic state variables a.
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The structural equations of motion from Equation (2.4) including aerodynamic
forces become

M(q) ÿ+
�

C(q, u̇)+Ca(p, q, u̇, a)
�

ẏ+
�

K(p, q, u̇, ü)+Ka(p, q, u̇, a)
�

y+Af(p, q, u̇, a)x= 0
(2.9)

where Af is the aerodynamic flow coupling matrix determined by numerical linear-
isation, and all matrices are evaluated at the equilibrium configuration (p, q, u̇, ü, a).
The implementation is described in more detail in Chapter 4.

The combined linearised structural and aerodynamic equations of motion ((2.8)
and (2.9)) form the basis of the aeroelastic BHawC modal analysis. Currently, ef-
fects of dynamic inflow and speed and pitch control are not included in the modal
analysis. The structural model is used in [P3] and the aeroelastic model is used in
[P4]. In both cases the BHawC model is a 2.3 MW pitch-regulated wind turbine with
three 45 m blades, hub height 80 m, and nominal speed 16 rpm. The model has 381
structural degrees of freedom and 153 aerodynamic state variables.
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Chapter 3

Methods for modal analysis of
periodic systems

There are three steps to modal analysis with a numerical model: obtaining a steady
state, linearisation of the equations of motion, and decomposition of the linearised
motion into modal contributions. The first and last of the steps are described in
this chapter with emphasis on the modal decomposition. The linearisation step de-
pends on the model and is not treated in this chapter.

The described methods are either already existing or combined from existing
methods, but most of them have not seen extensive use in the wind turbine com-
munity. The description is based on a generic state-space model of a bladed rotor
system and the methods are validated by numerical results using the models de-
scribed in Chapter 2.

3.1 Steady state calculation

The simplest case of a steady state is that with no deflection of the structure, and
it need not be calculated. In the case of a non-zero deflection the steady state can
be found as a periodic steady state solution directly from the equations of motion,
or by time simulation until a sufficient approximation to steady state is obtained.
The direct steady state method is fairly simple to implement in isotropic conditions
([P3, P4], see Section 4.1 for details), because the rotor speed and the blade deflec-
tion in the rotating frame are constant, hence the inertia and aerodynamic forces
depend only on the rotor speed and the deflection state, and it can be calculated for
a single azimuth angle at a time.

In anisotropic conditions the task is more demanding, because the members of
the turbine, both on the supporting and rotating structures, exhibit periodic motion,
meaning that inertia, damping, and aerodynamic forces must be calculated over a
period of rotor rotation concurrently. One way of enforcing a periodic solution is
to apply the period shooting technique (Nayfeh and Balachandran, 1995), which
however requires multiple integrations of the system over a period of rotation of the
rotor, and is therefore computationally very demanding. Another way is to construct
a finite difference solution (Nayfeh and Balachandran, 1995) for which the linearised
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Figure 3.1: Anisotropic steady state calculation for the nonlinear simple flapwise
model with rotor speed of 1.4 m/s and forcing simulating a logarithmic wind shear.
Time simulation ( ) and finite difference after six iterations using 32 points (•).
Blades 1 ( ), 2 ( ), and 3 ( ); nacelle tilt ( ), and yaw ( ).

equations of motion are written as

ẏ=A(t , y, ẏ)y+b(t , y, ẏ) (3.1)

where y is the state vector with N state variables, A is the linear system matrix,
and b is the forcing vector. A periodic solution y(t + T ) = y(t ), where T is the ro-
tor period, is sought by discretising the period into m equal intervals with time
points t i = i h and time step h = T /m . Equation (3.1) is written at the midpoint
of interval i with the derivative approximated using a central difference scheme as
ẏ(t i − h/2) ≈ (yi − yi−1)/h, and the other terms approximated by the mean value
written as A(t i −h/2)y(t i −h/2)≈ (Ai yi +Ai−1yi−1)/2 and b(t i −h/2)≈ (bi +bi−1)/2,
where the shorthand notation yi = y(t i ) is used. These approximate equations of
motion for i = 1, 2, . . . , m are assembled in total form using y0 = ym as

Âŷ= b̂ (3.2)

where the expanded state vector with m N components is ŷ= {yT
1 yT

2 . . . yT
n }T and the

coefficient matrix Â and forcing vector b̂ are given as
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(3.3)
This system is solved using Newton-Raphson iteration updating Â and b̂ with the
new value of ŷ, and converges to the exact solution for an increasing number of time
steps m .

Figure 3.1 shows a finite difference solution to a steady state caused by forcing
simulating a logarithmic wind shear on the nonlinear simple flapwise model de-
scribed in Section 2.1. Comparing to a time simulation the agreement for the de-
flections is better than for the velocities.

The advantage of the direct steady state method is that the solution is exactly
periodic and that a solution can also be found in an unstable steady state, where
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a time simulation would enter into a limit cycle oscillation or simply blow up. The
direct steady state method is, however, complex to set up for a large model, and
it has not been attempted here. One practical method to obtain an unstable steady
state in isotropic conditions by time simulation is to increase the structural damping
to make the equilibrium stable. In anisotropic conditions, however, this procedure
would change the steady state because the elastic deformation is time-variant and
thus dependent on the damping. Another approach is suggested by Riziotis et al.
(2008) who use only the periodic part of the response growing in time, i.e., that with
frequencies of multiples of the rotor speed. This approach could be problematic if
the frequency of the mode causing the instability is close to a multiple of the rotor
speed.

Modal analysis considers the free response of the system and depends only on
the homogeneous part of the equations of motion. Therefore it is important to lin-
earise as much of the various forces as possible to have them included in the ho-
mogeneous part and hence in the modal analysis. Details on the linearisation of the
BHawC model are given in Section 4.2.

3.2 Modal analysis as an eigenvalue problem

The equations of motion linearised about a periodic steady state are typically cast
in a second order form with mass, damping, and stiffness matrices for the structure,
and in a first order form for the aerodynamics. To facilitate the modal analysis the
homogeneous equations are written in first order form [P1] as

ẏ=A(t )y , A(t +T ) =A(t ) (3.4)

where y is the state vector with N state variables consisting of the perturbations of
the structural degrees of freedom and their velocities as well as the aerodynamic
state variables and A is the T -periodic system matrix. A modal analysis cannot be
directly performed on the periodic system, therefore the Lyapunov-Floquet (L-F)
transformation L, which transforms the system into a time-invariant one, is intro-
duced as

y= L(t )z (3.5)

where z is the L-F transformed state vector. The time-invariant transformed system
given as

ż=ALz , AL = L−1(t )
�

A(t )L(t )− L̇(t )
�

(3.6)

has the simple solution z = eALt z(0) because the L-F transformed system matrix AL

is constant.
A modal decomposition of the time-invariant system in Equation (3.6) is readily

obtained from the standard eigenvalue analysis of the system matrix

AL =VLΛV−1
L (3.7)

where VL contains the eigenvectors of AL as columns and Λ is a diagonal matrix
containing its eigenvalues, assuming that a complete set of linearly independent
eigenvectors exist for AL. This assumption is made in this thesis. A detailed discus-
sion of the general Jordan decomposition applicable in the case of linearly depend-
ent eigenvectors is made by Nayfeh and Balachandran (1995). The free response of
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the system is found by inserting the modally decomposed system matrix of Equa-
tion (3.7) into the solution of Equation (3.6) and transforming back into the original
coordinates using Equation (3.5) as

y=
N
∑

k=1

uk (t )eλk t qk (0) (3.8)

where uk are the periodic mode shapes contained as columns in the matrix U(t ) =
L(t )VL, λk = σk + iωk with i =

p
−1 are the eigenvalues containing the damping

σk and frequencyωk , and qk (0) is the initial content of mode number k . Note that
the free response is a sum of modal contributions, like in the case of time-invariant
systems, but the mode shape is periodic with the rotor period. The damping ratio is
defined as

ζk =
−σk

|ωk |
p

1+σ2
k /ω

2
k

(3.9)

and the logarithmic decrement as

δk =
−2πσk

|ωk |
(3.10)

The following sections describe different approaches to obtaining the modally
decomposed solution given in Equation (3.8), either by an explicit L-F transforma-
tion or with it implicitly built into the method.

3.3 Floquet analysis

Floquet theory (Coddington and Levinson, 1955) shows that an L-F transformation
exists, but it does not provide an explicit means of obtaining it. Floquet analysis
is an application of Floquet theory using a numerically integrated set of solutions
to Equation (3.4) from which the modal decomposition is obtained. This section is
divided into classical Floquet analysis, which is a straight-forward numerical imple-
mentation of Floquet theory, and implicit Floquet analysis which is an approximate
implementation to efficiently extract the least damped modes of large systems.

3.3.1 Classical Floquet analysis

A fundamental solution of Equation (3.4) consists of N solutions obtained, e.g., by
numerical integration, over t ∈ [0; T ] with linearly independent initial conditions
written as

ϕ(t ) = [ϕ1(t ) ϕ2(t ) . . . ϕN (t ) ] (3.11)

such that ϕ̇(t ) = A(t )ϕ(t ). Because A is T -periodic, ϕ(t + T ) is also a solution to
Equation (3.4), ϕ̇(t + T ) = A(t )ϕ(t + T ), and therefore ϕ(t + T ) must be a linear
combination of ϕ(t )written as

ϕ(T ) =ϕ(0)C (3.12)

where C is the monodromy matrix, and t = 0 is introduced without loss of generality.
Any particular solution within t ∈ [0; T ] can be written as a linear combination of
the columns in the fundamental solution as y = ϕ(t )(ϕ−1(0)y(0)), which indicates
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that the fundamental solution contains all information about the dynamics of the
system.

The principal result of Floquet theory is that the fundamental solution can be
written as a product of a purely periodic matrix and a matrix exponential (Codding-
ton and Levinson, 1955, see [P2] for details)

ϕ(t ) =
�

L(t )L−1(0)ϕ(0)
�

eRt (3.13)

where the system matrix R of this time-invariant system is defined in terms of the
monodromy matrix as C = eRT , and the term L−1(0)ϕ(0) is introduced to make the
L-F transformation independent of the particular choice of fundamental solution.
The initial condition L(0) is arbitrary but can be selected to give physical meaning
to the transformation. The L-F transformation can thus be written in terms of the
fundamental solution and the eigenvalue decomposition R=VΛV−1 as

L(t ) =ϕ(t )Ve−Λt V−1ϕ−1(0)L(0) (3.14)

and the system matrix of the corresponding time-invariant system is

AL = L−1(0)ϕ(0)R
�

L−1(0)ϕ(0)
�−1 (3.15)

which is similar to R and therefore has the same eigenvalues [P1]. The characteristic
exponents λk obtained from the characteristic multipliers ρk , the eigenvalues of C,
as λk = ln(ρk )/T yield the modal frequencies and damping as

ωp,k = arg(ρk )/T , ωp,k ∈ ]−Ω/2;Ω/2]

ωk =ωp,k + jkΩ

σk = ln(|ρk |)/T
(3.16)

where the modal frequencyωk is not unique because of the infinite branches of the
complex logarithm and can be obtained by adding any integer multiple jk of the
rotor speed Ω to the principal frequencyωp,k . This choice of frequency is addressed
in Section 3.6. The periodic mode shapes are obtained as

uk (t ) =ϕ(t )vk e−λk t (3.17)

which also depend on the choice of frequency contained in λk , such that the solu-
tion in Equation (3.8) is not dependent on that choice.

Floquet analysis can be characterised as a time domain method, in that it relies
on integration in time of the system equations and that the periodic mode shapes
result in the time domain. These mode shapes can subsequently be described in the
frequency domain by a Fourier transformation.

Floquet analysis can also be classified as a system identification method because
it relies on the response of the system and not the system equations directly. It is,
however, exact in the sense that the consistency between the response and the mo-
del is determined only by the precision of the integration algorithm. The response
from a nonlinear model where the perturbations to the steady state are small can
be used in the fundamental solution, thus avoiding the step of linearisation. This
possibility, mentioned in [P2], is here applied to the simple flapwise model. Fig-
ure 3.2 shows the error in frequency from a Floquet analysis using the linear and
nonlinear responses compared to the exact solution as function of initial condition
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Figure 3.2: Error in frequency compared to exact solution as function of magnitude
of initial condition of a Floquet analysis of the simple flapwise model. Linear re-
sponse (×) and nonlinear response (◦).

magnitude. In each calculation the initial conditions have the same mechanical en-
ergy as the flapwise symmetric mode with the given deformation. The error using
the linear response decreases with the magnitude of the initial condition because
the signal to noise ratio decreases due to a constant error tolerance in the integra-
tion. The same is the case for the nonlinear response until around 10−3 rad where
nonlinear effects become significant and introduce errors in the modal decompos-
ition. Thus, this approach requires that one find this window in the magnitude of
initial condition, where the precision is acceptable.

In Floquet analysis a number of authors use the state transition matrix Φ(t1, t0)
that maps the fundamental solution from one point in time to another, such that
ϕ(t1) = Φ(t1, t0)ϕ(t0) (Johnson, 1980). The relation between the state transition
matrix after one period and the monodromy matrix is C = ϕ−1(0)Φ(T, 0)ϕ(0). The
matrices are similar and have the same eigenvalues, which means that modal damp-
ing and frequency can be found from either of them. The eigenvectors wk of Φ(T, 0)
are related to the eigenvectors vk of C as wk = ϕ(0)vk , which must be taken into
account in the calculation of the periodic mode shapes if the initial condition of the
fundamental solution is not the identity matrix.

The practical applicability of Floquet analysis is very dependent on the rotor
speed. For speeds tending to zero the rotor period tends to infinity but the integra-
tion time step must be held at a certain value to resolve the dynamics of the system,
and thus the computation time tends to infinity. But at very low speeds the effects of
rotation are negligible and the analysis might be replaced by several standstill ana-
lyses for different azimuth angles. Classical Floquet analysis is prohibitive, or at best
impractical, for large systems, where a more efficient method such as implicit Flo-
quet analysis, considered in the next section, should be used. Therefore the classical
Floquet analysis is applied only to the simple flapwise model in [P1, P2].

3.3.2 Implicit Floquet analysis

Implicit Floquet analysis (Bauchau and Nikishkov, 2001) exploits the feature of the
Arnoldi algorithm (see, e.g., Golub and van Loan (1989)) for eigenvalue extraction
of a matrix, that it requests the product of this matrix with a vector. The matrix in
question is the state transition matrix after a period, the vector is an initial condition
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of the system, and the product is thereby the response after one period to the given
initial condition. The Arnoldi algorithm successively determines the initial condi-
tion in each step such that all initial conditions form an orthogonal subspace after
m Arnoldi steps written as

P= [p1 p2 . . . pm ] (3.18)

where the first initial condition p1 =ϕ1(0) is arbitrary. The algorithm also builds the
projection of the transition matrix in the subspace, written as

H=PTΦ(T, 0)P (3.19)

of size m×m . If N Arnoldi steps were performed, requiring N integrations of the sys-
tem over a period, P would constitute the initial conditions of a fundamental solu-
tion and classical Floquet analysis could be performed on either Φ(T, 0) or H. But
the eigenvalues of H approximate those ofΦ(T, 0)with the characteristic multipliers
of largest magnitude converging first, so after much fewer than N steps a good ap-
proximation of the lowest damped modes (the characteristic exponents with largest
real part) can be obtained.

The m approximate modal frequencies ω̃k , damping σ̃k , and mode shapes ũk

are determined after m Arnoldi steps as

ω̃p,k = arg(ρ̃k )/T

ω̃k = ω̃p,k + jkΩ

σ̃k = ln(|ρ̃k |)/T

uk (t ) = [ϕ1(t ) ϕ2(t ) . . . ϕm (t ) ]w̃k e−λ̃k t

(3.20)

where ρ̃k are the eigenvalues of H and w̃k are its eigenvectors. The issues with fre-
quency non-uniqueness described for classical Floquet analysis also apply to the
implicit Floquet analysis.

The dynamics of the system is determined by the m -dimensional subspace pro-
jected system

˙̃y= ÃLỹ (3.21)

where ỹ=PTy, with L-F transformation

L̃(t ) =PTϕ(t )W̃e−Λ̃t W̃−1�PTϕ(0)
�−1L̃(0) (3.22)

and system matrix
ÃL = ln(H)/T = W̃Λ̃W̃−1 (3.23)

where Λ̃ contains the characteristic exponents λ̃k = ln(ρ̃k )/T in the diagonal, W̃
contains the eigenvectors of H as columns, and the initial condition L̃(0) is arbitrary.

The advantage of the implicit Floquet analysis is that it has the same qualities as
classical Floquet analysis, but that it makes the treatment of larger systems possible
due to the reduced computation time. Hence it is used in [P3, P4] on the BHawC mo-
del. Figure 3.3 shows the convergence of the modes as function of the Arnoldi step
[P3] where 19 modes are converged after 50 steps. An equivalent classical Floquet
analysis would require 762 integrations. The modes with lowest damping, which are
obtained from an implicit Floquet analysis, are the most important modes with re-
gard to stability, and for a purely structural model they typically correspond to the
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Figure 3.3: Normalised real part of implicit Floquet characteristic exponents of the
structural BHawC model as function of Arnoldi steps. Non-converged eigenvalues
(•) and converged eigenvalues (◦). From [P3, Fig. 3].

modes with lowest frequency which describe the most important dynamics of the
system.

Another advantage of the implicit Floquet analysis is that the number of Arnoldi
steps, i.e., system integrations, necessary for a given number of modes to converge
is believed to be independent of the detail, i.e., number of state variables, of the
model and is instead a characteristic of the system dynamics. So the computational
burden increases only in view of the larger system matrices to integrate, whereas
for a classical (or even Fast) Floquet analysis it would also increase the number of
integrations. For example, 50 Arnoldi steps are required to extract the 19 modes with
lowest frequency of the structural model [P3], and 56 steps are required to extract the
19 modes with lowest damping (including the 14 modes with lowest frequency) of
the aeroelastic model [P4]which has more state variables. This hypothesis needs to
be confirmed by analyses with models of different complexity.

3.4 Hill’s method

Floquet theory shows that the free response of a system with a periodic system mat-
rix contains a mode shape periodic with the same period (cf. Equation (3.8) and see
[P1] for more details). Therefore the system matrix and periodic mode shapes can
be expressed as the Fourier series

A(t ) =
∞
∑

l=−∞

Al eilΩt

uk (t ) =
∞
∑

l=−∞

uk ,l eilΩt

(3.24)

where Al and uk ,l contain the harmonic components with frequency lΩ of A and uk ,
respectively. Inserting the expansion of the mode shape into the solution given in
Equation (3.8), then inserting this expression and the expansion of the system mat-
rix into Equation (3.4), and finally collecting coefficients of equal harmonics yields
the eigenvalue problem (Xu and Gasch, 1995, see [P2] for more details)

(Â−λk ,j I) ûk ,j = 0 (3.25)
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Figure 3.4: Hill’s method applied to the simple flapwise model. (a) Eigenvalues (×)
and basis eigenvalues (◦) for two harmonic terms included in the expansion; (b) er-
ror in frequency for different numbers of harmonic terms compared to the solution
with eleven terms.

where Â is of infinite size and ûk ,j is of infinite length. For each mode k there ex-
ists an infinite number of eigenvalues λk ,j with the same damping values and with
frequencies differing by multiples of the rotor speed Ω. Similarly, there exist infin-
itely many eigenvectors ûk ,j containing the harmonic components of the periodic
mode shape. These components are shifted integer multiples of the rotor speed in
frequency between different values of j . Because all pairs of λk ,j and ûk ,j produce
the same solution, only one pair need be included.

Hill’s method is applied to the simple flapwise model in [P2], where the infinite-
dimension eigenvalue problem of Equation (3.25) is truncated to include a finite
number of terms in the expansion. This truncation introduces errors in λk ,j and
ûk ,j such that the eigenvalues belonging to one mode are then in general not exactly
equal in the real part, neither differing exactly by Ω in the imaginary part, nor do
the eigenvectors contain the exact same components [P2]. This situation is illus-
trated in Figure 3.4(a) where the inclusion of two harmonic terms should yield five
complex conjugate eigenvalues for each mode. But for the highest damped mode,
for example, it is only possible to identify three eigenvalues, where the remaining
two eigenvalues contain significant errors caused by the truncation. This observa-
tion indicates that eigenvalues that are centred in frequency, also termed the basis
eigenvalues (Christensen and Santos, 2005), contain the most precise solution, be-
cause the harmonic components that are included in the truncated eigenvector ûk ,j

are those with the largest relative magnitude [P2] (see also Section 3.6). The figure
also shows that it can be difficult to identify the basis eigenvalue, especially for a low
number of terms included. Figure 3.4(b) shows that the solution using the basis ei-
genvalues converges for an increasing number of terms included. Choosing which
eigenvalue to use for each mode also determines the modal frequency, which is non-
unique like in Floquet analysis. This choice is addressed in Section 3.6.

The periodic mode shape is thus given by Equation (3.24) with l = −m , . . . , m ,
where m is the number of harmonic terms included. Because the method operates
directly on the periodic mode shape, this might be considered the L-F transform-
ation, L(t ) = U(t ), and the time-invariant system matrix becomes AL = Λ, which is
already diagonalised.
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Figure 3.5: Multi-blade coordinates for flapwise motion of a three-bladed rotor.

Hill’s method can be characterised as a frequency domain method because the
Fourier series of the system matrix is used and because the periodic mode shape
results in frequency domain. Eliminating the need for time integration of the sys-
tem makes Hill’s method fast in use when applying the computationally efficient
Fast Fourier Transform algorithm. The expanded eigenvalue problem does, how-
ever, become very large for large systems, which necessitates a formulation in sparse
matrices and a reliable solver that can retrieve selected modes, e.g., with lowest
damping. Friedmann (1986) notes that Hill’s method is not convenient for imple-
mentation on computers in comparison with Floquet analysis. He does not sub-
stantiate this statement, but he might be referring to the problem with the large
eigenvalue problem or to the problem with choosing which eigenvalue to use for
each mode. In this work, Hill’s method has been applied only to a model of small
dimension because, indeed, the reliability of the sparse eigenvalue solver was not
satisfactory.

3.5 Coleman transformation approach

Coleman (1943) introduces a transformation to describe the degrees of freedom on
a bladed rotor in the inertial, or non-rotating, frame. The transformation makes the
system matrix time-invariant when the system is isotropic, and it is thus a special
case of the L-F transformation [P1]. What makes the Coleman transformation espe-
cially useful is that it is known a priori for a given system and that it is based on a
physically meaningful coordinate transformation.

The transformation uses multi-blade coordinates which for a three bladed rotor
are given as

a 0 =
1

3

3
∑

j=1

u j , a 1 =
2

3

3
∑

j=1

cos(ψj )u j , b1 =
2

3

3
∑

j=1

sin(ψj )u j (3.26)

whereψj =ψ1+2π(j −1)/3 is the azimuth angle for blade number j and u j are a set
of state variables, which are identical in the local blade frame. For u j representing
flapwise motion and ψj = 0 for blade j pointing down, Figure 3.5 shows that a 0 is
symmetric flapwise motion, a 1 is tilting motion of the rotor, and b1 is yawing motion
of the rotor. For u j representing edgewise motion, a 0 is the symmetric edgewise
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motion coupling to the drivetrain, a 1 is horizontal motion of the rotor, and b1 is
vertical motion of the rotor.

The inverse transformations of those in Equation (3.26) are collected in matrix
form as

u=Bu (t )z (3.27)

with u= {u 1 u 2 u 3}T, z= {a 0 a 1 b1}T and

Bu (t ) =







1 cos(ψ1(t )) sin(ψ1(t ))
1 cos(ψ2(t )) sin(ψ2(t ))
1 cos(ψ3(t )) sin(ψ3(t ))






(3.28)

where Bu has the convenient properties B−1
u (t ) =µBT

u (t ) and Ḃu (t ) =Bu (t )ω̄with µ
and ω̄ constant matrices known a priori in isotropic conditions (Hansen, 2003). The
transformation matrix in Equation (3.28) can be expanded into a matrix B(t ) includ-
ing transformations for all sets of corresponding state variables on the blades, and
including simple rotational transformations for state variables on the non-bladed
rotating members, e.g. the shaft, as well as including the identity transformation
for state variables on non-rotating members. Thus, the matrix B(t ) transforms the
original state variables into the inertial frame, which makes an isotropic system
time-invariant. After the system is transformed into the inertial frame, a stand-
ard eigenvalue analysis of the transformed system matrix given by Equation (3.6)
with B(t ) = L(t ) yields the modal frequencies and damping, and the eigenvectors in
multi-blade coordinates. This approach is used for modal analysis in [P1–P5].

The advantages of using the Coleman transformation for modal decomposition
are that the approach is simple, fast, and physically based, such that there is no am-
biguity with respect to the frequencies. But it only allows an exact modal analysis
of isotropic systems. In case of anisotropic systems the Coleman transformation
still makes the system less time-variant, and the approach can be used in combin-
ation with the methods mentioned previously. Applying the Coleman transforma-
tion before using Hill’s method [P2] results in fewer harmonic terms needed in the
expansion to give a good approximation to the solution. In combination with Flo-
quet analysis the Coleman transformation provides no saving in computation time,
on the contrary it might ruin the sparsity of the system matrices and increase the
computation time, but it is useful for identification of the modal frequency.

3.6 Identification of modal frequency

As seen in the previous sections the L-F transformations associated with Floquet
analysis and Hill’s method are not unique, which means that the frequency content
in the solution is arbitrarily divided between the eigenvalue and the periodic mode
shape.

For an isotropic system the Coleman transformation provides an L-F transform-
ation which is unique and known a priori for a given system, and which transforms
the system into the inertial frame. To give physical meaning to the modal frequency
determined from Floquet analysis and Hill’s method it is defined as that which can
be measured in the inertial frame, i.e. for an isotropic system the L-F transforma-
tion is chosen to be equal to the Coleman transformation [P1]. This choice is done
by requiring that the periodic mode shape for components in the inertial frame be
constant as is the case for a system described in multi-blade coordinates.
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Figure 3.6: Norm of harmonic components of periodic mode shape in multi-blade
coordinates for the simple flapwise model with anisotropic rotor. (a) Floquet ana-
lysis, principal ( ) and identified ( ) mode shapes; (b) Hill’s method, mode shapes
of basis ( ) and other ( ) eigenvalues. The norm is calculated from the amplitude
of the position parts in the mode shape. The spectrum is discrete and represented
by the dots; the lines are drawn only to aid in separating the series.

By extension of this principle to anisotropic conditions the periodic mode shape
for anisotropic systems is required to be as constant as possible for state variables in
the inertial frame [P1]. In this way, for mildly anisotropic systems, the frequencies
will be close to those obtained using the Coleman transformation on a correspond-
ing isotropic system, but the periodic mode shapes will correctly reflect the aniso-
tropy of the system.

That the modal frequency is not uniquely determined in Floquet analysis and
Hill’s method is a consequence of the ability of these methods to handle anisotropic
systems where the modal frequency in the general is not well defined, because the
response on all members of the structure can contain an infinite number of har-
monic components. In mildly anisotropic conditions, which is the typical case for
wind turbines, the modal frequency can be uniquely defined by similarity to the
isotropic condition, but for strongly anisotropic systems it is better to examine the
frequency spectrum of the response of a single mode (see, e.g., [P1, Fig. 5]) because
there might be several dominating frequencies, even in the inertial frame.

In practice, the frequency spectrum of the periodic mode shape for state vari-
ables on the supporting structure can be analysed to find the dominating harmonic
component (jk in Equation (3.16)) which must be extracted from the periodic mode
shape and transferred to the modal frequency. If the periodic mode shape for the
state variables on the rotor is given in multi-blade coordinates, these can also be
used to determine the frequency content in the inertial frame. The frequency con-
tent is typically determined more precisely by including the rotor components be-
cause of their larger deflection. Thus, the Coleman transformation is useful for iden-
tification of the modal frequency in both Floquet analysis and Hill’s method.

Even though, in principle, the process of frequency identification is similar for
Floquet analysis and Hill’s method, there are some practical differences. Figure 3.6
shows the norm of each harmonic component in the multi-blade coordinate mode
shape from Floquet analysis and Hill’s method with four harmonic terms included,
applied to the simple flapwise model. In the Floquet analysis in Figure 3.6(a) a single
periodic mode shape is calculated using the principal frequency, and this periodic
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mode shape is then shifted−2Ω in frequency, such that the dominating component
is at zero frequency. The modal frequency is then found by adding 2Ω to the prin-
cipal frequency. In Hill’s method in Figure 3.6(b) several periodic mode shapes are
calculated, the choice between which both determines the modal frequency and the
precision of the solution. Here, the one with the dominating component at zero fre-
quency is used, which is also the one in the centre with the basis eigenvalue, where
the harmonic components that are truncated in the average case are the ones with
the smallest magnitude, providing the most precise eigenvalue. In Figure 3.6, how-
ever, the best representation of the mode shape is that with the dominating com-
ponent at −2Ω, because the positive harmonic components in this case are domin-
ant. Alternatively this mode shape could have been used and the frequency shifted
like in Floquet analysis to have the dominating component at zero frequency.

3.7 Partial Floquet analysis

To overcome the difficulties of obtaining linearised systems for large, complex mod-
els and applying Floquet analysis to these systems, the partial Floquet analysis has
been developed (Bauchau and Wang, 2008). It is a system identification method in
that it applies Floquet analysis to a limited number of time signals of the free re-
sponse obtained over relatively short time to perturbations about a periodic steady
state. Concepts from signal analysis are incorporated to achieve an approximation
to the modal parameters of the system. The method can be used with responses
directly from the nonlinear model meaning that no analytical linearisation of the
system equations is necessary. The method can also be applied to measurements,
provided that the free response to an applied excitation can be measured without
significant external disturbances.

3.7.1 Partial Floquet analysis on periodic systems

The underlying system is assumed to be of the form in Equation (3.4). The time
signals used are typically displacements and are thus part of a column of a funda-
mental solution, but they can also be other signals representing the dynamics of the
system. To estimate the transition matrix over a period, a signal hs sampled with
period∆t is divided into parts pertaining to each period l of rotor rotation as

hs ,l = {hs (∆t + l T ) hs (2∆t + l T ) . . . hs (m∆t + l T )}T (3.29)

A number Nh of these signals obtained over n+1 periods, l = 0, . . . , n , are assembled
into two Hankel-type matrices H0 for l = 0, . . . , n−1 and H1 for l = 1, . . . , n , such that
H1 = Φ(T, 0)H0 of size Nh m ×n . In the case that m = 1, Nh =N , and n =N , where
N is the number of state variables, then H0 is square and invertible, and the exact
transition matrix over a period can be calculated asΦ(T, 0) =H1H−1

0 . In practice, the
signals are not available for each state variable and not for such an extended time.
Therefore time-shifted state variables (m > 1) are used to increase the statistical ac-
curacy of an approximation to the state transition matrix over a period, determined
as Φ̃(T, 0) = H1H+0 , where ()+ denotes a Moore-Penrose pseudo-inverse. It is found
using the singular value decomposition H0 =UrSrVT

r , where only the r largest sin-
gular values in Sr are retained to eliminate noise, as H+0 = VrS−1

r UT
r . Similarly, to

filter out noise of the Hankel-type matrices they are projected into the subspace
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spanned by the r proper orthogonal modes contained in Ur , such that the approx-
imate transition matrix of size r × r becomes

Φ̃r (T, 0) =UT
r H1VrS−1

r (3.30)

The modal damping and frequency are extracted from the eigenvaluesρk of Φ̃r (T, 0)
as

ω̃k = arg(ρk )/T + jkΩ

σ̃k = ln(|ρk |)/T
(3.31)

where the frequency is non-unique like in classical Floquet analysis. To validate the
modal decomposition a reconstructed signal h̃s (t ) is obtained as

h̃s (t ) =
r
∑

k=1

ũ s ,k (t )eλ̃k t (3.32)

with λ̃k = σ̃k + iω̃k by a curve fit using a least squares approximation to the original
signal hs (t ), determining the modal amplitudes ũ s ,k which correspond to compon-
ents of the periodic mode shape in Equation (3.8). The partial Floquet analysis as
described above can extract one estimate of a complex conjugate mode for every
two rotor periods contained in the signals. The method is applied to the simple
edgewise model in [P5].

3.7.2 Partial Floquet analysis combined with the Coleman trans-
formation

Application of the partial Floquet analysis shows that the number of periods con-
tained in a signal before it has decayed to the noise level is rarely enough to get a
reliable estimate of the most important modes. If, on the other hand, an underlying
time-invariant system is analysed, the system period is arbitrary and may be selec-
ted as the time step to extract the maximum amount of information from the signal.
The Coleman transformation provides a way to obtain a time-invariant system in
isotropic conditions, and even though the conditions in a realistic case are not iso-
tropic, using the Coleman transformed signals (called the Coleman post-processing
in [P5]) in partial Floquet analysis under the assumption of a time-invariant system
is typically a good approximation .

Figure 3.7 shows the modal frequencies and damping as function of the rank
number r for a partial Floquet analysis using Coleman transformed signals. All four
modes specifically excited can be identified at a rank of eight, and the reliability of
the estimates is characterised by whether the parameters are independent of the
rank number. The damping of the mode denoted by squares varies at low rank until
a second mode with the same frequency and higher damping is identified at rank
ten and above, meaning that the mode is not well represented by the linear model
for the given combination of applied excitation and chosen signals.

The moving window analysis is introduced in [P5] as a way to qualitatively ex-
amine the nonlinearity of the system. A partial Floquet analysis is applied to a rel-
atively short part of the signal, called the window, yielding the modal parameters of
frequency, damping and signal amplitude. The window is then moved forward, say
one time step, where a new analysis is performed. Continuing this process the mo-
dal parameters are obtained as function of time. Nonlinear behaviour is indicated
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Figure 3.7: Normalised modal frequency (a) and damping (b) as function of rank
number for a partial Floquet analysis of the BHawC model. Excited modes (�, ×, �, ◦)
and other estimates (•). Data from [P5, Fig. 12].

by a change in modal parameters over time, e.g., due to a change in vibration amp-
litude. For example, [P5, Fig. 9] shows that the effect of nonlinear damping applied
to the simple edgewise model is clearly picked up as an increase in modal damping
for high amplitude vibration.

In [P5] the partial Floquet analysis is applied to the Coleman transformed sig-
nals of the linearised and nonlinear versions of the simple edgewise model and the
nonlinear BHawC model. The advantage of the method is that a modal analysis can
be obtained from the nonlinear simulation tool as it is and that all dynamics of the
system, e.g., unsteady aerodynamics and control, are included automatically. The
drawback is that care must be taken to excite all relevant modes to a sufficient level,
and that the modal parameters are estimated only in an approximate manner.

3.8 Comparison of methods

This chapter has reviewed different methods for modal analysis of structures with
bladed rotors, of which some of the features are compared in Table 3.1.

The Coleman transformation of the system equations allows extraction of the
modal parameters using standard eigenvalue analysis. It is a simple and efficient
approach, but it only provides the exact solution for isotropic systems. Floquet ana-
lysis allows modal decomposition of an anisotropic system but it requires numerical
integration of the system equations and yields a non-unique frequency, from which
a physically meaningful modal frequency can, however, be identified. The implicit
Floquet analysis is an efficient implementation requiring much fewer integrations
than the classical analysis. Hill’s method provides a solution equivalent to that from
Floquet analysis and requires only a Fourier expansion of the system matrix. It does,
however, set up a very large eigenvalue problem, that can be difficult to solve, and
the process of frequency identification can be more difficult than for Floquet ana-
lysis. In the partial Floquet analysis signals from responses of the nonlinear model
are used to estimate the modal parameters, meaning that no linearisation of the
system equations is necessary. This method is effectively combined with a Coleman
transformation of the signals, and the method can be used to qualitatively examine
the nonlinearity of the system.
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Chapter 3. Methods for modal analysis of periodic systems

Method (Section) Domain System Precision Modes extracted

Coleman (3.5) frequency isotropic exact all

Classical Floquet
(3.3.1)

time anisotropic determined by
integration

all

Implicit Floquet (3.3.2) time anisotropic determined by
integration

least damped

Hill’s method (3.4) frequency anisotropic determined by
number of
harmonics

all

Partial Floquet (3.7.1) time anisotropic approximate most excited

Partial Floquet with
Coleman (3.7.2)

time isotropic
(nonlinear)

approximate most excited

Table 3.1: Comparison of features of methods for modal analysis of structures with
bladed rotors.

The Coleman transformation approach is suitable for use in the initial stages of
an analysis to quickly examine how the dynamics of the isotropic system depend on
different parameters, such as rotor speed, pitch angle, and wind speed. To examine
the effects of anisotropy, e.g. wind shear, yaw error, or rotor unbalance, on a large
system such as BHawC the implicit Floquet analysis is preferred to Hill’s method
because it can use the already implemented time integration algorithm used for cal-
culation of the nonlinear response, and the identification of the modal frequency
poses less problems. Even though the identification of the modal frequency might
seem like a trivial issue, it affects the value of the logarithmic decrement as well, and
it determines whether the method is of practical use in the daily work. The implicit
Floquet analysis is preferred to another efficient implementation, the Fast Floquet
theory (Peters, 1994), for two reasons. Firstly, Fast Floquet theory is an exact method
that reduces the computation time by a factor of three for a three-bladed turbine,
whereas the implicit Floquet analysis in the current example gives a saving of more
than factor 15 (even though it is an approximate method the calculated modes are
determined more than precisely enough for practical purposes). Secondly, Fast Flo-
quet theory is applicable only to isotropic rotors, whereas the implicit Floquet ana-
lysis is applicable with anisotropy on both rotor and external conditions. The par-
tial Floquet analysis serves to validate the linearised model used with the Coleman
transformation approach and implicit Floquet analysis, and to include effects of
aerodynamics and control that would be arduous to include in the linear model.
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Chapter 4

Implementation of modal
analysis in BHawC

This chapter describes the main approach to modal analysis of a rotating wind tur-
bine implemented for the BHawC model described in Chapter 2, using methods de-
scribed in Chapter 3. In isotropic conditions the steady state can be obtained from
a direct steady state calculation, and in isotropic or anisotropic conditions it can be
obtained from a time simulation. The linearised equations of motion are obtained
directly from the analytically linearised tangent matrices for the structural part and
from a numerical linearisation for the aerodynamic part. For modal decomposition
in isotropic conditions the Coleman transformation approach can be used, while
the implicit Floquet analysis can be used in both isotropic and anisotropic condi-
tions. A secondary approach based on the partial Floquet analysis of Section 3.7.2 is
used for validation and special analyses and is not described further here.

The steps for producing the linearised BHawC model for modal analysis is out-
lined in Figure 4.1. To validate the linearised model, results are compared with cor-
responding results from the nonlinear BHawC model. The description contained in
this chapter is an elaboration of the approaches to modal analysis used in [P3, P4].

4.1 Steady state calculation

In isotropic conditions the most efficient and precise way to calculate the steady
state is by the direct method outlined in Section 3.1 and used in [P3, P4]. For a given
constant rotor speed represented by the angular velocity vector Ω and a given pitch
angle, the motion on the blade is determined by

u̇i ,tra =Ω× (pi −phub)

u̇i ,rot =Ω

üi ,tra =Ω× u̇i ,tra

üi ,rot = 0

(4.1)

where u̇i ,tra and u̇i ,rot are the translational and rotational velocities of blade node i ,
respectively, pi is the position of node i , and phub is the position of the hub centre.
The equilibrium is found at a single azimuth angle at a time using Newton-Raphson
iteration where the velocities and accelerations are updated from Equation 4.1 with
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Figure 4.1: Flow chart of modal analysis implementation in BHawC. Parallelograms
denote data and rectangles denote procedures.

the new value of pi . As a first approach only the deflection of the blades is included
in the steady state calculation. The deflection of the rest of the structure has a min-
imal influence on the modal parameters.

In anisotropic conditions a standard time simulation is performed until an ap-
proximately steady state is reached. To accelerate the process, the damping is in-
creased in the beginning of the simulation.

4.2 Linearisation

The analytically linearised structural tangent matrices of mass, damping, and stiff-
ness are used during the equilibrium iteration (Equation 2.4) in the steady state cal-
culation and are thus already available for modal analysis once the steady state is
reached [P3].

Because of the rather complex dependence of the aerodynamic force on the ori-
entation of the nodes, the aerodynamic force and unsteady aerodynamic equations
are linearised numerically. This approach is also minimally dependent on the actual
implementation of the structural and aerodynamic models, minimising the main-
tenance burden following changes to the model. The following description is based
closely on [P4]. The aerodynamic force fa depends on the linearised structural de-
grees of freedom y, their velocities ẏ, and the aerodynamic state variables x, and is

32



linearised as

fa = fa,ss+
∂ fa

∂ y
y+

∂ fa

∂ ẏ
ẏ+

∂ fa

∂ x
x (4.2)

where the subscript ‘ss’ denotes a steady state value and the Jacobian matrices yield
the aerodynamic damping matrix Ca = −∂ fa/∂ ẏ, the aerodynamic stiffness mat-
rix Ka = −∂ fa/∂ y, and the aerodynamic flow coupling matrix Af = −∂ fa/∂ x. The
matrices are approximated using a one-sided difference scheme, with column j of
the aerodynamic stiffness matrix calculated as

Ka,j ≈−
fa(uss+∆uj , u̇ss, ass)− fa(uss, u̇ss, ass)

∆u
(4.3)

where ∆uj is the displacement perturbation vector with one non-zero element of
magnitude∆u at position j . Similarly, a column of the aerodynamic damping mat-
rix is calculated as

Ca,j ≈−
fa(uss, u̇ss+∆u̇j , ass)− fa(uss, u̇ss, ass)

∆u̇
(4.4)

where ∆u̇j is the velocity perturbation vector with one non-zero element of mag-
nitude ∆u̇ at position j . A column of the aerodynamic flow coupling matrix is cal-
culated as

Af,j ≈−
fa(uss, u̇ss, ass+∆xj )− fa(uss, u̇ss, ass)

∆x
(4.5)

where∆xj is the aerodynamic state perturbation vector with one non-zero element
of magnitude∆x at position j . These aerodynamic matrices enter into the structural
equations of motion which become

Mÿ+(C+Ca) ẏ+(K+Ka)y+Afx= 0 (4.6)

The unsteady aerodynamic equations are determined from a similar numerical
linearisation. In the current implementation only the unsteady effect of trailing
edge separation, which is described by one state variable per calculation point, is
included in the modal analysis (cf. Section 2.3.2). The following approach, how-
ever, extends to any state-space aerodynamic model. The linearised aerodynamic
equation is written as

ẋ+Adx+Cuaẏ+Kuay= 0 (4.7)

where the aerodynamic system matrix Ad is a diagonal matrix obtained analytically
from Equation (2.7) with elements

Ad,i =
2Wi

τfc i
(4.8)

where i denotes the number of the aerodynamic calculation point. The element
(i , j ) of the aerodynamic velocity coupling matrix Cua is found from Equation (2.7)
as

Cua,i j ≈
2

τfc i

Wi ( f ss,i − f st,i )−Wss,i ( f ss,i − f st,ss,i )
∆u̇

(4.9)

where the relative wind speed Wi and the stationary value of the separation point
position f st,i are updated with the perturbation ∆u̇ to u̇ j . Similarly, an element of
the aerodynamic displacement coupling matrix Kua is calculated as

Kua,i j ≈
2

τfc i

Wi ( f ss,i − f st,i )−Wss,i ( f ss,i − f st,ss,i )
∆u

(4.10)
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where Wi and f st,i are updated with the perturbation ∆u to u j . The magnitude of
the perturbations are selected as ∆u = 10−5 m and ∆u̇ = 10−4 m/s for translational
degrees of freedom,∆u = 10−6 and∆u̇ = 10−5 s−1 for rotational degrees of freedom,
and∆x = 10−4 for the aerodynamic state variables (see Section 4.4).

The power-speed controller is currently not implemented in the linearised mo-
del. Thus, the generator rotor is allowed to move freely.

The combination of Equations (4.6) and (4.7) constitute the combined linearised
aeroelastic equations of motion.

4.3 Modal decomposition

The current implementation contains two methods for modal decomposition: the
Coleman transformation approach (cf. Section 3.5) for fast analysis of isotropic sys-
tems, and the implicit Floquet analysis (cf. Section 3.3.2) for examining anisotropic
effects.

4.3.1 Coleman transformation approach

The Coleman transformation requires that the blade degrees of freedom be identical
in their respective local blade reference frame, and therefore the equations of mo-
tion are transformed into substructure coordinates yT as

y= T yT

T= diag(INs , Tr, Tb1, Tb2, Tb3)
(4.11)

where T is a block diagonal T -periodic matrix composed of the identity matrix INs

sized by the number of degrees of freedom of the tower, nacelle, and drivetrain, Tr

transforming the degrees of freedom on the shaft and hub into a hub centre frame,
and Tbj transforming the degrees of freedom on blade number j = 1, 2, 3 into a local
frame for blade j [P3].

The equations of motion are then brought into the inertial frame by the trans-
formation [P3, P4]

yT =By zy

By = diag(INs , Br, Bb)

x=Bxzx

(4.12)

where zy contains the inertial frame structural degrees of freedom, By is the struc-
tural inertial frame transformation matrix including the Coleman transformation
Bb of the blade degrees of freedom and a simple rotational transformation Br of the
shaft, zx is the inertial frame aerodynamic state vector, and Bx is the aerodynamic
Coleman transformation matrix. The periodic Coleman transformations Bb and Bx

are composed of blocks of Equation (3.28) for each set of three corresponding de-
grees of freedom or state variables.

The first order form inertial frame equations of motion of the aeroelastic system
given by Equations (4.6) and (4.7) become [P4]

ż3 =ABz3 (4.13)
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where z3 = {zT
y z̃T

y zT
x}T is the inertial frame state vector with z̃y = ży + ω̄yzy, and the

inertial frame system matrix is

AB =







−ω̄y I 0
−M−1

B KB −M−1
B CB− ω̄y −M−1

B AfB

−KuaB −CuaB −AdB− ω̄x






(4.14)

where ω̄y = B−1
y Ḃy and ω̄x = B−1

x Ḃx are constant matrices and the inertial frame
transformed matrices are

MB =B−1
y TTM T By

CB =B−1
y TT�(C+Ca)T+2M Ṫ

�

By

KB =B−1
y TT�(K+Ka)T+(C+Ca) Ṫ+M T̈

�

By

AfB =B−1
y TTAfBx

AdB =B−1
x AdBx

CuaB =B−1
x CuaT By

KuaB =B−1
x (KuaT+CuaṪ)By

(4.15)

where the time-dependence of the matrices on the right-hand side is omitted to sim-
plify the notation. If the system is isotropic, the system matrix AB is time-invariant
and the modal parameters can be determined from eigenvalue analysis of AB extrac-
ted at steady state for a single azimuth angle as described in Section 3.2.

4.3.2 Implicit Floquet analysis

The implicit Floquet analysis is performed as described in Section 3.3.2 by integra-
tion of the aeroelastic system in second order form given by Equations (4.6) and (4.7)

�

M 0
0 0

�¨

ÿ
ẍ

«

+

�

C+Ca 0
Cua I

�¨

ẏ
ẋ

«

+

�

K+Ka Af

Kua Ad

�¨

y
x

«

=

¨

0
0

«

(4.16)

over a period of rotor rotation using the generalised-α algorithm [P4]. The first initial
condition is set to the first yaw standstill mode shape and the following are determ-
ined by the Arnoldi algorithm. In the steady state, the system matrices are extracted
at a number of azimuth angles over a rotor rotation and then interpolated onto the
integration time steps using a truncated Fourier series. The columns of the funda-
mental solution in Equation (3.11) are composed asϕ j = {yT ẏT xT }T obtained from
the integration and used in the Arnoldi algorithm to build the approximation to the
state transition matrix as well as to determine the modal parameters from Equa-
tion (3.20). The implicit Floquet analysis is continued until a desired number of
modes are converged to within 10−10 s−1 on the eigenvalue over the last three Arnoldi
steps. Typically, around 20 modes are converged after around 50 steps [P3, P4]. The
identification of the modal frequency utilises the periodic mode shape calculated
for the tower top in lateral and longitudinal directions and for the blade tips in edge-
wise and flapwise directions transformed into multi-blade coordinates. The modal
frequency is determined as the principal modal frequency plus the frequency of the
dominant harmonic component in these five elements of the periodic mode shape
where the tower components are weighted with a factor of 20. The periodic mode
shape is then recalculated with the identified modal frequency.

35



Chapter 4. Implementation of modal analysis in BHawC

4 6 8 10 12 14 16
0.8

1

1.2

1.4

1.6

1.8

Angle of attack [°]

Li
ft 

co
ef

fic
ie

nt

 

 

Stationary
Full attach.
Full sep.
Steady state
Nonlinear
Linear

Figure 4.2: Lift coefficient as function of
angle of attack for harmonic oscillation
of the airfoil section around the length
axis. From [P4, Fig. 1].

10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

Time step [s]

R
el

at
iv

e 
da

m
pi

ng
 d

iff
er

en
ce

 

 
2 T LA
1 DRV
1 E FW
1 E BW
1 T LA
1 T LO

Figure 4.3: Relative damping difference
of the implicit Floquet analysis com-
pared to the Coleman approach for se-
lected modes as function of the implicit
Floquet integration time step. From [P4,
Fig. 4].

A useful application of the linearised model is to provide a reduced order model
for control design. The implicit Floquet analysis already provides a reduced model
in the form of Equation (3.21), and a reduced model can be obtained from the Cole-
man approach by including only the modes with frequencies within the range of
interest. But also more advanced methods for delivering optimal small models (re-
viewed by, e.g., Ersal et al. (2008)) should be investigated. The output matrix of a full
state-space model also needs to be provided. The structural output of measurable
forces and moments can be determined from the displacements using the shape
functions of the finite element, accelerations can be determined from the state vari-
ables and the equations of motion, and the aerodynamic output such as angle of
attack and relative wind speed can be determined from relations obtained during
the numerical linearisation. This coupling to control design constitutes future work
of this project.

4.4 Validation of model

A parameter study has been performed to examine the sensitivity of the modal para-
meters towards the perturbation magnitude used in the numerical linearisation in
Equations (4.3), (4.4), (4.5), (4.9), and (4.10). For a variation in the translational
perturbation magnitude between 10−6 m and 10−2 m, and the other perturbations
scaled accordingly, a relative change of less than 10−6 is found in the modal frequen-
cies and damping [P4, Sec. 4.2].

The linearisation of the dynamic stall model is validated by comparing the lift of
an airfoil section subjected to harmonic pitching motion obtained from the linear-
ised and the nonlinear models [P4]. Figure 4.2 shows the lift coefficient as function
of angle of attack for two different mean values and two different amplitudes of the
angle of attack. The linear and nonlinear models agree well for oscillations in angle
of attack up to around 1◦.

The convergence of the damping obtained from an implicit Floquet analysis of
an isotropic system towards the results of the Coleman approach is shown in Fig-
ure 4.3 (the naming of the modes is explained in Chapter 5). The damping from
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the implicit Floquet analysis converges with the error proportional to the time step
squared until the relative error is around 10−4 where the convergence of the first
lateral tower mode seemingly stalls. This discrepancy is, however, caused by a bad
conditioning of the large eigenvalue problem set up by the Coleman approach and
not a lack of convergence of the implicit Floquet analysis [P4].

During equilibrium iteration the aerodynamic profile coefficients are determ-
ined at a given angle of attack from linear interpolation between the values at fixed
angles of attack determined initially using a shape-preserving spline. The default
spacing between the fixed angles of attack is 1◦ between -10◦ and 30◦ and greater
outside this interval. When the lift curves for fully attached and fully separated flow
and the curve for the separation point position in Equation (2.6) are thus piecewise
linear, the dynamic value of the lift coefficient becomes piecewise quadratic. This
interpolation results in a wobbly lift curve with a non-continuous slope. In a time
simulation the angle of attack changes quickly, thus averaging out this effect, but in
a modal analysis in isotropic conditions the angle of attack is constant, and thus the
damping can be affected. Figure 4.4 shows the damping of six modes as function
of the pitch angle, which changes the angle of attack, for different values of spacing
between the fixed angles of attack. The damping of all modes except the first lateral
tower mode decreases with the pitch angle and the damping converges for decreas-
ing spacing. For a spacing of 1◦ and 2◦ the change in damping is non-smooth or even
contradicting the tendency for smaller values of the spacing. It is concluded that
linear interpolation can be safely used with spacing of 0.1◦. A better way to interpol-
ate during iteration would be to use a shape-preserving spline (e.g. the monotone
piecewise cubic interpolation described by Fritsch and Carlson (1980)) that gives a
faithful representation of the slope.
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Figure 4.5: Frequencies (a) and damping (b) of the lowest damped quasi-steady aer-
oelastic modes calculated with the Coleman approach (•) and with a partial Floquet
analysis (�). Modes 1 T LA (•, �), 1 E BW (•, �), 1 E FW (•, �), and 1 DRV (•, �).

In [P3, Fig. 2] the modal frequencies and damping as function of the rotor speed
for the eleven modes with lowest frequency calculated with the linearised model are
compared to a system identification of the nonlinear model. The agreement is good,
though with some discrepancy for the drivetrain mode due to a bad estimate from
the system identification. Figure 4.5 shows the modal frequencies and damping as
function of wind speed determined from both the aeroelastic linear and nonlinear
models using quasi-steady aerodynamics. The agreement between the frequencies
is good, except for a discrepancy for the drivetrain mode (1 DRV) at 4 m/s. The
agreement between the damping is very good for the first edgewise forward whirl-
ing mode (1 E FW) and fairly good for the first edgewise backward whirling (1 E BW)
and lateral tower (1 T LA) modes. There is a large discrepancy for the drivetrain
mode because the controller, which is not present in the linearised model, provides
additional damping.
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Chapter 5

Modal dynamics of wind
turbines in isotropic conditions

The modal properties for a static structure, e.g., a wind turbine at standstill, are
simple to interpret: the modal frequency gives the oscillation frequency for all de-
grees of freedom, with their relative amplitude described by the mode shape, and
the decay of the oscillation given by the damping value. The solutions given by the
methods outlined in Chapter 3 indicates that the situation is more complex for sys-
tems with bladed rotors, where a coordinate transformation is necessary to intro-
duce the concept of modal analysis, and hence the mode shape becomes periodic.

This chapter focuses on the modal dynamics of a wind turbine with a three-
bladed isotropic rotor operating in isotropic external conditions. For such a sys-
tem the modal parameters are readily obtained from standard eigenvalue analysis
of the system matrix after applying the Coleman transformation, as described in
Section 3.5. Both structural and aeroelastic systems are considered together be-
cause they share the most important features, the aerodynamics mainly changing
the damping of the system. First the characteristics of an isotropic steady state are
described, then the effects of rotation, pitch angle, and nonlinearities on the modal
dynamics are considered. The material presented here is not new and has already
been described by, e.g., Hansen (2007), but it illustrates the implementation of the
modal analysis on the BHawC model and it serves to establish a framework based
on which anisotropic systems are analysed in Chapter 6.

5.1 An isotropic system

It is somewhat idealised to describe a wind turbine as an isotropic system. An iso-
tropic rotor requires that all blades be manufactured identically to have the exact
same mass and stiffness properties, and that they be mounted in perfect alignment.
Operation in isotropic external conditions entails that no gravity field is present and
that the wind field is constant in time, uniform, and aligned in tilt and yaw to be per-
pendicular to the rotor plane. This situation is not experienced on a wind turbine in
the field, but the results of an isotropic modal analysis are simpler to interpret and
contain the most important features of wind turbine modal dynamics.

Figure 5.1 shows the twelve lowest frequency mode shapes of the BHawC mo-
del at standstill. The modes essentially consist of different combinations of bend-
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1 T LO 1 T LA 1 F Y 1 F T

1 F S 1 E V 1 E H 2 F Y

1 DRV 2 F T 2 F S 2 DRV

Figure 5.1: Lowest frequency standstill modes calculated for the structural BHawC
model. Undeformed (grey) and deformed (black) structure.

ing modes of the substructures, mainly the tower and the blades. Starting from the
lowest modal frequency, the tower modes are dominated by tower deflection and
a small amount of blade deflection, especially of the blade pointing upwards. The
tower modes appear in pairs: a longitudinal mode (1 T LO) with dominant tower
motion perpendicular to the rotor plane and a lateral mode (1 T LA) with dominant
tower motion parallel to the rotor plane. The rotor modes on three-bladed rotors
appear in triples containing first edgewise blade deflection, first flapwise deflection,
and likewise for higher deflection modes. Each triple consists of one symmetric
mode and two asymmetric modes. The symmetric mode is an in-phase deflection
of all three blades in the same direction, i.e., an in-phase fore-aft deflection for the
flapwise modes (1 F S and 2 F S) and an in-phase deflection in the rotor plane coup-
ling directly to the drivetrain for the edgewise modes (1 DRV and 2 DRV). The sym-
metric mode is characterised by dominant motion in the multi-blade coordinates
a 0 in Equation (3.26) for each set of flapwise degrees of freedom along the blades.
The azimuth angle in Equation (3.26) is defined as zero for blade 1 pointing down-
wards. Thereby the asymmetric flapwise modes consist of the tilt modes (1 F T and
2 F T) with dominant motion in the multi-blade coordinates a 1, and the yaw modes
(1 F Y and 2 F Y) with dominant motion in b1. The asymmetric modes for edgewise
motion consist of a mode with horizontal blade motion (1 E H) dominated by the
multi-blade coordinates a 1, and a mode with vertical blade motion (1 E V) domin-
ated by b1. At standstill the appearance of the asymmetric modes, i.e., how much
the different blades participate in the motion, depends on the azimuth angle.
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Figure 5.3: Frequencies as function of
rotor speed for the structural BHawC
model. Data from [P3, Fig. 2(a)].

5.2 Effects of rotation

At standstill the multi-blade coordinates mainly couple individually to the degrees
of freedom on the support. When the rotor begins to rotate the inertia in the blade
oscillation is transferred to another azimuth angle, which causes a coupling between
the a 1 and b1 coordinates, i.e., between tilt and yaw for flapwise motion and between
edgewise horizontal and vertical motion. This phenomenon is illustrated in Fig-
ure 5.2 which shows the amplitude of the multi-blade eigenvector components as
function of rotor speed for that mode of the simple flapwise model which at stand-
still is the first yaw mode. As the rotor speed increases, the yaw amplitude Ab 1 de-
creases and the tilt amplitude Aa 1 increases until the two amplitudes are equal. Also,
the nacelle tilt motion Ax , which is zero at standstill, increases and the nacelle yaw
motion Az decreases. The motion of the blade given in multi-blade coordinates can
be transformed back into the rotating frame using Equation (3.27) (Hansen, 2003) as

yi k = eσk t
�

A0,i k cos(ωk t +ϕ0,i k )+ABW,i k cos
�

(ωk +Ω)t +ϕj +ϕBW,i k
�

+AFW,i k cos
�

(ωk −Ω)t −ϕj +ϕFW,i k
�

�

(5.1)

whereϕj = 2π(j −1)/3, and the amplitudes A0,i k , ABW,i k , and AFW,i k and phasesϕ0,i k ,
ϕBW,i k , and ϕFW,i k for symmetric, backward whirling, and forward whirling motion,
respectively, are determined by the multi-blade coordinate eigenvector [P1]. Equa-
tion (5.1) shows that for a single mode there are up to three harmonic components in
the motion of the blade with frequenciesωk andωk±Ω, while the motion of the sup-
porting structure consists of a single harmonic with frequencyωk . The amplitudes
of these whirling components are also plotted in Figure 5.2, showing that at the max-
imum speed the mode is purely forward whirling. In a purely whirling mode the
motion is identical for each blade with a phase shift of 120◦ between the blades. For
edgewise motion it means that the centre of mass of the blades, or equivalently the
reaction force, rotates against the rotor direction for the backward whirling mode
and with the rotor direction for the forward whirling mode. A similar argument can
be made with the reaction moment for flapwise motion.

Figure 5.3 shows a Campbell diagram with the normalised modal frequency of
the eleven modes with lowest frequency as function of rotor speed of the structural
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BHawC model operating with 0◦ pitch angle. The first longitudinal and lateral tower
modes have a nearly identical frequency that is not affected by the rotor speed be-
cause the blade deflection is small. The mode which at standstill is the first yaw
mode turns into the first flapwise backward whirling mode (1 F BW) of the rotating
turbine, where the frequency decreases approximately with the rotor speed. This
decrease in modal frequency ωk means that the frequency ωk +Ω of the backward
whirling component in Equation (5.1), which is dominant for this mode, remains ap-
proximately constant. Thus, the blade continues to oscillate mainly with its natural
frequency for increasing rotor speed, while the oscillation of the support decreases
in frequency. Conversely, the first tilt mode at standstill turns into a dominantly for-
ward whirling mode (1 F FW) with the frequency increasing approximately with the
frequency of the rotor speed. Again, as seen from Equation (5.1), the blade contin-
ues to oscillate mainly with the same frequency as at standstill. The frequency of the
first symmetric flapwise mode (1 F S) increases slightly with the rotor speed due to
centrifugal stiffening of the blade, an effect which is also seen on the flapwise whirl-
ing modes. The first asymmetric edgewise modes turn into backward and forward
whirling modes (1 E BW and 1 E FW, respectively). There is no notable centrifugal
stiffening of these modes because the centrifugal force rotates with the deflection in
the rotor plane, approximately cancelling the stiffening effect. The symmetric edge-
wise mode is called the drivetrain mode because the motion of the blades couples
directly to the drivetrain, which causes the large difference in frequency from the
asymmetric first edgewise modes. The drivetrain is here modelled as free on the
generator side. The second flapwise modes have the same characteristics of fre-
quency splitting and centrifugal stiffening as the first flapwise modes.

The first flapwise forward whirling and symmetric modes shown in Figure 5.3
cross in frequency around 7 rpm. An analysis more finely spaced in the rotor speed
would show that the modes do not actually cross but veer off from each other. At
the point where they are close in frequency the mode shapes are similar, both con-
taining significant amounts of forward whirling and symmetric motion. In the figure
the labelling of the modes has been switched at the veering point so that the name of
the mode corresponds to the dominating component for all rotor speeds. At around
14 rpm the first flapwise forward whirling and the first edgewise backward whirling
modes cross in frequency. The mode shapes mix slightly but the modes do not veer
because they are too incompatible with motion in different directions.

The damping rateσk does not change significantly with the rotor speed for oper-
ation at constant pitch angle. The damping ratio and logarithmic decrement, how-
ever, change due to the changes in frequency seen in Figure 5.3 (cf. Equations (3.9)
and (3.10)).

Figure 5.4 shows the amplitudes of the three harmonic components of the blade
and the constant component for the tower in the first flapwise forward whirling peri-
odic mode shape. The zoom factor in the corner indicates how much each compon-
ent has been enlarged. All components on the blade are mainly first bending modes,
and the rigid body motion from the hub is seen at the root of the blade. The forward
whirling flapwise component is dominant but there is also some backward whirl-
ing motion and slight symmetric motion coupling to the tower which deforms in a
mix of first and second longitudinal bending modes. There is also a small amount
of backward whirling edgewise motion because the first flapwise forward whirling
and first edgewise backward whirling modes are close in frequency at 16 rpm (cf.
Figure 5.3). The mode shape is shown here in frequency domain. In [P4, Figs. 9,11]

42



0

x80

−Ω (FW)

x1

0 (S)

x21

Ω (BW)

x8

Figure 5.4: Amplitudes of harmonic components of the first flapwise forward whirl-
ing periodic mode shape for the structural BHawC model operating at 16 rpm.
Left: Tower lateral ( ) and longitudinal ( ); right: blades edgewise ( ) and flap-
wise ( ). From [P3, Fig. 5].

5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

Wind speed [m/s]

N
or

m
al

is
ed

 fr
eq

ue
nc

y

 

 (a) 2 T LO
2 T LA
2 F S
2 F FW
1 DRV
2 F BW
1 E FW
1 E BW
1 F FW
1 F S
1 F BW
1 T LA
1 T LO

5 10 15 20 25

1

10

100

Wind speed [m/s]

N
or

m
al

is
ed

 lo
ga

rit
hm

ic
 d

ec
re

m
en

t

 

 (b) 1 F BW
1 F S
1 F FW
2 F BW
2 F S
2 F FW
1 T LO
2 T LO
2 T LA
1 DRV
1 E FW
1 T LA
1 E BW

Figure 5.5: Frequencies (a) and damping (b) (log.scale) for the aeroelastic BHawC
model as function of wind speed. The legend entries are ordered after the sequence
at 4 m/s. From [P4, Fig. 3]

there are examples of aeroelastic mode shapes in time domain as function of azi-
muth angle.

5.3 Effects of pitch angle

In normal operation the controller on a wind turbine changes rotor speed and pitch
angle depending on the wind speed to optimise power production while staying
within rated power and speed. In the present work the controller dynamics are not
included in the modal analysis, thus the pitch angle and generator speed are for a
given wind speed kept constant at the values shown in [P4, Fig. 2]. Figure 5.5(a)
shows the normalised frequencies of the 13 lowest frequency modes of the aer-
oelastic BHawC model as function of wind speed. Until 8 m/s the pitch angle is con-
stant and the speed varies approximately linearly with the wind speed, so the figure
resembles a Campbell diagram with frequency splitting of the asymmetric modes.
From 11 m/s the speed remains constant and the pitch angle turns towards feather
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which reduces the frequency of the edgewise modes because of increased flapwise
motion and conversely increases the frequency of the flapwise modes because of
increased edgewise motion.

The modal damping shown in Figure 5.5(b) is composed of structural and aero-
dynamic damping. The aerodynamic damping is determined mainly by the direc-
tion of blade motion and the slope of the lift curve which is constant for the angles
of attack experienced in most of the normal operating range (the influence of the
direction on motion on the aerodynamic damping is described by Rasmussen et al.
(1999) and Hansen (2007) and stated in [P4, Eq. (29)]). Edgewise motion results in
low aerodynamic damping, hence the first lateral tower mode and first edgewise
modes have low modal damping. Flapwise motion at the low angles of attack exper-
ienced in normal operation results in a high aerodynamic damping as seen for the
flapwise modes in the figure. The dip in damping at 11 m/s is caused by the angle
of attack moving into an area with flow separation. This change in damping is com-
plemented by a small change in frequency for the very highly damped first flapwise
modes. The change in pitch angle above 11 m/s introduces flapwise motion to the
first lateral tower mode, increasing the damping, and conversely reduces flapwise
motion for the flapwise modes, slightly decreasing the damping.

The damping of the first lateral tower mode and the first drivetrain mode in Fig-
ure 5.5(b) do not precisely represent that of the real turbine because the speed con-
troller, which affects the damping of these modes, is not included in the modal ana-
lysis (cf. Figure 4.5).

5.4 Effects of nonlinearity

The linearisation of the equations of motion is an approximation that is valid for
small amplitude vibrations and might not be reasonable for larger amplitudes. Mo-
dal analysis relies on the linear principle of superposition for decomposition into
modes, thus the concept of modes is not well-defined for nonlinear systems. For
small nonlinearities, linear system identification methods can be used to give an
approximation of the modal parameters’ dependency on some parameter causing
the nonlinearity.

The analyses performed in [P5]with the moving window partial Floquet analysis
(cf. Section 3.7.2) show that nonlinear effects on a wind turbine in normal operation
are modest. Figure 5.6 shows the damping of the four lowest damped modes as
function of time (starting time for the moving window) for a decaying free response.
It is seen that the damping for the tower mode is higher in the beginning of the signal
and decreases to a steady value. This time-variance of the damping is an indication
of nonlinear behaviour caused by the high vibration amplitude in the beginning of
the signal. The higher damping is associated with heavy pitching action, indicating
that the nonlinearity is caused by the power-speed controller.

The linear analytical methods are valuable for predicting the onset of vibrations
caused by instability phenomena, but at larger vibration amplitudes they fail to cor-
rectly assess the motion. Such an assessment could be valuable for determining the
severeness of an instability, ranging between slightly increased fatigue loads and a
crash. Often nonlinear effects have a tendency of limiting the unstable behaviour by
entry into a stable limit cycle oscillation (Thomsen, 2003).

One possible source of nonlinear effects on a wind turbine is the geometric non-
linearity caused by large deflections of the blades. In normal operation it is not very
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Figure 5.6: Damping ratio as function of time in a moving window analysis of the
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From [P5, Fig. 14].

significant, but in unstable behaviour and for future larger turbines with more flex-
ible blades it could have an effect. Another cause of nonlinearity comes from the
aerodynamics where the profile coefficients affecting the damping vary with the
angle of attack. In [P4, Fig. 1] the linearised unsteady lift is shown to be a good
approximation for a variation in the angle of attack of 1◦, but for a variation of 3◦ the
discrepancies between the linear and nonlinear models are significant. This effect of
the lift is only significant around stall, because the lift curve is linear for small angles
of attack. But future blades possibly more flexible in torsion could experience larger
variations in angle of attack invalidating the linear models.
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Chapter 6

Effects of anisotropy

This chapter describes the effects of anisotropy on the steady state and modal dy-
namics of a wind turbine. Anisotropy is caused by either an unbalance on the rotor
or asymmetric external conditions such as wind shear, yaw error, and gravity. In an-
isotropic conditions the steady state is periodic and the response of a single mode
contains an infinite number of harmonics making the modal analysis more complex
than described in the previous chapter. There is a qualitative difference between an-
isotropic external conditions, where the periodic mode shape in the inertial frame
coordinates contains harmonics of multiples of three times the rotor speed, and an
anisotropic rotor, where the mode shape contains harmonics of all multiples of the
rotor speed.

At standstill, modal analysis of an anisotropic system can be performed using
standard eigenvalue analysis. But once the rotor rotates the anisotropy causes un-
balanced couplings between the rotor and the support structure such that a time-
invariant system cannot be obtained by a simple physically based coordinate trans-
formation. The L-F transformation must be obtained using a general method such
as Floquet analysis or Hill’s method. Even though they are not treated here, two-
bladed rotors are inherently subject to anisotropic effects due to their lack of bal-
ance.

6.1 An anisotropic system

A rotor anisotropy can be caused by a mass or stiffness unbalance from a production
irregularity or a material such as ice deposited on one blade, or by a pitch misalign-
ment from production or from a fault in the control system. Anisotropic external
conditions arise from gravity forces or asymmetric wind flow caused by wind shear,
nacelle tilt, terrain slope, yaw error, or tower shadow. Cyclic pitch is considered an
external anisotropy because each blade is pitched at the same angle at a given azi-
muth angle.

The frequency spectrum of a steady state due to an anisotropic rotor contains
all multiples of the rotor speed, which is realised from a Fourier expansion of the
forcing on the blades which is periodic with the rotor period. Figure 6.1(a) shows the
frequency spectrum of a steady state calculated by time simulation with the BHawC
model where one blade has an added mass. The amplitudes present for all harmonic
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Figure 6.1: Amplitude frequency spectra of periodic steady states. (a) Anisotropic
rotor, isotropic external conditions; (b) Isotropic rotor, anisotropic external condi-
tions. Tower top and blade motion, as well as multi-blade motion in (b). The figures
are Fourier transforms of (a) [P3, Fig. 6] and (b) [P4, Fig. 5].

components both on the tower and on the blades decrease gradually with increasing
frequency.

For anisotropic external conditions the steady state response of the blades due
to the period forcing contains all multiples of the rotor speed written as

u j =
∞
∑

l=1

�

A l cos(lψj )+ Bl sin(lψj )
�

+A0 (6.1)

for a generic degree of freedom on blade j , where ψj =ψ1 + 2π(j − 1)/3. If the ro-
tor is isotropic, however, the coupling to the supporting structure is independent
of the azimuth angle and can be described directly in multi-blade coordinates us-
ing the Coleman transformation. Inserting Equation (6.1) into Equation (3.26) the
corresponding generic steady state response in multi-blade coordinates becomes

a 0 =
∞
∑

l=1

�

A l cos(3lψ1)+ Bl sin(3lψ1)
�

+A0

a 1 =
∞
∑

l=1

�

(A3l−1+A3l+1)cos(3lψ1)+ (B3l+1+ B3l−1)sin(3lψ1)
�

+A1

b1 =
∞
∑

l=1

�

(B3l−1− B3l+1)cos(3lψ1)+ (A3l−1−A3l+1)sin(3lψ1)
�

+ B1

(6.2)

using the Werner formulas for products of trigonometric functions and identities
for sums of trigonometric functions of angle multiples (Johnson, 1980, pp. 347). It
is seen that the isotropic rotor acts as a filter on the forcing from the anisotropic
external conditions and only allows harmonics of multiples of three to couple to the
support (Bir and Jonkman, 2007).

Figure 6.1(b) shows a steady state calculated by time simulation with the BHawC
model in extreme wind shear. The steady state response in the blade frame contains
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all harmonics, while the response in the inertial frame given by tower and multi-
blade coordinates consists mainly of harmonic components that are multiples of
3Ω, including the mean with zero frequency. The small content of other harmonics
is due to transient motion that has not damped away.

The simplest approach to considering anisotropy in modal analysis is based on
the steady state calculated with isotropic conditions obtained as an average of the
anisotropic conditions. The periodic forcing due to the anisotropy can then be con-
sidered an external force exciting modes with a modal frequency close to a mul-
tiple of the rotor speed for an anisotropic rotor or a multiple of three times the rotor
speed for anisotropic external conditions. This approach corresponds to describ-
ing the additional steady state motion due to anisotropy linearly, because the model
is linearised about the averaged isotropic steady state. By considering the nonlin-
ear anisotropic steady state, however, the model can be linearised at each azimuth
angle over a rotor rotation, for which the conditions might vary substantially if the
deflection varies. Thus, the periodic steady state is included in the modal analysis,
and only non-periodic forcing, such as turbulence, need be considered an external
source of excitation. This latter approach for modal analysis of anisotropic systems
is followed in this chapter.

6.2 Rotor anisotropy

The response of a single mode of a system with an anisotropic rotor can contain an
infinite number of harmonic terms, differing in frequency by the rotor speed, for
degrees of freedom both on the supporting structure and on the blades [P1]. This
response is the most general result of Equation (3.8) written as a sum of harmonic
components [P3, Eq. (24)]

y=
N
∑

k=1

∞
∑

j=−∞
Uj k e(σk+i(ωk+jΩ))t qk (0) (6.3)

where Uj k is the component of the Fourier transform of uk with frequency jΩ. Note
that Equation (5.1) is a special case of this expression for j =−1, 0, 1.

The dynamics can be studied from the periodic mode shape alone or from the
frequency spectrum of the response of a pure excitation of the mode constructed
from the modal frequency and the periodic mode shape [P1]. Figure 6.2 shows the
amplitude and phase of the harmonic components in the periodic mode shape of
the first forward whirling mode of the simple flapwise model with the scale in the
bottom showing the frequencies in the response. The constant components of the
support degrees of freedom, which are the only ones present in isotropic conditions,
are still dominant. But there is also a significant component at−2Ω and a discernible
component at +2Ω. For the blade degrees of freedom, in addition to the backward
and forward whirling components at ±Ω, respectively, present in isotropic condi-
tions, there is also a component at +3Ω. All harmonic components on the blades
are forward whirling for negative harmonic components and backward whirling for
positive harmonic components, where the direction of the whirl is determined from
the phase difference. The non-zero components on the support occupy even har-
monics and the non-zero components on the blades occupy odd harmonics. This
tendency is caused by the separation of the symmetric degree of freedom, multi-
blade coordinate a 0, and the other asymmetric degrees of freedom which do not

49



Chapter 6. Effects of anisotropy

−4 −3 −2 −1 0 1 2 3 4
10

−3

10
−2

10
−1

10
0

A
m

pl
itu

de

j

j
2
 = 4

θ
1

θ
2

θ
3

θ
x

θ
z

−1/2

0

1/2

 FW  BW  BW

P
ha

se
 [r

ev
]

f [Hz]
0 0.5 1 1.5
| | | | | | | | | | | | | | | | |

Figure 6.2: Amplitudes and phases of
the first flapwise forward whirling mode
with frequency f = 0.864 Hz of the sim-
ple flapwise model with an anisotropic
rotor. The bottom scale shows the fre-
quencies in the response. Data from [P1,
Fig. 5(b)].

0.5 1 1.5 2
40

50

60

70

80

90

100

f [Hz]

R
M

S
 o

f θ
x [d

B
]

1st BW

Sym.

1st FW 2nd yaw 2nd tilt

2Ω

Ω Ω
2Ω

2Ω 2Ω

Figure 6.3: Root-mean-square values of
the steady state nacelle tilt response due
to a harmonic excitation on the same
degree of freedom on the simple flap-
wise model with an anisotropic rotor.
Ω= 0.223 Hz. Data from [P1, Fig. 6].

couple in this simple model. For a more complex model, in general all components
on all degrees of freedom will be non-zero.

The frequency content of the periodic mode shape is directly related to the fre-
quency response of the system which is shown in Figure 6.3 containing the steady-
state tilt response of the simple flapwise model due to excitation on this degree of
freedom. Because the response contains multiple harmonic components, its root-
mean-square value is shown. There are peaks at all the modal frequencies except for
the symmetric flapwise mode because it does not contain any tilt motion. But there
is also a peak at 2Ω below the first forward whirling modal frequency corresponding
to the additional harmonic component at−2Ω in Figure 6.2. Similar trends are seen
for the other modes in Figure 6.3. The frequency response is calculated using a brute
force approach by simulation until steady state for different excitation frequencies.
A better, more analytical approach would be to calculate the frequency response
directly from the mode shapes incorporating the concept of a transfer function for
periodic systems (Wereley and Hall, 1991, Irretier, 1999, Bittanti and Colaneri, 2000),
which has an output containing multiple harmonic components for a single har-
monic in the input.

Figure 6.4 shows the amplitudes of the harmonic components of the first flap-
wise forward whirling periodic mode shape obtained from an implicit Floquet ana-
lysis of the BHawC model with a mass unbalance on the rotor. For the blade, in
addition to the harmonic components at −Ω, 0, and Ω, there is a significant com-
ponent at +2Ω. For the tower the dominant component is at −2Ω instead of at 0.
Both the blade and the tower have non-zero harmonic components at all harmon-
ics. The rotor anisotropy can also affect the modal damping [P3].

Another source of rotor anisotropy not examined here is a pitch offset of one
blade. The offset would change the aerodynamic forces on the blade resulting in
a change of the steady state, and it would also change the stiffness coupling to the
rest of the structure. If some part of the blade were operating in separated flow, the
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Figure 6.4: Amplitudes of harmonic components of the first flapwise forward whirl-
ing periodic mode shape for the structural BHawC model with blade 1 covered with
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longitudinal ( ). From [P3, Fig. 7].

curvature of the lift coefficient would result in a changed aerodynamic damping on
this blade, which could affect the modal damping [P4].

6.3 External anisotropy

An external anisotropy is caused by gravity forces and more importantly by a non-
uniform inflow due to wind shear and tower shadow, and an oblique inflow due to
yaw error, nacelle tilt, and terrain slope.

Figure 6.5 shows the amplitudes of the harmonic components of the first flap-
wise forward whirling periodic mode shape obtained from an implicit Floquet ana-
lysis on the aeroelastic BHawC model operating in extreme wind shear with a power
coefficient of 0.55 [P4]. The mode shape of the tower in addition to the constant
component contains harmonic components at multiples of three times the rotor
speed, which in this case have a negligibly small amplitude. The blade mode shape
contains harmonics at all multiples of the rotor speed. In addition to the harmonic
components present in isotropic conditions there is a significant component at−2Ω.
Additionally it is seen that this symmetric mode contains a considerable amount of
forward whirling motion with a ratio between the blade tip BW, S, and FW com-
ponents of 2 : 1 : 17, while the ratio for the same mode in isotropic conditions is
17 : 1 : 45. Conversely, the first flapwise forward whirling mode contains consider-
able symmetric motion with a ratio of 1 : 2 : 12 compared to 1 : 18 : 9 in isotropic
conditions. These results indicate that almost purely symmetric or whirling modes
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are not likely to exist in external anisotropic conditions. The frequency content of
the periodic mode shape, consisting of harmonics at multiples of three times the
rotor speed on the tower and of all harmonics on the blades, is consistent with the
steady state response shown in Figure 6.1(b).

Operation in wind shear gives a variation in the angle of attack, which can result
in a change of the local aerodynamic damping. Figure 6.6 shows the lift coefficient
as function of the angle of attack for different radial positions on the blade in ex-
treme shear conditions at 11 m/s where the angle of attack is highest. There is a
small curvature of the lift due to beginning separation of the flow, which affects the
damping (Hansen, 2007, see [P4] for details). The modal frequencies and damping
obtained from an implicit Floquet analysis are shown in Figure 6.7 for both isotropic
and extreme shear conditions. The frequencies are almost unchanged by the wind
shear but the damping of the first flapwise symmetric and backward whirling modes
increases while the damping of the first longitudinal tower mode decreases. This
difference in damping can be explained by the interaction between the response
of a single mode and the local aerodynamic damping determined by the angle of
attack. The work performed by the aerodynamic forces gives an indication of the
aerodynamic damping and can be estimated from the local quasi-steady aerody-
namic damping of an airfoil section weighted with the mode shape amplitude. Fig-
ure 6.8 shows this aerodynamic work integrated over the blade length as function of
azimuth angle where the modal damping can be estimated from the area within the
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Figure 6.6: Lift coefficient as function of angle of attack for different radial positions.
Profile data ( ), working point in isotropic condition (◦) and working points in ex-
treme shear condition ( ). From [P4, Fig. 12(a)].

curve. In shear conditions the increase in local damping when the blade is pointing
down to the right outweighs the decrease when the blade is pointing up to the left,
which explains the increase in modal damping seen in Figure 6.7. The decrease in
modal damping of the first longitudinal tower mode can be explained similarly [P4,
Sec. 4.3]. At operation in stall with angles of attack around maximum with a large
curvature of the lift these changes in modal damping are amplified [P4, Fig. 13], con-
firming that they are caused by the curvature of the lift.

Figure 6.9 shows the amplitude of flapwise motion in the first flapwise symmetric
mode shape as function of azimuth angle in isotropic and extreme shear conditions.
Figure 6.9(b) is a time domain version of the frequency domain plot in the upper
part of Figure 6.5. In isotropic conditions the mode shape is almost constant during
a rotor rotation. In shear conditions it varies considerably with minimum around
120◦ caused by the low damping around 0◦ when the blade is pointing downwards
and with maximum around 320◦ caused by the low damping around 180◦ when the
blade is pointing up. Thus, the variation in damping caused by the wind shear can
significantly influence the periodic mode shape.

Cyclic pitch also causes a periodic variation in angle attack and might affect the
damping in a similar way to that described for the wind shear. Another effect which
should be investigated is the influence of yaw error on flutter speed due to the in-
creased relative wind speed when the blade is moving against the wind at the up-
ward position. Other sources of external anisotropy include the change in the wind
field due to the wake of an upwind turbine reaching parts of the rotor and slowly
changing turbulence which can be approximated as periodic to allow a modal ana-
lysis.
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Chapter 7

Conclusion

This thesis has developed methods for aeroelastic modal analysis of wind turbines
and their most important modal dynamics, determining the dynamic response. The
main contributions of this thesis are a rigourous application of two of these meth-
ods for an existing complex aeroelastic wind turbine code and new insight into the
modal dynamics in anisotropic conditions.

Modal analysis consists of three steps: location of a steady state, linearisation
about the steady state, and modal decomposition of the motion. In isotropic condi-
tions the steady state is characterised by a constant deflection of the turbine mem-
bers. In anisotropic conditions caused by, e.g., a rotor unbalance or wind shear, the
steady state becomes periodic. The linearisation of the model is preferably obtained
analytically, but for complex models it can be advantageous to obtain it numerically
or as part of a system identification method based on the nonlinear model.

The rotation of the rotor makes the system equations for a wind turbine peri-
odic. A modal decomposition of such a time-periodic system can be defined for
an equivalent time-invariant system obtained by the Lyapunov-Floquet transform-
ation. The inverse transformation yields a mode shape that is periodic in the ori-
ginal coordinates. The Coleman transformation, which describes the rotor in the
inertial frame, is an analytical example of the Lyapunov-Floquet transformation for
isotropic systems, and it enables modal decomposition using standard eigenvalue
analysis. Floquet analysis provides a modal decomposition of an anisotropic sys-
tem from a fundamental solution obtained by numerical integration. Hill’s method
obtains the modal decomposition from an expanded eigenvalue problem using the
Fourier expansion of the system matrix. The Coleman approach provides a unique
modal frequency measured in the inertial frame, in which the mode shape is con-
stant. The non-unique modal frequency obtained from Floquet analysis and Hill’s
method is chosen such that the periodic mode shape is as constant as possible for
degrees of freedom measured in the inertial frame.

This thesis has presented a modal analysis tool based directly on the nonlin-
ear aeroelastic code BHawC. The linearised structural equations of motion consist
of the tangent matrices used during iteration in time simulations, and the linear-
ised aerodynamics, including the unsteady effect of trailing edge separation, are ob-
tained from numerical linearisation. The Coleman approach provides a fast mo-
dal analysis of an isotropic system and is useful for parameter studies. The implicit
Floquet analysis is an efficient method extracting the least damped modes with a
reduced computational effort compared to classical Floquet analysis. It is used to
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Chapter 7. Conclusion

examine anisotropic effects. The tool is validated by comparison of results from
the Coleman approach and the Floquet analysis on a model of a 2.3 MW turbine.
It is also validated against results from a system identification with the partial Flo-
quet method on the nonlinear model. The partial Floquet method can estimate the
modal parameters of lightly damped modes and is also used to obtain the correct
damping of modes affected by the controller, which is not included in the linearised
model.

Results from a system identification of the nonlinear model of the 2.3 MW tur-
bine in normal operation show that the nonlinear effects in most cases are small,
however, the damping of the first lateral tower mode in one case increases at high
amplitude of vibration, indicating nonlinear behaviour of the controller.

Linear modal analyses on a three-bladed wind turbine in isotropic conditions
show that the periodic mode shape is constant for components in the inertial frame
and contains up to three harmonic components for blade components in the ro-
tating frame. The periodic mode shape for a turbine with an anisotropic rotor can
contain an infinite number of harmonics with frequencies that are multiples of the
rotor speed. Thus, the response to a pure excitation of a single mode contains mul-
tiple harmonic components. The rotor unbalance also causes a small change in
modal frequency and a small change in the damping of some modes. The periodic
mode shape for a wind turbine with an isotropic rotor operating in anisotropic con-
ditions also contains an infinite number of harmonics, but the frequencies are mul-
tiples of three times the rotor speed for degrees of freedom measured in the inertial
frame. Extreme wind shear causes a variation in the steady state angle of attack,
which affects the local aerodynamic damping when the flow is separated. Through
interaction with the periodic mode shape the modal damping of the first longitud-
inal tower mode decreases slightly and the modal damping of the flapwise modes
increases.

To further validate the findings of this thesis the presented modal analysis tool
should be further developed to include the full BHawC unsteady aerodynamic and
dynamic wake models. To become a full aeroservoelastic model, a linearised con-
troller needs to be incorporated. For control design it would be useful to provide re-
duced models and to calculate transfer functions, which also give additional insight
into the modal dynamics. An effort should be put into examining how to provide
useful transfer functions based on the response of an anisotropic system with mul-
tiple output frequencies for a single input frequency.

The results of the modal analyses show that the error committed by performing
an isotropic analysis compared to a more realistic anisotropic analysis are small for
the 2.3 MW turbine. The analyses in anisotropic conditions have, however, provided
additional insight into the turbine dynamics. There are still anisotropic effects that
need to be examined, e.g., the influence of yaw error on flutter speed and the effect
of cyclic pitch on modal damping. These and other sources of and measures against
instabilities will be more important for future wind turbines with larger and more
flexible rotors.
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a b s t r a c t

Structures with isotropic bladed rotors can be modally analyzed by eigenvalue analysis

of time-invariant Coleman transformed equations of motion related to the inertial frame

or by Floquet analysis of the periodic equations of motion. The Coleman transformation

is here shown to be a special case of the Lyapunov–Floquet (L–F) transformation which

transforms system equations of structures with anisotropic bladed rotors into a time-

invariant system using the transition matrix and Floquet eigenvectors as a basis. The L–F

transformation is not unique, whereby eigensolutions of the time-invariant system are

not directly related to the modal frequencies and mode shapes observed in the inertial

frame. This modal frequency indeterminacy is resolved by requiring the periodic mode

shapes from the L–F approach to be as similar as possible to the mode shapes from the

Coleman approach. For an anisotropic rotor the Floquet analysis yields a periodic mode

shape that contains harmonics of integer multiples of the rotor speed for inertial state

variables. These harmonic components show up as resonance frequencies on the sides of

the corresponding modal frequency in a computed frequency response function of a

simple three-bladed turbine with an anisotropic rotor.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The Coleman and Lyapunov–Floquet (L–F) transformations can be used to obtain time-invariant system equations for
modal and stability analysis of structures with bladed rotors, e.g. wind turbines and helicopters. This paper explores a
similarity of these transformations and uses the physical basis of the Coleman transformation to resolve the indeterminacy
of the modal frequencies in Floquet analysis due to the non-uniqueness of the L–F transformation.

Coleman [1] introduces a transformation of the coordinates of bladed rotors into multi-blade coordinates describing the
rotor motion in the inertial frame of reference. The periodic coefficients can thereby be eliminated in the system equations
for isotropic rotors, where the blades are identical and symmetrically mounted. Feingold [2] extends the work by Coleman
to show that the periodic coefficients can also be eliminated in the equations of inplane motion for two-bladed rotors if the
rotor support is symmetric. Coleman and Feingold [3] show that for two-bladed rotors with an asymmetric support, the
Coleman transformation yields system equations containing periodic terms that have a frequency of two times the rotor
speed. They use Floquet theory [4] to show that the solution to a linear periodic system can be written as a set of
exponential functions containing the characteristic exponents (each representing a frequency and damping) multiplied by
a corresponding set of periodic functions that contain harmonics with integer multiples of the system frequency. Any
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periodic function can be represented by a Fourier series, which is used in Hill’s method to derive the characteristic
exponents from Hill’s determinant (see, e.g. [5–7]) as Coleman and Feingold do in their stability analysis of two-bladed
rotors.

The development of digital numerical analysis allows direct application of Floquet theory by computation of the
transition matrix from the time integration of the system equations. The transition matrix gives the monodromy matrix

whose eigenvalues are the Floquet multipliers that determine the characteristic exponents with non-unique frequencies.
Early Floquet analyses are performed on helicopters by Lowis [8] using a rectangular ripple method and Peters and
Hohenemser [9] using a predictor–corrector integration scheme. Attempts to reduce the immense computational effort
required by Floquet analysis on larger systems are done by Friedmann et al. [10] who develop an efficient numerical
scheme to obtain the transition matrix from a single integration, and by Sinha and Pandiyan [11] who approximate the
transition matrix based on an expansion of the system matrix in Chebyshev polynomials. Peters [12] shows with fast

Floquet theory that the transition matrix computed until 1=B of the system period for an isotropic rotor with B blades can be
used to generate the transition matrix for the full period. Bauchau and Nikishkov [13] use elements of the Arnoldi
eigenvalue algorithm to perform implicit Floquet analysis yielding the most important eigensolutions from a limited number
of system matrix integrations. Concepts of system identification from experimental signal analysis are applied by Quaranta
et al. [14] to project the state variables of a large multi-body dynamical system by proper orthogonal decomposition into a
smaller subspace before applying Floquet analysis. Bauchau and Wang [15] use a similar approach, partial Floquet analysis,
to approximate the monodromy matrix from an incomplete transition matrix.

The modal frequencies and damping of the vibration modes of the periodic system can be determined from the Floquet
multipliers. The infinity of solution branches to the complex logarithm yields frequencies given by a principal value plus an
integer multiple of the system frequency. The traditional approach for resolving this frequency indeterminacy is based on
Fourier analysis of the set of periodic functions in the Floquet solution [16,17], which are herein referred to as the periodic

mode shapes. This method is contained in several different Floquet approaches [15,18,19]. Nagabhushanam and Gaonkar
[20] suggest an automatic modal identification method, where the integer factor of the frequency indeterminacy is
determined by using that the ratio of the velocity and position parts of the dominating degree of freedom in the Floquet
eigenvectors is an estimate of the modal frequency. Peters and Hohenemser [9] increase the magnitude of the system
periodicity in small increments starting from zero, where the frequencies are unique, until the desired value, and thus
obtain the modal frequencies by continuation.

In this paper, the traditional method for resolving the frequency indeterminacy is substantiated by showing a similarity
between the modal dynamics of an isotropic rotor obtained by eigenvalue analysis of the Coleman transformed system
equations and the modal dynamics obtained by Floquet analysis. The comparison is based on Lyapunov’s reducibility

theorem [21] stating that the periodic Lyapunov–Floquet (L–F) transformation eliminates the periodic coefficients in the
system equations. The L–F transformation is not unique, because it depends on the non-unique characteristic exponents.
The choice of integer factors on the rotor speed added to the characteristic exponents can be considered as a choice of
reference frame into which the state variables are L–F transformed, and in which the frequencies are then measured. Modal
frequencies are herein defined to be measured in the inertial frame, whereby they can be directly compared to the modal
frequencies obtained from the eigenvalues of the Coleman transformed system equations. The inertial state variables in the
periodic mode shape obtained from the Coleman transformed equations are constant; therefore the modal frequencies are
chosen such that the harmonic components of the inertial state variables in the periodic mode shape become as constant as
possible. In the comparison of the two approaches for an isotropic rotor, the same results are obtained. This frequency
identification approach in Floquet analysis is, however, applicable to a system with anisotropic rotor and support.

The paper is arranged as follows: Section 2 contains the theory of modal analysis using the Coleman transformation and
using Floquet analysis. The similarity of the two approaches is shown and used as a basis for resolving the frequency
indeterminacy. Section 3 contains a numerical example that compares the two approaches for an isotropic rotor and uses
Floquet analysis for an anisotropic rotor. Section 4 contains the conclusions.

2. Modal analysis of structures with bladed rotors

The linear equations of motion for small vibrations of a structure with a bladed rotor operating at constant mean rotor
speed with small overlaid variations can be written as a set of first-order equations:

_x ¼ AðtÞx; Aðt þ TÞ ¼ AðtÞ (1)

where ð_Þ denotes the time derivative, A is the periodic system matrix, T ¼ 2p=O is the period corresponding to the mean
rotor speed O, and x is the state vector for a rotor with B blades:

x ¼ fx1;1 � � � x1;Nb
x2;1 � � � x2;Nb

� � � xB;1 � � � xB;Nb
xs;1 � � � xs;Ns

gT (2)

where an integer as the first index on x denotes the blade number and ‘‘s’’ as the first index denotes inertial state variables of
the rotor support. The total number of state variables for a B-bladed rotor system is N ¼ BNb þ Ns, where Nb is the number
of rotor state variables in the rotating frame for a single blade and Ns is the number of inertial state variables of the rotor
support. It is assumed that all blades have identical sets of state variables. Note that the state variables for an
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aeroservoelastic model of a wind turbine or helicopter may consist of generalized coordinates and velocities of structural
motion, state variables of the unsteady aerodynamic model, and state variables of the controller.

2.1. Coleman transformation approach

The Coleman transformation for a rotor with B blades is [12,16]

x ¼ BðtÞzB

BðtÞ ¼

INb
INb

cosc1 INb
sinc1 � � � INb

cos B̃c1 INb
sin B̃c1 �INb

0

INb
INb

cosc2 INb
sinc2 � � � INb

cos B̃c2 INb
sin B̃c2 INb

0

INb
INb

cosc3 INb
sinc3 � � � INb

cos B̃c3 INb
sin B̃c3 �INb

0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

INb
INb

coscB INb
sincB � � � INb

cos B̃cB INb
sin B̃cB ð�INb

ÞB 0

0 0 0 � � � 0 0 0 INs

2
6666666666664

3
7777777777775

(3)

where B̃ ¼ ðB� 1Þ=2 for B odd and B̃ ¼ ðB� 2Þ=2 for B even, cj ¼ Ot þ 2pðj� 1Þ=B is the mean azimuth angle to blade
number j ¼ 1;2; . . . ;B, and INb

and INs
are identity matrices of sizes Nb and Ns. The vector zB contains the BNb state

variables in multi-blade coordinates and Ns inertial state variables as

zB ¼ fa0;1 � � � a0;Nb
a1;1 � � � a1;Nb

b1;1 � � � b1;Nb
� � � aB̃;1 � � � aB̃;Nb

bB̃;1 � � � bB̃;Nb
bB=2;1 � � � bB=2;Nb

xs;1 � � � xs;Ns
gT (4)

and describes the rotor motion in the inertial frame. The second last column block in B and coordinates bB=2;1 to bB=2;Nb
occur only for B even. Details on how multi-blade coordinates describe the motion of a three-bladed wind turbine rotor in
the inertial frame are discussed in [22,23].

Insertion of (3) into (1) shows that the Coleman transformed system equation becomes

_zB ¼ ABzB (5)

where

AB ¼ B�1ðtÞAðtÞBðtÞ � B�1ðtÞ _BðtÞ (6)

The transformed system matrix AB will be time-invariant if the rotor is isotropic, i.e. it has three or more blades with equal
properties and has symmetric inter-blade couplings such that the coupling to the support depends only on the azimuth
angle and not the blade number, as shown in Appendix A. This important feature of the Coleman transformation enables
the use of traditional eigenvalue analysis for the modal decomposition of the dynamics of these particular rotors.

2.1.1. Modal decomposition of transient solution

A transient solution of the time-invariant Coleman transformed system equation (5) for an isotropic rotor with a
constant system matrix AB is

zB ¼ eABtzBð0Þ (7)

where zBð0Þ ¼ B�1ð0Þxð0Þ are the inverse transformed initial conditions (i.e. the disturbance of the structure away from its
operating point). The Coleman transformed system matrix can be written in terms of its Jordan form as AB ¼ VBKBV�1

B
whereby the transient solution (7) becomes

zB ¼ VB eKBtV�1
B zBð0Þ (8)

If the eigenvectors vB;k of AB are all linearly independent, KB is a diagonal matrix containing the eigenvalues lB;k of AB, and
the eigenvectors vB;k form the columns of VB (see [24] for the case of repeated eigenvalues with linearly dependent
eigenvectors).

The transient solution (8) can be transformed into the original coordinates by (3) as

x ¼ UBðtÞ e
KBtqBð0Þ (9)

where

qBð0Þ ¼ V�1
B B�1ð0Þxð0Þ (10)

is a constant vector representing the modal content of the initial conditions xð0Þ, and

UBðtÞ ¼ BðtÞVB (11)
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is a periodic mode shape matrix. This modal interpretation becomes clearer if the Jordan form KB is diagonal, whereby (9)
can be decomposed as

x ¼
XN
k¼1

uB;kðtÞ e
lB;ktqB;kð0Þ (12)

where uB;kðtÞ ¼ BðtÞvB;k is a periodic mode shape of mode number k in the original coordinates. It can be shown by
expanding (12) for state variable number i on blade number j that the rotor state variables can contain B different harmonic
components (see [23] for details on a three-bladed rotor) written as

xik ¼ esB;kt A0;ik cosðoB;kt þj0;ikÞ þ
X̃B
n¼1

ABWn;ik cos ðoB;k þ nOÞt þ
2pn

B
ðj� 1Þ þfBWn;ik

� ��0
@

þ AFWn;ik cos ðoB;k � nOÞt �
2pn

B
ðj� 1Þ þfFWn;ik

� ��
þ AB=2;ik cosðoB;kt þ fB=2;ikÞ

1
AqB;kð0Þ (13)

where sB;k and oB;k are the modal damping and frequency, respectively, given by the eigenvalue lB;k ¼ sB;k þ ioB;k with
i ¼

ffiffiffiffiffiffiffi
�1
p

. The amplitudes are determined from the components of the eigenvector vB;k in multi-blade coordinates (4) as
A0;ik ¼ ja0;ikj, AB=2;ik ¼ jbB=2;ikj (for B even only) and

ABWn;ik ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðReðan;ikÞ þ Imðbn;ikÞÞ

2 þ ðReðbn;ikÞ � Imðan;ikÞÞ
2

q
AFWn;ik ¼

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðReðan;ikÞ � Imðbn;ikÞÞ

2 þ ðReðbn;ikÞ þ Imðan;ikÞÞ
2

q
(14)

where an;ik and bn;ik are the cosine and sine components of vB;k, respectively. The constant phases f0;ik, fBWn;ik, fFWn;ik,
and fB=2;ik in (13) are also given by the eigenvector [23]. The amplitudes with subscript BW denote the backward whirling
components, where for n ¼ 1 the reaction force due to this rotor motion rotates against the direction of the rotor.
Conversely, the FW amplitudes represent the forward whirling components, where for n ¼ 1 the reaction force rotates in
the direction of rotor rotation. For n41 the reaction forces cancel out and these components are called reactionless.

2.2. Lyapunov–Floquet transformation approach

Floquet theory enables the solution of the linear equation system (1) directly without elimination of the periodic
coefficients. Any transient solution at any time t can be formed from N linearly independent solutions of (1) over a single
period t 2 ½0; T� [6]. These solutions ukðtÞ are collected in the columns of an N � N matrix called the fundamental matrix of
the system:

uðtÞ ¼ ½u1ðtÞ u2ðtÞ � � � uNðtÞ�; _uðtÞ ¼ AðtÞuðtÞ (15)

The solutions may be found by numerical solution of (1) with N linearly independent initial conditions collected as
columns in the matrix uð0Þ. Lyapunov’s reducibility theorem [25] states that there exists a transformation of the original
coordinates x that renders the periodic system (1) time-invariant. This Lyapunov–Floquet transformation can be defined as
[26,11,27]

x ¼ LðtÞz; LðtÞ ¼ uðtÞ e�Rtu�1ð0ÞLð0Þ (16)

where R is a constant non-singular matrix.
To show that the Lyapunov–Floquet transformation (16) eliminates the periodic terms of the system equations, it is

substituted into (1) leading to

_z ¼ L�1ðtÞðAðtÞLðtÞ � _LðtÞÞz (17)

which by differentiation of L and use of _uðtÞ ¼ AðtÞuðtÞ can be rewritten as

_z ¼ ALz (18)

where

AL ¼ L�1ð0Þuð0ÞRu�1ð0ÞLð0Þ (19)

is the time-invariant Lyapunov–Floquet transformed system matrix. Note that it is given by the constant matrix R, and the
choices of initial conditions for the fundamental matrix uð0Þ and transformation matrix Lð0Þ.

If the constant matrix R is defined in terms of the monodromy matrix

C � u�1ðtÞuðt þ TÞ (20)

as

C ¼ eRT (21)
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then the Lyapunov–Floquet transformation L can be shown to be periodic with period T by combining (16), (20), (21), and
R ¼ VKV�1.

The monodromy matrix can be written in terms of its Jordan form C ¼ PJP�1 where J contains the eigenvalues rk of C in
the diagonal. The eigenvalues are named characteristic or Floquet multipliers. Eq. (21) shows that R is determined as the
matrix logarithm

R ¼
1

T
lnðCÞ ¼

1

T
P lnðJÞP�1 (22)

which exists because C is non-singular [28]; however, R may not be unique. There can be two causes of non-uniqueness of
the matrix logarithm [29]: first, the similarity transformation matrix V of the Jordan decomposition R ¼ VKV�1 can have
an infinity of solutions if the Jordan form J of C is non-diagonal. Second, even if J is diagonal, the complex scalar logarithm is
non-unique, which is the case relevant for practical applications.

2.2.1. Modal decomposition of transient solution

A transient solution of the time-invariant Lyapunov–Floquet transformed system Eq. (18) is

z ¼ eALtzð0Þ (23)

where zð0Þ ¼ L�1ð0Þxð0Þ are the inverse transformed initial conditions. The transformed system matrix (19) can be Jordan
decomposed as

AL ¼ VLKV�1
L (24)

where VL ¼ L�1ð0Þuð0ÞV and the Jordan form of AL is K, because AL is a similarity transform of R (19). The transient
solution (23) then becomes

z ¼ VL eKtV�1
L zð0Þ (25)

Note the similarity between this expression and (8). The transient solution (25) can be modally decomposed and written in
the original coordinates using (16) as

x ¼ UðtÞ eKtqð0Þ (26)

where the initial modal coordinates are

qð0Þ ¼ V�1
L L�1ð0Þxð0Þ ¼ V�1u�1ð0Þxð0Þ (27)

and the periodic mode shape matrix is

UðtÞ ¼ LðtÞVL ¼ LðtÞL�1ð0Þuð0ÞV (28)

The periodicity of U follows from the periodicity of L.
The matrix R defined by (21) from the monodromy matrix C is still undetermined due to the indeterminacy of the

matrix logarithm in (22). However, when J (the Jordan form of C) is diagonal, then K (the Jordan form of R) will also be
diagonal with the elements

lk ¼
1

T
lnðrkÞ (29)

which are called the characteristic exponents of the monodromy matrix C, and the similarity transformation matrix P that
brings C to its Jordan form J will also bring R to its Jordan form K, i.e. V ¼ P. Furthermore, the diagonal property of K shows
that the modal decomposition (26) can be written as

x ¼
XN
k¼1

ukðtÞ e
lktqkð0Þ (30)

where ukðtÞ ¼ LðtÞL�1ð0Þuð0Þvk is a periodic mode shape of mode number k in the original coordinates and qkð0Þ is its
modal content in the initial condition.

The characteristic exponents (29) are given by the complex logarithm

lk ¼ sk þ iok ¼
1

T
lnðjrkjÞ þ i

1

T
ðargðrkÞ þ jk2pÞ; jk 2 Z (31)

where sk and ok are the real and imaginary parts of lk, respectively. The integers jk in the imaginary parts are
undetermined for each mode, i.e. the modal frequencies ok are not determined uniquely. A physical explanation to this
indeterminacy is that frequencies depend on the observer’s frame of reference, which is defined by a Lyapunov–Floquet
transformation that is non-unique due to its dependency on R (16). The frequency indeterminacy is now resolved by
defining modal frequencies as those frequencies observed in frequency responses measured in the inertial frame of reference.
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2.2.2. Resolving the indeterminacy of the modal frequencies

Principal Floquet exponents lp;k ¼ sk þ iop;k are defined by the modal damping sk and principal frequencies op;k
which are given by

sk ¼
1

T
lnðjrkjÞ

op;k ¼
1

T
argðrkÞ; op;k 2 �

1

2
O;

1

2
O

� �
(32)

where argðrkÞ 2� � p;p� is implied. The complex logarithm (31) shows that the modal frequency ok is undetermined to
within an integer multiple of the rotor speed:

ok ¼ op;k þ jkO (33)

where the indeterminacy for mode number k is denoted by the integer jk. The transient response (30) to a pure excitation of
mode k (obtainable by setting qkð0Þ ¼ 1 and all other initial modal components equal zero) can thereby be written as

xkðtÞ ¼ ukðtÞ e
ðlp;kþijkOÞt (34)

where the periodic mode shape is given by (16) and (28) as

ukðtÞ ¼ LðtÞL�1ð0Þuð0Þvk e�ðlp;kþijkOÞt

¼ uðtÞvk e�ðlp;kþijkOÞt ¼ up;kðtÞ e
�ijkOt (35)

where up;kðtÞ ¼ uðtÞvk e�lp;kt is the principal periodic mode shape. Both the periodic mode shape uk and the exponential
term in the solution (34) depend on the chosen integers jk. As the exponent has different signs in (34) and (35), the
contributions from jk cancel, and the same transient solution is obtained independent of the values of jk. Hence, a modal
frequency of mode number k can be defined freely within an integer multiple of O, a choice that also determines the
observer’s frame of reference. The observer of the modal frequencies (33) is placed in the inertial frame of reference, which
makes the modal frequencies similar to those obtained by the Coleman transformation approach, where the periodic mode
shapes are constant for the non-transformed inertial state variables. The objective of the suggested approach is therefore to
make the inertial state variables in the periodic mode shapes constant, or as constant as possible.

The Fourier expansion of the principal periodic mode shape up;kðtÞ contains only harmonics of an integer multiple of O
because up;k is T-periodic, and it can be expressed for state variable i as

up;ikðtÞ ¼
X1

j¼�1

Up;j;ik ei2pjt=T ¼
X1

j¼�1

Up;j;ik eijOt (36)

where Up;j;ik are the Fourier coefficients.1 Using (35) and (36), the periodic mode shape corresponding to the modal
frequency (33) can be written as

uikðtÞ ¼
X1

j¼�1

Up;j;ik eiðj�jkÞOt (37)

By selecting the undetermined integer jk for mode k as the index of the largest Fourier coefficient

jk ¼ fjk 2 ZjUp;jk;ik
XUp;j;ik 8j 2 Zg (38)

the largest harmonic component in the periodic mode shape (37) is removed. Note the index i must correspond to a state
variable in the inertial frame. In the case of an isotropic rotor, Up;j;ik is non-zero only for one jk, and uik is constant for
inertial state variables. If the rotor has any anisotropy, internally or externally, then Up;j;ik will have several non-zero
components for inertial state variables, but the periodic mode shape uikðtÞ is made as constant as possible using (38) to
select jk.

Johnson [16, p. 374] describes the above method in the following way: ‘‘One way to mechanize this choice of frequencies
is to require that the mean value of the eigenvector have the largest magnitude; then the harmonic of largest magnitude in
the eigenvector corresponding to the principal value of the eigenvalue gives the frequency n2p=T ’’, where ‘‘eigenvector’’
refers to the periodic mode shape and n is jk. The periodic mode shape has the largest mean value in time, when it is not
oscillating. Johnson’s statement is, however, in this context only valid when considering the inertial state variables, because
the rotor state variable harmonics can be non-zero at other frequencies than the harmonics of the inertial state variables.

2.2.3. Similarity of Coleman and Lyapunov–Floquet transformations

For an isotropic rotor, the Lyapunov–Floquet transformed solution (23) must be identical to the Coleman transformed
solution (7) when written in the original coordinates. Using the Jordan decomposed forms of the time-invariant system
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matrices, this equality of the solutions becomes

BðtÞVB eKBtðBð0ÞVBÞ
�1xð0Þ ¼ LðtÞVL eKBtðLð0ÞVLÞ

�1xð0Þ (39)

where the Jordan forms K and KB are identical for the two approaches, because the modal frequencies in the
Lyapunov–Floquet transformed solution are resolved in the inertial frame as in the Coleman transformation solution.

The initial values of the Lyapunov–Floquet transformation (16) Lð0Þ can be chosen arbitrarily. Choosing Lð0Þ ¼ Bð0Þ, the
two similarity transformation matrices of the Jordan decomposed forms must be equal, VB ¼ VL, to satisfy (39) at t ¼ 0,
whereby also the transformations become equal, LðtÞ ¼ BðtÞ, for all t 2 R.

Hence, the Coleman and Lyapunov–Floquet transformations are identical for an isotropic rotor when the
Lyapunov–Floquet system matrix R is corrected for the initial conditions used in the fundamental solution (19), and
when the Coleman transformation is used as initial condition for the Lyapunov–Floquet transformation. Thus, the Coleman
transformation can be viewed as a special case of the Lyapunov–Floquet transformation which also renders systems with
anisotropic rotors time-invariant.

3. Application to a wind turbine with hinged blades

A structural model of a wind turbine with a minimum degrees of freedom able to represent some of its fundamental
structural dynamics is considered. Fig. 1 illustrates the turbine with three rigid flap-hinged blades and a rigid nacelle that
can tilt and yaw on a rigid tower. The state vector is

x ¼ fy1;
_y1; y2;

_y2; y3;
_y3; yx; _yx;yz; _yzg

T (40)

where yj is the flap-hinge angle of blade j, and yx and yz are the tilt and yaw angles of the nacelle, respectively.
The rotor is assumed to be mass balanced and gravity is neglected, whereby the model can be linearized around the

steady-state equilibrium with constant rotor speed and zero deflection angles. In case of gravity, or a mass unbalance, this
linearization is also valid if the deflections in the periodic equilibrium are not too large. The system equations are written in
first-order form (1) with a periodic system matrix (55) in Appendix A. Dissipation is included in the model by viscous
damping forces.

To investigate anisotropy, different values for the blade stiffnesses G1, G2, and G3 can be applied. This type of anisotropy
is chosen to avoid changing the steady-state equilibrium. Table 1 shows the model parameters chosen to represent a
generic multi-MW turbine.

ARTICLE IN PRESS

Fig. 1. A wind turbine with flapwise hinged rigid blades and a rigid nacelle able to tilt and yaw yielding five rotational degrees of freedom: y1, y2, y3, yx ,

and yz.

Table 1
Model parameters for a multi-MW generic wind turbine.

Blade moment of inertia about root Jb 4� 106 kg m2

Nacelle/tower tilt moment of inertia Jx 8� 106 kg m2

Nacelle/tower yaw moment of inertia Jz 6� 106 kg m2

Blade stiffness Gb 8� 107 N m

Nacelle/tower tilt stiffness Gx 7� 108 N m

Nacelle/tower yaw stiffness Gz 4� 108 N m

Blade damping cb 1� 105 kg m2 s�1

Nacelle/tower tilt damping cx 1� 106 kg m2 s�1

Nacelle/tower yaw damping cz 8� 105 kg m2 s�1

Blade mass mb 12� 103 kg

Distance from tower top to hub Ls 4 m
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3.1. Isotropic rotor

The case of an isotropic rotor, G1 ¼ G2 ¼ G3 ¼ Gb, is studied to show the similarity of the Coleman and
Lyapunov–Floquet transformation approaches.

3.1.1. Coleman transformation approach

Eigenvalue analysis of the time-invariant system matrix (56) in Appendix A yields modal frequencies, damping, and
eigenvectors in multi-blade coordinates. The state variables based on these coordinates are

zB ¼ fa0; ã0; a1; ã1; b1; b̃1;yx; _yx; yz; _yzg
T (41)
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where ã0, ã1, and b̃1 are linear combinations of multi-blade positions and velocities (cf. Eq. (46) in Appendix A). The
azimuth angle cj for blade j is defined as zero for the blade pointing downwards (see Fig. 1), which means that the
coordinate a1 in (3) is rotor tilt motion, b1 is yaw motion, and a0 is the symmetric flap of the rotor.
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Fig. 2 shows the normalized modal amplitudes as function of rotor speed, where A0;k, Aa1;k
, Ab1;k

, Ax;k, and Ay;k are
absolute values of the eigenvector components and ABW;k and AFW;k are obtained from (14) omitting subscripts n ¼ i ¼ 1.
The tilt Aa1;k

and yaw Ab1;k
components represent rotor motion in the inertial frame, mutually exclusive to the whirling

components ABW;k and AFW;k that represent rotor motion in the rotating frame. The first yaw mode (lowest frequency at
standstill) develops into a mainly backward whirling mode for increasing rotor speed, whereas the first tilt mode develops
into a mainly forward whirling mode. The second yaw and tilt modes with similar amounts of forward and backward
whirling at all rotor speeds remain yaw and tilt modes. The symmetric mode has only the A0;3 component and does not
couple to the nacelle in this model with an isotropic rotor.

Fig. 3(a) shows the modal frequencies as function of rotor speed in a Campbell diagram. The frequency of the symmetric
mode increases with the speed due to centrifugal stiffening, which derives from terms proportional to O2 in the stiffness
matrix (54c). The frequencies of the two lowest asymmetric modes split as they develop into backward and forward
whirling modes, while the modal frequencies of the two highest asymmetric modes remain constant due to the small
whirling amplitudes in these modes. Fig. 3(b) shows the damping ratios, which vary mainly due to the change in frequency.

3.1.2. Lyapunov–Floquet transformation approach

The periodic system equations (1) with (55) are integrated 10 times for linearly independent initial conditions uð0Þ ¼ I
to obtain the fundamental solution matrix (15) and monodromy matrix (20). Eigenvalue analysis of the monodromy matrix
yields 10 distinct characteristic multipliers with linearly independent eigenvectors, whereby the system can be modally
decomposed. The characteristic exponents (29) provide the principal frequencies op;k in the interval � �O=2;O=2� and
damping sk using (32). The principal periodic mode shapes up;k are computed from (35) with jk ¼ 0.

Fig. 4(a) shows the amplitudes and phases of the O-harmonic components in the principal periodic mode shape of the
first BW mode at the rated rotor speed O ¼ 1:4 rad=s. The modal frequency is determined from (38) using the dominating
inertial component yz as op;1 þ 2O � 0:45 Hz. The modal frequency of the first FW mode shape is similarly determined as
op;2 þ 4O � 0:86 Hz from Fig. 4(b).

The direction of the rotor whirl can be determined from the phases of the individual blades. If the difference in phase
between all blades is less than p=3, the harmonic is termed symmetric (S); otherwise it is termed backward whirling (BW)
or forward whirling (FW) depending on the order of the phases of the individual blades (cf. Eq. (13)). The dominating rotor
state variable harmonics in Figs. 4(a) and (b) thereby identify the first BW and first FW modes, respectively.

The phases in Fig. 4(c) show that the motion of the rotor state variables is symmetric, which means that they oscillate
with the modal frequency. Thus, in the absence of any motion of the inertial state variables, the modal frequency is
determined from the rotor component y1 as op;3 þ 3O � 0:75 Hz.

The mode in Fig. 4(d) is termed the second yaw mode because yz is the most dominating inertial component, and
because the BW and FW components are similar in magnitude, whereby the mode cannot be characterized as whirling. The
modal frequency is determined from the yz component as op;4 þ 7O � 1:47 Hz. Similarly, the mode in Fig. 4(e) is termed
the second tilt mode from the dominating yx component and has modal frequency op;5 þ 7O � 1:59 Hz.

The amplitudes of the O-harmonic components in the principal periodic mode shape are listed in Table 2. They are equal
to the modal amplitudes obtained from the Coleman transformation approach shown in Fig. 2 for O ¼ 1:4 rad=s.

3.2. Anisotropic rotor

An anisotropy is applied to the blade stiffnesses as G1 ¼ 1:1Gb and G2 ¼ G3 ¼ 0:95Gb such that the mean stiffness is not
changed. The modal frequencies determined from the Lyapunov–Floquet transformation approach change less than 0.5
percent compared to the isotropic case. Fig. 5(a) shows the amplitudes of the O-harmonic components in the principal
periodic mode shape of the first BW mode. The mode shape now contains several O-harmonics, whereas there are at most
three O-harmonics in the isotropic case. Similar results are obtained for the other asymmetric modes in Figs. 5(b, d, e).

Fig. 5(c) shows that the symmetric mode is not pure, i.e. there are whirling components in the mode shape. The stiffness
anisotropy causes several O-harmonics in the symmetric mode shape for state variables in both the inertial and rotating
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Table 2
For the isotropic rotor: modal frequencies and normalized amplitudes obtained from a Fourier transform of the periodic mode shape.

Mode First BW Sym. First FW Second tilt Second yaw

f k (Hz) 0.448 0.746 0.864 1.470 1.590

A0;k (f k) 0.0000 1.0000 0.0000 0.0000 0.0000

ABW;k (f k þO=2p) 1.0000 0.0000 0.1605 0.6895 0.5228

AFW;k (f k �O=2p) 0.0002 0.0000 1.0000 0.6545 0.7748

Ax;k (f k) 0.1898 0.0000 0.3115 0.1310 1.0000

Az;k (f k) 0.3449 0.0000 0.4888 1.0000 0.1181

Amplitudes A0;k , ABW;k , and AFW;k are obtained from y1 and Ax;k and Az;k from yx and yz , respectively. In parentheses are noted the frequencies of the

harmonic components, O=2p ¼ 0:223 Hz.
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frames, unlike the isotropic case involving only one harmonic in the rotor state variables. The symmetric mode has BW
rotor components at even multiples of O above the symmetric rotor harmonic (the difference between the symmetric and
the BW harmonics is an even number) and FW rotor components at even multiples of O below it.
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Fig. 5. Amplitudes (log. scale) and phases of harmonic components Up;j;ik (36) in the principal periodic mode shape for the anisotropic rotor at

O ¼ 1:4 rad=s. The bottom scale shows the frequencies in the response measured in the inertial system as ðj� jkÞOþok ¼ jOþop;k using (35). (a) First

BW mode; (b) first FW mode; (c) symmetric mode; (d) second yaw mode; and (e) second tilt mode.
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The asymmetric mode shapes in Figs. 5(a, b, d, e) have BW and FW rotor components next to the dominating inertial
component as in the isotropic case (cf. Eq. (13)). Additionally, the anisotropy creates BW rotor components at odd multiples
of O above the dominating inertial component and FW rotor components at odd multiples of O below it. For all modes the
inertial components appear between the whirling rotor components with an interval of 2O.

To study the effect of the additional harmonic components in the periodic mode shapes of the anisotropic rotor, the
steady-state tilt response yx due to a harmonic excitation on yx is computed for a range of frequencies by a brute force
approach using time integrations until a steady-state is reached for each excitation frequency. Steady state is here defined
as the case where the frequency spectra of the response in two successive time intervals of 64 excitation periods are similar,
with a maximum relative difference of 1 percent between the frequency components that have amplitudes larger than 0.1
percent of the maximum amplitude. These steady states may contain multiple harmonics, and the response is therefore
represented by the rms value taken over the 64 excitation periods.

Fig. 6 shows peaks in the response at the modal frequencies denoted by the solid lines, except for the symmetric mode,
due to the asymmetry of the excitation. The first smaller peak at f 2 � 2O ¼ 0:41 Hz matches the harmonic at 2O below the
dominating harmonic component of yx in the mode shape of the first FW mode in Fig. 5(b). Likewise, the peak at
f 1 þ 2O ¼ 0:89 Hz is 2O above the frequency of the dominating harmonic of yx in the first BW mode shape in Fig. 5(a). The
peaks around the symmetric modal frequency at f 3 �O ¼ 0:53 Hz and f 3 þO ¼ 0:97 Hz correspond respectively to the
harmonics of yx at �O around the dominating rotor harmonic in Fig. 5(c). The two peaks at f 5 � 2O ¼ 1:14 Hz and
f 5 þ 2O ¼ 2:04 Hz correspond respectively to the harmonics of yx at �2O around the dominating harmonic of yx in the
second tilt mode shape in Fig. 5(d). The response has a small peak at the second yaw modal frequency because yx motion is
involved only slightly in this mode, as seen by the amplitude of yx being much smaller than that of yz in the dominating
harmonic in Fig. 5(e). This forced response analysis confirms the validity of predicting important aspects of the response by
using the modal frequencies and periodic mode shapes. The obtained insight about O-harmonics in the periodic mode
shape and their relation to the modal characteristics (symmetric or whirling rotor modes) can be used to understand
frequency spectra and identify modes in measured or simulated time series of design determining loads.

4. Conclusion

In this paper, two methods for modally analyzing structures with bladed rotors are considered: the Coleman
transformation approach and the Lyapunov–Floquet (L–F) transformation approach. The Coleman transformation is a
special case of the L–F transformation for an isotropic rotor. The Coleman approach transforms rotor state variables into the
inertial frame of reference and makes the system equations of structures with an isotropic rotor time-invariant, enabling
eigenvalue analysis. The L–F approach is applicable to any periodic system but introduces an indeterminacy on the system
frequencies and the transformation yielding a time-invariant system. Based on the similarity of the Coleman and the L–F
approaches, the modal frequencies in the L–F approach are chosen such that the periodic mode shapes become as constant
as possible for inertial state variables. In the example with a three-bladed wind turbine with an isotropic rotor the modal
frequencies obtained using both approaches are identical. When introducing a rotor anisotropy to the blade stiffnesses,

ARTICLE IN PRESS

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
40

50

60

70

80

90

100

f [Hz]

R
M

S
 o

f θ
x [

dB
] 

1st BW Sym. 1st FW 2nd yaw 2nd tilt

2Ω

Ω Ω

2Ω

2Ω 2Ω

Fig. 6. RMS values of the steady-state nacelle tilt response yx (containing multiple harmonics) due to a harmonic excitation on the same degree of

freedom for the anisotropic rotor and O ¼ 1:4 rad=s ¼ 0:223 Hz.

P.F. Skjoldan, M.H. Hansen / Journal of Sound and Vibration 327 (2009) 424–439 435



meaningful modal frequencies are still obtained. However, state variables in the periodic mode shape, both in the rotor and
in the inertial frame, now contain multiple harmonics that lead to multiple resonance frequencies for a single mode.
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Appendix A

The equations of motion of a structure with a bladed rotor linearized about a steady state can be written in second-order
form as

MðtÞ €y þ CðtÞ _y þ KðtÞy ¼ 0 (42)

where y contains the generalized coordinates of the system, and the matrices M, C, and K are the periodic mass, gyroscopic/
damping, and stiffness matrices, respectively. For an isotropic rotor, these periodic matrices of the second-order equations
can all be written in a generic form as

GðtÞ ¼

Gb Gbb;1 Gbb;2 � � � Gbb;2 Gbb;1 Gbs;1ðtÞ

Gbb;1 Gb Gbb;1 � � � Gbb;3 Gbb;2 Gbs;2ðtÞ

Gbb;2 Gbb;1 Gb � � � Gbb;4 Gbb;3 Gbs;3ðtÞ

..

. ..
. ..

. . .
. ..

. ..
. ..

.

Gbb;2 Gbb;3 Gbb;4 � � � Gb Gbb;1 Gbs;B�1ðtÞ

Gbb;1 Gbb;2 Gbb;3 � � � Gbb;1 Gb Gbs;BðtÞ

Gsb;1ðtÞ Gsb;2ðtÞ Gsb;3ðtÞ � � � Gsb;B�1 Gsb;B Gs

2
66666666666664

3
77777777777775

(43)

where Gb and Gs are constant matrices describing the internal forces in the individual blades and the support and

Gsb;iðtÞ ¼ Gc
sb cosci þ Gs

sb sinci

Gbs;iðtÞ ¼ Gc
bs cosci þ Gs

bs sinci (44)

where Gs
bs, Gc

bs, Gs
sb, and Gc

sb are constant matrices describing the coupling forces between blades of the rotor and its
support. The constant matrices Gbb;i describe the coupling forces between blades j and jþ i.

A.1. Coleman transformation of first-order state space equations

The Coleman transformation of state variables (3) implies that the generalized coordinates and velocities are
transformed as

y ¼ B2z2 and _y ¼ B2z̃2 (45)

where the Coleman transformation matrix B2 is given by (3) with half sized INb
and INs

corresponding to the number of
generalized coordinates, and not state variables. The vector z̃2 represents the Coleman transformed generalized velocities,
which are related to the time derivatives of the Coleman transformed generalized coordinates as

z̃2 ¼ x̄2z2 þ _z2 (46)

where x̄2 is the constant matrix relating the Coleman transformation matrix and its derivative [23] as

_B2ðtÞ ¼ B2ðtÞx̄2 (47)

Using that €y ¼ B2x̄2z̃2 þ B2
_̃z2 and (46), the Coleman transformation of the second-order equations (42) becomes

MB
_̃z2 þMBx̄2z̃2 þ CBz̃2 þ KBz2 ¼ 0 (48)

where MB ¼ B�1
2 MB2, CB ¼ B�1

2 CB2, and KB ¼ B�1
2 KB2 are Coleman transformed system matrices.

Eqs. (46) and (48) can be rewritten in matrix form as

_z2
_̃z2

( )
¼

�x̄2 I

�M�1
B KB �M�1

B CB � x̄2

" #
z2

z̃2

( )
(49)

where fzT
2; z̃

T
2g contains the multi-blade state variables and original support state variables.
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To use the Coleman transformation given by (3), this multi-blade state vector and the original state vector containing
the general coordinates y and velocities _y must be permuted as

x ¼ Px
y

_y

( )
; z ¼ Px

z2

z̃2

( )
(50)

where the permutation matrix Px orders the state variables in x as given by (2). The Coleman transformed system matrix
(6) thereby becomes

AB ¼ Px

�x̄2 I

�M�1
B KB �M�1

B CB � x̄2

" #
PT

x (51)

where the matrices MB, CB, and KB are time-invariant for isotropic rotors, as seen by derivation of the Coleman
transformation of the generic matrix (43) after substantial algebraic manipulation using the trigonometric addition
formulas and identities for sums of harmonics of evenly spaced angles [16]:

GB ¼ B�1
2 GB2 ¼

GB;0 0 0 0 0 � � � 0 0 0 0

0 GB;1 0 0 0 � � � 0 0 0 Gc
bs

0 0 GB;1 0 0 � � � 0 0 0 Gs
bs

0 0 0 GB;2 0 � � � 0 0 0 0

0 0 0 0 GB;2 � � � 0 0 0 0

..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
. ..

. ..
.

0 0 0 0 0 � � � GB;B̃ 0 0 0

0 0 0 0 0 � � � 0 GB;B̃ 0 0

0 0 0 0 0 � � � 0 0 GB;B=2 0

0 B
2Gc

sb
B
2Gs

sb 0 0 � � � 0 0 0 Gs

2
66666666666666666666664

3
77777777777777777777775

(52)

where the first B diagonal entries are defined by

GB;i ¼ Gb þ
X̃B
n¼1

2 cosð2pin=BÞGbb;n þ ð�1ÞiGbb;B=2 (53)

with i ¼ 0;1; . . . ; B̃ for B odd and i ¼ 0;1; . . . ; B̃;B=2 for B even.

A.2. Second-order system matrices of wind turbine with three flap-hinged blades

The mass matrix M, gyroscopic/damping matrix C, and stiffness matrix K for the wind turbine with flap-hinged blades
in Fig. 1 are given by

MðtÞ ¼

Jb 0 0 Jb cosc1 �Jb sinc1

0 Jb 0 Jb cosc2 �Jb sinc2

0 0 Jb Jb cosc3 �Jb sinc3

Jb cosc1 Jb cosc2 Jb cosc3 Jx þ
3
2Jb þ J0 0

�Jb sinc1 �Jb sinc2 �Jb sinc3 0 Jz þ
3
2Jb þ J0

2
66666664

3
77777775

(54a)

CðtÞ ¼

c1 0 0 �2OJb sinc1 �2OJb cosc1

0 c2 0 �2OJb sinc2 �2OJb cosc2

0 0 c3 �2OJb sinc3 �2OJb cosc3

0 0 0 cx 3OJb

0 0 0 3OJb cz

2
6666664

3
7777775

(54b)

KðtÞ ¼

G1 þO2Jb 0 0 0 0

0 G2 þO2Jb 0 0 0

0 0 G3 þO2Jb 0 0

O2Jb cosc1 O2Jb cosc2 O2Jb cosc3 Gx 0

�O2Jb sinc1 �O2Jb sinc2 �O2Jb sinc3 0 Gz

2
666666664

3
777777775

(54c)
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where J0 ¼ 3mbL2
s and cj ¼ Ot þ 2pðj� 1Þ=3. The periodic system matrix of the first-order equations (1) can be derived

from

AðtÞ ¼ Px
0 I

�M�1ðtÞKðtÞ �M�1ðtÞCðtÞ

" #
PT

x (55)

Extracting the generic form of these system matrices, the Coleman transformed system matrix of the first-order equations
can be derived from (51) and (52) as

AB ¼

0 1 0 0

�
Gb

Jb
�O2

�
cb

Jb
0 0

0 0 0 1

0 0 �
Gb

Jb
�

3Gb

2J0 þ 2Jx
�O2

�cb
3

2J0 þ 2Jx
þ

1

Jb

� �

0 0 O 0

0 0 0 O

0 0 0 0

0 0
3Gb

2J0 þ 2Jx

3cb

2J0 þ 2Jx

0 0 0 0

0 0 0 0

2
66666666666666666666666666664

0 0 0 0 0 0

0 0 0 0 0 0

�O 0 0 0 0 0

0 �O
Gx

J0 þ Jx

cx

J0 þ Jx
0 2O

0 1 0 0 0 0

�
Gb

Jb
�

3Gb

2J0 þ 2Jz
�O2

�cb
3

2J0 þ 2Jz
þ

1

Jb

� �
0 2O �

Gz

J0 þ Jz
�

cz

J0 þ Jz

0 0 0 1 0 0

0 0 �
Gx

J0 þ Jx
�

cx

J0 þ Jx
0 0

0 0 0 0 0 1

�
3Gb

2J0 þ 2Jz
�

3cb

2J0 þ 2Jz
0 0 �

Gz

J0 þ Jz
�

cz

J0 þ Jz

3
7777777777777777777777777777775

(56)
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Modal Dynamics of Wind Turbines

with Anisotropic Rotors
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Equations of motion for wind turbines contain periodic terms due to the rotor rotation.
For a three-bladed isotropic rotor the traditional approach for conducting modal analysis is
to use the Coleman transformation to yield a time-invariant system. Eigenvalue analysis of
this system produces frequencies, damping and mode shapes. When the rotor is anisotropic,
e.g. due to a difference in blade stiffness, the periodic terms are not completely removed
by the Coleman transformation and an eigenvalue problem cannot be set up in this way.
Modal analysis can be performed using Floquet analysis or using Hill’s method where the
equation system is expanded to obtain eigenvalues and -vectors of a selected number of
terms in a Fourier series. The modal solutions for the isotropic rotor contain harmonic
terms of the eigenfrequency and terms with frequencies of the rotor speed plus and minus
the eigenfrequency. Applying an anisotropy on the rotor creates additional harmonic terms
in the solutions. Through a numerical example of a simple structural model of a wind
turbine the modal dynamics are illustrated using the different methods.

I. Introduction

This paper deals with some of the solution methods for the eigenvalue problem of a rotating three-bladed
wind turbine with an anisotropic rotor and the resulting modal dynamics.

Modal analysis of wind turbines is used extensively in aeroelastic stability tools. These tools set up an
eigenvalue problem for the equations of motion to give frequencies, damping ratios and mode shapes.

Equations of motion for a rotating wind turbine contain periodic coefficients due to the rotor rotation.
The periodic terms can be eliminated by use of the Coleman transformation1 if the rotor is isotropic. This
is the approach used by most recent wind turbine stability tools.2–4 Others5–7 use Floquet analysis to solve
the equations with periodic coefficients. This method has been used extensively on helicopters8 and relies
on numerical simulation through one period of oscillation for a number of different initial conditions equal
to the number of states of the system. It is applicable to an anisotropic rotor. The use of the Coleman
transformation and Floquet analysis is reviewed by Dugundji and Wendell9 and by Johnson.10 A method
which has not been used in wind turbine stability tools is Hill’s method.11,12 It expands the equation system
to obtain eigenvalues and -vectors of a selected number of terms in a Fourier series. This solution converges
for an increasing number of terms included.

The periodic coefficients in the equations of motion cause the mode shapes to vary in time periodically,
which can be interpreted as the motion consisting of different harmonic components. For an isotropic rotor
these harmonic components give a symmetric motion and forward and backward whirling motion13 of the
blades. The frequency of the symmetric motion is the eigenfrequency, whereas the forward and backward
whirling motions oscillate with the eigenfrequency minus and plus the rotor speed, respectively.

In this paper modal analysis is performed on an anisotropic rotor revealing harmonic components in
addition to those present in the isotropic case. These components have frequencies of multiples of two times
the rotor speed plus and minus the frequencies present in the isotropic case.

The next section describes how the equations of motion are set up for a wind turbine. Then the methods
of the Coleman transformation, Floquet analysis and Hill’s method are reviewed. An example of the methods

∗Ph.D. student, Loads, Aerodynamics and Control, E R WP EN 432, Dybendalsvænget 3. Ph.D. study in cooperation with
Risø DTU National Laboratory for Sustainable Energy, Frederiksborgvej 399, P.O.B. 49, DK-4000 Roskilde, Denmark.
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applied to a simple model shows the differences in modal properties between an isotropic and an anisotropic
rotor, where the anisotropy is caused by a difference in blade stiffness.

II. Wind turbine structural dynamics

The linearized equations of motion for a rotating wind turbine can be written as

M(t)ÿ(t) + C(t)ẏ(t) + K(t)y(t) = 0 (1)

where y(t) are the degrees of freedom (DOF) measured about an equilibrium state, M(t) is the mass matrix,
C(t) is the combined gyroscopic and damping matrix, and K(t) is the stiffness matrix. The equilibrium
state is defined by a constant mean rotor speed Ω at a specific operating point, but small variations in the
rotor speed can be accommodated by one or several DOF describing the shaft rotation. The matrices are
periodic with period T = 2π/Ω: M(t+ T ) = M(t),C(t+ T ) = C(t),K(t+ T ) = K(t).

The equations of motion are of second order and Eq. (1) is therefore written in the first order standard
form

ẋ(t) = Ã(t)x(t) (2)

where

x(t) = P

{
y(t)

ẏ(t)

}
(3)

Ã(t) = P

[
0 I

−M−1(t)K(t) −M−1(t)C(t)

]
PT (4)

Ã(t+ T ) = Ã(t) (5)

and P is a permutation matrix that makes the position and velocity states belonging to a given DOF follow
immediately after each other in the state vector x(t).14 The size of the system matrix is N ×N , where N/2
is the number of DOF and N is the number of states of the system.

III. Isotropic rotor

An isotropic rotor allows for elimination of the periodic coefficients from the system matrix by use of the
Coleman transformation. This transformation uses multiblade coordinates to describe the motion of the
rotor as a whole in an inertial frame of reference instead of through coordinates belonging to the individual
rotating blades.10,13 The multiblade states z(t) are introduced by the transformation13

x(t) = B(t)z(t) , B(t) =




INb
INb

cos(ψ1) INb
sin(ψ1) 0

INb
INb

cos(ψ2) INb
sin(ψ2) 0

INb
INb

cos(ψ3) INb
sin(ψ3) 0

0 0 0 INs


 (6)

where ψj = Ωt+ 2π(j − 1)/3 is the mean azimuth angle to blade number j = 1, 2, 3. The number of states
of each blade is Nb and the number of states measured in the inertial frame is Ns, such that N = 3Nb +Ns.

Insertion of Eq. (6) into Eq. (2) shows that the Coleman transformed system equation becomes

ż(t) = A(t)z(t) (7)

where
A(t) = B−1(t)Ã(t)B(t)−B−1(t)Ḃ(t) (8)

This transformed system matrix will be time-invariant if the three-bladed rotor is isotropic,13,15 i.e., the
blades are identical and modeled by identical states in their individual rotating frames. This important
feature of the Coleman transformation of systems with isotropic three-bladed rotors enables the use of
traditional eigenvalue analysis for modal decomposition of their dynamics. Thus, modal frequencies ωk and
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damping σk are obtained from the eigenvalues λk = σk + iωk of A. The motion is then described as a sum
of modal solutions by solving Eq. (7) and transforming back to the physical coordinates using Eq. (6) as

x(t) =

N∑

k=1

B(t)vke
λkt (9)

The eigenvectors vk of A are given in multiblade coordinates for the blade states and physical coordinates
for the inertial states as

vk = {a0,1 . . . a0,Nb
a1,1 . . . a1,Nb

b1,1 . . . b1,Nb
xs,1 . . . xs,Ns

}T (10)

where a0,i describe the symmetric, a1,i the tilt, and b1,i the yaw motion of the rotor. The eigenvalues λk
and eigenvectors vk of dynamic modes are complex conjugate and thus act in pairs in Eq. (9) to give real
modal solutions. When the terms in Eq. (9) are expanded,13 it is realized that the motion is comprised of
three harmonic components for state i of mode k on blade j given by

xik(t) = eσkt
(

A0,ik cos(ωkt+ ϕ0,ik)

+ABW,ik cos((ωk + Ω)t+ 2π(j − 1)/3 + ϕBW,ik)

+AFW,ik cos((ωk − Ω)t− 2π(j − 1)/3 + ϕFW,ik)
)
qk(0)

(11)

where 0 denotes a symmetric motion, BW denotes a backward whirling motion and FW a forward whirling
motion and qk(0) is the content of mode k in the initial conditions. The amplitudes are determined as

A0,ik =

√
(Re (a0,ik))

2
+ (Im (a0,ik))

2

ABW,ik = 1
2

√
(Re (a1,ik) + Im (b1,ik))

2
+ (Re (b1,ik)− Im (a1,ik))

2

AFW,ik = 1
2

√
(Re (a1,ik)− Im (b1,ik))

2
+ (Re (b1,ik) + Im (a1,ik))

2

(12)

and ϕ0,ik, ϕBW,ik and ϕFW,ik are phases, also given by the eigenvector vk.13

IV. Anisotropic rotor

The periodic coefficients in the system matrix of an anisotropic rotor cannot be completely eliminated by
the Coleman transformation, and the system in Eq. (7) becomes time-variant. One option for obtaining an
eigenvalue problem is the Lyapunov-Floquet transformation,14,16 another is the use of Hill’s method. In
both approaches the Coleman transformed system equations are used.

A. Floquet analysis

Floquet analysis yields the solution of a linear system of equations such as Eq. (7) directly without elimination
of the periodic coefficients. Thus, it does not rely on any symmetry and can be applied to an anisotropic
rotor. As there are many good references to Floquet theory10,12,17,18 and its application, it is only briefly
reviewed here following a recent approach of Skjoldan and Hansen.14

Numerical simulation of Eq. (7) with linearly independent initial conditions yields N linearly independent
solutions. These solutions are collected as columns of an N × N matrix called the fundamental matrix of
the system, given as

ϕ(t) =
[
ϕ1(t) ϕ2(t) . . . ϕN (t)

]
(13)

with ϕ(0) = I. Any transient solution z(t) with initial conditions z(0) can now be written as a linear
combination of the fundamental set of solutions as

z(t) = ϕ(t)z(0) (14)

The monodromy matrix is defined as

C ≡ ϕ−1(0)ϕ(T ) = ϕ(T ) (15)
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and contains all information about the stability of the system.
The decomposition of the transient solution of Eq. (14) into components of modal motion is obtained by

introduction of the Lyapunov-Floquet transformation

z(t) = L(t)zLF(t) (16)

where zLF(t) are new states of the system. By choosing L(t) as follows, the system in Eq. (7) with periodic
coefficients is made time-invariant in states zLF(t):

L(t) = ϕ(t)e−Rt (17)

where

R =
1

T
ln(C) (18)

and L(t) can be shown to be periodic with period T . The solution in the transformed states zLF(t), when
ϕ(t) is eliminated by use of Eq. (14) and Eq. (17), becomes

zLF(t) = eRtz(0) (19)

To extract the modal properties, the time-invariant system matrix R is decomposed into

R = VΛV−1 (20)

where V contains the eigenvectors vk as columns and Λ contains the eigenvalues λk in the diagonal, k being
the index of the mode. Then, Eq. (19) can be decomposed into a sum of modal solutions transformed back
to multiblade coordinates using Eq. (16) as

z(t) =
N∑

k=1

rk(t)eλktqk(0) (21)

where rk(t) are the multiblade coordinate periodic mode shapes determined using Eq. (17) and Eq. (20) as

rk(t) = L(t)vk = ϕ(t)vke
−λkt (22)

and qk(0) is the content of mode k in the initial conditions given by

q(0) = V−1z(0) (23)

The solution described in physical coordinates is determined by inserting Eq. (21) into Eq. (6) as

x(t) =

N∑

k=1

uk(t)eλktqk(0) (24)

where uk(t) are the periodic mode shapes

uk(t) = B(t)ϕ(t)vke
−λkt (25)

The eigenvalues λk of R contain the frequency ωk and damping σk as λk = σk + iωk. The eigenvalues are
obtained from Eq. (18) as λk = ln(ρk)/T where ρk are the eigenvalues of the monodromy matrix. Because
the complex logarithm has an infinite number of branches, the imaginary part of λk is undetermined to
within an integer multiple of 2π/T . Thus, the modal frequency is determined from the principal frequency
ωp k by adding an integer multiple jk of the rotor speed Ω:

σk =
1

T
ln(|ρk|) (26)

ωp k =
1

T
arg(ρk) ωp k ∈ ]− 1

2Ω; 1
2Ω] (27)

ωk = ωp k + jkΩ jk ∈ Z (28)

The choice of modal frequency is discussed in section IV.C.
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B. Hill’s method

In the previous section, Floquet theory determined the form of the solution to the periodically time-varying
system of Eq. (7). To avoid the numerical integration of the equations of motion, in this section a more
analytical approach known as Hill’s method is followed.11,19

The solution form from Floquet theory given by Eq. (21) for one mode inserted into Eq. (7) gives

ṙk(t) = (A(t)− λkI)rk(t) (29)

As both the system matrix and the mode shapes are periodic with period T = 2π/Ω they can be written as
Fourier series

A(t) =
∞∑

l=−∞
Ale

ilΩt (30)

rk(t) =
∞∑

j=−∞
vk,je

ijΩt (31)

where Al and vk,j are the coefficients with frequency lΩ and jΩ of the Fourier transforms of A(t) and rk(t),
respectively. These expansions are inserted into Eq. (29) which gives




∞∑

j=−∞

∞∑

l=−∞
Ale

i(j+l)Ωt −
∞∑

j=−∞
(λk + ijΩ)eijΩt


vk,j = 0 (32)

and the coefficients of equal harmonic terms are equated to yield an infinite number of equations written in
a hypermatrix form as

(Â− λk,mI)v̂k,m = 0 (33)

where

Â =




. . .
...

...
...

...
...

· · · A0 + inΩI · · · A−n+1 A−n A−n−1 · · · A−2n · · ·
...

. . .
...

...
...

...

· · · An−1 · · · A0 + iΩI A−1 A−2 · · · A−n−1 · · ·
· · · An · · · A1 A0 A−1 · · · A−n · · ·
· · · An+1 · · · A2 A1 A0 − iΩI · · · A−n+1 · · ·

...
...

...
...

. . .
...

· · · A2n · · · An+1 An An−1 · · · A0 − inΩI · · ·
...

...
...

...
...

. . .




, v̂k,m =





...

vk,m,−n
...

vk,m,−1

vk,m,0

vk,m,1
...

vk,m,n
...




(34)

and the index m refers to one of the infinite number of eigenvalues and eigenvectors representing the physical
mode with modal frequency λk. Because the size of Â is infinite, the same matrix is obtained by adding any
integer multiple of ijΩI. Thus, Â has an infinite number of eigenvalues differing by integer multiples of ijΩ.
These eigenvalues are written

λk,m = λk + imΩ (35)

where λk is the eigenvalue with the modal frequency as imaginary part, also called the basis eigenvalue.
The middle block equation of Eqs. (33) for the eigensolution with the basis eigenvalue λk,0 = λk is written

as
. . .+ A1vk,0,−1 + (A0 − λkI) vk,0,0 + A−1vk,0,1 + . . . = 0 (36)

and the block equation m blocks above for the eigensolution with eigenvalue λk,m using Eq. (35) is written
as

. . .+ A1vk,m,−m−1 + (A0 − λkI) vk,m,−m + A−1vk,m,−m+1 + . . . = 0 (37)
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It is seen by comparison of these two equations that

vk,m,j−m = vk,0,j (38)

which means that the eigenvector v̂k,m has the same Fourier components as the basis eigenvector v̂k,0, but
they are shifted mΩ downwards in frequency. Thus, all eigensolutions with the same value of k produce the
same solution, and only one of them need be included.

In practice the infinite dimension problem is truncated to include harmonic terms up to ±nΩ, and the
original problem in N unknowns is thus expanded to (2n + 1)N unknowns. The truncation introduces
errors in the eigensolution because only a limited number of harmonic terms in the periodic mode shapes
are included. The eigenvalues belonging to one mode are then in general not exactly equal in the real part,
neither differing exactly Ω in the imaginary part, nor do the eigenvectors contain the exact same components.
For a given value of n, the approximation is best for m around zero, i.e. the basis eigenvalues and values
close to it, because the harmonic components that are excluded are high in frequency and therefore usually
low in magnitude.

The solution in physical coordinates is found by inserting Eq. (31) into Eq. (21) and using Eq. (6) as

x(t) =

N∑

k=1

uk(t)eλktqk(0) (39)

and the periodic mode shapes are given by

uk(t) =
1∑

l=−1

n∑

j=−n
Blvk,0,je

i(j+l)Ωt =
n+1∑

j=−n−1

uk,je
ijΩt (40)

with the Coleman transformation matrix expressed as the Fourier series B(t) =
∑1
l=−1 Ble

ilΩt and uk,j
being the coefficient with frequency jΩ when the periodic mode shape is expressed as a Fourier series. The
solution contains two more harmonic terms with frequencies ±(n + 1)Ω than the eigenvector because the
Coleman transformed equations are used.

C. Determination of modal frequency

Floquet theory describes the form of the solution to a system with periodic coefficients in Eq. (21). It implies
that oscillation contained in a modal solution derives from both the eigenfrequency ωk of λk as well as from
the time-dependent periodic mode shape rk(t) without constraint on the distribution between the two. This
non-uniqueness of the frequency is characteristic of both the solutions obtained by Floquet analysis, where
any integer multiple of the rotor speed can be added to the principal frequency, and Hill’s method, which
yields 2n + 1 different frequencies for each mode. The solution for an isotropic rotor obtained by Coleman
transformation is a special case of Floquet theory, however the modal frequency is implicitly given as the
one to which corresponds a constant mode shape when given in multiblade coordinates, i.e. defined in the
inertial frame. This concept can be extended to the case of a moderately anisotropic rotor by defining the
modal frequency as the one to which corresponds the most constant mode shape in multiblade coordinates.
The advantage of using the multiblade coordinate mode shape is that the dominant oscillation by similarity
to the isotropic case will be with the same frequency for all states. In contrast, in physical coordinates the
dominant motion of rotor states can differ from the dominant motion of inertial states by the rotor speed.

In Floquet analysis, the periodic mode shape given by Eq. (22) and calculated with jk = 0 can be
expanded in a Fourier series and the integer jk in Eq. (28) can be identified as the j in the frequency jΩ
of the most dominant Fourier component. This method is described by Johnson10 and has been applied
by several researchers.20–22 The basis eigenvalue containing the modal frequency can in Hill’s method be
identified by requiring that the corresponding eigenvector v̂k,m have the most dominant component vk,m,j
for j = 0.

V. Numerical example

A structural model of a wind turbine with a minimum degrees of freedom able to represent some of its
fundamental structural dynamics is considered. Figure 1 illustrates the turbine with three rigid flap-hinged
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(c) Front view

Figure 1. A wind turbine with flapwise hinged rigid blades and a rigid nacelle able to tilt and yaw yielding
five rotational degrees of freedom: θ1, θ2, θ3, θx and θz.

Blade moment of inertia about root Jb 4×106 kg m2

Nacelle/tower tilt moment of inertia Jx 8×106 kg m2

Nacelle/tower yaw moment of inertia Jz 6×106 kg m2

Blade stiffness Gb 8×107 N m

Nacelle/tower tilt stiffness Gx 7×108 N m

Nacelle/tower yaw stiffness Gz 4×108 N m

Blade damping cb 1×105 kg m2 s−1

Nacelle/tower tilt damping cx 1×106 kg m2 s−1

Nacelle/tower yaw damping cz 8×105 kg m2 s−1

Blade mass mb 12×103 kg

Distance from tower top to hub Ls 4 m

Table 1. Model parameters for a multi-MW generic wind turbine.

blades and a rigid nacelle that can tilt and yaw on a rigid tower. The model thus contains the three rotor
DOF θ1, θ2 and θ3 and the two inertial DOF θx and θz, and the state vector is given as

x(t) = {θ1, θ̇1, θ2, θ̇2, θ3, θ̇3, θx, θ̇x, θz, θ̇z}T (41)

The rotor is assumed to be mass balanced and gravity is neglected, whereby the model can be linearized
around the equilibrium at constant rotor speed with zero angles. The system equations can be written in first
order form of Eq. (2) and Coleman transformed to yield the periodic system matrix given in the appendix.

Table 1 shows the parameters of the model chosen to correspond to the dynamics of a generic multi-MW
turbine.

A. Isotropic rotor

The modal analysis of a three-bladed wind turbine with an isotropic rotor can be performed using the
Coleman transformation method outlined in section III. Figure 2 shows the frequencies of the five modes of
the model in a Campbell diagram as function of the rotor speed. The modes have been identified according
to the dominant component of the harmonics defined in Eq. (11) which are shown in figure 3. The two modes
with lowest frequencies at standstill are the first yaw and tilt modes, respectively. For increasing rotation
speed they develop into whirling modes with the characteristic splitting of the frequencies13 seen in figure 2.
The symmetric mode denoted 0 has no coupling between the blades and the nacelle in this model. The
frequency increase of this mode is due to the centrifugal stiffness. The two modes with highest frequency
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Figure 2. Campbell diagram with modal frequencies f = ω/2π versus rotor speed Ω.
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Figure 3. Amplitudes of harmonic modes A0, ABW, AFW and tower modes Ax, Az of the five modes of the
system.

are the second yaw and tilt modes, where the harmonic components do not change significantly when the
rotor rotates.

B. Anisotropic rotor

In this section an anisotropic rotor with a stiffness asymmetry is considered. The rotor has a 10 % increase
in stiffness on blade 1 and a 5 % decrease in stiffness on blades 2 and 3, such that the mean stiffness is the
same as on the isotropic rotor.
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Figure 4. All eigenvalues obtained from Hill’s method for different numbers of harmonics terms n included in
the eigenvalue problem. × eigenvalues, ⊗ eigenvalues with modal frequency (basis eigenvalues). Anisotropic
rotor at rotor speed 1.4 rad/s.

1. Floquet analysis

Floquet analysis is performed by numerical integration of Eq. (7) with the system matrix of Eq. (42) using
the Runge-Kutta algorithm ode45 in Matlab. The monodromy matrix is found from Eq. (15) from which
eigenvalue analysis provides damping and principal frequencies. The principal periodic mode shapes are
then calculated in multiblade coordinates from Eq. (22) using the eigenvalues with principal frequencies and
written as Fourier series. For each mode, the modal frequency is found from Eq. (28) with jk given by the
j in the Fourier series component with frequency jΩ that has the largest norm.

2. Hill’s method

Hill’s method is applied by computing the Fourier coefficients of the system matrix A(t) in Eq. (42). The
highest frequency in A(t) is 2Ω, so the Fourier components Al are non-zero only for l ∈ {−2, . . . , 2} and can
be evaluated numerically using the Fast Fourier Transform algorithm. The eigenvalues are obtained from
the system hypermatrix in Eq. (33) for different numbers of harmonic terms n included. The eigenvalues
are shown at the rated rotor speed 1.4 rad/s in figure 4(a) for n = 2 and in figure 4(b) for n = 6. It can be
difficult to determine which eigenvalues belonging to the same mode when the modes are close in damping,
which is seen for both values of n. Therefore it is important that only the basis eigenvalues are considered.
The basis eigenvalue for each mode is found as the one where the largest norm of the Fourier components
vk,m,j of the corresponding multiblade coordinate mode shape occurs for j = 0.

3. Convergence of eigenvalues

Both Floquet analysis and Hill’s method are approximative because the first one relies on numerical integra-
tion of the system equations and the second one solves an approximation to the exact eigenvalue problem.
The quality of these approximations is investigated first by looking at the convergence of the eigenvalues as
the approximation is improved.

The modes computed for the anisotropic rotor have mode shapes similar to the isotropic case, so the
modes are named in the same way. Figure 5 shows the deviation in the eigenvalues compared to a reference
solution. The reference is the most precise approximation used, for Floquet analysis an absolute error
tolerance of 10−16 (determining the integration time step) is used, and for Hill’s method n = 11 harmonic
terms are included in the hypermatrix system in Eq. (33). The difference between the eigenvalues of the
reference solutions of the two methods are on the order 10−13. Figure 5(a) shows that the eigenvalues
computed with Floquet analysis converge steadily towards those of the reference solution when decreasing
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(a) Floquet analysis
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Figure 5. Absolute value of the deviation of the eigenvalues λ of each mode for (a) different absolute error
tolerances in the integration and (b) different numbers of harmonic terms included in the eigenvalue problem.
The deviations are calculated relative to reference solution with (a) a tolerance of 10−16 and (b) 11 harmonic
terms. In the Floquet analysis a relative tolerance of 1000 times the absolute tolerance is used. Anisotropic
rotor at rotor speed 1.4 rad/s.

Mode 1st BW 1st FW Symmetric 2nd yaw 2nd tilt

Frequency, Hz 0.447 0.749 0.860 1.471 1.590

Deviation from isotropic case, % 0.20 0.41 0.45 0.03 0.006

Damping, s−1 0.0101 0.0125 0.0127 0.0733 0.0681

Deviation from isotropic case, % 4.1 0.36 2.7 0.08 0.03

Table 2. Modal frequencies f = ω/2π and damping σ of the wind turbine with anisotropic rotor at rotor speed
1.4 rad/s.

the integration error tolerance. Figure 5(b) shows that no further increase in accuracy of the eigenvalues
with these parameters computed with Hill’s method is obtained by including more than 6 harmonic terms.

The frequencies and damping for the reference solutions using Floquet analysis and Hill’s method are
shown in Table 2. The change in frequency with respect to the isotropic rotor is small, but for the whirling
modes the change in damping is considerable.

4. Modal dynamics

Figure 6 shows the amplitudes uk,j of the Fourier components in the periodic mode shape for the first whirling
modes calculated with Hill’s method and n = 6. The same results can be obtained with Floquet analysis by
Fourier transformation of the periodic mode shapes.14 The different components have frequencies λk + jΩ
in the solution given by Eq. (39) and Eq. (40), which is indicated with the frequency scale in the bottom of
the figure. These frequencies would show up as peaks in a frequency response function. In figure 6(a) for
the first BW mode the most dominant components, with frequencies λk and λk + Ω, were also present in
the isotropic case (cf. figure 3). However, the amplitude of the different blades is not the same, because the
stiffness of the blades is not the same. In addition, more harmonic terms have appeared at higher frequencies.
Figure 6(b) shows that the first FW mode has harmonic components at λk − 2Ω and at λk + 2Ω and above,
in addition to the ones present in the isotropic case. The symmetric mode shown in figure 7, which had
only blade motion at the modal frequency in the isotropic case, now has significant motion of the nacelle at
λk ± Ω and of the blades at λk + 2Ω. Figure 8 shows the Fourier components for the second yaw and tilt
modes. The components not present in the isotropic case, at frequencies λk − 2Ω and below and at λk + 2Ω
and above, are somewhat smaller in magnitude than the corresponding ones for the first whirling modes.

It is general for all modes, that motion of the inertial states and the rotor states does not occur at the
same frequency. Thus, for the first whirling and second yaw and tilt modes the inertial states oscillate with
the modal frequency plus an even number multiple of the rotor speed and the rotor states oscillate with
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(b) 1st FW mode

Figure 6. Amplitudes and phases of harmonic components uk,j with frequencies jΩ in the periodic mode shape
and frequency scale for the modal solution. Anisotropic rotor at rotor speed 1.4 rad/s.
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Figure 7. Amplitudes and phases of harmonic components uk,j with frequencies jΩ in the periodic mode shape
and frequency scale for the modal solution. Anisotropic rotor at rotor speed 1.4 rad/s, symmetric mode.

the modal frequency plus an odd number multiple of the rotor speed. Oppositely, for the symmetric mode
the rotor states oscillate with the modal frequency plus an even number multiple of the rotor speed and
the inertial states oscillate with the modal frequency plus an odd number multiple of the rotor speed. The
rotor components at frequencies below the modal frequency are always BW and at frequencies above the
modal frequency always FW as indicated in figures 6-8 below the phase plot. This observation complies with
Eq. (12) and extends it to more harmonic components.

VI. Discussion

Floquet analysis and Hill’s method produce similar results in modal analysis, with the periodic mode shape
is given in time domain and in frequency domain, respectively. Hill’s method is faster because it avoids
numerical integration, but the size of the eigenvalue problem might be very large. One advantage of Floquet
analysis is that the full nonlinear equations can be used to produce the fundamental solution, thus avoiding
an explicit linearization of the equations of motion. The problem of the non-uniqueness of the frequency is
inherent for both methods, but it can be solved without greater effort for small to moderate magnitudes of
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(a) 2nd yaw mode
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(b) 2nd tilt mode

Figure 8. Amplitudes and phases of harmonic components uk,j with frequencies jΩ in the periodic mode shape
and frequency scale for the modal solution. Anisotropic rotor at rotor speed 1.4 rad/s.

anisotropy.
The error of the eigenvalues found from Floquet analysis is consistently larger for some modes than

for others as shown in figure 5(a), a tendency not observed in Hill’s method. These errors are probably
introduced through the numerical integration of the equations of motion, but it is difficult to say from the
example in this paper, whether the modes that have highest error are characterized by high frequency or
high damping.

The appearance of additional harmonic components in the response of the turbine with an anisotropic
rotor is mostly interesting for the blade DOF, as this additional motion can introduce couplings with the
unsteady aerodynamics in an aeroelastic model. The most notable change is that the first BW mode
amplitude at λk + 3Ω in figure 6(a) is 4% of that at λkΩ for the blades.

It seems that the anisotropy affects the whirling modes the most, which is evidenced both by the change
in damping and by the magnitude of the additional harmonic terms in the mode shape. However, it could
also be that the least damped modes are affected most. It is difficult to draw conclusions from a model with
only five modes, therefore further work must be done to apply these methods to a more complex model.
It will also be interesting to see, whether quantitatively similar results are obtained from other sources of
anisotropy such as rotor mass unbalance, gravity, non-uniform inflow.

VII. Conclusion

Modal analysis of a wind turbine with an anisotropic rotor can be performed using Floquet analysis or Hill’s
method. Both methods yield similar results and the non-uniqueness in the frequency, inherent of methods
based on Floquet theory, can be resolved using a common approach for both methods: the modal frequency
is chosen such that the corresponding mode shape in multiblade coordinates is as constant as possible.
Modal analysis of a wind turbine with an isotropic rotor by use of the Coleman transformation results in
periodic mode shapes with up to three harmonic components. The analysis of an anisotropic rotor with a
difference in blade stiffness shows additional harmonic components in the periodic mode shape and thus in
the response. The amplitude of additional harmonic components for the blades is up to a few percent of the
blade amplitudes in the isotropic case. These additional harmonic terms, though small, might cause new
couplings to the unsteady aerodynamics in an aeroelastic model.
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Appendix

The Coleman transformed system matrix of Eq. (7) for the wind turbine in the example can be written as
a sum of a time-invariant part and a time-variant part that is proportional to the stiffness anisotropy as

A(t) = Ai + ∆G1Aa(t) (42)

where ∆G1 is the increase in stiffness of blade 1 compared to the isotropic case such that G1 = Gb + ∆G1,
G2 = G3 = Gb −∆G1/2. The matrices are given as

Ai =




0 1 0 0

−Gb

Jb
− Ω2 − cb

Jb
0 0

0 0 0 1

0 0 −Gb

Jb
− 3Gb

2J0+2Jx
− Ω2 −cb

(
3

2J0+2Jx
+ 1

Jb

)

0 0 Ω 0

0 0 0 Ω

0 0 0 0

0 0 3Gb

2J0+2Jx
3cb

2J0+2Jx

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−Ω 0 0 0 0 0

0 −Ω Gx

J0+Jx
cx

J0+Jx
0 2Ω

0 1 0 0 0 0

−Gb

Jb
− 3Gb

2J0+2Jz
− Ω2 −cb

(
3

2J0+2Jz
+ 1

Jb

)
0 2Ω − Gz

J0+Jz
− cz
J0+Jz

0 0 0 1 0 0

0 0 − Gx

J0+Jx
− cx
J0+Jx

0 0

0 0 0 0 0 1

− 3Gb

2J0+2Jz
− 3cb

2J0+2Jz
0 0 − Gz

J0+Jz
− cz
J0+Jz




(43)

and

Aa(t) =




0 0 0 0 0 0 0 0 0 0

0 0 − cos(Ωt)
2Jb

0 − sin(Ωt)
2Jb

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

− (3Jb+2(J0+Jx)) cos(Ωt)
2Jb(J0+Jx) 0 − (3Jb+2(J0+Jx)) cos(2Ωt)

4Jb(J0+Jx) 0 − (3Jb+2(J0+Jx)) sin(2Ωt)
4Jb(J0+Jx) 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

− (3Jb+2(J0+Jz)) sin(Ωt)
2Jb(J0+Jz) 0 − (3Jb+2(J0+Jz)) sin(2Ωt)

4Jb(J0+Jz) 0 (3Jb+2(J0+Jz)) cos(2Ωt)
4Jb(J0+Jz) 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
3 cos(Ωt)
2(J0+Jx) 0 3 cos(2Ωt)

4(J0+Jx) 0 3 sin(2Ωt)
4(J0+Jx) 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

− 3 sin(Ωt)
2(J0+Jz) 0 − 3 sin(2Ωt)

4(J0+Jz) 0 3 cos(2Ωt)
4(J0+Jz) 0 0 0 0 0




(44)

where J0 = 3mbL
2
s .
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Abstract

The aeroelastic code BHawC for calculation of the
dynamic response of a wind turbine uses a nonlinear
finite element formulation. Most wind turbine sta-
bility tools for calculation of the aeroelastic modes
are, however, based on separate linearised models.
This paper presents an approach to modal analy-
sis where the linear structural model is extracted
directly from BHawC using the tangent system ma-
trices when the turbine is in a steady state. A purely
structural modal analysis of the periodic system for
an isotropic rotor operating at a stationary steady
state is performed by eigenvalue analysis after de-
scribing the rotor degrees of freedom in the inertial
frame with the Coleman transformation. For gen-
eral anisotropic systems implicit Floquet analysis,
which is less computationally intensive than clas-
sical Floquet analysis, is used to extract the least
damped modes.
Both methods are applied to a model of a three-

bladed 2.3 MW Siemens wind turbine. Frequen-
cies match individually and with a modal identifica-
tion on time simulations with the nonlinear model.
The implicit Floquet analysis performed for an
anisotropic system in a periodic steady state shows
that the response of a single mode contains multiple
harmonic components differing in frequency by the
rotor speed.
Keywords: modal analysis; Floquet analysis; rotor
dynamics

1 Introduction

Today, advanced nonlinear finite element codes
[1, 2, 3] are routinely used for load calculations on
wind turbines. Most wind turbine stability tools
for calculation of the aeroelastic modes are, how-
ever, based on separate linearised models. Stability
analysis can be divided into three steps: First a cal-
culation of the steady state, then a linearisation of

the equations of motion about the steady state, and
last a modal analysis to extract modal frequencies,
damping, and mode shapes. This paper presents an
approach to structural modal analysis applicable to
any periodic steady state where the linearisation is
obtained directly from the nonlinear wind turbine
aeroelastic code BHawC [3].

The equations of motion for a wind turbine oper-
ating at a constant mean rotor speed contain peri-
odic coefficients, preventing direct eigenvalue analy-
sis of the system. Most recent wind turbine stability
tools [4, 5, 6, 7] incorporate the Coleman transfor-
mation, also known as the multi-blade coordinate
transformation, which describes the rotor degrees of
freedom in the inertial frame. This transformation
eliminates the periodic coefficients if the system is
isotropic, i.e., the rotor consists of identical symmet-
rically mounted blades, and the environment condi-
tions are symmetric. Floquet analysis is, however,
applicable to anisotropic systems and any periodic
steady state. It requires integration of the equa-
tions of motion over a period of rotor rotation, as
many times as there are state variables in the sys-
tem. Due to the computational burden of this ap-
proach it has only been applied to reduced or sim-
plified wind turbine models with a limited number
of degrees of freedom [8, 9, 10]. One way to reduce
the computation time is Fast Floquet Theory [11]
where only one third of the integrations are nec-
essary for a three-bladed isotropic rotor. Another
way is to use implicit Floquet analysis [12] where
the least damped modes can be extracted after a
limited number of integrations.

Stol et al. [13] compare the Coleman transfor-
mation approach applied to a periodic steady state,
where the remaining periodic coefficients are aver-
aged away, with Floquet analysis and find small
differences in modal frequencies and damping, con-
cluding that it is not necessary to use Floquet anal-
ysis.

Another approach to modal analysis is system
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identification [14, 15, 16] which operates on the
response from numerical simulations or measure-
ments, and no knowledge of the system equations
is needed to extract the modal properties. The ac-
curacy of the methods is, however, limited and de-
pends on the chosen excitation.
In this paper, tangent matrices for mass, damp-

ing, and stiffness are extracted from the aeroelas-
tic code BHawC. If the system is isotropic and the
steady state is stationary, the Coleman transforma-
tion is applied before extracting the modal parame-
ters by eigenvalue analysis. For an anisotropic sys-
tem, implicit Floquet analysis is used for the modal
analysis. When the system is isotropic the response
of a single mode contains a single harmonic compo-
nent for tower degrees of freedom and up to three
components for the blades. The response of a sin-
gle mode in the anisotropic system on both blades
and tower contains multiple harmonic components
differing in frequency by the rotor speed.
Section 2 of this paper describes the BHawC

model and Section 3 explains the methods for modal
analysis, the Coleman transformation approach, im-
plicit Floquet analysis and also partial Floquet anal-
ysis, a system identification technique. In Section 4
the methods are applied to model of a wind turbine.
Section 5 discusses the approaches and Section 6
concludes the paper.

2 Structural model

The BHawC wind turbine aeroelastic code [3] is
based on a structural finite element model sketched
in Figure 1, where the main structural parts, tower,
nacelle, shaft, hub, and blades, are modelled as two-
node 12-degrees of freedom Timoshenko beam ele-
ments. The code uses a co-rotational formulation,
where each element has its own coordinate system
that rotates with the element. The elastic defor-
mation is described in the element frame, while
the movement of the element coordinate system ac-
counts for rigid body motion. In this way, a geo-
metrically nonlinear model is obtained using linear
finite elements.
The configuration of the system, defined by nodal

positions p and orientations q, nodal velocities u̇ (of
both positions and orientations) and nodal acceler-
ations ü must satisfy the equilibrium equation given
in global coordinates as

finer(p,q, u̇, ü) + fdamp(q, u̇) + fint(p,q) = fext (1)

where finer, fdamp, fint, and fext are the inertial,
damping, internal, and external force vectors, re-
spectively, and (̇) = d/dt denotes a time derivative.
The inertial forces depend on the acceleration of

masses, the damping force is given by viscous damp-
ing, the internal force is due to elastic forces, and the
external force contains the aerodynamic force [17].
To find this equilibrium configuration, increments of
the positions and orientations δu, velocities δu̇ and
accelerations δü are found by Newton-Raphson it-
eration with the tangent relation obtained from the
variation of Equation (1) as

M(q)δü+C(q, u̇)δu̇+K(p,q, u̇, ü)δu = r (2)

where M, C, and K are the tangent mass, damp-
ing/gyroscopic, and stiffness matrices, respectively,
and r = fext− finer− fdamp− fint is the residual. The
stiffness matrix is composed of constitutive, geomet-
ric, and inertial stiffness. The orientation of the
nodes q is described by quaternions, also known as
Euler parameters [18], a general four-parameter rep-
resentation equivalent to a rotation matrix, which
for node number i is updated as

qi := quat(δui,rot) ∗ qi (3)

where δui,rot contains three rotations that are as-
sumed infinitesimal and thus commute, and where
this rotation pseudo-vector is transformed by the
function termed quat into a quaternion, which is
used to update the nodal quaternion qi employing
the special quaternion product denoted by ∗ which
maintains the unity of the quaternion. The nodal
positions p, nodal velocities u̇, and accelerations ü
are updated by regular addition of the positional
part of δu, δu̇ and δü, respectively. All compo-
nents in p, q, and δu are absolute and described in
a global frame.
The present work considers small perturbations

in position and orientation y, velocity ẏ, and accel-
eration ÿ to a steady state with constant mean ro-
tor speed Ω defined by (pss,qss, u̇ss, üss), the steady

Figure 1: Sketch of BHawC model substructures.
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state positions, orientations, velocities, and acceler-
ations, respectively, all periodic with the rotor pe-
riod T = 2π/Ω. The linearised equations of motion
are obtained from Equation (2) at r ≈ 0 as

M(qss)ÿ +C(qss, u̇ss)ẏ

+K(pss,qss, u̇ss, üss)y = 0 (4)

where the matrices M, C, and K are the T -periodic
tangent system matrices which are employed in the
modal analysis described in the next section.

3 Methods

In this section four methods for modal analysis of
structures with rotors are presented.

3.1 Coleman approach

The Coleman transformation requires identical de-
grees of freedom on each blade, and therefore the
equations of motion (4) in global coordinates are
first transformed into substructure coordinates yT.
The transformation is

y = TyT

T = diag(INs ,Tr,Tb1,Tb2,Tb3)
(5)

where T is a block diagonal time-variant matrix
composed of the identity matrix INs sized by the
number of degrees of freedom of the tower, nacelle,
and drivetrain, Tr transforming the degrees of free-
dom on the shaft and hub into a hub centre frame,
and Tbj transforming the degrees of freedom on
blade number j = 1, 2, 3 into a local frame for blade
j. The rotation matrices are obtained in the peri-
odic steady state, and thus T is T -periodic.
The time-variant transformation into inertial

frame coordinates z is

yT = Bz

B = diag(INs ,Br,Bb)
(6)

where Br is a simple rotational transformation of
the shaft and hub, and Bb is the Coleman trans-
formation introducing multi-blade coordinates for a
three-bladed rotor [11, 19] as

Bb =



INb

INb
cosψ1 INb

sinψ1

INb
INb

cosψ2 INb
sinψ2

INb
INb

cosψ3 INb
sinψ3


 (7)

where ψj = Ωt + 2π(j − 1)/3 is the mean azimuth
angle to blade number j, and Nb is the number of
degrees of freedom on each blade. The inertial frame
coordinate vector

z = {yT
s zTr aT0 aT1 bT

1 }T (8)

contains the untransformed coordinates for tower,
nacelle, and drivetrain ys, the coordinates for shaft
and hub zr measured in a non-rotating frame aligned
with the hub, and the multi-blade symmetric coor-
dinates a0, cosine coordinates a1, and sine coordi-
nates b1. Details on how multi-blade coordinates
describe the motion of a wind turbine rotor in the
inertial frame are discussed in [20, 21].
The Coleman transformed equations are obtained

by first inserting Equation (5) into (4), then con-
verting to first order form and last introducing the
inertial frame transformation in Equation (6) as
yT2 = diag(B,B)z2 where yT2 = {yT ẏT}T and
z2 = {zT z̃T}T are the state vector in substructure
and inertial frames, respectively, with z̃ = ż + ω̄z
and the constant matrix ω̄ = B−1Ḃ. The result is

ż2 = ABz2

AB =

[ −ω̄ I
−M−1

B KB −M−1
B CB − ω̄

]
(9)

where AB is the Coleman transformed system ma-
trix and

MB = B−1TTMTB

CB = B−1TT(CT+ 2MṪ)B

KB = B−1TT(KT+CṪ+MT̈)B

(10)

are the Coleman transformed mass, damp-
ing/gyroscopic, and stiffness matrices, respectively.
If the system is isotropic, then AB is time-invariant
and a transient solution of Equation (9) is

z2 = eABtz2(0) = VeΛtq(0) (11)

where Λ is a diagonal matrix containing the eigen-
values of AB, V contains the corresponding eigen-
vectors as columns and q(0) = V−1z2(0) are the ini-
tial conditions in modal coordinates. It is assumed
that all eigenvectors are linearly independent.
The blade motion given in the inertial frame in

Equation (11) can be transformed back into the ro-
tating frame using Equation (6) as [21]

yT,ik = eσkt
(
A0,ik cos(ωkt+ ϕ0,ik)

+ABW,ik cos
(
(ωk +Ω)t+ ϕj + ϕBW,ik

)

+AFW,ik cos
(
(ωk − Ω)t− ϕj + ϕFW,ik

))
(12)

where ϕj = 2π(j − 1)/3, σk and ωk are the modal
damping and frequency of mode number k, respec-
tively, given by the eigenvalue λk = σk + iωk with
i =

√
−1. The amplitudes for degree of freedom

number i are determined from the components of
the eigenvector vk given in multi-blade coordinates
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of Equation (8) as A0,ik = |a0,ik| and

ABW,ik = 1
2

(
(Re (a1,ik) + Im (b1,ik))

2

+ (Re (b1,ik) − Im (a1,ik))
2
)1/2 (13)

AFW,ik = 1
2

(
(Re (a1,ik) − Im (b1,ik))

2

+ (Re (b1,ik) + Im (a1,ik))
2
)1/2 (14)

where the subscripts 0, BW, and FW denote sym-
metric, backward whirling, and forward whirling
motion, respectively.

3.2 Classical Floquet analysis

Floquet analysis enables the solution of the peri-
odic equations of motion directly without an explicit
transformation. Equation (4) is written in first or-
der form

ẏ2 = Ay2

A =

[
0 I

−M−1K −M−1C

]
(15)

where y2 = {yT ẏT}T is the state vector and A is
the T -periodic system matrix.

Floquet theory [22] states that the solution to
Equation (15) is of the form

y2 = UeΛtU−1(0)y2(0) (16)

where U is a T -periodic matrix and Λ is a diagonal
matrix. One way to construct this solution is to
form a fundamental solution to Equation (15) as

ϕ =
[
ϕ1 ϕ2 . . . ϕN

]
(17)

over one period, t ∈ [0;T ], where N is the number of
state variables, such that ϕ̇ = Aϕ. The monodromy
matrix defined as

C = ϕ−1(0)ϕ(T ) (18)

contains all modal properties, which can be ex-
tracted from the eigenvalue decomposition

C = VJV−1 (19)

where V contains the column eigenvectors vk of C,
which are all assumed to be linearly independent,
and J is a diagonal matrix containing the eigenval-
ues ρk of C, called the characteristic multipliers.
The characteristic exponents λk = σk + iωk contain
the frequency ωk and damping σk and are related
to the characteristic multipliers as ρk = exp(λkT ).
Because the complex logarithm is not unique, the

frequency is not determined uniquely, and the prin-
cipal frequency ωp,k and the damping σk are defined
from the characteristic multipliers as

σk =
1

T
ln(|ρk|)

ωp,k =
1

T
arg(ρk)

(20)

where arg(ρk) ∈ ] − π;π] is implied, resulting in
ωp,k ∈ ] − Ω/2; Ω/2]. Any integer multiple of the
rotor speed can be added to the principal frequency
to obtain a more physically meaningful frequency
[23, 24]

ωk = ωp,k + jkΩ (21)

a choice which also affects the periodic modal matrix
U in Equation (16). This matrix U contains the
periodic mode shapes uk and is given as [24]

uk = ϕvke
−λkt (22)

where λk is selected using Equation (21) such that
uk is as constant as possible for degrees of freedom
measured in the inertial frame.
Introducing the Fourier transform of the periodic

mode shape

uk =
∞∑

j=−∞
Ujke

ijΩt (23)

the transient solution in Equation (16) can be writ-
ten as a sum of harmonic components

y2 =
N∑

k=1

∞∑

j=−∞
Ujke

(σk+i(ωk+jΩ))tqk(0) (24)

where q(0) = U−1(0)y2(0). Note that Equa-
tion (12) is a special case of this expression for
j = −1, 0, 1.

3.3 Implicit Floquet analysis

The Implicit Floquet method is here described
based on the detailed description in [12], which fo-
cuses on computation of the characteristic multipli-
ers from the state transition matrix Φ(T, 0). It can
be defined in classical Floquet theory as

ϕ(T ) = Φ(T, 0)ϕ(0) (25)

Using Equation (18), the relationship between the
state transition and monodromy matrices is derived
as

Φ(T, 0) = ϕ(0)Cϕ−1(0) (26)

showing that Φ(T, 0) and C have identical eigenval-
ues (characteristic multipliers), and their eigenvec-
tors are related as vk = ϕ−1(0)wk, where wk are
the eigenvectors of Φ(T, 0).
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The key feature of the state transition matrix is
that it defines the solution y2(T ) = Φ(T, 0)y2(0) for
a time integration of the system equations (15) over
one period T with initial conditions y2(0). Hence,
without knowing the state transition matrix, it is
possible to obtain the product of it with an arbi-
trary vector (the initial state vector) by integration
of (15) over one period. The Arnoldi algorithm
[25] is a method to approximate the eigenvalues and
eigenvectors of a matrix, say Φ(T, 0), using only the
matrix multiplication with Φ(T, 0) to construct an
m-sized subspace

P =
[
p1 p2 . . . pm

]
(27)

that satisfies the orthonormality condition

PTP = I, (28)

and where the eigenvalues ρ̃k of the subspace pro-
jected state transition matrix

H = PTΦ(T, 0)P (29)

converge towards the eigenvalues ρk of Φ(T, 0) with
the largest modulus as the size m of the subspace
increases. The subspace eigenvectors w̃k of H pro-
jected back to the full state space converge towards
the eigenvectors wk of Φ(T, 0), i.e., wk ≈ Pw̃k.
The Arnoldi algorithm proceeds as follows:

Choose an arbitrary vector p1 with |p1| = 1
for n = 1, 2, . . . ,m
a := Φ(T, 0)pn

(integration of (15) over t ∈ [0;T ])
b := a
for j = 1, 2, . . . , n
hj,n := pT

j a
b := b − hj,npj

end
if n < m
hn+1,n := |b|
pn+1 := b/hn+1,n

end
pn+1 := pn+1 − ∑n

j=1(p
T
j pn+1)pj

end

The last step in the n-loop is an explicit re-
orthogonalisation to eliminate an otherwise pro-
gressing skewness of the subspace basis and thereby
ensure convergence of the algorithm [12]. Note that
H with components hj,n, n = 1, . . . ,m, j = 1, . . . , n,
is an upper Hessenberg matrix for which there exist
efficient eigenvalue solvers. In practice the Arnoldi
algorithm is continued until a desired number of
eigenvalues λ̃k with largest modulus and their cor-
responding eigenvectors Pw̃k of the state transition
matrix Φ(T, 0) are converged to within a specific
tolerance.

To construct the approximations to the periodic
mode shapes (22), the m×m fundamental solution
matrix ϕ̃ to the subspace projected system equa-
tions is written as

ϕ̃ = PT
[
ϕ1 ϕ2 . . . ϕm

]
(30)

where ϕj is the solution of the full system (15) in-
tegrated over t ∈ [0;T ] for each initial condition
pj , whereby ϕ̃(0) = I due to (28). The eigen-
vectors ṽk of the subspace projected monodromy
matrix C̃ = ϕ̃−1(0)ϕ̃(T ) are therefore identical to
the eigenvectors w̃k of the subspace projected state
transition matrix (29). The periodic mode shapes in
the subspace are therefore similar to Equation (22)
given by

ũk = ϕ̃w̃ke
−λ̃kt (31)

which by projection back into the full state space
using uk = Pũk yields the approximated periodic
mode shapes of the full system

uk ≈
[
ϕ1 ϕ2 . . . ϕm

]
w̃ke

−λ̃kt (32)

where w̃k and λ̃k are the eigenvectors and charac-
teristic exponents of H, respectively.

3.4 Partial Floquet analysis

Partial Floquet analysis [23] is a system identifica-
tion technique that operates on signals with the free
response of the system, thus no knowledge of the
system equations is necessary. The signals can be
obtained by numerical simulation or from measure-
ments.
Singular value decomposition is used to eliminate

noise and extract the frequency and damping of the
most dominant modes from a matrix similar to the
monodromy matrix assembled from a limited num-
ber of signals spanning several periods. The entries
in this matrix can only be sampled once per period
for periodic systems, which limits the accuracy be-
cause the signal damps away, decreasing the signal
to noise ratio. Time-invariant systems can, however,
be sampled once per time step. Therefore, partial
Floquet analysis is combined with Coleman trans-
formation of the signals [26], such that the response
resembles that of a time-invariant system. This ap-
proach increases the accuracy and the number of
modes that can be extracted from a given signal.
However, a careful choice of forcing, that excites all
modes of interest to a sufficient level, is necessary
to extract these modes accurately.

4 Numerical results

The modal analysis methods described in the pre-
vious sections are applied to a BHawC model of a
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Figure 2: Frequency (a) and damping (b) as function of rotor speed. Standstill eigenvalue analysis (squares),
Coleman approach (lines), partial Floquet analysis (circles). Legend entries are ordered after the sequence at
0 rpm.

2.3MW wind turbine with three 45m blades, hub
height 80m and nominal speed 16 rpm. The model
has 381 structural degrees of freedom.

4.1 Isotropic system

The turbine is mounted with identical blades and
runs in vacuum neglecting gravity forces, so the sys-
tem is isotropic. The deflection of the blades due to
centrifugal forces is therefore constant in the blade
frame. The constant steady state is found at a given
azimuth position by solving Equation (1) statically,
including centrifugal forces from the constant rotor
speed. In this way a steady state with no transients
is obtained, and the system matrices become exactly
periodic.

4.1.1 Coleman transformation approach

Because the system is isotropic, a modal analysis
can be performed on the Coleman transformed sys-
tem matrix. The system matricesM, C andK from
Equation (4) are extracted at a single azimuth angle
and combined into the Coleman transformed sys-
tem matrix of Equation (9) from which the modal
frequencies, damping and eigenvectors given in the
inertial frame are extracted. The time-invariance
of the system matrix is checked by calculation for
several azimuth angles.
Figure 2(a) shows the lowest modal frequencies as

function of rotor speed where the frequency is nor-
malised with the lowest modal frequency at 0 rpm.
The modes are named according to their dominant
motion determined from the eigenvector and the
whirling amplitudes calculated from equations (13)

and (14). The mode labels in Figure 2 first con-
tain the index of that particular mode; then ‘T’ for
tower, ‘F’ for blade flapwise, ‘E’ for blade edgewise
or ‘DRV’ for drivetrain; then ‘LO’ for longitudinal,
‘LA’ for lateral, ‘BW’ for backward whirling, ‘FW’
for forward whirling or ‘S’ for symmetric. For com-
parison, frequencies extracted from time simulations
with the nonlinear BHawC model using the partial
Floquet method [26] are also shown. The agree-
ment is within 0.4% except for modes coupling to
the drivetrain, i.e., the drivetrain, edgewise, and lat-
eral tower modes, where the discrepancy is up to
2% at the highest rotor speed, which is caused by a
difficulty with keeping the rotor speed exactly con-
stant in the nonlinear simulation due to the energy
dissipated in the oscillation.
Figure 2(b) shows the damping as function of ro-

tor speed where the logarithmic decrement is nor-
malised with the value for the first tower longitu-
dinal mode at 0 rpm. The agreement in damping
between the results from the linear model and the
partial Floquet analysis applied to the nonlinear
model is within 6%, except for a discrepancy of up
to 20% for modes coupling to the drivetrain. It must
be noted that the purely structural damping of the
modes is small, and thus a small absolute difference
leads to a high relative difference. The results also
show that damping is more difficult to estimate than
frequency using system identification.

4.1.2 Implicit Floquet analysis

For the implicit Floquet analysis the system matri-
ces in global coordinates in Equation (4) are ex-
tracted from the steady state at 16 azimuth an-
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Figure 3: Magnitude of implicit Floquet character-
istic multipliers as function of steps in Arnoldi al-
gorithm. • non-converged eigenvalues, ◦ converged
eigenvalues.

gles equally spaced over a rotor rotation. For in-
terpolation to other azimuth angles a least squares
fit of a truncated Fourier series with 8 terms is
used. The fundamental solutions in Equation (30)
are integrated with a Newmark-type solver from
initial conditions determined by the Arnoldi algo-
rithm. The principal frequencies and damping are
found from Equation (20) where ρk are taken as
the eigenvalues of the approximated state transi-
tion matrix. Figure 3 shows the real part σk of the
characteristic exponents calculated at each Arnoldi
step for a steady state at 12 rpm using a time step
of ∆t = T/1024 = 0.0049 s. The scattering of
the highest damping values shows that the highest
damped modes are spurious and do not represent
actual eigenmodes of the system due to the approx-
imate nature of the implicit Floquet analysis. To
exclude these modes from the results, only modes
satisfying a strict convergence criterion, where the
absolute change of both damping σk and principal
frequency ωp,k is less than 10−10 between three suc-
cessive steps, are retained. After 50 Arnoldi steps
19 modes are converged. The modal frequencies are
determined using Equation (21) by adding jkΩ to
the principal frequency, where jkΩ is the single non-
vanishing harmonic component in a Fourier trans-
form of the periodic mode shape for degrees of free-
dom on the tower calculated from Equation (32)
using the principal frequency ωp,k. The periodic
mode shape components for degrees of freedom on
the tower and nacelle calculated with the modal fre-
quency ωk are thus constant. A detailed description
of the process of frequency identification is given in
[24].

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Time step [s]

N
eg

at
iv

e 
re

la
tiv

e 
fr

eq
ue

nc
y 

di
ffe

re
nc

e

 

 
2 F S
2 F BW
1 F S
1 T LO
1 T LA

Figure 4: Relative difference in implicit Floquet fre-
quency compared to Coleman approach frequency
for selected modes as function of implicit Floquet
integration time step.

Figure 4 shows the difference in frequency cal-
culated with the Coleman transformation approach
and the implicit Floquet analysis with different inte-
gration time steps. The implicit Floquet results con-
verge towards the Coleman transformation results
for decreasing time steps, the error being roughly
proportional to ∆t2. Predominantly the error in-
creases with the modal frequency. A similar trend
is seen for the damping.

Figure 5 shows the dominant harmonic compo-
nents U jk in Equation (24) for the first flapwise
forward whirling mode shape. The blade mode
shape is transformed into substructure coordinates
using Equation (5) and contains the rigid body mo-
tion of the hub. The zoom factor in the lower
right corner indicates how much each component
has been enlarged. The ground fixed components in
the mode shape are constant, consistent with the so-
lution from the Coleman transformation approach.
The mode shape for the blade has harmonic com-
ponents at j = −1, 0, 1, corresponding to the for-
ward whirling, symmetric, and backward whirling
components, respectively, in the Coleman transfor-
mation approach. Thus, in a pure excitation of
this mode at 12 rpm, according to Equation (24)
the tower vibrates with the normalised modal fre-
quency ω′ = 2.8, and the blades dominantly vibrate
with ω′ − Ω′ = 2.2 (FW), and to a lesser extent
with ω′ + Ω′ = 3.3 (BW) and ω′ = 2.8 (S) (see
Figure 2(a)).
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Figure 5: Amplitudes of harmonic components of
the first flapwise forward whirling periodic mode
shape for the isotropic rotor. Blades (top) flap-
wise and edgewise, and tower (bottom) longi-
tudinal and lateral.

4.2 Anisotropic system

To investigate the effects of an anisotropic rotor on
the modal properties, a mass of 485 kg due to ice
coverage defined by DIN-1055-5 [27] is added along
the length of blade 1. Figure 6 shows the resulting
steady state when running the turbine at 16 rpm
with a 10m/s uniform wind field perpendicular to
the rotor plane. Note that the wind is used only
to drive the rotor and the modal analysis is still
purely structural. The steady state varies period-
ically both for the tower and the blades, and the
blade motion for blade 1 is different from that of
blades 2 and 3. The steady state is determined
from a time simulation until transients have damped
away and systemmatrices are then extracted at each
time step of the steady state simulation and interpo-
lated onto integration time points using a truncated
Fourier series with 8 terms. The implicit Floquet
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Figure 6: Steady state over one rotor period for
the anisotropic rotor at 16 rpm. Blade tips flapwise
(top) 1, 2 and 3 and edgewise (middle) 1,

2 and 3, and blade tips, tower top (bottom)
longitudinal and lateral.

analysis is carried out with an integration time step
of T/1024 = 0.0037 s as described for the isotropic
case. The frequencies are up to 4% lower than in the
isotropic case due to the added mass on one blade.
The change in damping is slightly more pronounced,
up to a 17% decrease for the second flapwise forward
whirling mode.

Figure 7 shows the harmonic components U jk

with frequencies jΩ of the first flapwise forward
whirling mode shape for the tower and blade 1. The
tower mode shape now has several harmonic com-
ponents compared to only one in the isotropic case.
The component at j = 0 is similar in shape to the
corresponding one for the isotropic case, but now
the dominant component is at j = −2, and there is
also a significant component at j = −1.

For the mode shape of blade 1 the harmonic com-
ponents at j = −1, 0, 1 are similar to the corre-
sponding ones in the isotropic case. However, now
the amplitude of the dominant flapwise component
at j = −1 for blade 1 is three times as high as
for blades 2 and 3, and blades 2 and 3 move close
to in-phase and in counter-phase with blade 1, as
shown in Figure 8. Thus, in a pure excitation of
this mode the tower now vibrates dominantly with
the normalised frequency ω′ − 2Ω′ = 1.6 in addi-
tion to the component at ω′ = 2.8. Blade 1 vibrates
dominantly at ω′ −Ω′ = 2.2 as for the isotropic case
and notably at ω′ − 2Ω′ = 1.6, ω′ − 3Ω′ = 1.0 and
ω′ + 3Ω′ = 4.5 in addition to ω′ + Ω′ = 3.3 and
ω′ = 2.8 as for the isotropic case.

The identification of the first flapwise forward
whirling modal frequency is not done by making the
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Figure 7: Amplitudes of harmonic components of the first flapwise forward whirling periodic mode shape for
the anisotropic rotor with one blade covered with ice. Blade 1 (top) flapwise, edgewise, and tower
(bottom) longitudinal and lateral.

tower mode shape as constant as possible, as in the
isotropic case. Rather, the modal frequency is cho-
sen to be close to the one for the similar mode in the
isotropic case. A more suitable criterion to give this
result is to require that the mode shape with the
rotor degrees of freedom in multi-blade coordinates
be as constant as possible [28].

The rotor with one ice-covered blade is an exam-
ple of how an isotropic rotor can change the modal
dynamics of the system. Other influences that could
cause a similar behaviour is rotor stiffness unbal-
ance, gravity loads, yaw error, and wind shear. A
two-bladed rotor is inherently anisotropic and re-
quires a general approach like Floquet analysis.

5 Discussion

This paper has presented several different methods
for structural modal analysis of wind turbines. The
Coleman approach is simple and fast, and its ba-

sis in a physical coordinate transformation means
that the results are easily interpreted. Its speed
makes it useful for doing parameter studies early
in the design process. But it is only applicable to
isotropic systems. Floquet analysis can be applied
to examine special cases where anisotropic effects
are suspected to change the modal parameters. The
implicit Floquet analysis is an efficient implemen-
tation of Floquet analysis for systems with many
degrees of freedom. In the example given, the most
important modes are extracted after 50 integrations
of the system over a rotor period, whereas 762 in-
tegrations would be needed for a classical Floquet
analysis. Finally, the partial Floquet analysis, or
another means of system identification, is useful to
check the validity of the linearisation.

The work presented in this paper is part of an on-
going effort to obtain a full aeroelastic linear model
of the nonlinear code BHawC. The approach pre-
sented in this paper is readily extendable to a lin-
ear aeroelastic model. The linear model will aid
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component at j = −1 of the first flapwise forward
whirling periodic mode shape for the isotropic rotor
(a) and the anisotropic rotor (b). Blades 1, 2
and 3.

in the understanding of the loads obtained from a
nonlinear response, of which many features can be
explained from the linear modes.

6 Conclusion

Tangent matrices for structural modal analysis are
extracted directly from the nonlinear model of a
wind turbine in a steady state. When the sys-
tem is isotropic the preferred approach is to use
the Coleman transformation for describing the equa-
tions of motion in the inertial frame allowing direct
eigenvalue analysis to extract the modal frequen-
cies, damping, and mode shapes. When the sys-
tem is anisotropic, implicit Floquet analysis, that
reduces the computational burden associated with
classical Floquet analysis, is applied to yield the low-
est damped eigenmodes. The linearised model is
validated from numerical results for a three-bladed
turbine, showing a reasonable agreement for the fre-
quencies and the damping between the Coleman ap-
proach and partial Floquet analysis on the response
of the nonlinear model for modes not related to the
drivetrain. The implicit Floquet results converge to
the results from the Coleman approach with the de-
viation in frequency and damping roughly propor-
tional to the square of the integration time step and
increasing with the modal frequency. This finding
shows the importance of precise time integration in
implicit Floquet analysis. An analysis applied to an
anisotropic system with one blade covered with ice
shows a decrease in frequency up to 3% and changes
in damping within 17%. It also reveals multiple har-

monic components in the response of a single mode
which will show up in measurements.
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Abstract

Wind shear is an important contributor to fatigue loads on wind turbines. Because it causes an az-
imuthal variation in angle of attack, it can also affect aerodynamic damping. In this paper a linearised
model of a wind turbine, based on the nonlinear aeroelastic code BHawC, is used to investigate the effect
of wind shear on the modal damping of the turbine. In isotropic conditions with a uniform wind field the
modal properties can be extracted from the system matrix transformed into the inertial frame using the
Coleman transformation. In shear conditions an implicit Floquet analysis, which reduces the computational
burden associated with classical Floquet analysis, is used for modal analysis.

The methods are applied to a 2.3MW three-bladed pitch-regulated wind turbine showing a difference in
damping between isotropic and extreme shear conditions at rated wind speed when the turbine is operating
closest to stall. The first longitudinal tower mode decreases slightly in damping while the first flapwise
backward whirling and symmetric modes increase in damping. This change in damping is attributed to
an interaction between the periodic blade mode shapes and the azimuth-dependent local aerodynamic
damping in the shear condition caused by a beginning separation of the flow.

1 Introduction

This paper investigates the changes in modal damping of wind turbines caused by operation in conditions with
extreme wind shear. Wind shear is an important factor in the periodic loading of a wind turbine contributing
to the fatigue loads. It also gives an azimuthal variation in the inflow angle which affects the aerodynamic
damping [1], particularly if the slope of the lift curve varies at the angles of attack experienced.

Wind turbine stability tools for calculation of the modal frequencies and damping most often do not take
into account anisotropic effects like wind shear but to varying degrees assume isotropy. The rotor is in this
context defined as isotropic if it has three or more identical and symmetrically mounted blades [2]. The external
conditions are defined as isotropic if the wind profile is constant in time, uniform, and aligned in tilt and yaw
to be perpendicular to the rotor plane, and if gravity and other asymmetric external forces are absent.

Most recent stability tools [3, 4, 5, 6] use the Coleman transformation to describe the equations of motion
in the inertial frame, which renders the system equations time-invariant by eliminating the periodic terms
caused by the rotor rotation, if the rotor and the external conditions are isotropic. Other researchers use
Floquet analysis to include anisotropic effects in the modal analysis of two-bladed wind turbines [7, 8], which
have an inherently anisotropic rotor, and of three-bladed wind turbines in anisotropic conditions [9].

Floquet analysis is demanding due to the heavy computational burden required by multiple integrations of
the equations of motion over a period of rotation of the rotor, and due to the non-uniqueness of the determined
frequencies. The issue of computation time is addressed in Fast Floquet Theory [10], where only one third of
the integrations is necessary for a three-bladed isotropic rotor, and by implicit Floquet analysis [11], which
extracts the least damped modes after a limited number of integrations. The non-uniqueness of the frequency
is a consequence of the applicability of Floquet analysis to anisotropic conditions, and it can be resolved in
isotropic and moderately anisotropic conditions, without ambiguity, by analysing the frequency content of the
corresponding periodic mode shape [2, 7, 12].

The authors compare the Coleman transformation approach to Floquet analysis [2, 13], showing the exis-
tence of additional harmonic components in the periodic mode shape when the rotor is anisotropic. Stol et
al. [9] examine anisotropic conditions due to operation in wind shear and idling in a yawed condition, and they
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find small differences in modal damping between a Floquet analysis and an approximate solution based on the
Coleman transformation.

This paper builds on a recent approach to structural modal analysis [13] and extends it to include aerody-
namics. The structural linear equations of motion are extracted directly from the nonlinear finite element-based
aeroelastic tool BHawC, and the aerodynamic force and unsteady aerodynamic equations are linearised nu-
merically. The modal analysis is performed using the Coleman approach in isotropic conditions and using
implicit Floquet analysis in both isotropic conditions and anisotropic conditions with wind shear. The effects
of extreme wind shear are examined on a model of a three-bladed pitch-regulated 2.3MW wind turbine, show-
ing a small increase in damping of the first flapwise backward whirling and symmetric modes and a slight
decrease in damping of the first longitudinal tower mode owing to the interaction between azimuth-dependent
local aerodynamic damping, caused by the wind shear, and the periodic mode shape.

Section 2 describes the BHawC structural and aerodynamic modelling and linearisation. Section 3 sum-
marises the Coleman approach and implicit Floquet analysis applied to this model. Section 4 presents the
results of the modal analysis, and section 5 contains the conclusions.

2 Aeroelastic model

The first step in a modal analysis is to obtain a steady state, which possibly varies periodically with the
rotor period. In the present work it is calculated with the aeroelastic code BHawC. The second step is the
linearisation of the system equations to describe small perturbations to the steady state.

2.1 Steady state configuration

In BHawC [13, 14], the configuration of the system, defined by nodal positions p and orientations q, nodal
velocities u̇ and nodal accelerations ü, must satisfy the equilibrium equation in global coordinates given as

finer(p,q, u̇, ü) + fdamp(q, u̇) + fint(p,q) = fa(p,q, u̇, a) + fext (1)

where (̇) = d/dt denotes a time derivative and finer, fdamp, fint, and fa are the inertial, damping, internal
(elastic), and aerodynamic force vectors, respectively, and fext includes other external forces, e.g., gravity. The
aerodynamic force depends on the structural degrees of freedom through the relative wind velocity vector in
the airfoil frame and the transformation of the force into the global frame, as well as the aerodynamic state
vector a describing the flow.

In BHawC the aerodynamic force fa is determined using a Beddoes-Leishman-type unsteady aerodynamic
model [15] in a number of aerodynamic calculation points positioned on each blade independently of the
structural nodes. In the present work, the unsteady model is reduced to include the effects of trailing edge
separation alone, thereby making it equivalent to the Øye dynamic stall model [16]. This effect is described
by the position of the separation point f , related to the lift coefficient CL as

CL = CL,fa(α)f + CL,fs(α)(1 − f) (2)

where CL,fa is the lift curve for fully attached flow, CL,fs is the lift curve for fully separated flow, and α is
the angle of attack. The stationary value of the separation point position fst(α) can be calculated as f from
Equation (2) by replacing CL with CL,st(α). The dynamics of the separation point position are modelled as

ḟ =
2W

τfc
(fst(α) − f) (3)

where W is the relative wind speed, c is the chord length, and τf is a time constant representing the lag in
the boundary layer. Equation (3) is linear in f but nonlinear in u and u̇ because of their influence on the
relative wind speed and the stationary separation point position through the angle of attack. The dynamic
drag coefficient is determined as the induced drag due to the change in lift [15] as

CD = CD,st(α) +
(
CL − CL,st(α) − ηcCL,st(α)

(√
f −

√
fst(α)

)
cos(α)

)
sin(α) (4)

where ηc is an efficiency factor.
To find an equilibrium configuration of the model satisfying Equation (1), increments of the positions and

orientations δu, velocities δu̇, and accelerations δü are found by Newton-Raphson iteration with the structural
tangent relation determined from the variation of Equation (1) as

M(q)δü+C(q, u̇)δu̇+K(p,q, u̇, ü)δu = r (5)
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where M, C, and K are the mass, damping/gyroscopic, and stiffness matrices, respectively, and r = fa +
fext − finer − fdamp − fint is the residual. The iteration is continued until r ≈ 0. This equation can be used to
find a periodic steady state configuration, which in isotropic conditions is characterised by constant deflections
of the structure, constant rotor speed Ω, and constant position of the separation point. The steady state
can be determined for different azimuth angles as a stationary solution to Equation (1) including centrifugal
and aerodynamic forces determined from the constant rotation of the rotor. The steady state in anisotropic
conditions is characterised by general periodic motion with period T , which then defines the mean rotor speed
Ω = 2π/T . This steady state cannot be determined at a single azimuth angle independently because the
inertia and damping forces depend on the periodic motion. Rather, it is necessary to consider the whole rotor
period at once, e.g., by use of a finite difference method. This approach is complex for a large model and is
not attempted here. Instead, a time simulation in BHawC is carried out until the transients are sufficiently
damped away, giving an approximation to the periodic steady state. In this paper the anisotropic condition is
caused by the wind shear, but it can also include cyclic pitch.

2.2 Linearised motion

A linearised modal analysis considers small perturbations in structural position and orientation y, velocity
ẏ, and acceleration ÿ, and in separation point position x and velocity ẋ to the steady state configuration
(pss,qss, u̇ss, üss, ass, ȧss) with constant mean rotor speed Ω. In this configuration pss, qss, u̇ss, and üss are
the periodic steady state structural positions, orientations, velocities, and accelerations, respectively, and ass
and ȧss contain the periodic steady state positions and velocities, respectively, of the separation point in all
calculation points.

The aerodynamic force can be drawn out from the residual in Equation (5) and linearised about the steady
state as

fa = fa,ss +
∂fa
∂y

y +
∂fa
∂ẏ

ẏ +
∂fa
∂x

x (6)

such that the linearised structural equations of motion for small-amplitude motion about the steady state from
Equation (5) become

Mÿ + (C+Ca)ẏ + (K+Ka)y +Afx = 0 (7)

with the aerodynamic damping matrix written as Ca = −∂fa/∂ẏ, the aerodynamic stiffness matrix as Ka =
−∂fa/∂y, and the aerodynamic flow coupling matrix as Af = −∂fa/∂x, all evaluated at the steady state. In
the present work a numerical linearisation is preferred to an analytical one because of the fairly complicated
dependence of the relative wind velocity on the structural degrees of freedom, and in order to make the
linearisation independent of the implementation of the aerodynamics. Consequently, the present approach
extends to any state-space aerodynamic model. The aerodynamic stiffness matrix is approximated using a
one-sided difference scheme with column j calculated as

Ka,j ≈ − fa(uss +∆uj , u̇ss, ass) − fa(uss, u̇ss, ass)

∆u
(8)

where ∆uj is the displacement perturbation vector with one non-zero element of magnitude ∆u at position j.
Similarly, a column of the aerodynamic damping matrix is calculated as

Ca,j ≈ − fa(uss, u̇ss +∆u̇j , ass) − fa(uss, u̇ss, ass)

∆u̇
(9)

where ∆u̇j is the velocity perturbation vector with one non-zero element of magnitude ∆u̇ at position j. A
column of the aerodynamic flow coupling matrix is calculated as

Af,j ≈ − fa(uss, u̇ss, ass +∆xj) − fa(uss, u̇ss, ass)

∆x
(10)

where ∆xj is the aerodynamic state perturbation vector with one non-zero element of magnitude ∆x at
position j.

The linearised form of Equation (3) for all aerodynamic calculation points can be written as [5]

ẋ+Adx+Cuaẏ +Kuay = 0 (11)

where the aerodynamic system matrix Ad is a diagonal matrix obtained analytically from Equation (3) with
elements

Ad,i =
2Wi

τfci
(12)

3



where i denotes the number of the aerodynamic calculation point. The element (i, j) of the aerodynamic
velocity coupling matrix Cua is calculated as

Cua,ij ≈ 2

τfci

Wi(fss,i − fst,i) − Wss,i(fss,i − fst,ss,i)

∆u̇
(13)

where Wss,i and fst,ss,i are the steady state values of the relative wind speed and stationary separation point
position of calculation point number i, respectively, and Wi and fst,i are updated with the perturbation ∆u̇
to u̇j affecting Wi directly and fst,i through the angle of attack. Similarly, the aerodynamic displacement
coupling matrix Kua is calculated as

Kua,ij ≈ 2

τfci

Wi(fss,i − fst,i) − Wss,i(fss,i − fst,ss,i)

∆u
(14)

where Wi and fst,i are updated with the perturbation ∆u to uj.

3 Modal analysis

A modal analysis extracting the modal frequencies, damping, and mode shapes can be performed using the
Coleman approach if the rotor and external conditions are isotropic. In the general case of an anisotropic system
Floquet analysis can be used. These two methods are summarised below with the addition of aerodynamics
compared to the description in [13].

3.1 Coleman approach

To enable the use of the Coleman transformation, the structural equations of motion in Equation (7) are
transformed into substructure coordinates yT given by the transformation y = TyT, such that the degrees of
freedom on each blade are equal in the local blade frame. The aeroelastic system is then transformed into the
inertial frame coordinates given by

yT = Byzy

x = Bxzx
(15)

where zy are the inertial frame structural degrees of freedom, By is the structural inertial frame transformation
matrix including the Coleman transformation, zx are the inertial frame aerodynamic state variables, and Bx

is the aerodynamic Coleman transformation matrix. The Coleman transformation [17] describes the blade
degrees of freedom in multi-blade coordinates by use of 1P harmonic functions. It is periodic with the rotor
period such that By(t+ T ) = By(t) and Bx(t+ T ) = Bx(t).

The first order form inertial frame equations of motion of the aeroelastic system given by Equations (7)
and (11) become

ż3 = AB z3 (16)

where z3 = {zTy z̃Ty zTx}T is the inertial frame state vector with z̃y = ży + ω̄yzy, and the inertial frame system
matrix is

AB =

⎡
⎣

−ω̄y I 0
−M−1

B KB −M−1
B CB − ω̄y −M−1

B AfB

−KuaB −CuaB −AdB − ω̄x

⎤
⎦ (17)

where B = diag(By,By,Bx), ω̄ = B−1Ḃ is a constant matrix, and the inertial frame transformed matrices
are

MB = B−1
y TTMTBy

CB = B−1
y TT

(
(C+Ca)T+ 2MṪ

)
By

KB = B−1
y TT

(
(K+Ka)T+ (C+Ca)Ṫ+MT̈

)
By

AfB = B−1
y TTAfBx

AdB = B−1
x AdBx

CuaB = B−1
x CuaTBy

KuaB = B−1
x KuaT+CuaṪBy

(18)
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If the system is isotropic, then AB is time-invariant [2], and a transient solution to Equation (16) trans-
formed into substructure coordinates is

yT3 = BVeΛtq(0) (19)

where yT3 = {yT
T ẏT

T xT}T is the substructure coordinate state vector, Λ is a diagonal matrix containing
the eigenvalues λk = σk + iω of AB with i =

√
−1 and damping σk and frequency ωk of mode number k, V

contains the corresponding eigenvectors as columns, and q(0) = V−1B−1(0)yT3(0) are the initial conditions in
modal coordinates. It is assumed that all eigenvectors are linearly independent, i.e., that AB has a diagonal
Jordan form.

3.2 Implicit Floquet analysis

This section gives a summary of the implementation of the implicit Floquet method described in [13] and
based on the original formulation in [11]. Floquet analysis enables the solution of periodic equations of motion
directly without an explicit transformation when they are written in the form

ẏ3 = A(t)y3 (20)

where y3 is the state vector and A is the periodic system matrix in first order form satisfying A(t+T ) = A(t).
Floquet theory [18] states that the solution to Equation (20) is of the form

y3 = U(t) eΛt U−1(0)y3(0) (21)

which is a decomposition of the solution into modal contributions consisting of periodic mode shapes uk with
period T contained as columns in the periodic mode shape matrix U and eigenvalues λk = σk + iωk contained
in the diagonal of Λ, assuming that the system is diagonalisable. This solution is similar to the one given in
Equation (19), with the difference that the periodic mode shape BV has a 1P azimuth-dependency from B
due to the isotropic nature of the system, while U has an arbitrary integer-P azimuth-dependency caused by
the anisotropy, e.g., wind shear.

This decomposition can be formed from a set of solutions ϕj found by integration of Equation (20) over
one period with linearly independent initial conditions ϕj(0) = pj , such that ϕ̇j(t) = A(t)ϕj(t) for t ∈ [0;T ].
Classical Floquet analysis requires the computation of n solutions, where n is the number of state variables. To
reduce this computational burden, the implicit Floquet analysis, which gives an approximate decomposition
from a limited number of solutions ϕj , is used. In the implicit Floquet analysis, the initial conditions ϕj(0)
are determined successively by the Arnoldi algorithm such that after m integrations P = [p1 p2 . . . pm]
constitutes an orthogonal subspace. The subspace projected monodromy matrix is given as

C̃ = PT
[
ϕ1(T ) ϕ2(T ) . . . ϕm(T )

]
(22)

and its eigenvalues, the characteristic multipliers ρk, are related to the characteristic exponents λk as ρk = eλkT

for mode number k. The m characteristic exponents are approximations to the m eigenvalues with the lowest
damping in the solution in Equation (21). The frequency and damping are defined from the characteristic
multipliers as

σk =
1

T
ln(|ρk|)

ωk =
1

T
arg(ρk) + jkΩ

(23)

where the principal branch of the non-unique complex logarithm is used, such that arg(ρk) ∈ ]− π;π], and jk
is an integer chosen to make the non-unique frequency more physically meaningful [2, 12]. The periodic mode
shapes uk are determined approximately as

uk(t) ≈ [ϕ1(t) ϕ2(t) . . . ϕm(t)]vk e
−λkt (24)

where vk are the eigenvectors of the monodromy matrix C̃, and jk, yielding λk from Equation (23), is selected
such that uk is as constant as possible for degrees of freedom measured in the inertial frame. The choice of
jk changes both the frequency ωk and the mode shape uk such that the solution in Equation (21) remains
unaffected.

The state vector in Equation (20) is given as y3 = {yT ẏT xT}T, however it is not necessary to explicitly
form the first order system matrix A. Instead, the solutions ϕj are determined from the aeroelastic system
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given by Equations (7) and (11) which is retained in global coordinates to exploit the sparsity of the system
matrices for fast integration with a Newmark-type solver in the second order form

[
M 0
0 0

]{
ÿ
ẍ

}
+

[
C+Ca 0
Cua I

]{
ẏ
ẋ

}
+

[
K+Ka Af

Kua Ad

]{
y
x

}
=

{
0
0

}
(25)

where the singularity of the combined mass matrix in the first term is circumvented by initially using M to find
the accelerations ÿ and setting the accelerations ẍ explicitly to zero. In practice, the implicit Floquet analysis
is continued by integrating Equation (25) over one period until a desired number of modes have converged to
within a desired tolerance.

4 Numerical results

In this section the presented methods for modal analysis are applied to a BHawC model of a Siemens 2.3MW
pitch-regulated wind turbine with three 45m blades, hub height 80m, and nominal speed 16 rpm. The model
has 381 structural degrees of freedom and 153 aerodynamic calculation points.

4.1 Harmonic pitching of airfoil section

The behaviour of the dynamic stall model is examined for a single aerodynamic calculation point and rigid
body pitching motion of the airfoil, reducing Equation (11) to

ḟ = −Kαa

Ad,i
α (26)

where Kαa is the sum of the two elements in the substructure transformed matrix KuaT coupling pitching
motion of the two structural nodes surrounding the aerodynamic calculation point i to the separation f at this
point. For harmonic oscillation of the angle of attack, α = A sin(ωt) +αss, with amplitude A and frequency ω
around the steady state angle of attack αss, Equation (26) has the solution

f =
AKαa,i√
ω2 +A2

d,i

sin
(
ωt+ arctan(ω/ −Ad,i)

)
(27)

The linearisation of the lift coefficient about the steady state is found using Equation (2) as

CL = CL,ss(α) +
(
C′

L,fa(α)fss + C′
L,fs(α)(1 − fss)

)
(α − αss) + (CL,fa(α) − CL,fs(α)) (f − fss) (28)

where subscript ‘ss’ denotes steady state values, ()′ denotes the derivative with respect to the angle of attack
and all profile coefficients are evaluated at the steady state angle of attack αss.

Figure 1 shows the lift coefficient determined from the nonlinear model in Equation (3) compared to the
linearised lift coefficient determined from Equations (26) and (27) for harmonic motion of the angle of attack
and τf = 6 [15, p. 71]. For the calculation with a steady state angle of attack around 7◦ the lift coefficient
determined from the nonlinear model follows the stationary curve for the small angles of attack, whereas it
enters into the stall regime for the large amplitude resulting in a hysteresis loop due to the lag in the boundary
layer. The linearised lift curve is tangent to the stationary lift curve because the linearization point is in
fully attached flow. For the mean angle of attack around 12◦ the loop of the nonlinear lift coefficient at the
large amplitude is shaped by the curvature of the stationary lift curve, while the linearised lift curve is an
ellipse. The ellipse is inclined relative to the tangent of the stationary lift curve because the separation is
delayed and the lift tends towards the value for fully attached flow whose lift curve has a higher slope. At the
small amplitude and both mean angles of attack the lift coefficient of the linearised model agrees well with
the nonlinear model, which means that the linearised model is suitable for representing vibrations with an
amplitude in angle of attack up to around 1◦.

4.2 Normal operation

Figure 2 shows the rotor speed and pitch angle (measured as negative towards feather) as function of hub
height wind speed. These operating points are determined from BHawC time simulations until steady state
with a wind profile constant in time defined by the power law V = VH(z/zH)

a, where z is the height above
ground, zH is the hub height, VH is the wind speed at hub height, and a is the wind shear exponent set to 0.2.
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Figure 1: Lift coefficient as function of angle of attack for harmonic oscillations of the airfoil at 40.4m radius
around its pitch axis for combinations of two mean angles of attack and amplitudes of 1◦ and 3◦. The curve for
the low angle of attack and 1◦ amplitude follows the tangent and is thus not discernible. Wind speed 16m/s,
rotor speed 16 rpm, and reduced frequency ωc/(2W ) = 0.1.
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Figure 2: Rotor speed (a) and pitch angle (b) as function of wind speed in normal operation determined from
BHawC time simulations to steady state.

An overview of the dynamic characteristics of the turbine at these operating points is provided by a
modal analysis using the Coleman approach where the wind field is approximated as isotropic, and the system
matrices in Equations (7) and (11) are extracted from a static steady state calculation including centrifugal
and aerodynamic forces at a single azimuth angle. The time-invariance of the system matrix is checked by
calculation for several azimuth angles. Figure 3(a) shows the normalised modal frequencies of the 14 modes
with lowest frequency determined from the eigenvalues of the inertial frame transformed system matrix in
Equation (17) as function of wind speed. The frequencies are normalised with the frequency of the first lateral
tower mode. The labels first contain the index of the mode; then ‘T’ for tower, ‘F’ for blade flapwise, ‘E’ for
blade edgewise or ‘DRV’ for drivetrain; then ‘LO’ for longitudinal, ‘LA’ for lateral, ‘BW’ for backward whirling,
‘FW’ for forward whirling or ‘S’ for symmetric. A detailed description of wind turbine modal dynamics is
given in [19]. From 4m/s to 9m/s the figure resembles a Campbell diagram with a variation of the frequencies
due to the variation in rotor speed, and for higher wind speeds the frequencies change due to the pitching of
the blades. Figure 3(b) shows the logarithmic decrements normalised with respect to the first lateral tower
mode as function of wind speed. The low damped modes are the first lateral tower mode and the edgewise
backward and forward whirling modes. The drivetrain mode is in the modal analysis artificially low damped
because the the drivetrain is modelled as free-free and the controller is not present to provide damping. The
flapwise modes are highly damped with a dip in the damping around 11m/s where the high angle of attack
causes beginning separation of the flow.
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Figure 4: Relative damping difference of the implicit Floquet analysis compared to the Coleman approach for
selected modes as function of the implicit Floquet integration time step.

The sensitivity towards the perturbation magnitude in the numerically linearised aerodynamic matrices in
Equations (8)–(10), (13), and (14) is found to be a relative change of less than 10−6 in the modal frequencies
and damping for variations of the perturbation magnitude between 10−6 and 10−2.

To investigate the sensitivity of the Floquet analysis results with respect to the time step of the integration,
the results of the Floquet analysis are compared to the Coleman approach, both in isotropic conditions at
16 rpm. An implicit Floquet analysis is performed using the system matrices of Equation (25) extracted at
64 azimuth angles over one rotor rotation in a steady state time simulation. The system of Equation (25)
is integrated with a Newmark-type algorithm in time steps varying from T/64 to T/2048, where the system
matrices are interpolated onto the integration time points using a truncated Fourier series with 14 harmonic
terms. The integration is carried out over 56 rotation periods to yield 20 dynamic modes, including the 14
modes with lowest frequency, converged to within an absolute tolerance of 10−10 on the eigenvalues. The
modal frequencies are identified from the frequency content in the periodic mode shapes in Equation (24)
calculated for tower and blade degrees of freedom, the latter in multi-blade coordinates [2].

Figure 4 shows the difference in damping of the implicit Floquet analyses with different integration time
steps relative to the Coleman approach. Using 64 time steps the solution is not precise enough to yield the
second lateral tower mode. The error is approximately proportional to the time step squared and generally
increases with the modal frequency. But when the error is around 10−4 the convergence for the first lateral
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Figure 5: Steady state deflection over one rotor period in normal operation at 11m/s and extreme shear
condition. Blade tip motion flapwise (a) and edgewise (b), and tower top motion (c).

tower mode stalls, which is caused by a bad conditioning of the eigenvalue problem in the Coleman approach1

and not a lack of convergence of the implicit Floquet analysis itself. The number of time steps for further
analyses is selected as 512 as a compromise between precision and computation time.

4.3 Normal operation in extreme wind shear

The effects of extreme wind shear are examined at the operating point at 11m/s, 16 rpm, and 0.1◦ pitch
where the blades experience the largest angles of attack. The curvature of the lift coefficient at this point
where flow separation has begun can affect the damping due to the large azimuthal variation of the lift slope.
Simulations with the present model and previous work [20] show that gravity forces have a negligible effect on
modal frequencies and damping, and are therefore excluded. For a wind shear exponent a = 0.55, which has
been measured at the Høvsøre test site in Denmark under extremely stable atmospheric conditions [21], the
steady state flapwise and edgewise deflections of the blade tips and the deflection of the tower top are shown
as function of azimuth angle in Figure 5. The deflection of the blades varies significantly and is at maximum
when the blade is pointing upwards (180◦ for blade one), while the deflection of the tower top is practically
constant.

To extract the modal properties in these anisotropic conditions an implicit Floquet analysis is carried out.
Figure 6 compares the modal frequencies and logarithmic decrements of the first 14 modes in the extreme
shear condition and in an isotropic condition at the same wind speed, rotor speed and pitch angle, where
the modal properties are calculated using the Coleman approach. The frequencies are almost unchanged by
the wind shear but the damping of the flapwise modes increases slightly while the first longitudinal tower
mode damping decreases slightly in the shear condition. This difference in damping can be explained by the
interaction between modal vibration determined by the mode shape, and aerodynamic damping determined
by the angle of attack. It is noted that the modal properties of the lowly damped modes, which are the modes
observable from measurements, are unaffected by the wind shear.

Figure 7(a) shows the lift coefficient as function of angle of attack during one rotor rotation at different
blade radii in the extreme shear operating condition compared to the corresponding constant operating point
in the isotropic condition. The angle of attack in the shear condition varies towards the blade root due to
the nacelle tilt and towards the tip due to the wind shear. On the outer part of the blade the angle of attack
is lowest when the blade is pointing downwards and highest when the blade is pointing upwards. In both
isotropic and shear conditions the airfoils are at the onset of separation with a small curvature of the lift. For
the highest angles of attack in the shear condition the lag in the boundary layer is seen by a small opening
of the curve. The lag is most apparent at the inner part of the blade where the relative wind speed is lower,

1The system matrix A is badly conditioned because of the large span in order of magnitude of the eigenvalues: the model
contains extremely highly damped modes compared to which the physically relevant modes have an eigenvalue close to zero. The
system matrix AB is balanced as performed by the Matlab command ‘eig’, which improves the conditioning but cannot entirely
eliminate the problem.
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in extreme shear condition ( ).
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Figure 9: Amplitude of blade displacement perpendicular to the rotor plane in the first longitudinal tower mode
as function of radius and azimuth angle in normal operation. Isotropic (a) and extreme shear (b) conditions.

which increases the lag in boundary layer, seen by a decrease of the proportionality factor in Equation (3).
This effect of dynamic stall tends to increase the effective slope of the lift curve. Figure 7(b) shows the drag
coefficient as function of angle of attack for the two operating conditions. The drag curves are approximately
linear except for the inner part of the blade.

The influence of the angle of attack and the profile coefficients on the damping can be obtained from a
linearised expression for the local quasi-steady viscous aerodynamic damping η of an airfoil section [19] given
as

η = 1
2cρW

(
CD(3 + cos(2θ − 2φ)) + C′

L(1 − cos(2θ − 2φ)) + (CL + C′
D) sin(2θ − 2φ)

)
(29)

where ρ is the air density, θ is the angle between the direction of motion and the rotor plane, φ = α+ θp is the
inflow angle, θp is the sum of pitch and airfoil twist, and CL, C

′
L, CD, C′

D, W , and φ are all evaluated at the
steady state. This expression is only qualitative because the mode shape motion is not entirely unidirectional
and because dynamic stall at large angles of attack with flow separation effectively increases the lift slope and
thus increases the damping. Figure 8 shows the local damping for out-of-plane motion, θ = 90◦, which is the
dominant direction of blade motion in the first longitudinal tower mode and the flapwise modes, which are the
modes most affected by the wind shear. In this direction the damping is governed mainly by the slope of the
lift curve. The local damping in the isotropic condition is constant during a rotor rotation while in the shear
condition it increases when the blade is around the downward position (0◦) and increases when the blade is
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Figure 11: Amplitude of blade displacement perpendicular to the rotor plane in the first symmetric flapwise
mode as function of radius and azimuth angle in normal operation. Isotropic (a) and extreme shear (b)
conditions.

around the upward position (180◦) due to the variation in angle of attack.
Figure 9 shows the amplitude of the out-of-plane motion of the blade in the mode shape of the first

longitudinal tower mode during one rotor rotation. The largest amplitude is when the blade is pointing
upwards, and it is smaller when the blade is pointing downwards. The displacement is mostly due to a rigid
body tilt rotation of the nacelle, but there is also some elastic deformation, particularly when the blade is
pointing upwards. The mode shapes of the isotropic and the shear conditions are almost identical. Because the
mode shape amplitude is greater when the blade is pointing up, the decrease in damping outweighs the increase,
resulting in lower modal damping for the first longitudinal tower mode in the shear condition. This argument is
recapitulated in Figure 10(a) showing the azimuth-dependent local damping obtained as a qualitative estimate
of the work of the aerodynamic forces. This work is approximated simply by multiplication of the local damping
in Figure 8 with the mode shape amplitude in Figure 9 and integration over the length of the blade. The area
enclosed by the curve represents the amount of total damping over one period, corresponding to the modal
damping. Thus, the smaller area for the shear condition confirms the result of lower modal damping.

The amplitude of the out-of-plane blade displacement in the first symmetric flapwise mode is shown in
Figure 11. In the isotropic condition the amplitude is largest at the tip and almost constant during a rotor
rotation showing only a small 1P variation. By contrast, the mode shape in the shear condition has a multiple-
P variation over azimuth, illustrating the difference between isotropic and anisotropic conditions. The mode
shape for the shear condition is best understood as the mean amplitude over multiple periods of the steady
state forced response to an ideal pure excitation of this mode. This response drops in amplitude with some
delay after a period of high damping, and it increases in amplitude with some delay after a period of low
damping. The amplitude in the shear condition is smallest around 120◦ when the blade is travelling upwards,
which is caused by the high aerodynamic damping around 0◦ seen in Figure 8(b). Conversely, the amplitude
is lowest around 280◦ when the blade is travelling downwards, caused by the low damping around 180◦.
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Figure 12: Lift coefficient (a) and drag coefficient (b) as function of angle of attack for different radial positions
in stalled operation at 16m/s. Profile data ( ), working point in isotropic condition (◦) and working points
in extreme shear condition ( ).

Figure 10(b) shows the estimate of the aerodynamic work as function of azimuth angle for both conditions
caused by the interaction of the mode shape and the aerodynamic damping. The larger area of the curve in
the shear condition explains the higher modal damping. The same effect is seen for the first flapwise backward
whirling and the second flapwise symmetric modes.

The damping of the edgewise modes is caused mainly by drag. As shown in Figure 7(b) the drag coefficient
in the shear condition varies approximately equally below and above the value in the isotropic condition,
causing no significant change in the modal damping of the edgewise modes.

4.4 Stalled operation

To validate the conclusion that the curvature of the lift creates a large variation in the local damping and
hence the observed changes in modal damping of the first longitudinal tower mode and first flapwise modes,
the turbine is operated in developed stall outside its normal operating range, at 16m/s wind with a rotor
speed of 16 rpm and a pitch angle of 0◦.

Figure 12(a) shows the lift coefficient as function of angle of attack at different blade radii. At most radial
positions the turbine operates around the maximum lift coefficient, which gives a substantial curvature of
the lift and more pronounced dynamic loops due to the lag in the boundary layer in the shear condition.
Figure 12(b) shows the drag coefficient as function of angle of attack which is now considerably larger and has
more curvature than in normal operation.

Figure 13 shows the modal frequencies and damping for isotropic and shear conditions. As in normal
operation, the frequencies are approximately the same in the two conditions, and the damping of the flapwise
modes increases due to the shear, while the damping of the first longitudinal tower mode decreases. These
relative changes in modal damping are substantially larger than in normal operation, showing that the higher
curvature of the lift and drag makes the azimuthal variation in damping more significant and therefore has a
stronger effect on modes with blade motion perpendicular to the rotor plane.
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5 Conclusions

A linear aeroelastic model is constructed from structural equations extracted directly from a nonlinear aeroe-
lastic code and from numerically obtained aerodynamic equations. These system equations transformed into
the inertial frame using the Coleman transformation yield the modal frequency and damping for isotropic
systems. In the general case of anisotropic systems, the modal properties are obtained using implicit Floquet
analysis.

A modal analysis of a three-bladed wind turbine is performed in extreme wind shear conditions. The wind
shear leads to an azimuthal variation in the angle of attack, corresponding to a variation in local aerodynamic
damping in stall, because of the varying lift slope. The modal damping of the first longitudinal tower mode
decreases slightly for operation close to stall in the shear condition relative to the isotropic condition. On the
other hand, the wind shear increases the damping of the the first flapwise backward whirling and symmetric
modes close to stall. The phenomenon is validated by operating the turbine in developed stall, which increases
the change in damping.

For the lowly damped modes, which are the ones observable from measurements on the turbine, the relative
changes of the modal frequencies and damping values due to wind shear are small and assumed to be within
the uncertainty of the predictions. Hence, the anisotropic effects of wind shear for similar turbines with similar
operating conditions can be disregarded. The changes in modal damping may be more important for stall-
regulated turbines or future pitch-regulated turbines with larger rotors, both because the variation in angle
of attack due to wind shear would be larger, and because the increased flexibility of the longer blade could
introduce couplings between the structure and the aerodynamics. The presented method can also be applied
to turbines operating with cyclic pitch, which can be a way of handling the varying loading of an increased
wind shear.
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Determination of Modal
Parameters in Complex Nonlinear
Systems
This paper describes a methodology for evaluating the modal parameters of complex
nonlinear systems. It combines four different tools: the Coleman post-processing, the
partial Floquet analysis, the moving window analysis, and the signal synthesis algorithm.
The approach provides a robust estimation of the linearized modal parameters and quali-
tative information about the nonlinear behavior of the system. It operates on one or
multiple discrete time signals and is able to deal with both time-invariant and periodic
systems. The method is computationally inexpensive and can be used with multiphysics
computational tools, and in principle, with experimental data. The proposed approach is
validated using a simple, four degree of freedom model of a wind turbine. The predictions
for the linear system are validated against an exact solution of the problem. For the
nonlinear system, it is demonstrated that qualitative information concerning the nonlin-
ear behavior of the system is obtained using the proposed method. Finally, the nonlinear
behavior of a realistic, three-bladed horizontal axis wind turbine model is
investigated. �DOI: 10.1115/1.4002975�

1 Introduction
An important aspect of the dynamic response of wind turbines

and other flexible rotating systems is the potential presence of
instabilities. For instance, ground and air resonance phenomena
are well documented instabilities that occurs in rotorcraft, edge-
wise aeroelastic instabilities are observed in wind turbines, and
flutter might become a problem for future wind turbines with
longer, more flexible blades �1�. Even if the system is stable, the
accurate evaluation of the decay rates for each mode of the system
is a critical task. Indeed, in the presence of low decay rates, per-
turbations from steady equilibrium operation will damp out at a
very slow rate, dramatically affecting the fatigue life of the tur-
bine.

If the equations of motion of the system can be cast in the form
of linear, ordinary differential equations with constant coeffi-
cients, classical stability analysis methodologies based on the
characteristic exponents of the system can be used. For wind tur-
bines, however, the equations of motion are in the form of linear,
ordinary differential equations with periodic coefficients, assum-
ing small amplitude response of the blades and tower. In this case,
the Floquet theory �2� should be used. Under some restrictive
assumptions, the equations of motion of periodic mechanical sys-
tems can be transformed into time-invariant equations using the
Coleman transformation �3�.

Stability analysis is typically performed on simplified models
with the smallest number of degrees of freedom required to cap-
ture the physical phenomenon that causes the instability. The
equations of motion are linearized and eigenvalue analysis then
yields the system’s modal parameters. This approach provides re-
sults that are easily interpreted, but ignores potential nonlinear
behavior of the system. For instance, damping ratio could be a
function of modal amplitude �4�, or nonlinear modal coupling
could affect modal parameters. Furthermore, as the number of
degrees of freedom used to represent the system increases, the
Floquet analysis becomes increasingly cumbersome, and quickly
unmanageable.

Due to increased available computer power, the analysis of
wind turbines and rotorcraft relies on increasingly complex, large
scale models. Full finite element analysis codes are now routinely
used for structural dynamics modeling �5–7� and aeroelastic phe-
nomena are captured by coupling the structural dynamics model
with simplified unsteady aerodynamics models, or sometimes with
computational fluid dynamics code, to obtain accurate predictions
of the airloads acting on the turbine. The size and complexity of
these computational models makes it increasingly difficult to ap-
ply the classical tools used for stability analysis.

The only rigorous approach to nonlinear stability analysis is
Lyapunov’s function method, which cannot be applied to large
dimensional numerical models, or to experimental data. This pa-
per presents a procedure that extracts qualitative information
about nonlinear stability and decay rates for such models through
a careful combination of linearized methodologies. The desired
procedure should be equally applicable to experimental measure-
ments and to large scale simulation tools to allow a rational com-
parison of numerical predictions against experimental data.

Stability analysis methodologies that are applicable to experi-
mental data typically deal with time signals that are processed to
extract modal parameters. Clearly, manipulating or linearizing the
equations of motion are not options when dealing with experimen-
tal data. The earliest such methods are probably Prony’s �8� and
moving block methods �9,10�. In view of the difficulty of applying
the Floquet theory to experimental systems, the partial Floquet
analysis �PFA� was developed by Peters and Wang �11� and Fue-
hne �12� and later refined by Bauchau and Wang �13–15�, who
also demonstrated the close relationship among Prony’s, partial
Floquet, and autoregressive methods. More recently, the wavelet
�16,17� and Hilbert transform methods �18� have also been devel-
oped.

The work presented in this paper describes an approach to sta-
bility analysis that combines four different tools: the Coleman
post-processing �CPP�, the partial Floquet analysis, the moving
window analysis �MWA�, and the signal synthesis algorithm
�SSA�. The approach provides a robust estimation of the linear-
ized modal parameters and qualitative information about the non-
linear behavior of the system. It operates on one or multiple dis-
crete time signals and is able to deal with both time-invariant and
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periodic systems. Furthermore, the method is computationally in-
expensive and can be used with multiphysics computational tools,
and in principle, with experimental data.

2 Stability Analysis of Complex Systems
The present work focuses on flexible rotating systems such as

wind turbines or rotorcraft, but is equally applicable to general
flexible multibody systems. The system is assumed to be modeled
by a set of nonlinear equations of the form ẏ� =g� �t ,y��, where y� is a
vector containing the N state variables, t denotes time, and � · � is a
derivative with respect to time.

The system is assumed to operate at a constant mean rotor
speed, and small perturbations x� =y� −y� ss from a periodic steady
state y� ss of the nonlinear system can be approximated by a linear
system with periodic coefficients as

ẋ� = A= �t�x� + f��t� �1�

where A= �t�=A= �t+T� is the periodic system matrix of period T
=2� /�, � is the rotor speed, and f��t� is the external force vector.

2.1 Classical Floquet Analysis. For the purpose of stability
analysis, it is convenient to assume that wind turbines are periodic
systems. The theoretical basis for the analysis of periodic systems
was developed by Floquet �19� who showed that the response of a
linear system with periodic coefficients is the sum of modal con-
tributions each consisting of a product of a periodic function by an
exponential term of the form of exp��kt�, where the �k is called
the characteristic exponents.

Typically, applications of the Floquet theory are based on the
determination of the transition matrix �= which relates the states
of the system at times t and t+T, where T is the period of the
system. The eigenvalues of the transition matrix, denoted as �k,
are related to the characteristic exponents �k=exp��kT�. The
damping coefficient �k and principal frequency �p,k of mode k are
determined from these eigenvalues as

�k =
1

T
ln���k�� �2a�

�p,k =
1

T
arctan��k�, �p,k� � ��− �/2,�/2� �2b�

Integer multiples of the rotor speed can be added to the principal
frequencies as �k=�p,k+ jk� to obtain more physically meaning-
ful frequencies. The damping ratio is then calculated as �k

=−�k / ��k
�1+�k

2 /�k
2�. The system is stable if �k�0 for all values

of k.

2.2 Partial Floquet Analysis. For large multibody models, a
formal linearization of the governing equations is difficult and
costly to obtain for time-invariant systems, and even more ardu-
ous in the case of periodic systems. This is particularly true for the
multiphysics models used to simulate wind turbines. Hence, the
application of the Floquet theory to these systems is problematic.

To overcome these difficulties, Bauchau and Wang �13–15� de-
veloped several approaches to stability analysis and demonstrated
their applicability to large scale multibody systems. They pre-
sented two classes of closely related robust algorithms based on
partial Floquet and autoregressive approaches. Furthermore, they
showed that a number of other methods, such as Prony’s method
or Poincaré mapping, are identical to those approaches.

A distinctive feature of these methods is that they operate on
one or multiple discrete time signals characterizing the dynamic
response of the system, and are able to deal with time-invariant or
periodic systems. Consequently, these approaches are computa-
tionally inexpensive and consist of purely post-processing steps
that can be used with any multiphysics computational tool or with
experimental data, where the free response after an applied exci-
tation has been measured. Unlike classical stability analysis meth-

odologies, linearization of the system’s equations of motion is not
required. Singular value decomposition is used systematically as a
means of dealing with the noisy, highly redundant data sets ob-
tained from nonlinear systems. In this paper, this approach will be
referred to as the PFA.

The PFA is based on a number of time signals, denoted as hs�t�,
which are components of the response vector x� . A total of Nh
signals is used for the analysis. A typical signal is sampled at
times t= j	t+�T, where j denotes the time step number in period
� assuming that T is an integer multiple of 	t. An array storing m
consecutive data points starting in period � is set up as

h� s,� = �hs�	t + �T�, . . . ,hs�m	t + �T��T �3�

Arrays h� s,� obtained over n+1 periods, �=0, . . . ,n, for all Nh
signals are assembled into two Hankel-type matrices of size
Nhm
n, denoted as H= 0 and H= 1 �13–15�, such that H= 1=Q

=
H= 0,

where Q
=

is an approximation of the transition matrix. For this
relationship to allow the exact calculation of the transition matrix,
all N state variables would have to be available over N periods,
i.e., Nh=N and n=N. If a single data point was then used, i.e.,
m=1, H= 0 would be square and invertible, yielding the exact tran-
sition matrix as Q

=
=H= 1H= 0

−1.
If the system is time-invariant, i.e., if A= �t� in Eq. �1� is constant,

the period is arbitrary and may be selected T=	t to obtain the
maximum amount of information from a given signal.

In practice, only a few signals are available and for much
shorter times than required to calculate the full transition matrix.
Therefore, an approximate transition matrix is evaluated as Q

=

=H= 1H= 0
+, where superscripts � · �+ denote Moore–Penrose inverses

�20�. Matrix H= 0 is factorized using the singular value decomposi-
tion �20� to yield H= 0=U=S=V= T, where U= contains the proper orthogo-
nal modes of H= 0, S= is a diagonal matrix storing the singular values
of H= 0, and V= is an orthogonal matrix.

The singular values can be interpreted as a measure of the en-
ergy associated with each proper orthogonal mode. To reduce
noise, only the r largest singular values and the corresponding
columns in U= and V= are retained. The number r can be interpreted
as the rank of matrix H= 0. The Moore–Penrose inverse of matrix
H= 0 then becomes H= 0

+=V= rS= r
−1U= r

T, and the estimated transition ma-
trix of size Nhm
Nhm becomes Q

=
=H= 1V= rS= r

−1U= r
T.

Matrix H= 0 will store highly redundant data, and rank r is typi-
cally less than the number of rows Nhm. It follows that of the Nhm
eigenvalues of Q

=
, only r are expected to be physically meaningful,

whereas the remaining Nhm−r eigenvalues are related to the noise
in the data. Consequently, it makes sense to project the transition
matrix Q

=
into the subspace defined by the r proper orthogonal

modes of H= 0, stored in U= r, to find a transition matrix of size r

r as

Q̂
=

= U= r
TQ
=
U= r = U= r

TH= 1V= rS= r
−1 �4�

The stability characteristics can then be extracted from the r ei-

genvalues, or characteristic multipliers, of Q̂
=

by use of Eq. �2�.

2.3 Signal Synthesis. Extracting the eigenvalues of the tran-
sition matrix defined by Eq. �4� yields the modal parameters of the
system. To ascertain the accuracy of these predictions, it is impor-
tant to reconstruct the signals based on these modal characteristics
�15�. An estimation of signal hs�t� based on the r characteristic
exponents is written as

ĥs�t� = 	
k=1

r

cs,k�t�e�kt �5�

where cs,k�t� are the unknown periodic coefficients for mode k,
which are determined by enforcing a least-squares fit between the

actual signal hs�t� and its reconstructed counterpart ĥs�t�.
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2.4 Coleman Transformation. Lyapunov �21� showed that a
linear system with periodic coefficients can be transformed into an
equivalent, time-invariant system. A rotor is isotropic if it com-
prises three or more blades with identical properties and has sym-
metric interblade couplings. Coleman �3� proposed a change in
coordinates that transforms the periodic system of linearized equa-
tions governing the dynamic response of isotropic helicopter ro-
tors into a system of equations with constant coefficients, referred
to as the Coleman inertial system equations.

Skjoldan and Hansen �22� generalized the notion of isotropy for
wind turbines to include aerodynamic and control effects, thereby
expanding the range of applicability of the Coleman transforma-
tion. While this transformation is a powerful and practical tool
when applied to simple, low dimensional models, it is impractical
when dealing with large scale multiphysics models coupled to
computational fluid dynamics codes or experimental data.

When dealing with periodic systems, the discrete time signals
selected for the PFA must be sampled once per rotor revolution.
Consequently, the system must be simulated over many periods to
obtain reliable estimates of the damping rates, leading to heavy
computational burden. In this paper, the Coleman transformation
is applied to the sole signals used for stability analysis rather than
to the system’s linearized equations of motion. The Coleman
transformation then becomes part of the signal post-processing
procedure, completely eliminating the difficulties associated with
this approach. The efficiency and accuracy of this approach, called
the CPP in this paper, will be demonstrated.

Consider a three-bladed rotor and three signals, h1, h2, and h3,
measuring the same quantity on the three blades, respectively.
Application of the Coleman transformation to these three signals
yields three transformed, multiblade coordinate signals, denoted
as a0, a1, and b1. Because they are measured in the rotating sys-
tem, signals hi characterize the dynamic response of the structure
in the rotating system. On the other hand, a0, a1, and b1 charac-
terize the dynamic response of the structure in the inertial frame
�1�, which involve the backward and forward whirling harmonic
components, denoted as BW and FW, respectively, and the sym-
metric component, denoted as S. The frequencies of the BW and
FW components are the modal frequency �k in the inertial frame
minus or plus the rotor speed, respectively.

2.5 Moving Window Analysis. The approaches to stability
analysis discussed earlier are based on time signals describing the
dynamic response of a complex wind turbine or rotorcraft. A typi-
cal signal is shown in Fig. 1. In practice, only a portion of the time
series is used for stability analysis, corresponding to a window of
size w, starting at time ts.

If the signal corresponds to the response of a linear system with

a single degree of freedom, it is associated with a single frequency
and damping rate. Using any of the three windows presented in
Fig. 1 should yield the same modal parameters. If the system is
nonlinear, using the windows labeled window 1, 2, and 3, in Fig.
1 might lead to different parameters. For instance, if system
damping is amplitude dependent, the damping ratios extracted
from these three windows will be different because the average
signal amplitude decreases from window 1 to window 3. This fact
will be used to obtain qualitative information about the nonlinear
behavior of the system.

Let a window of size w start at time ts, as illustrated in Fig. 1.
The PFA is then used to estimate modal parameters, denoted as
�k�ts� and �k�ts�. Next, consider a window of identical size start-
ing at time ts+	t, where 	t is the sampling rate. Application of
the PFA to the signal in this new window yields �k�ts+	t� and
�k�ts+	t�. Repeating the analysis for windows of identical size
starting at times ts+ i	t leads to modal parameters �k�ts+ i	t� and
�k�ts+ i	t� that are discrete functions of the “moving window”
starting time.

For each window, it is also possible to estimate the amplitude of
excitation, ck�ts+ i	t�, of each mode using the SSA described
above. Combining this amplitude information for each window
with the corresponding modal parameters yields estimates of the
modal parameters as functions of amplitude �k�ck� and �k�ck�.
These functions provide qualitative information about the nonlin-
ear dependency of the modal parameters on modal amplitudes.
This procedure will be referred to in this paper as the MWA.

3 Numerical Examples
In this section, various stability analysis methods applicable to

wind turbines are demonstrated. First, the methods are validated
by using a simple structural model with four degrees of freedom.
Next, the same approaches will be applied to a realistic, three-
bladed horizontal axis wind turbine modeled using a finite ele-
ment based simulation tool coupled with simplified aerodynamics
models.

3.1 Simplified Wind Turbine Model. Figure 2 shows a sim-
plified model of a three-bladed horizontal axis wind turbine with
four degrees of freedom: the tip lateral deflection of the tower ut
and edgewise deflection of each of the three blades �1, �2, and �3.
The tower is modeled as a concentrated mass mt located at the
center of the rotor hub of radius e and connected to the ground by
means of a spring of stiffness constant kt and viscous damper of
constant ct. The blades of mass mb are modeled as rigid bodies
connected to the hub by torsional springs of stiffness constant kb
and viscous dampers of constant cb. The first and second edgewise
moments of inertia of the blades with respect to their hinge point
are denoted as Sb and Jb, respectively.
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Fig. 2 Simplified model of a three-bladed wind turbine
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3.1.1 Equations of Motion. The equations of motion for the
simplified wind turbine model depicted in Fig. 2 are derived using
Lagrange’s formulation, then linearized about the steady state
equilibrium for a constant rotor speed �. The linearized equations
are

M= ��1�ü� + C= ��1�u̇� + K= ��1�u� = f���1� �6�

where the generalized coordinate array is u�T= ��1 ,�2 ,�3 , ūt�, ūt

=ut /H, H is a characteristic length of the system, such as the
tower height, and f���1� is the external force vector. The angular
position of the first blade �1=�t is used as the nondimensional
time variable and notation � · � is used to indicate a derivative with
respect to �1. The periodic, nondimensional mass, damping, and
stiffness matrices are

M= = 

1 0 0 S̄b cos �1

0 1 0 S̄b cos �2

0 0 1 S̄b cos �3

S̄b cos �1 S̄b cos �2 S̄b cos �3 J̄t

�
C= = 


c̄b 0 0 0

0 c̄b 0 0

0 0 c̄b 0

− 2S̄b sin �1 − 2S̄b sin �2 − 2S̄b sin �3 c̄t

�
K= = 


k̄b + ēS̄b 0 0 0

0 k̄b + ēS̄b 0 0

0 0 k̄b + ēS̄b 0

− S̄b cos �1 − S̄b cos �2 − S̄b cos �3 k̄t

�
respectively, and the nondimensional parameters are defined as ē

=e /H, J̄t= �3mb+mt�H2 /Jb, S̄b=HSb /Jb, k̄t=ktH
2 / �Jb�2�, c̄t

=ctH
2 / �Jb��, k̄b=kb / �Jb�2�, and c̄b=cb / �Jb��. The azimuth

angle for blade j is denoted as � j =�t+2��j−1� /3. To investigate
the dynamic behavior of this system in the presence of nonlineari-
ties, the following nonlinear model will be considered:

M= ü� + C= u̇� + K= u� + C= nlu̇�3 + K= nlu�3 = f� �7�

where the nonlinear coordinate vectors are u�3
T= ��1

3 ,�2
3 ,�3

3 , ū� t
3� and

u̇�3
T= ��̇1

3 , �̇2
3 , �̇3

3 , u̇̄t
3�. For simplicity, the nonlinear damping matrix

is selected to be diagonal, C= nl=diag�̄bc̄b , ̄bc̄b , ̄bc̄b , ̄tc̄t�, where
the nondimensional coefficients ̄b and ̄t characterize the nonlin-
ear damping of the blades and tower, respectively. Similarly, the
nonlinear stiffness matrix is selected to be diagonal, K= nl

=diag��̄bk̄b , �̄bk̄b , �̄bk̄b , �̄tk̄t�, where the nondimensional coeffi-

cients �̄b and �̄t characterize the nonlinear stiffness of the blades
and tower, respectively.

3.2 Study of the Linearized System. The nondimensional

parameters selected for this study are ē=0.04, J̄t=400, S̄b=2, k̄t

=600, c̄t=8, k̄b=15, and c̄b=0.1. Because the system described
above has an isotropic rotor, it can be transformed to a constant
coefficient system using the Coleman transformation and the fre-
quency and damping rates of the system are then readily obtained
from the eigenvalues of this constant coefficient system. These
values are used as a reference solution and will be shown as
dashed lines in all figures pertaining to this problem.

Next, the response of the linearized simplified model was found
by numerical integration of Eq. �7�. An initial excitation lasting 16
rotor revs is applied as f� = f�0 cos�� f�1�, where � f =3 and f�0

T

= �4,−1,3 ,100�. For �1�32�, the excitation vanished and sig-
nals �1, �2, �3, and u� t were then extracted during the subsequent
free decay of the system.

First, the PFA is tested for this periodic problem. The four
signals were sampled 64 times per rotor rev for the 16.25 rotor
revs after the end of the external excitation. System frequencies

were obtained from the eigenvalues of Q̂
=

using m=16 consecutive
data points in h� s,� and n=16 columns in H= 0 and H= 1 �see Eqs. �3�
and �4��, and Fig. 3 shows the identified frequencies, with sym-
bols “�” as a function of rank number together with the reference
solution. For a rank number of 8, the four frequencies of the
system are accurately identified. The four modes of the system are
the tower mode �labeled “T”�, which is the dominant contributor
to the tower signal ut, the backward and forward whirling modes
�labeled “BW” and “FW,” respectively�, which are the major con-
tributors to the multiblade signals a1 and b1, and the symmetric
mode �labeled “S”� corresponding to in-phase blade motions.

Next, the time-invariant version of the PFA was tested for this
problem. Although the system is periodic, the four signals,
sampled 64 times per rotor rev for 1.625 rotor revs, were pro-
cessed as if the system were time-invariant using m=32 consecu-
tive data points and n=72 columns in H= 0 and H= 1. Figure 4 shows
the frequencies as a function of rank number together with the
reference solution. This approach identifies the inertial system fre-
quencies �k along with the rotating system frequencies �k��.
The signals contain three harmonics for each of the T, BW, and
FW modes, and one harmonic for the S mode, thus requiring a
rank number of 20 to resolve all modes accurately. A good ap-
proximation of the frequencies, however, is obtained at a rank
lower than 20 because the amplitude corresponding to some of

2 4 6 8
0

1

2

3

4

5

6

7

T

BW

S

FW

T

BW

S

FW

T

BW

S

FW

Rank

N
on

di
m

en
si

on
al

fr
eq

ue
nc

y

Fig. 3 Simplified model frequencies. Reference solution:
dashed lines; PFA for periodic system: symbols “�;” and PFA
with CPP: symbols “�.”

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

T

BW

S

FW

+Ω

+Ω

+Ω

−Ω

−Ω

−Ω

Rank

N
on

di
m

en
si

on
al

fr
eq

ue
nc

y

Fig. 4 Simplified model frequencies. Reference solution:
dashed lines; and PFA for time-invariant system: symbols “�.”

031017-4 / Vol. 6, JULY 2011 Transactions of the ASME

Downloaded 03 Mar 2011 to 192.38.67.112. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



these frequencies is very low.
Finally, the time-invariant version of the PFA was exercised

using the tower signal and the multiblade signals �a0, �a1, and �b1
obtained from the CPP of the blade signals. The signals were
sampled 64 times per rotor rev over 0.5 rotor revs, and m=16
consecutive data points in h� s,�, and n=16 columns in H= 0 and H= 1
were used to obtain Q

=
. The identified frequencies are shown in

Fig. 3 with symbols “
.” Because the CPP effectively transforms
the signal to the inertial frame, a single harmonic of each mode is
present and a rank number of 8 is sufficient to determine all
frequencies.

The results presented thus far for this simple linear periodic
system call for the following comments. First, processing the sig-
nals in the PFA “as if the system were time-invariant” �i.e., ignor-
ing the periodic nature of the system� is not recommended. Al-
though this approach correctly identifies system frequencies for
this simple problem �see Fig. 4�, it suffers two serious drawbacks.
First, it fails to recognize the periodic nature of the signal, and
hence, could yield erroneous answers. Second, the total energy of
the signals is spread over a larger number of modes �ten instead of
four in this simple case�, complicating the identification process.

Second, processing the signals as periodic signals in the PFA
yields the correct results. The energy contained in the signals is
concentrated in a smaller number of modes �the four inertial sys-
tem modes�, easing the identification process. Unfortunately, this
approach is burdened by a high computational cost; because the
signals are treated as periodic, they must be sampled at once per
rev, requiring longer simulation times to enable accurate
identification.

Finally, the time-invariant version of the PFA can be safely used
with CPP signals because they are those that would be generated
by an equivalent, time-invariant system. Two advantages result;
the energy contained in the signals is focused in a smaller number
of modes and shorter simulation times are sufficient to gather the
required information.

These findings concerning the three methods are reinforced by
the data presented in Fig. 5, which show the singular values of the
Hankel-type matrix H= 0 for the three approaches. Singular values
were normalized by the largest and presented in order of decreas-
ing normalized value. The PFA with CPP results in eight high-
energy singular values, all others are at the noise level. The peri-
odic PFA performs well, also resulting in eight high-energy
singular values. For the time-invariant version of the PFA, the
energy is spread among 20 singular values.

3.3 Study of the Nonlinear System. Next, the behavior of
the simplified wind turbine model will be investigated in the pres-
ence of nonlinearities. The system is now characterized by Eq. �7�,
and at first, nonlinear damping is introduced by selecting ̄t

=0.01 and ̄b=0.04. The signals were processed using the CPP
followed by the MWA to assess the effects of the nonlinearities on
the dynamic response of the system.

3.3.1 The Moving Window Analysis. The stability analysis is
performed using a window size of two rotor revs, m=42 consecu-
tive data points, and n=85 columns in H= 0 and H= 1. Figure 6 shows
the signals of the window starting at time 0 before and after ap-
plying the CPP. In both cases, the signals reconstructed using Eq.
�5� are also shown and found to be nearly indistinguishable from
their original counterparts. Figure 7 shows the identified frequen-
cies and damping ratios of the system as a function of the window
starting time. Whereas the frequencies are nearly identical to their
counterparts for the linear system, significant differences are ob-
served for the damping ratios.

To understand this behavior, modal excitation amplitudes must
be assessed first. The SSA was used to estimate the amplitudes of
each of the modes contained in each signal. For instance, Fig. 8
shows the modal content of the �a1 signal as a function of the
window starting time. This signal contains contributions from the
four modes of the system. The BW and FW modes dominate the
response, whereas the T, and specially the S modal amplitudes are
at the noise level. Plots of the modal content of the other signals
reveal that the tower mode dominates the response of the tower
signal ut, the BW and FW modes are predominant in the �a1 and
�b1 signals, and finally, the S mode dominates the multiblade
mean signal �a0.

Because the scale on the vertical axis of Fig. 8 is logarithmic,
the modal amplitude is expected to decay linearly for a linear
system. Both BW and FW modes do not decay exactly linearly,
indicating slightly higher damping ratios at high amplitude and
lower damping ratios at lower amplitude. This observation is in
agreement with the results presented in Fig. 7, which also predict
higher damping ratios at high amplitude.

In the linear analysis, the �a1 signal only contains contributions
of the BW and FW modes. Figure 8 indicates that in the nonlinear
regime, small contributions of the T and even S modes are
present. Because the amplitudes are so small, no reliable fre-
quency or damping ratio data can be extracted from these contri-
butions. This explains the need to use multiple signals to extract
the complete modal information for the system. Each mode must
contribute a significant amount of energy to at least one of the
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signals to extract reliable modal data.
Figure 8 provides a qualitative assessment of the effect of the

damping nonlinearity of the system. The nearly constant slopes of
the modal amplitudes of the BW and FW modes as a function of
time imply nearly constant damping ratios as a function of ampli-
tude. The extracted modal amplitudes of the T and especially S
modes present oscillations that are an artifact of the numerical
procedure because the contributions of these two modes to the �a1
signal are very small.

Finally, Fig. 9 shows the system damping ratios as a function of
modal amplitude, plotted on a logarithmic scale. The amplitude of
each mode is calculated as the square root of the sum of the
squares of that mode’s amplitude in all signals. This plot confirms
the trends discussed earlier in a more explicit manner.

3.3.2 Other Types of Nonlinearity. The results presented in the
previous sections have focused on a system presenting nonlinear
damping characterized by parameters ̄t=0.01 and ̄b=0.04.

Other sets of parameter values will be investigated in this section.
In all cases, the simulation was run for 16 rotor revs and a 2 rotor
rev window was used for the MWA.

Final results will be presented in the form of damping ratio
versus modal amplitude plots. Intermediate steps of the analysis,
such as those presented in Figs. 7 and 8, will not be shown. While
these intermediate steps are not shown here for brevity’s sake, all
data must be carefully examined to ensure that all relevant modes
have been excited to a sufficient amplitude level.

First, Fig. 10 shows the case of a decrease in the damping
nonlinearity with parameters ̄t=−0.002 and ̄b=−0.01. The pro-
posed approach captures the expected qualitative trends for this
system.

Finally, stiffness nonlinearities are examined. A softening stiff-

ness nonlinearity is addressed by selecting �̄t=−0.01 and �̄b
=−0.03. For the highest excitation amplitude, i.e., for a window
starting time ts=0, the frequencies of the T, BW, S, and FW modes
decrease by 1.0%, 0.5%, 0.5%, and 0.3%, respectively, a very

modest effect. A stiffening nonlinearity with parameters �̄t=0.01

and �̄b=0.04 yields an increase in the frequencies of the T, BW, S,
and FW modes of 1.9%, 0.8%, 1.0%, and 0.8%, respectively.

3.3.3 Effect of Window Size. Additional simulations were per-
formed using the MWA with window sizes of 1, 2, and 4 rotor
revs. Frequency predictions were nearly unaffected by window
size. Shorter window sizes result in more scattering of the data for
damping ratio predictions, indicating that less reliable predictions
are obtained. Longer window sizes reduce data scattering, but loss
of resolution in time results, i.e., the changes in damping ratio
become less pronounced because they are averaged over longer
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periods. This compromise between time resolution and modal pa-
rameter identification is also observed in wavelet analysis �16�.

3.4 Complex Wind Turbine Model. The proposed stability
analysis methods are now applied to a realistic, three-bladed hori-
zontal axis wind turbine. The aeroelastic model is based on a fully
nonlinear finite beam element structural model and aerodynamic
forces are calculated using the blade element theory �23�. The
turbine modeled with 381 structural degrees of freedom has a
nominal power of 2.3 MW, a nominal speed of 16 rpm, a hub
height of 80 m, and a blade length of 45 m. The wind field has a
logarithmic shear profile excluding turbulence, and the effects of
tower shadow and gravity forces are included. A variable speed
controller regulating the blade pitch and generator moment is used
in the simulations.

The rotor is balanced and thus isotropic. External loading, such
as wind shear, tower shadow, and gravity forces are not isotropic,
but their effects are assumed to remain small. The simulation code
takes into account nonlinear effects, which again, are assumed to
be small. Because these effects are assumed to be small, solutions
are expected to be close to those of a system with periodic peri-
odic coefficients and the CPP will be used for this problem al-
though it is not strictly applicable.

The simulation is run until initial transients have damped out
and a steady state is obtained, characterized by a constant mean
rotor speed and a response of the turbine that is approximately
periodic. Once that state is reached, excitation is applied. The
duration of the excitation was kept short, one period of the first
tower mode, to maintain the mean rotor speed as constant as pos-
sible. To ensure excitation of the four low damping modes of the
turbine, periodic forces were applied. The tower first lateral mode
�denoted as “T”� was excited by the transverse force applied at the
tower top. The first BW and FW edgewise modes �denoted as
“BW” and “FW”, respectively� were excited by applying forces
with 120 deg phasing differences near the blade tips. Finally, the
first drive train mode �denoted as “DRV”� was excited by in-phase
forces applied near the blade tips.

Once the excitation ceased, four signals were measured: the top
lateral tower deflection and the three edgewise blade tip deflec-
tions resolved in the rotating frame. The steady state response of
the system was then subtracted from these four signals, which
were then normalized by the tower height and blade length, re-
spectively. Finally, the CPP was applied to yield the multiblade
signals ua0, ua1, and ub1 from the blade signals.

3.4.1 Stability Analysis Under Moderate Excitation. A stabil-
ity analysis of the turbine with signals sampled 94 times per rotor
rev over 5.3 rotor revs was performed using m=66 consecutive
data points and n=133 columns in H= 0 and H= 1 when subjected to
12 m/s wind at hub height and a moderate excitation level result-
ing in initial edgewise blade tip deflection of about 0.3 m and

tower top lateral deflection of about 0.2 m.
Figure 11 shows the largest singular values of the Hankel-type

matrix H= 0, where the eight largest values correspond to the four
excited modes. The next singular values have a much lower en-
ergy and are thus unlikely to yield reliable modal information.

Figure 12 shows the identified frequencies as a function of the
rank number, where the frequencies are normalized by the average
value of the FW mode frequency. The frequencies obtained at
rank numbers up to 8 pertain to the four excited modes of the
system. The additional frequencies obtained from higher rank
numbers could be either additional physical modes or artifacts of
the method. Because the associated modal amplitudes are very
low, these estimates are unreliable. Higher excitation amplitudes
at these frequencies would be required to ascertain the physical
nature of these additional modes.

Next, a MWA of the data was performed with a window size of
2.1 rotor revs and Fig. 13 shows the frequency versus window
starting time. The identified frequencies remain constant for all
windows, which is an evidence of a reliable identification and
validates the assumption that nonlinear effects remain small for
this problem. As time increases, the excitation amplitude of the
drive train mode becomes very small, and the identification of the
corresponding frequency becomes unreliable, resulting in the ob-
served scattering of the predictions.

Figure 14 shows the identified damping versus window starting
time, where the damping ratios were normalized by the average
value of the FW mode damping ratio. The damping ratios of the
FW, BW, and DRV modes remain nearly constant for all windows.
For longer window starting times, the amplitudes of the FW and
DRV modes decrease significantly, leading to unreliable identifi-
cation and scatter in the data. The damping ratio of mode T in-
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creases at higher amplitudes; this phenomenon is caused by the
power-speed controller, which pitches the blades at the tower fre-
quency, resulting in energy dissipation.

Figures 15–17 show the modal amplitudes as a function of
time. The symmetric rotor signal ua0 in Fig. 15 consists mainly of
the drive train mode, whose amplitude decays in a straight line,
indicating a constant damping ratio. The BW and FW modes
dominate the modal content of signals ua1, as shown in Fig. 16,
and ub1. Finally, the T mode clearly dominates signal ut �see Fig.
17�. These figures show that low modal amplitudes cause poor
modal parameter identification, resulting in data scattering, as ob-
served earlier.

In this example, only four signals were used to estimate modal
characteristics. Of course, many more signals could be used, at the
expense of increasing the computational cost of the analysis. If a
large number of computed degrees of freedom are used in the

analysis, it becomes possible to also estimate mode shapes, in-
creasing the amount of information that can be extracted from the
data set.

3.4.2 Stability Analysis Under High Excitation. Next, a stabil-
ity analysis of the turbine was performed as in the case of mod-
erate excitation, but with 25 m/s wind at hub height and a high
excitation level resulting in initial edgewise blade tip deflection of
about 0.6 m and tower top lateral deflection of about 0.4 m.

The identified frequency of mode T is nearly identical to that
obtained for the moderate excitation level, and the frequencies of
the rotor modes differ because of different pitch angle settings in
the two steady operating states; the results are compared in Fig.
13. Even at this higher excitation level, nonlinearities do not ap-
pear to be significant.

Figure 18 shows the identified damping ratios normalized by
that of the FW for moderate excitation level. Comparing these
results with those obtained for the moderate excitation presented
in Fig. 14, it appears that all four normalized damping ratios are
now slightly above one, whereas the BW and T damping ratios
were below that level for the low amplitude excitation.

Figures 19–21 show the modal amplitudes as function of time.
Mode T is lowly damped and its excitation remains high for the
duration of the simulation. This explains the reduced scatter in the
identified modal parameters as compared with those obtained for
the low excitation case. The same observation holds for the BW
mode. In contrast, the FW and DRV modes present higher damp-
ing ratios. Once their amplitudes become indistinguishable from
noise, unreliable identifications result.

Comparison of the identified damping ratios for the moderate
and high excitation levels, Figs. 15–17 and 19–21, respectively,
calls for the following remarks. The increased excitation ampli-
tude seems to yield poorer identification of the damping ratios.
Because nonlinear behavior is not detected for modal parameters

0 2 4 6 8
0

0.5

1

1.5

Starting time [rev]

N
or

m
al

iz
ed

da
m

pi
ng

ra
tio

T

BW

FW

DRV

Fig. 14 Damping ratio identification using the MWA

0 2 4 6 8
10

−6

10
−4

10
−2

Starting time [rev]

M
od

al
am

pl
itu

de

T

BW

FW

DRV

Fig. 15 Modal amplitudes from MWA for signal ua0

0 2 4 6 8
10

−6

10
−4

10
−2

Starting time [rev]

M
od

al
am

pl
itu

de

T

BW

FW

DRV

Fig. 16 Modal amplitudes from MWA for signal ua1

0 2 4 6 8
10

−6

10
−4

10
−2

Starting time [rev]

M
od

al
am

pl
itu

de

T

BW

FW

DRV

Fig. 17 Modal amplitudes from MWA for signal ut

0 2 4 6 8
0

0.5

1

1.5

Starting time [rev]

N
or

m
al

iz
ed

da
m

pi
ng

ra
tio

T

BW

FWDRV

Fig. 18 Damping ratio identification using the MWA

031017-8 / Vol. 6, JULY 2011 Transactions of the ASME

Downloaded 03 Mar 2011 to 192.38.67.112. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



at the high excitation level, i.e., for small window starting times,
geometric nonlinear effects do not seem to be the culprit. Rather,
poorer damping ratio identification is more likely to be due to the
fact that the larger excitation forces cause slight changes in angu-
lar speed of the rotor, thereby invalidating the periodic system
assumption and the CPP.

4 Applicability to Measurements
Because they are based on signal processing, the methodologies

described in this paper are applicable to both numerically com-
puted and experimental data. Of course, noise levels will be
higher with experimental data than with computed data. The pro-
posed approach also requires the operation of the system at steady
state, the application of a suitable excitation, and the measurement
of the system free response.

In the case of operating wind turbines, setting up an experiment
that satisfies these requirements might prove to be challenging.
Excitation is conveniently applied through individual pitching of

the blades and variation of the generator moment to excite the
modes of interest. The system’s dynamic response can be mea-
sured through accelerometers in the outer portions of the blades
and tower or through strain gauges at the root of the blades and
tower.

In the ideal case, the rotor would be driven at a nearly constant
angular speed by a constant mean wind, resulting in a nearly
periodic response. Successful field application of the proposed
approach then depends on the ability to exert on the system well
defined excitations of magnitudes larger than those associated
with the uncontrollable wind turbulence and disturbance.

5 Conclusions
This paper has presented a method for evaluating the modal

parameters of complex periodic systems. It combines four differ-
ent tools: the Coleman post-processing, the partial Floquet analy-
sis, the moving window analysis, and the signal synthesis algo-
rithm. While these tools are not new, their combination leads to a
robust estimation of the linearized modal parameters and provides
qualitative information about the nonlinear behavior of the sys-
tem. The proposed approach operates on one or multiple discrete
time signals and is able to deal with both time-invariant and pe-
riodic systems. The method is computationally inexpensive and
can be used with multiphysics computational tools, and in prin-
ciple, with experimental data. The proposed approach was vali-
dated using a simple, four degree of freedom model of a wind
turbine. Excellent correlation was observed when comparing the
extracted linearized modal parameters with their exact counter-
parts. Qualitative information concerning the nonlinear behavior
of the system was obtained with the proposed approach. Finally,
the nonlinear behavior of a realistic, three-bladed horizontal axis
wind turbine model was investigated. Nonlinear effects were
found to be very mild for this specific wind turbine. For the larger
wind turbines that are expected to be built in the near future,
nonlinear effects could become more pronounced due to increased
flexibility of the blades. Future work should investigate the ability
of the proposed methodology to identify large changes in modal
parameters that would be expected from such systems.
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