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Summary

This thesis describes methods for deriving multiple sclerosis (MS) biomarkers
from Magnetic resonance images (MRI).

MS results in a neurodegenerative disease course to which MRI has proven sensi-
tive. In particular diffusion MRI (dMRI), a modality reflecting microstructural
properties of brain tissue has shown sensitivity towards the disease pathology
of MS. We introduce three different methods for analysing MRI/dMRI in the
white matter (WM) tracts, of an MS population. One method detects group-
wise, tract-oriented differences based on features of the local diffusion tensor
model. The next method, anatomical connectivity mapping (ACM) reflects
voxel-wise whole-brain connectivity and is used to investigate cross sectional
disease-related connectivity alterations. The third method presented is a voxel-
based segmentation method able to detect WM abnormalities (WM lesions),
with the potential of being used as lesion load markers often reported in clinical
studies.

The main result of the first method is statistical differences between healthy con-
trols and MS patients in 11 WM tracts. The ability to distinguish the clinically
defined subtypes of relapse remitting and secondary progressive MS patients is
found based on the ACM method. Using ACM, localized statistical differences
were detected in the bilateral motor tracts. The most interesting result of the
lesion segmentation method study, was that it achieved a segmentation perfor-
mance which was batter than two competing methods relative to the manual
segmentations of the radiographers.

The methods presented in the thesis are useful in studies of MS and are expected
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to have widespread applications in neuroscience.



Resumé

I denne afhandling beskrives metoder til udledning af biomarkører for multipel
sklerose (MS) baseret p̊a magnetiske resonans billeder (MRI).

Multipel sklerose resulterer i et neuro-degenerativt sygdomsforløb med en syg-
domspatologi som kan m̊ales med MRI. Diffusions MRI (dMRI) som afspejler
hjernevævets mikro-strukturelle egenskaber, har vist udtalt følsomhed overfor
sygdoms patologien af MS. I afhandlingen præsenteres tre metoder til at anal-
ysere MRI/dMRI i hjernens hvid substans strukturer hos MS patienter. Den
første metode p̊aviser struktur-specifikke forskelle mellem en MS patient gruppe
og en rask kontrol gruppe baseret p̊a egenskaber ved diffusionsprocessen. Den
anden metode, anatomical connectivity mapping (ACM) afspejler voxel-vise,
hel-hjerne forbindelser og benyttes som input til et tværstudie af MS popula-
tionen. Den tredje metode er en voxel-baseret segmenterings metode som gør
brug af traditionel strukturel MRI til at segmenterer anormaliteter i den hvide
substans (læsioner). Læsions segmenteringer benyttes ofte til at kvantificerer
patienters læsions byrde i kliniske studier.

Hoved resultatet for den første metode er, at der findes statistiske signifikante
forskelle mellem raske kontroller og MS patienter i 11 hvid substans struk-
turer. Ved brug af ACM metoden findes desuden statistiske signifikante forskelle
mellem to kliniske patientgrupper, recidiverende remitterende og sekundært pro-
gressive patienter, hvor forskellene primært findes i bilaterale motor-relaterede
hvid substans strukturer. Det mest interessante fund i relation til læsion seg-
menterings metoden, er at metoden viser sig at være bedre end to konkurrerende
metoder, sammenlignet med manuelt indtegnede segmenteringer.

Ud over at kunne bruges til at studerer MS, forventes metoderne præsenteret i



iv

afhandlingen at have generelle anvendelses muligheder indenfor neurovidenskab.



Preface

This thesis was prepared at the Image Analysis and Computer Graphics group
at the Technical University of Denmark (DTU), in fulfilment of the requirements
to obtain the doctor of philosophy degree (Ph.D.), within the topic of medical
image analysis. Two-thirds of the project funding originated from the danish
council for strategic research through a research grant with the title ”Optimised
treatment and monitoring of multiple sclerosis”. The grant is managed by as-
sociate professor, Finn Sellebjerg at Danish Multiple Sclerosis Research Center
(DMSRC). The last third of the funding was contributed by the ITMAN Grad-
uate School program at DTU while the Danish Research Centre for Magnetic
Research (DRCMR) provided research facilities enabling the project.

The work herein represents selected parts of the research work carried out dur-
ing the Ph.D. period. The thesis consist of two parts. The first part contains
a summary which covers background information on multiple sclerosis and a
description of the methods forming core parts of the research work. The sec-
ond part is made up by manuscripts written during the Ph.D. It contains tree
research papers and one abstract.

The project was supervised by professor Rasmus Larsen from DTU, by senior
researcher, Ph.D. Tim Bjørn Dyrby and professor Hartwig Roman Siebner, the
ladder two from DRCMR. Part of the research was conducted at the Microstruc-
ture Imaging Group (MIG) at University College London (UCL), UK, under the
supervision of assistant professor Gary Hui Zhang whom I visited for 6 months.

Kgs. Lyngby, April 2012 Mark Lyksborg
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Chapter 1

Introduction

1.1 Scope of the project

The determination of multiple sclerosis (MS) biomarkers from images are moti-
vated by several potential applications. They could be used as a supportive tool
of the neurologist diagnosing MS. In fact, magnetic resonance imaging (MRI)
already plays a key role when diagnosing MS, based on the McDonald crite-
ria [103], [127], [126]. The McDonald criteria specifies the clinical symptoms
patients must present with, to be positively diagnosed with MS. The most recent
revision of the criteria includes MRI findings as part of making the diagnosis.
This allows an earlier diagnosis since the it can be made from fewer clinical
symptoms if abnormal findings are present in the spinal cord or brain MRI.
Image based biomarkers could also be used to assess the current state of the
disease, aiding the treating neurologist in assessing the efficacy of a treatment
and to determine future treatment. Compared to disease severity assessment
made solely from a clinical exam, imaging markers have the benefit of being
unbiased to factors which may affect the outcome of a neurologic exam, for in-
stance due to patient fatigue and/or the treating neurologist level of experience.
Removing/controlling the effects of such factors is important when testing the
effect of a treatment, to allow an unbiased assessment.

The main funding source of the project originates from the Danish Council



4 Introduction

for Strategic Research (grant 2142-08-0039, titled ”Optimized treatment and
monitoring of multiple sclerosis”). Several parallel Ph.D. projects are supported
by this grant and the topics of these projects differ but are centered on clinical
treatments trials, the study of blood, genetic and immunologic markers. These
trials are supplemented by MRI markers some of which are calculated based on
material presented in this thesis.

1.2 Multiple sclerosis

Most MS patients debuts during their late twentys or early thirtys, with a
higher incidence rate amongst women relative to men. According to statistics
released by the danish sclerosis association (http://scleroseforeningen.dk/fakta-
om-sclerose, 15/11-2012), about 2/3 of the incidences are female while 1/3 are
male. There are approximately 12500 diagnosed cases in Denmark with about
700 new cases arising each year.

Despite being recognized as an independent disease for more than 150 years [33],
the exact cause of MS is unknown. It has been suggested that MS occurs as a
result of genetic, environmental and infectious factors, [50], [102], [40] or com-
binations hereof. The genetic factor is supported by the increased recurrence
rates in families [39]. For instance, studies involving identical twins have re-
ported recurrence rates of 30 percent as opposed to none identical twins where
the recurrence rates drops to approximately 5 percent. An environmental factor
such as sunlight which increases production of D-vitamins, has been proposed
to explain why people living farther from the equator are at higher risk of MS [9]
while others suggest the increased stress levels of people living further from the
equator as the explanation for the increased incidence rates [102]. Examples
of infectious factors, believed to increase the risk of MS are viruses such as
Epstein-Barr virus (Herpes), Chlamydia and Measles [69], [68]. Although plau-
sible arguments can be made for all of these factors no definitive proof has been
found.

1.2.1 Diagnosis and assessment

Diagnosis of MS is done by a neurologist according to the afore mentioned Mc-
Donald’s criteria [103] where MRI plays a crucial role. Observing abnormalities
in the white matter (WM) of an MRI exam can aid the diagnosis in cases where
the clinical evidence in favour of MS diagnosis is otherwise weak.



1.2 Multiple sclerosis 5

Clinicians further classify MS patients based on a characterisation of their dis-
ease course [96]. Most patients start out being classified with the relapse remit-
ting (RR) MS phenotype. The disease course of RR-MS patients is characterized
by the repeated occurrence of MS attacks (relapses), followed by periods of re-
mission where full or partial recovery occurs. Following a number of years, the
patients will begin to experience gradual accumulation of disability in combi-
nation with relapses. This defines another MS phenotype known as secondary
progressive (SP)-MS. Two other phenotypes used by clinicians are, the primary
progressive (PP) characterized by a steady neurological decline from disease on-
set and the progressive relapsing (PR) phenotype which is similar to PP but
with superimposed relapses occurring along with the steady neurological decline.

Patient treatments differ depending on the phenotypes classification. The RR-
MS patients are typically treated by immunomodulatory drugs which decreases
the occurrence rate of relapses [119], [105], [125], thereby delaying the progres-
sion rate of severity otherwise caused by an incomplete recovery from a relapse.
Drugs with similar effects have also been approved for SP-MS patients, mainly
intended to decrease the number of relapses experienced. At the time of writ-
ing, no treatment has shown convincing evidence of slowing the accumulation
of disability in purely progressing patients such as PP-MS. As a consequence,
there is no FDA (Food and Drug Administration) approved treatment of this
phenotype.

The phenotype classifications are not very specific to assessing the current state
of disease severity and are primarily used by neurologists to indicate which type
of treatments is suitable. A more useful measure for assessing the disease sever-
ity is Kurtzkes expanded disability status scale (EDSS) [87], a quantity often
used in treatments trials. The EDSS score quantifies disability of the eight
functional systems; the pyramidal, cerebellar, brain-stem, sensory, bowel and
bladder, visual, cerebral and other. The score ranges from 0 to 10 and increases
in steps of 0.5. The EDSS=0 means no disability, the EDSS interval 1.0-4.5
generally refers to MS patients who are fully ambulatory (patients able to move
around on their own), the EDSS interval 5.0-9.5 is defined by patients suffering
from impairment due to ambulation (needs assistance to move around) while
EDSS=10 means death due to MS. When assessing the sensitivity of various dis-
ease markers, EDSS scores or functionally specific scores are commonly used as
the (ground truth) measure with which markers should correlate [56], [36], [57].

1.2.2 A microscopic view

To understand the effect that MS exacts on the brain a simplistic description
of how the brain is wired for communication is first given (Figure 1.1). The
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neuronal cells located in the cortical gray matter of the brain communicate
by sending electrical signals along neural fibers called axons. The axons are
encapsulated by the insulating substance of myelin (a lipid substance), found
in the WM of the brain [72]. A schematic of the major WM components of
the brain is included in Figure 1.1. It depicts the location of neurons at the
end of myelinated axons, the oligodendrocytes which are responsible for myelin
production as well as astrocytes (regulatory cells), microglial cells (immune
cells), and blood capillaries, all central to maintaining balance in the micro-
structural environment. An analogy to the brains network is a computer network
where the neuronal cells are equivalent to the processing units (computers) while
the axons correspond to the cabling of the network.

Multiple sclerosis is commonly perceived as a disease driven by WM pathology
changes. Recent years have added additional complexity to this perception by
revealing diffuse pathology changes in GM [11], [58] however the focus of the
thesis will be limited to WM pathology. The WM pathology typically manifests
as damage to the fatty myelin sheaths surrounding the axons of the brain and
spinal cord, leading to demyelination and scarring of the brain. When myelin
is lost, the axons can no longer effectively conduct electrical signals resulting
in neurological disability. In our computer network example this corresponds
to cutting or stripping the network cables of its insulation material resulting
in decreased network performance. If a link/axon is completely severed, no
communication may pass and the network message being sent may either come
to a halt or have to pass through alternative cabling/axons. Detecting where
and how the WM changes in relation to MS, is the main research questions
addressed in this thesis. This question is addressed using MRI since the micro-
structural changes due to MS, causes changes of the tissue composition which
are measurable using MRI.

1.3 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is used for in vivo imaging of soft tissue
where the imaging contrasts arise due to different magnetic properties of the
tissue types [72]. Images are acquired by positioning a subject within the bore
of an MRI scanner made by a superconducting magnet which enables a strong
magnetic field causing the water molecules, more specifically the protons of the
body to align with the field. By briefly disturbing this field, the magnetic direc-
tionality of the molecules is changed and the molecules will over time re-establish
their alignment with the field. During this spin realignment phase, the spins
of the molecules induce a current which is read out by the scanners receiver
coils. Numerous ways of disturbing the magnetic field and reading out signals



1.3 Magnetic resonance imaging 7

Figure 1.1: The two boxes at the top, illustrates major components of micro-
structural environment of the brain. It depicts a grey matter neuron connected
to myelinated axons in white matter and various immune cells. Each oligoden-
drocyte cell is attached to several axons and is responsible for myelin produc-
tion. The astrocytes are regulatory cells maintaining homoeostasis while the
microglial cells are immune cells combating infections, mobbing up debris and
dying cells. These components are all connected in a symbiotic network rela-
tionship and therefore localized damage to any of these components may have
longer ranging effects on the brains network. The bottom box shows a sagittal
slice of the brain. The arrows originating from this box indicates the location
of the micro-structural components.
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exist. This give rise to different imaging contrast; such as T1 weighted images of
magnetization prepared rapid gradient echo (MPRAGE) and T2 weighted im-
ages such as T2, fluid attenuated inversion recovery (FLAIR), functional MRI
(fMRI), diffusion MRI (dMRI) and multiple others. The T2 and FLAIR modal-
ities are commonly used to detect WM abnormalities (lesions) which appear as
hyper intense voxels and are often used as part of McDonald’s criteria. Multiple
MS studies [57], have used the number of lesions as an image based marker
hypothesized to correlate with the clinical disease scores. These studies widely
agree that lesion load is an insufficient marker [56] but remains an often used
marker in MS studies. One of the three thesis objectives, is to perform an auto-
mated segmentation of WM lesions, allowing the estimation of lesion loads.

Diffusion MRI [72] is believed to more accurately reflect changes of the WM
compared to other modalities and is the area of focus throughout the thesis. It
is an imaging modality sensitive to the mobility of water molecules and since
this mobility is restricted/hindered by the micro structural environment of the
brain tissue, the images are reasonably assumed to provide detailed information
about the micro-structural information of the tissue. It may be able to provide
qualitative information of the pathologies present in MS such as inflammation,
axonal demyelination, Wallerian degeneration and atrophy as illustrated in Fig-
ure 1.3 which are known from histopathology to alter the micro-structural envi-
ronment [59]. Based on dMRI the second objective of the thesis is to quantify the
accumulated effects these local pathologies have on the whole-brain connectivity
of the WM network.

Diffusion MRI can also be used to construct geometric representation of WM
structures (tracts) which approximate the underlying geometry of axons. This
makes it possible to analyse the properties of the diffusion process in a structure
specific manner. The third objective of the thesis, is to develop tools for assessing
the health status of tissue of specific WM tracts and we shall widely refer this
concept as tract-oriented analysis.
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Figure 1.2: Illustrates the different disease pathology typically found in MS
and a healthy axon. Inflammation usually occurs following an MS attack, as
the micro-structural environments tries to mends tissue damage. The demyeli-
nation pathology is characterized by disintegration of myelin while the axon
remains and occurs when i-reversible damage occurs. Wallerian degeneration
typically occurs as an effect of distant axon injury causing the axon to disinte-
grate. Atrophy describes a state where micro-structural tissue has completely
disintegrated.
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1.4 Thesis objectives

The three main objectives of the thesis forming the basis of the derived papers
of chapter 8-11 are:

• To develop tools for analysing the structural network integrity of the brain
and use these tool to assess global and localized MS damage.

• To develop methodology for doing tract-oriented WM analysis and apply-
ing it to dMRI of MS patients.

• To segment WM lesions, using multiple MRI modalities and spatial fea-
tures.

1.5 Thesis outline

The thesis is split into two parts.

Part I introduces and describes the methodologies used throughout the thesis
manuscripts of part II. It covers dMRI processing, image registration, statisti-
cal analysis and brain tissue segmentation methods. To perform neuroimaging
studies all of these method components may be involved. An analysis pipeline
could for example consist of; 1) processing dMRI to enable further analysis, 2)
image registration of all subjects to the same space ensure voxel-wise cross sub-
ject correspondence and 3) statistical analysis of voxels to decide disease score
correlation or determine group-wise differences. Although tissue segmentation
is not mentioned in this pipeline it may be used at all stages of the pipeline.
For instance, to supply regions of interest for speeding up 1), to improve image
registration accuracy of 2) or to remove the impact tissue volumes may have on
3).

Part II consists of self-contained manuscript prepared during the course of the
Ph.D.

Part I

Chapter 1 is a general background and introductory chapter. It motivates
the search for disease markers in MS and gives an introduction of the
disease at a macroscopic and microscopic level. This is followed by a
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general introduction to MRI. The chapter is concluded with stating the
three main objectives of the Ph.D.

Chapter 2 describes the MRI acquisitions of healthy control subjects and MS
patients.

Chapter 3 introduces diffusion MRI (dMRI). It covers a description of the
diffusion process that gives rise to the dMRI, before explaining how to
fit mathematical models to the dMRI signal enabling macroscopic recon-
struction of the WM fascicle (WM tracts).

Chapter 4 describes image registration methods. The chapter covers the method-
ological components involved in solving registration problems, from using
rigid deformation models to highly flexible models. From deformation rigid
models to highly flexible models. It also describe a high dimensional image
registration method and how to construct population specific atlases.

Chapter 5 describes statistical methods used to answer voxel-based, tract-
oriented or whole-brain hypothesis, for example used to answer if there
is statistical evidence of correlation between imaging markers and clinical
outcome measures such as the EDSS disease score or to investigate group
difference between MS patients and healthy controls or MS phenotypes.

Chapter 6 suggest an approach for MRI tissue segmentation based on a voxel-
based Markov random field (MRF) segmentation approach. The approach
aimed at segmenting lesions based on multi-modal image features is de-
scribed in detail.

Chapter 7 gives an overview of the manuscripts of the thesis, by outlining the
motivation, the objectives, the methodology and the main findings of the
studies peformed during the Ph.D. period.

Part II

Chapter 8 solves the problem of correcting geometric distortions of EPI se-
quences. It is based on the idea of acquiring two equally distorted images
but with opposite directional distortion. We use image registration to
estimate the voxel displacement corresponding to the distortion between
the two images which is used correct the images of an EPI sequence. The
correction approach is compared visually and quantitatively to two other
approaches.

Chapter 9 suggest an approach for tract-oriented group-wise comparison of
diffusion indices defined on a sheet-like model. The approach models the
sheet-like manifolds of 11 WM structures and performs statistical analysis
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of diffusion indices sampled on the manifolds. The approach is demon-
strated in a comparison study between healthy controls and MS patients.

Chapter 10 studies the technique of ACM estimated using a pipeline particu-
larly suited for group studies. The manuscript investigates how structural
connectivity changes in WM regions due to MS, demonstrating that MS
leads to widespread decreased connectivity and that the connectivity of
certain localized WM regions, have a strong relationship with the MS
disability which is measured by the EDSS.

Chapter 11 describes a method for segmenting WM lesions using a spatially
constrained K-nearest neighbour (K-NN) approach where the spatial smooth-
ness constraints of the segmentations are introduced as the prior in a
Bayesian formulation. The method is trained/tested and validated on
structural and diffusion MRI of 15 MS subjects. It results in superior
segmentation performance compared to freely available supervised seg-
mentation methods.



Chapter 2

Data

The magnetic resonance imaging (MRI) of the thesis was acquired using two
different scanners, a 3 Tesla Siemens Trio or Verio scanner. Subjects were
scanned by; MD, Ph.D., Anne-Marie Dogonowski (TRIO) and Ph.D. student,
M.Sc, Nina Reislev (Verio) at the Danish Research Centre of Magnetic Reso-
nance. This chapter details thesis relevant subject demographics and outlines
the sequences used to acquire MRI.

2.1 Siemens Trio

MRI data from 42 clinically stable patients suffering from MS, classified with
an RR (n=27) or SP (n=15) phenotype and 25 healthy control subjects were
acquired. The MS subjects had clinical disability rated according to the EDSS
score, ranging from 0.0 to 7.0 with a mean±standard deviation of 4.31 ± 1.77.
Since the RR disease course is often the disease stage prior to SP, the EDSS of
this group was not surprisingly lower. The EDSS range of the RR group was
0.0-4.5 and 3.5-7.0 for the SP group. The age of the patients range from 25
to 64 years with a mean of 43.57 years, and a gender split of 20 males and 22
females. Patients were under treatment with immunomodulatory drugs, such
as Interferon-β, Glatiramer acetate and Natalizumab (also known as Tysabri).
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The 25 healthy control subjects had an age range of 26-69 with a mean of 43.4
years and a gender split of 10 males/15 females. Further details about subjects
demographics and treatments can be found in the Ph.D. thesis of Anne-Marie
Dogonowski [47]

Three different structural imaging modalities were acquired for each subject; 1)
A T1-weighted image (MPRAGE) with a repetition time (TR)=1550 ms , an
echo time (TE)=3.04 ms, a 9◦ excitation flip angle (FLA) and an imaging matrix
of 182 × 218 × 182 acquired at 13 mm3 isotropic resolution. 2) A T2-weighted
image (T2) using TR=3000 ms, TE=354 ms, FLA=180◦, a voxel resolution of
1.13 mm3 and an imaging matrix of 196 × 256 × 192. 3) A T2-weighted image
(FLAIR) with TR=6000 ms, TE=353 ms, FLA=180◦, a 1.13 mm3 resolution
and a matrix of size 220× 256× 192.

A whole-brain diffusion MRI (dMRI) was acquired using the twice-refocused
spin echo sequence [131]. The echo planar imaging (EPI) sequence, consist
of 71 sequentially recorded images, including 10 b0 images with no diffusion
sensitivity and 61 diffusion weighted images (DWI)s acquired at 61 directions
with gradient strength and diffusion time yielding a b-value of 1200 mm/s2.
Each image was acquired with sequence parameters TR=8200 ms, TE=100 ms,
FLA=90◦ and an isotropic voxel size of 2.33 mm3 with an image matrix size of
96×96×61. To make possible retrospective inhomogeneity distortion correction,
a field map imaging sequence was acquired just prior to dMRI. It was based on a
double gradient echo sequence with TR=479 ms with short and long echo times,
TE1=5.19 ms, TE2=7.65 ms, FLA=60◦, image matrix size 128× 128× 47 and
a voxel resolution of 2× 2× 3 mm3.

2.2 Siemens Verio

MRI data of five healthy subjects were acquired on this scanner. They are only
used in the manuscript of chapter 8 which has the purpose of comparing the
performance of geometric distortion correction approaches. Correspondingly,
making information about subject demographics irrelevant.

A T1-weighted structural image (MPRAGE) was acquired with TR=1900 ms,
TE=2.32 ms, FLA=9◦ and an imaging matrix of 224 × 256 × 256 at 13 mm3

isotropic resolution.

A whole-brain dMRI was acquired using the twice-refocused spin echo sequence
[131]. The sequence consist of 71 sequentially recorded images, including 10 b0
images with no diffusion sensitivity and 61 DWIs encoded using 61 non-collinear
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directions with gradient strength and diffusion time yielding a b-value of 1500
mm/s2. Each image was acquired with sequence parameters TR=11400 ms,
TE=89 ms and an isotropic voxel size of 2.33 mm3 with an image matrix size
of 96× 96× 61.

To make possible retrospective inhomogeneity distortion correction of dMRI
using either of three methods, three additional sequences were acquired. 1) A
field map imaging sequence was acquired just prior to dMRI. It was based on a
double gradient echo sequence with TR=479ms with short and long echo times,
TE1=4.92 ms, TE2=7.38 ms, FLA=60◦, image matrix size 64 × 64 × 42 and
a voxel resolution of 3 × 3 × 3 mm3. 2) An additional b0 image was acquired
using the same b0 sequence parameters but with a reversed phase encoding
direction causing distortion artefacts to occur opposite of the standard phase
encoding direction. 3) A sequence for mapping the point spread function (PSF)
was acquired using the same EPI parameters as the dMRI acquisition.

2.3 Subject assigned to thesis manuscripts

All data was acquired before starting this thesis but not all data was easily
accessible from the database system of the hospital. These problems have had
an impact on which subjects are included in the four studies of thesis.

The paper described in Chapter 8 is based on data from an ongoing study of
the blind population. Since only 5 healthy control subjects had been scanned at
the time of publication, these 5 were included. Demographic information was
not collected.

The paper of chapter 9 was done at University College London (UCL). Prior to
leaving for London, the readily available MRI of MS and control were extracted
from the hospital database. 35 MS and 25 healthy control subjects were suc-
cessfully extracted using the database extraction pipeline. This gave 21 RR-MS
and 14 SP-MS which were the basis of the study. The healthy subjects had an
age range of 26-69 with a mean of 44.72 years. Based on their phenotype the
SP-MS had an age range of 29-64 with a mean of 49.4 years and the RR-MS
had an age range of 24-56 with a mean of 40.3 years.

Some of the initial failed data extractions were corrected upon returning from
London and the work of the paper of chapter 10 was written. This paper
is based on the Anatomical Connectivity Mapping (ACM). The estimation is
based on probabilistic estimation is very time consuming if choosing to estimate
on the ACM until convergence is achieved. This is what we did and ultimately
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meant we did not manage to estimate the ACM for the full amount of subjects
before thesis deadline. For this reason 19 RR-MS, 15 SP-MS patients and 20
healthy controls were included in the study. Even if we had enough time prior to
deadline, it would not be possible to use the full set of subjects since one subject
was missing a fieldmap sequence and two had extreme ghosting artefacts in the
dMRI. The demographics of the group is found in the manuscript of chapter 10.

Finally, the paper of chapter 11 was limited to the same phenotype homogeneous
group of 15 SP-MS patients.



Chapter 3

Diffusion MRI

3.1 Introduction

Diffusion magnetic resonance imaging (dMRI) can be used to infer the micro-
structural tissue compositions of a voxel. It has found application in early
stage diagnosis of acute-stroke [161], and to study various neurological condi-
tions such as Alzheimer’s disease [24], amyotrophic lateral sclerosis (ALS) [34],
multiple sclerosis (MS) [36], [55], [57]. It is also widely used to infer the macro-
scopic geometry of the neuronal fiber pathways of white matter (WM) using the
methods of tractography [13], [88].

This chapter introduces the diffusion process as measured by dMRI and the
mathematical models used to infer the microscopic and macroscopic properties
of the tissue. Section 3.2 will supply contextual background on how the dif-
fusion process gives rise to signal changes in dMRI. Section 3.3 will give an
overview of imaging artefacts influencing dMRI. Section 3.4 will introduce the
widely used tensor model for quantifying the diffusion process in voxels of a sin-
gle fiber population and its extension to the multi-fiber population. This section
also explains how the principal direction of diffusion is derived from the tensor
model and introduces scalar diffusion indices also derived from the tensor. The
principal direction of the tensor model, are used by tractography algorithms
to perform in-vivo reconstruction of the pathways of WM. Section 3.5 covers
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both deterministic tractography and probabilistic tractography. Understanding
both types of tractography is relevant to the remainder of the chapter, since
probabilistic tractography is used to estimate the anatomical connectivity map-
ping (ACM), described in section 3.6 and determinstic tractography is used in
section 5.4 to enable a geometric description of WM pathways. The ACM de-
scribed in section 3.6 yields a scalar map reflecting the relative connectivity of
each voxel with respect to the rest of the brain and was used in a cross sectional
phenotype study, presented in chapter 10. The model based sheet-like geometric
representation of WM pathways(tracts) introduced in section 3.7 concludes the
chapter. In this thesis, this model is used to perform tract-oriented statistical
analysis as detailed in section 5.4. A manuscript detailing the results of such
tract-oriented analysis investigating a cohort of MS patients, can be found in
chapter 9.
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3.2 Background

Diffusion can be described as process of mass transport, resulting from molec-
ular motion with no outside influence. A popular experiment illustrating the
diffusion phenomenon is one of dropping a dye into a glass of water [17]. Over
time the dye spreads, in a spherically symmetric profile with no external in-
fluences. This is known as diffusive mixing and results from collisions between
atoms or molecules or particles in the liquid. The motion of this random pro-
cess is also known as Brownian motion. It is the purpose of dMRI to measure
the bulk of this motion. Einstein [52] came up with a simple mathematical de-
scription of the bulk motion which he showed follows a Gaussian distribution,
when the assumption of free diffusion is upheld. In which case the mean-squared
displacement is given by

< r >2= 2 · d ·D · τ, (3.1)

where D is the diffusion coefficient (also called the apparent diffusion coeffi-
cient) we are interested in measuring using dMRI, τ is time spend observing the
diffusion process, < r >2 is the mean squared displacement of the particles and
d is the spatial dimensionality of the process.

The assumption of Gaussian displacement gives rise to a simple equation de-
scribing the relationship between the diffusion process and the diffusion weighted
images (DWI)s of a dMRI acquisition. The equation is

I = I0 · e(−τqTDq)), (3.2)

where D is a 3 × 3 matrix and q is the so-called diffusion wavevector making
the DWI contained in I sensitive to the mobility of water molecules along the
gradient direction applied during the dMRI sequence. I0 is a T2-weighted im-
age based on the same scanner sequence and timings as I but with the diffusion
part omitted. The equation states that a change in I, relative to I0 can be de-
scribed by an exponential attenuation, with the exponent given by the Gaussian
diffusion process occurring along a fixed direction.

With the usage of the Stejskal-Tanner [141] pulse gradient spin-echo sequence
and the Gaussian displacement model, eq. (3.2) can be re-written as

I = I0 · e−(γ·δ·G)2(∆−δ/3)q̂TDq̂ = I0 · e−b·q̂
TDq̂. (3.3)

δ, G are equivalent to the duration and magnitude of the gradients, ∆ is the
temporal time separation between the start of the two diffusion sensitizing gra-
dients of the Stejskal-Tanner sequence, γ = 267.513 · 106 rad s−1 T−1 is the
gyromagnetic constant for protons and q̂ is the unit normalized direction of the
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Figure 3.1: Sequence diagram illustrating the twice-refocused spin echo se-
quence. It depicts a division of the sequence into three parts; 1) MRI signal
excitation using a radio frequency (rf) pulse, 2) the diffusion weighting part,
consisting of four diffusion weighted gradients shown in grey each applied for a
duration δi with the magnitude G and two refocusing rf-pulses shown in black.
Part 3) takes care of the data collection part of spatial gradient encoding and
reading out the MRI signal.

wavevector q. The values of δ, G and ∆ are all sequence parameters influencing
the amount of diffusion sensitivity encoded in the images. Altering these param-
eters will make the sequence more or less sensitive to diffusion. For spherical
acquisition schemes these parameters are constant and are often summarized
into a single b-factor as done in eq. (3.3). In general increasing the value of b
will increase sensitivity to the slower diffusion processes but usually at the cost
of compromising scan time and signal to noise ratio.

In this thesis the twice-refocused spin echo sequence [131] was used to acquire
the DWIs. The sequence diagram of the twice-refocused spin echo sequence is
illustrated in Figure 3.1. It shows a division of the sequence in three parts; 1)
MRI signal excitation using a radio frequency pulse (rf), 2) diffusion weighting
and 3) data read out, which consists of spatially encoding image positions using
scanner gradients and reading out the image signal. Part 1) and 3) are common
to all MRI sequences while part 2) is what make the diffusion sequence different
from other MRI sequences. The twice-refocused sequence differs from other
diffusion sequences since it consist of two pairs of diffusion sensitizing gradient
pulses as opposed to just one as is the case with Stejskal-Tanner sequence.
This has the positive effects of reducing eddy current artefacts (see section 3.3).
DWIs acquired using the twice-refocused sequence can however still use the
same signal attenuation equation as the Stejskal-Tanners, presented in eq. (3.3).
This is achieved by setting δ equal to the sum of the first and the third gradient
durations, δ = δ1 + δ3 and ∆ to the temporal difference between the start of
first and the third gradient, shown in Figure 3.1.
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3.3 Artefacts

In this section we shall give an overview of four artefacts commonly occurring
with echo planar imaging (EPI) sequences, the type of sequence used to acquire
both the DWIs and the corresponding non-diffusion weighted images (b0). The
artefacts may be caused by; physiological noise, tissues susceptibility, subject
movement and eddy currents arising in the scanner hardware. Being aware of
or actively correcting for these artefacts may improve the accuracy of statistical
analysis based on the images.

Physiological noise

An example of physiologic noise that may corrupt the images of an EPI sequence
is the cardiac cycle. It acts as a pulsation effect on the brain and failing to correct
this artefact results in increased apparent diffusivity near the periventricular
regions [153]. Although it is well recognized problem described in, [83], [82], [32],
not many research groups actively acquire data with the aim of minimizing the
artefact as could for instance be done by cardiac gated imaging. Nor have we
taken steps to minimize this artefact.

Tissue susceptibility

Artefacts due to tissue susceptibility are largest at air-tissue interfaces of the
brain and particularly near the frontal-lobe sinuses. The artefact occurs when
the tissue of the subject disturbs the homogeneous field of the scanner. Since
image reconstruction is based on the assumption of a completely homogeneous
field, a local inhomogeneous field will cause this artefact. It manifests as geomet-
ric warping and local intensity build-ups in the images, occurring predominantly
along the phase encoding direction. The phase encoding direction is often set to
correspond with the anterior-posterior (AP) direction of the brain as to preserve
brain symmetry despite warping. A popular way of correcting the artefact was
suggested by [79]. It consists of acquiring a double gradient echo sequence using
two distinct echo timings (TE). This so-called field map sequence makes it pos-
sible to estimate the voxel displacement map which gave rise to the geometric
distortion and may be used to undistort the images. An example of the field
map correction is given in Figure 3.2. Figure 3.2(a) depicts a slice of an EPI
acquired image without diffusion weighting (b0) prior to distortion correction,
Figure 3.2(b) depicts the same slice after distortion correction and Figure 3.2(c)
shows the voxel displacement map used to correct the image.
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(a) Distorted b0 image (b) Corrected b0 image

(c) Voxel displacement map

Figure 3.2: Illustrates the field inhomogeneity artefacts present in EPI data due
to tissue susceptibility corrupting the homogeneity of the magnetic field. The
axial slice in (a) depicts a distorted image while (b) depicts the same slice after a
geometric distortion correction has been applied to (a). For comparison reasons
the blue cross was positioned in the same location of the slice in (a),(b) and
we note that the corrected image in (b) has been stretched along the anterior-
posterior direction. The correction was based on the field map approach that
outputs a voxel displacement map shown in (c)
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Alternative ways of performing this correction is through the point spread func-
tion (PSF) method [178] and the reversed gradient method by [31]. The PSF
method requires additional sequences from which to derive a voxel displace-
ment map. The reversed gradient method is based on acquiring an additional
b0 image but with an oppositely directed phase encoding direction of the EPI
sequence compared to the usual b0 image. This results in a pair of b0 images
where distortions are similar in magnitude but oppositely directed thus in one
b0 image, features are compressed while they are stretched in the other. By
identifying corresponding points in the two images it is possible to infer a voxel
displacement map, possibly based on image registration as described in [73].
We shall re-visit this technique in the paper of chapter 8 where we suggest an
extension of the approach and compare it with other approaches.

Subject motion

Analysis based on the DWIs and b0 images, assumes that the field of view of
every voxel comes from the same micro-structural tissue across all the images.
As a consequence gross head movement during scan time may lead to erroneous
analysis results. It is therefore common practice to rigidly align all images with
the first b0 of the sequence.

Eddy current

The eddy current artefact is caused by the rapidly switching gradients of the
scanner which induce additional unwanted currents in the scanner hardware
that can affect the magnetic field of the scanner in an undesirable manner. This
artefact typically manifests as 2D affine distortion of image slices. It is common
practice to assume that eddy current artefacts can be corrected using one single
3D affine model as described in [82]. This assumption allows simultaneous
correction of motion-related and eddy current artefacts as they can both be
corrected by aligning all images with the first b0 image using a 3D affine model.
The affine model is fitted using image registration as described in chapter 4.

Throughout the thesis and unless otherwise stated we use a combination of the
field map correction approach and an affine model to estimate a combined voxel
displacement map that simultaneously compensates for susceptibility, movement
and eddy current artefacts.
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3.4 Modelling fiber orientation

The tensor model

Using the diffusion tensor (DT) model it is possible to quantify the amount of
diffusion displacement occurring in a voxel and infer the direction along which
a water molecule is most likely to travel. This is also called the principal direc-
tion. The matrix-vector formulation of the DT model has already been given in
eq. (3.3), resulting in the diffusion attenuation equation for the ith image

Ii = I0 · e(−b·q̂iTDq̂i)), (3.4)

where D is a 3×3 dispersion matrix of 6 unique dispersion parameters reflecting
the dispersion of the diffusion process while q̂ is the direction of diffusion sen-
sitivity. The dispersion matrix of the DT is estimated by minimizing the least
squares problem

arg min
D

(

n∑

i=1

(Îi − Ii)2), (3.5)

with n denoting the number of DWIs. This non-linear problem is solved using a
Levenberg-Marquardt algorithm [89], [101]. The dispersion in D is expected to
be symmetric and positive definite (SPD) but the SPD property is easily violated
due to noise and numerical inaccuracies, leading to non-physically meaningful
DTs. To ensure the SPD property a Cholesky decomposition [160] can be used
to estimate D. The decomposition is D = LTL where L is a triangular matrix
and the Cholesky product is guaranteed to give an SPD matrix. Therefore
estimating the parameters of L instead of D, ensures that D will become SPD.

A simpler way of estimating D is to take the natural logarithm of the normalized
signal of eq. (3.4), and to reorganize the problem as a system of linear equations
solvable through matrix inversion. We avoid this approach, since it may result
in DTs with no physical meaning and it has been demonstrated in simulation
studies the approach is less accurate compared to the solution of solving the
non-linear problem [82].

The principal direction of diffusivity

From the DT, it is desired to infer the principal direction since it is generally as-
sumed to coincide with the tangential direction of a WM fiber. Such knowledge
will allow in-vivo reconstruction of WM pathways. The direction is found as
the principal axes of the Gaussian ellipsoid which explains the largest amount
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of variation from the diffusion process. The directional variance is quantified in
D where the three orthogonal axis of the ellipsoid are estimated by solving the
eigen-system of equations

DΦ = ΛΦ, (3.6)

where Φ is a matrix of eigenvectors, Φ = [e1, e2, e3]. It is assumed that the
eigenvalues in the diagonal matrix Λ are sorted according to size, meaning λ1 >
λ2 > λ3 and therefore e1 is the principal direction. λ1 describes the variation
of diffusivity along the principal direction while λ2 and λ3 quantify diffusivity
occurring orthogonal to e1.

Scalar diffusion indices

From the eigenvalues of the DTs, a number of scalar diffusion indices quan-
tifying properties of the DT have been proposed in literature [12]. The most
used are, fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity
(RD), the tensor norm (TN) and have widely been used as indices indicat-
ing localised pathology changes of WM tissue. In the context of MS, people
have shown reduced FA, along side reduced MD of both lesioned areas and in
normal appearing WM (NAWM) [170], [36], [67], presumable reflecting axonal
damage [35]. Localized changes in these indices have also been linked to disease-
related disability [115] and to explore differences between the clinical phenotypes
of MS [130].

Fractional anisotropy (FA) [12] is calculated using all the eigenvalues of a DT

FA =

√
3

2
·
√

(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

√
λ2

1 + λ2
2 + λ2

3

. (3.7)

FA values range from 0 to 1 and describe the degree of anisotropy of a DT. A
value of 0 means the diffusion process is isotropic and a value of 1 means that
the diffusion process is fully restricted along the principal direction. It is used
in several studies, to indicate the myelination degree of WM. However it is a
measure which can be difficult to interpret when the assumption of a one fiber
model no longer holds. A voxel containing complex fiber configurations such as
crossing, fanning or bending fibers will alter the FA in an unpredictable manner
in which case it may be difficult to assess if FA changes are due to pathology or
a complex configuration.

Another popular scalar measure used to assess micro-structural WM changes is
the mean diffusivity (MD) which is calculated as the mean of the eigenvalues

MD =
λ1 + λ2 + λ3

3
. (3.8)



26 Diffusion MRI

It reflects the average size of a DT, independent of orientation and shape and
can be used to monitor certain disease conditions, particularly acute stroke
where tissue changes due to stroke are observed earlier than with conventional
MRI [161].

The tensor norm (TN) is calculated by

TN =
√
λ2

1 + λ2
2 + λ2

3 (3.9)

and is simply the square root of the sums of squared eigenvalues.

Radial diffusivity (RD) is the average diffusion occurring perpendicular to the
main principal direction and is estimated by

RD =
λ2 + λ3

2
. (3.10)

It has been proposed as being particular sensitive towards measuring the changes
in MS, associated with Wallerian degeneration [92]. Often reported alongside
RD, is the axial diffusivity (AD) which is the eigenvalue summarizing the average
diffusion along the principal direction.

The montage in Figure 3.3 shows five diffusion indices, estimated from an MS
patient with a WM lesion, indicated by the arrow. We see a decrease in FA
values in the proximity of the lesion while both the AD and RD show increased
diffusivity. Intuition suggest that a drop in FA must be caused by a larger
increase in RD compared to the increase in AD, which has previously been ob-
served in MS studies [26]. From the MD indices some unexpected dark voxel
regions are seen. These occur at tissue interface boundaries where Gibbs ring-
ing, image distortions and uncorrected motion artefacts can cause the diffusion
tensors to reflect something which has no physical meaning. The work of the
thesis considers analysis of cerebellar white where such artefacts are rare. For
this reason we don’t expect them to impact our results.

These indices all collapse the DT into an interpretable scalar unit however this
may have the adverse effect of getting rid of interesting geometric diffusion
properties of the underlying tissue. For instance the same FA value could arise
from very different DT profiles thus simultaneous consideration of several indices
may lead to increased insight. There are indices which try to take this issue into
account. The Westin metrics [171] were proposed to decompose the DT into the
three components of a linear, a planar and a spherical component and though we
did not explore this approach, we can envision usefulness of such decomposition.
Other interesting measures not treated here, include the relative anisotropy
(RA) [14] and the skewness measure [121], the latter measuring higher order
properties of the DT (the degree of pancake shape versus cigar shape).
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(a) FA (b) MD

(c) TN (d) RD

(e) AD

Figure 3.3: Depicts the scalar diffusion indices of FA, MD, TN, RD and AD.
These coronal slices are from the frontal part of the brain where a lesion is
present as indicated by the arrow in (a). The lesion is visible in all modalities
though with slightly different contrast. From the MD indices some dark voxel
regions are seen. These typically occur at tissue interface boundaries where
Gibbs ringing, image distortions and uncorrected motion artefacts can cause
the diffusion tensors to reflect something which has no physical meaning.
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Multi-tensor model

The multi-tensor model [152] is a generalization of the single tensor model which
replaces one Gaussian model with a mixture of Gaussian models with the in-
tended purpose of modelling mixed fiber distributions. The signal equation,
describing the diffusion process from a mixture of Gaussians is

Ii = I0 ·
n∑

j=1

aje
(−b·q̂iTDj q̂i)). (3.11)

The equation contains the parameters of n covariance matrices Dj , the influence
of which are determined by the weights aj ∈ [0, 1] subject to the constraints that∑n
i=j aj = 1. Estimating the model requires the use of non-linear optimization

such as Levenberg-Marquardt [89], [101]. For stability reasons we use an ap-
proach enforcing that the second and third eigenvalues should be the same [4].
To estimate the multi-tensor model one needs to first determine the number of
fiber populations n, within a given voxel.

The choice of n, poses a model selection problem where accuracy is lost by
choosing n too large and choosing n too small, can lead to the estimation of
incorrect principal directions of the DTs. To select n we use the approach pro-
posed by Alexander et al. [3] and implemented in the Camino software package
(http://cmic.cs.ucl.ac.uk/camino/). It classifies voxels as being either isotropic,
one-fiber or two-fiber voxels. An example of the resulting classification as well
as a corresponding multi-tensor slice is shown in Figure 3.4(a)-(b). From the
classifications of the figure, the reader may notice a sparse number of isotropic
CSF voxels and an over representation of one-fiber voxels (anisotropic voxels).
This may make it difficult to distinguish anatomical structures from the classi-
fication map. However it has no consequence for the estimated diffusion tensors
of these regions since a single tensor is fitted in both of these cases. Only when a
two-fiber voxel is classified do we use a different model, namely the multi-tensor
(n=2).

The classification is done by fitting several spherical harmonics series to the
diffusion measurements of each voxel. Higher order models result in better fits
where the quality of a model fit can be measured using the sums of squared resid-
uals which follows a χ2 statistic. The classification approach fits the spherical
harmonics model of order 0, 2, 4, enabling the user decide a statistical threshold
that justifies the use of higher order models. The threshold is compared to the
F-test statistic of each voxel where the F-test statistic is calculated as the ratio
between two χ2 model fit statistics of two models with differing model order.
Tree model comparisons are made requiring the user specification of tree F-test
thresholds.
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Camino ships with an interactive tool enabling users to adjust the model selec-
tion threshold on the fly. Adjustments may be done until the following criteria
are visually satisfied; 1) voxels classified as order 0, correspond to cerebrospinal
fluid (CSF) and grey matter (GM), 2) voxels with order 2 classification, corre-
spond to WM and 3) voxels with order 4 classification, correspond to WM re-
gions of crossing fibers, typically identified where the corticospinal tract (CST)
and the corpus callosum (CC) intersect.

We use the multi-tensor to model multi-fiber voxels but a number of alternative
approaches exist. An overview of these methods can be found in the book by
Johansen-Berg et al. [72] which describe the methods of; the multi-tensor, ball
and stick [16], persistent angular structure MRI (PASMRI) [1], spherical de-
convolution (SD) [149], [148], diffusion spectrum imaging (DSI) [163] and qball
imaging [151]. These model forms all have very different computational com-
plexity and for instance the DSI require high resolution data beyond standard
clinical sequences. In principle any of these approaches could be used instead of
the multi-tensor. We choose this model primarily due to its simplicity and low
computational complexity.
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(a) Fiber classification

(b) Multi-Tensors

Figure 3.4: Illustrates the classification of dMRI voxels, classified as being either
isotropic, anisotropic or a two-fiber compartment voxels and the multi-tensors
fitted based on the classifications. (a) Shows the classification of a coronal
slice with isotropic voxels in black, anisotropic voxels in grey and two-fiber
voxels shown in white. (b) Shows a zoomed view of the principal directions of
the fitted multi-tensors overlaid onto a directionally encoded RGB background
image, red=left/right, blue=inferior/superior and green=anterior/posterior.
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3.5 Tractography

Tractography methods are used with the purpose of in-vivo reconstruction of
the WM pathways of the brain. Studies on post mortem minipigs [51] and rat
brains [91] using tracer injection techniques have confirmed the ability of trac-
tography methods, to infer WM pathways largely parallel with ex-vivo anatomy.
The methods are commonly divided into two different types; deterministic and
probabilistic methods, both generating connected curves in space, These curves
are known as streamlines where a collection of spatially coherent streamlines is
referred to as a fiber bundle or a WM tract.

During this section we shall describe the ideas behind two deterministic meth-
ods [13], [88] and one probabilistic method [118]. This subset of methods only
covers a few of the available tratography methods. An outline of a wider range
of methods may be found in the books of [72] and [81].

Deterministic tractography

Euler’s method

Euler’s method for streamline estimation, was initially described in [13]. It is
based on the assumption that a streamline may be represented by a curve in
space r(s), s being the arc length of the curve and that the differential change
of the streamline can be described using Frenet’s equation [65],

dr(s)

ds
= t(s) (3.12)

Further, the normalized tangent of the streamline curve is assumed equal to the
principal direction e1 of a voxel such that Frenet’s equation may be re-written
as

dr(s)

ds
= e1(r(s)). (3.13)

In other words the tangential change of a streamline curve, at location r(s) is
given by e1(r(s)). This differential equation enables the estimation of r(s) using
methods for solving differential equations. Euler’s method is such a method,
resulting in the iterative update,

r(s1) ≈ r(s0) + h · e1(r(s0)). (3.14)

The streamline r(s) is estimated via this iterative update where the step length
h determines the error of the approximation and r(s0) is the streamline start-
ing position (the seed voxel). The final streamline estimated by the method,
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is constructed by combining two separate streamlines at the seed voxel. One
streamline is initiated in the positive and the other is initiated in the nega-
tive e1(r(s0)) direction. The combination of these two streamlines is required
to estimate the full streamline, since the sign of the principal direction e1 is
arbitrary.

The tensor deflection method

Compared to Euler’s methods, the strength of this method is an improved ro-
bustness when estimating streamlines through regions of high directional un-
certainty. It was designed to work with the DT model and similar to Euler’s
method, the streamline evolves iteratively. The iterative update is given by

r(s1) ≈ r(s0) + h · vout, (3.15)

vout = f · e1 + (1− f) · (1− g) · vin + g ·D · vin,

where vout is the tracking direction at the front of the streamline, e1 is the
principal direction at the current location, D is the tensor at the front of the
streamline and vin is the principal direction of the previous iteration. The values
of f and g are user specified constants in the interval [0, 1] and for the specific
case of f = 1, g = 0 the tensor deflection method is equivalent to Euler’s
method. Alternative values of f and g allows this approach to be tuned for
specific tracking purposes [88], [165]. When used with f = 1, g = 1, it was
demonstrated in [88] that the tensor deflection term, g ·D · vin down-weighs the
current direction of a tensor if it is highly isotropic, while ignoring vin if the
tensor at the current location is highly anisotropic. This is particularly useful
when tracking through regions of crossing fibers, elucidated by the example in
Figure 3.5 which visually compares a fiber bundle based on Euler’s method in
(a), (c) with a fiber bundle based on tensor deflection in (b), (d). Both methods
are used to track the left CST using the same seed regions, with tensor deflection
outputting more streamlines than Euler’s approach, likely due to its ability of
behaving rigidly when passing through crossing fiber regions.

Probabilistic tractography

Probabilistic tractography was introduced as a way to overcome some of the limi-
tations inherent to deterministic tractography. Unlike deterministic approaches,
probabilistic tracking allows to quantify the uncertainty related with estimating
brain connections. This uncertainty may stem from scanner noise, subject mo-
tion, multiple fiber populations within a voxel [2] and non-axon micro-structural
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features contributing to the diffusion signal. Deterministic tractography assumes
that these effects are negligible, opposite to probabilistic tracking which aims
to account for the uncertainty caused by these noise sources.

To quantify the uncertainty of a connection, probabilistic tractography uses
Monte Carlo based streamlines which are generated by propagating the front
of a streamline using eq. (3.14) but instead of following the principal direction
of the DT, a direction is sampled from a probability density function (PDF)
which models the directional uncertainty of a fiber in a voxel. The stochastic
sampling and streamline propagation continues until the streamline stopping
criteria are met. Since the purpose of probabilistic tractography is to estimate
the distribution of fibers which are achievable due to noisy conditions, every
Monte Carlo streamline is repeated a large number of times.

Once all streamlines have been estimated, they are binarized into streamline
count maps (3D images) using the number of streamlines entering a voxel, as a
count reflecting connectivity between the voxel and the seed region voxels. The
volumetric map is often the desired output of performing probabilistic tractog-
raphy.

A key component of probabilistic tracking is the PDF of directional uncertainty
which has to be estimated for each DT voxel. The PDFs are estimated as a cal-
ibration stage prior to probabilistic tractography using the approach of Parker
et al. [118] implemented in the Camino software package [41]. The calibration
works by generating a number of artificial DTs with differing eigenvalues from
which DWI measurements are simulated. Noise is added to the simulated DWI
measurements and the principal directions of the noise corrupted DWIs are es-
timated. By repeatedly adding noise to the simulated DWIs and estimating the
principal directions, the directional uncertainty distribution (the PDF) is esti-
mated for each of the artificially DTs, after which the PDFs are mapped back
to the DTs of the original image data. The pre-calibration is achieved using
the Camino routines of dtlutgen followed by picopdf. The routines require as
input, the assumed SNR of the images set to 16 and the specification of a con-
tinuous PDF where we choose the Bingham distribution [20]. An alternative to
this PDF is the Watson distributions described in [100] and [81]. The Bingham
distribution is preferred since it allows a more general form of the directional
probability distribution defined on the sphere. The Watson distribution can
be considered as a special case of the Bingham distribution. The Watson dis-
tribution only allows circular probability functions defined on the sphere while
the Bingham distribution allows elliptical probability functions. With no other
information available about the more appropriate distributional form we prefer
the more general distribution.
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Tractography parameters

Tractography methods usually require the following inputs parameters to be
specified:

1) A seed region of voxels, where we expect the fiber bundle of interest to inter-
sect. These voxel regions are often re-sampled if a denser streamline sampling
is needed.

2) A set of criteria for terminating or excluding erroneous streamlines based
on their expected geometric behaviour. An example of such a criterion is the
angular threshold which terminates a streamline if it turns more than a specified
number of degrees across a voxel. Similar criteria based on curvature and torsion
are described in [13]. Streamline length is another geometric criteria used to
exclude streamlines that do not fit the expected length requirements of a fiber
bundle.

3) A set of way point masks indication regions of interests (ROI)s, used to
exclude all streamlines not passing through them. Way point masks may also
be used to as exclusion masks removing streamlines passing through the way
points. Often a combination of inclusive and exclusive way point masks is needed
to segment a fiber bundle.

4) A set of criteria for successfully terminating streamlines. The most common
termination criterion of a streamline is based on FA. Once entering a region of
low FA (for instance FA ≤ 0.15), streamline propagation terminates. Another
possibility is to let the streamline run until it reaches the background, possibly
indicated by a background mask.

Example of deterministic tractography

The two methods of deterministic tractography (Euler’s and tensor deflection),
a seed regions of voxel and the FA streamline termination criteria of 0.15 were
used to segment the left corticospinal tract (CST), shown in Figure 3.5. Fig-
ure 3.5(a)-(b) shows an example of tracking without additional inclusion masks
causing a large number of streamlines which do not correspond with the expected
appearance of the left CST. To remove false positive streamlines, two inclusion
masks, an angular threshold criteria of 30 degrees and a minimum/maximum
length criteria of 100/230 mm were used. Filtering the streamlines using these
criteria resulted in the fiber bundle shown in Figure 3.5(c)-(d) which better
reflects the expected appearance of the left CST.
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(a) Euler’s method (b) Deflection

(c) Euler’s-Inclusion masked (d) Deflection-Inclusion masked

Figure 3.5: A visual comparison of Euler’s method with the tensor deflection
method, both used infer the fiber bundle of the left corticospinal tract. The
top row of (a) and (b) compares the two methods using the same seed region
but without any additional way point masks applied while the bottom row
of (c) and (d) visually compares the two when two inclusion mask have been
applied (One covering the pontine crossing region and one covering the superior
corona radiata). Euler’s method retained 8744 streamlines after applying the
inclusion masks while the tensor deflection retained 11297 streamlines, reflection
increased robustness of the tensor deflection towards proceeding through regions
of crossing fibers near the corpus callosum.
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Example of probabilistic tractography

An example of probabilistic tractography is depicted in Figure 3.6(b)-(d), based
on using 1000 streamlines per seed voxel, to estimate the connectivity index.
The seed region used for this example is shown in Figure 3.6(a). This exam-
ple was generated using a single DT model, a step-size of h = 0.5 mm and a
stopping criteria of FA=0.15. The example demonstrates a well known problem
of tractography, namely that the probability of making a connection decreases
with distance to the seed region which does not generally reflect reality.
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(a) Seed region (b) Axial

(c) Sagittal (d) Coronal

Figure 3.6: Probabilistic tractography visualized using the neurological con-
vention. The tractography is based on 1000 Monte Carlo streamlines used to
estimate the connectivity with respect to the seed region (a) of the right corti-
cospinal tract. (b)-(d) shows the connectivity index as a heat map with larger
values indicating strong connectivity. The seed and the connectivity indices are
overlaid on the background of an FA image
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3.6 Anatomical connectivity mapping

Anatomical connectivity mapping (ACM) was proposed by Embleton et al. [53]
as a method for obtaining a voxel-wise measure of whole-brain structural con-
nectivity. ACM and variations hereof have previously been used to study
Alzheimer’s disease [24], showing a decreased connectivity in the GM area of the
Supramarginal Gyrus. A technique similar to ACM (not whole-brain but instead
WM structure specific), has also been used to study the disease of amyotrophic
lateral sclerosis (ALS) [34], a disease aggressively targeting motor neurons. They
showed that the connectivity indices of the CST had a strong relation with the
disease progression scores compared to FA which was better at distinguishing
healthy subjects from ALS subjects. Most recently it has also been applied to
RR-MS [25] to investigate how it relates with measures of cognitive impairment.
We have used ACM in a group study of MS, suggesting a difference between the
connectivity distributions across the entirety of WM between a healthy group of
subjects and the MS patients. The results of this study are included in the con-
tribution of chapter 10, where we also study the voxel-wise differences between
two group of patients with the clinical diagnosis of RR-MS and SP-MS.

Estimating the ACM

Previous studies using ACM [53], [24], [25], have estimated the connectivity
values of the ACM by seeding probabilistic tractography from all voxels of the
brain and counting the number of times each voxel is hit by a streamline. Upon
completion, the ACMs of these studies were spatially normalized to an atlas
space enabling voxel-wise statistical analysis.

The estimation of ACM requires a seed mask for each subject and obviously,
inconsistent cross subject masks will influence the values of the ACM, since an
erroneously large mask will produce more streamlines while an erroneously small
seed mask will produce fewer streamlines. Similarly, individual size and brain
shape differences will alter the ACMs and if not accounted for, the ACMs will be
biased by these differences, leading to changes in the values of the ACMs. The
authors of [24] recognize the problem and suggest two different linear hit count
normalizations, to compensate for overall cross subject brain size differences.
While such approaches may work in practice, the size of the brains, the non-
linear shape difference between the brains and erroneous seed masks are unlikely
to cause changes of the ACM which are purely linear in nature.

We propose a modified estimation pipeline to overcome this problem which has
some similarities with [29]. It avoids the need for individual seed masks and di-
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rectly accounts for the non-linear shape and size variations across the brains of a
study. The ACM of a subject is estimated using a three step pipeline; 1) A multi-
tensor is fitted to the voxel-wise diffusion measurements using the approach de-
scribed in section 3.4. 2) The multi-tensor volume is spatially normalized to the
common atlas space (the FMRIB58 FA atlas of FSL) using a combination of the
B-spline image registration of FSL [78](http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/)
and the preservation of principal direction algorithm [5]. 3) The ACM is esti-
mated in this normalized space, through the probabilistic tractography method
previously described. It uses a seed and stop criteria mask derived by thresh-
olding the FMRIB58 FA atlas using the threshold FA > 0 and the number of
Monte Carlo streamlines per voxels is fixed to 500. This number was selected
as a trade off, by balancing computational requirements against the statistical
(stochastic) uncertainty of the ACM estimates. The choice of using 500 stream-
lines per voxel was based on the experiments described in the next section.

Deciding the number of streamlines

To minimize the stochastic uncertainty of the connectivity values of an ACM
it is important to choose a sufficiently large number of streamlines. To de-
termine the number of streamlines we use an experimental approach based on
repeated estimation of ACMs from five healthy subjects. The ACM of each
subject is estimated five times for a fixed number of streamlines, nstreams =
{10, 50, 100, 150, 300, 500, 700} and the voxel-wise coefficient of variation (CV)
is calculated for each of the five subjects where CV is defined as the standard
deviation divided by the mean. The uncertainty of an ACM estimate is calcu-
lated as the average CV across all voxels and can be expressed as a function of
streamlines. The average CV function indicates the effect additional streamlines
will have upon the estimated ACM and is inversely proportional to the signal
to noise ratio (SNR).

The average CV function is plotted in Figure 3.7 and indicates an exponentially
decreasing benefit of increasing the number of streamlines. The uncertainty
function seems to converge, when using between 300-700 streamlines. As a
consequence, 500 streamlines were used to estimate the ACMs of this thesis.

An example

The appearance of an ACM, reflecting the anatomical whole-brain connectivity
of a healthy subject is shown in Figure 3.8. The figure depicts an axial, a coronal
and a sagittal slice. We notice a high anatomical connectivity in WM tracts and
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Figure 3.7: The average sample coefficient of variation (CV) for five repeated
ACM estimations of five different healthy subjects. The average CV is shown
as a function of the number of streamlines indicating a diminishing uncertainty
for a large number of streamlines (above 300)

relative low connectivity in regions of CSF and GM. To the naked eye ACM may
appear similar to FA but measures something very different as demonstrated in
chapter 10, where group-wise analysis based on ACM and FA lead to widely
different conclusions.
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(a) Axial (b) Coronal

(c) Sagittal

Figure 3.8: Shows an axial, a coronal and a sagittal slice of the ACM of a healthy
subject visualized using the neurological convention.
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3.7 Sheet-like models of white matter

One possible usage of a sheet-like model is as part of a pipeline performing
group-wise, tract-oriented statistical analysis. This pipeline forms the basis of
the paper in chapter 9. It is illustrated in Figure 3.9 and consist of; 1) building
an atlas enabling cross subject correspondences, 2) modelling a WM tract using
a sheet-like model and 3) performing statistical analysis to answer hypotheses
with respect to a diffusion indices defined on the sheet-like model. The role
of the sheet-like model is to supply a robust and consistent way of sampling
diffusion indices along WM tracts and to supply an elegant way of visualizing
diffusion indices along the sheet.

The sheet-like model is based on the continuous medial representation (cm-rep)
suggested by Yushkevich et al. [175]. The cm-rep is a sheet-like surface-based
model which is fitted to the binary representation of a WM tract such that the
interior of the medial sheet-like surface-based model encompasses the stream-
lines of a WM tract. There is a one-to-one correspondence between points on the
sheet and the surface which enables a sampling of diffusion indices along lines
extending from the medial sheet to the surface. These lines are illustrated using
a 2D binary object in the second box of Figure 3.9. The diffusion samples along
these lines are usually averaged and projected onto the medial sheet location.
Repeating the sampling for an entire study population, the subjects of which
are assumed in correspondence enables statistical analysis and visualization of
the diffusion indices as a function of the sheet position.

Before describing further details on the cm-rep, we shall briefly describe the
background of alternative methods answering the same hypotheses as those
answered using the tract-oriented analysis.

Alternative methods

The simplest methodological alternative to a cm-rep based analysis approach,
is using a region of interest (ROI) based approach. The ROI-based approach
use manual contouring of the WM tracts and performs cross subject voxel-
based statistical analysis inside the ROI. Difficulties of this approach are that
contouring is prone to errors, it is hard to determine the significance of the results
due to the multiple comparisons problem and it may be hard to visualize the
results of subsequent statistical analysis. An overview of ROI-based approaches
is given in [140]. Problems due to contouring inaccuracies can be mitigated using
a streamline based ROI approach [116]. This approach segments a WM tract
using tractography and converts the streamlines into a binary ROI used for ROI-
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Figure 3.9: Illustrates a pipeline of the components involved in a cross subject
tract-oriented study. The pipeline consist of; 1) building an atlas to enable
cross subject correspondences, 2) estimating sheet-like models for each WM
tract using cm-rep and 3) performing statistical analysis to answer tract specific
hypothesis with respect to diffusion indices sampled using the sheet-like models.
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based statistical analysis. However this approach still has difficulties due to the
multiple comparisons problem. Further any false positive streamlines may cause
erroneous ROI. These difficulties have led to more complex analysis approaches.
Courouge et al. [42] and Goodlett et al. [70], proposed to quantify diffusion
indices as a function of streamline arclength, enabling the diffusion indices of
a fiber bundle to be projected onto a medial streamline yielding an averaged
diffusion curve per WM tract, per subject allowing functional statistical analysis
and visualization of diffusion indices as a function of arclength. The cm-rep can
be considered as an extension of this idea by recognizing that many WM tracts
are not tube-like but have shapes of sheet-like topology as demonstrated in [177].
A sheet-like model may be more accurate since the erroneous usage of tube-like
models can lead to averaging diffusion indices coming from completely different
areas of the tract.

Compared to the tract-oriented analysis approach, the approach of tract-based
spatial statistics (TBSS) [138] is a popular alternative for doing sheet-like analy-
sis of diffusion indices. TBSS estimates the medial sheet based on morphological
operations from a thresholded average of study related FA images. Therefore its
sheet is only a discrete approximation compared to the sheet of the cm-rep which
takes the geometry of the tracts into account. Further TBSS does not know the
surface of the WM tracts which limits analysis to diffusion indices that coincide
with medial sheet. TBSS relies on image registration to establish cross subject
correspondence which can be highly inaccurate therefore an ad-hoc strategy of
searching for maximum FA values along lines perpendicular to the medial sheet
for each individual subject. The outcome of such sampling strategy is to best
our knowledge unknown in the vicinity of severe MS pathology.

Estimating a sheet-like model

The estimation of a sheet-like model can be split in two parts, a tract segmenta-
tion part and a model fitting part. During the segmentation part, faithful binary
segmentations of the WM tract are obtained. Each segmentation is found using
tensor deflection tractography [88] which outputs streamlines that are turned
into a binary volume. The binary volumes of several tracts have been concate-
nated into one volume, shown in the top box of Figure 3.10 where each volume
is indicated by a different color. During the fitting part, the medial sheet-like
model is estimated by fitting the cm-rep [175] to the binary segmentations of
the WM tracts as shown in the lower box of Figure 3.10. Details on the seg-
mentation of WM tracts and a formulation of the cm-rep model are given in the
following sections.
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Figure 3.10: Illustrates the process of how the cm-rep is fitted to obtain sheet-
like models of WM tracts. Fitting is done in two stages; 1) Tractography is
used to segment the WM tracts (top box). The tracts segmented are the cor-
pus callosum (black), the inferior longitudinal fasciculus (brown), the uncinate
fasciculus (yellow), the superior longitudinal fasciculus (light green), the corti-
cospinal tract (red) and the inferior fronto-occipital fasciculus (dark green). 2)
The cm-rep is fitted to the binary representation of each WM tract, the result
of which is shown in the bottom box.
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Segmenting tracts

The larger WM tracts of the brain are segmented. This includes the corpus cal-
losum (CC), the corticospinal tracts (CST), the uncinate fasciculus (UNC), the
superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF),
inferior fronto-occipital fasciculus (IFO). The latter five are segmented both in
the left and right hemispheres, giving a total of 11 WM tract segmentations.

The WM tract segmentations are estimated using the tractography algorithm
of tensor deflection [88], using a step length of 0.5 mm, a streamline termina-
tion criteria of FA ≤ 0.15 and an angular termination criteria of 45 degrees.
Streamlines are also disregarded based on their minimum or maximum lengths
to get streamlines that are as spatially homogeneous as possible.

Streamlines are seeded within the entire brain of a tensor atlas and tract-specific
ROI masks are used to include streamlines associated with a given WM tract.
The specification of these masks follow the recommendations given by [109], as
described in the following.

Corpus callosum:
The CC is tracked using two inclusion masks, keeping only streamlines termi-
nating in both the left hemisphere cortex and the right hemisphere cortex. The
inclusion mask of one hemisphere covers a coronal mask intersecting the sple-
nium, a coronal mask intersecting the genu and an axial mask positioned above
the top part of the mid sagittal corpus callosum identified from an FA image.
Asking for the structural connections between the two masks of the left/right
hemisphere reconstructs the entire corpus callosum.

Corticospinal tract :
To track the CST of a hemisphere, two inclusion masks are used to keep stream-
lines going through the pons and terminating in the area of the motor cortex. We
further use an exclusion mask to exclude false positive streamlines proceeding
into the opposite hemisphere of what is intended.

Uncinate fasciculus:
To track the UNC of a hemisphere, two inclusion masks are delineated based
on an FA image. The frontal lobe is identified in the coronal plane and the
an inclusion mask delineated. The anterior temporal lobe is identified in the
coronal plane and the second inclusion mask is delineated.

Superior longitudinal fasciculus:
To track the SLF of a hemisphere, an inclusion mask is identified from an
RGB image containing the principal directions in the red (left/right), green
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(anterior/posterior) and blue (inferior/superior) channel. From an FA image
additional inclusion masks are delineated. These masks are delineated using
a coronal perspective to get rid of spurious cortical streamline projections. In
2002, Mori et al. [109] introduced this way of tracking the SLF. Since then
research results have surfaced suggesting that the SLF should be divided into
four sub-tracts [98] and that the tract which we denote superior longitudinal
fasciculus (SLF) is indeed the tract known as the arcuate fasciculus. Neverthe-
less since we have based our segmentation on Mori’s work we retain the naming
convention.

Inferior longitudinal fasciculus:
To track the ILF of a hemisphere, which runs from occipital to the temporal
lobe, two inclusion masks are delineated using the coronal orientation of an FA
image. The first is delineated in a slice containing the occipital lobe and the
second is delineated to include the mid-temporal lobe.

Inferior fronto-occipital fasciculus:
To track the IFO of a hemisphere that runs from the occipital to the frontal
lobe, two inclusion masks are delineated using a coronal slice perspective of an
FA image. The first one is delineated in a slice containing the occipital lobe and
the second one is delineated from a slice depicting the frontal lobe.

The above specifications of inclusion/exclusion masks have been applied to seg-
ment both the left and right hemisphere tracts of the tensor atlas brain. The
streamline representations segmented from using these ROIs are shown in the
top box of Figure 3.10.

The continuous medial representation

The continuous medial representation (cm-rep) approach was suggested by
Yushkevich et al. [175] as an extension to a discrete medial-representation (m-
rep) [122]. It is general approach for estimating a smooth medial sheet-like
model of a binary image object with the assumption that the medial axis of
the object poses sheet-like shape topology. The approach is therefore suitable
for modelling WM tracts as many of these structures have sheet-like topology
as demonstrated in [177]. We use the publicly available implementation of cm-
rep which can be downloaded from http://sourceforge.net/projects/cmrep/, to
estimate the models.

The cm-rep model is parameterized by the tuple m, r with m modelling the
spatial loci of the sheet and r the associated radial field that makes up the surface
of the model. The parameters of the sheet and the surface are estimated as to
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maximize the overlap between the interior of the model and a binary image while
enforcing regularity conditions on the model. Adopting the notation of [128] we
let M : <3 → <1 denote an image assumed to be +1 inside and -1 outside the
binary object. The cm-rep model is optimal when it minimize the cost function

f(m, r) = 1− (1/Vc)

∫

C

M(x)∂x+

n∑

i=1

wi

∫

C

T (x)∂x. (3.16)

The first integral of eq. (3.16) denotes the image matching energy where C is
the interior domain of the model. The second term of eq. (3.16) sums over n
model priors which are weighted according to wi the weights are determined ex-
perimentally. The integral of the image matching term is approximated through
numerical integration by sampling M along the spoke positions given by

x(m, r, ξ) =

{
m+ ξ · r · (−∇mr +

√
1− |∇mr|2 ·Nm), ξ > 0

m− ξ · r · (−∇mr −
√

1− |∇mr|2 ·Nm), otherwise
(3.17)

The integral of eq. (3.16) is evaluated by discretization of ξ ∈ [−1, 1], the range
of which determines the interior of the surface-based model and ξ > 0 refers to
one side of the sheet and ξ < 0, the other side. When ξ = 1 or ξ = −1 the
spatial coordinates are on the boundary of the surface-based model. the variable
of Nm denotes the unit normal at m and ∇mr is the Riemannian gradient.

Making the model continuous:
To give the model a continuous basis rather than a discrete basis, the authors
of [175] suggested to model r and m as B-spline functions parameterized over
a 2D domain, given by the implicit (u, v) coordinate system. In this case, the
radial field takes on the continuous form r(u, v) : <2 → <1 and the radii for any
(u, v) coordinates are given by the spline

r(u, v) =

n1∑

j=1

n2∑

k=1

bj(u)bk(v)wjk (3.18)

The spatial coordinates of the sheet are similarly defined by the mappingm(u, v) :
<2 → <3 using the B-spline form

m(i)(u, v) =

n1∑

j=1

n2∑

k=1

bj(u)bk(v)w
(i)
jk , (3.19)

where i denotes the ith spatial dimension of m. To use a continuous model,
requires an estimate of the mapping which takes us from the (u, v) coordi-
nates to m(u, v). The mapping is supplied by the maximum variance unfolding
(MVU) [164] technique, which creates a mapping from the high dimensional in-
put vectors to some low dimensional Euclidean vector space. The MVU searches
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for the mapping that preserves the original Euclidean distances of the higher
dimensional space also, in the lower dimensional space. Therefore applying the
MVU technique, gives the 3D to 2D mapping with the least Euclidean distor-
tion of a localized neighbourhood of the original higher dimensional data. By
introducing the splines into eq. (3.17), the cost function in eq. (3.16) can be
expressed a function of the B-spline parameters. The optimal parameters for
the cost function are estimated by minimizing the cost function using a brute
force evolutionary optimization method [104].

Several advances for extending the model have been suggested in literature, for
instance by formulating the problem as a partial differential equation [176] or
using a different continuous representation for the model. These options haven’t
been explored during the thesis.

Model priors:
The model priors of the cost function in eq. (3.16) are designed to penalize
undesired model behaviour. We shall only give a brief explanation of the model
priors and the effects they exact on the model. A more detailed description can
be found in [128].

Medial regularity constraint (medReg):
This prior enforces regularity of the medial sheet m by penalizing distortion in
the area element of the triangular mesh that make up the sheet. It does so by
maintaining a geometric correspondence between the initial medial sheet and
the medial sheet during the fitting process.

Boundary curvature constraint (bCurv):
This prior penalize high curvature on the boundary of the model, thereby en-
forcing a smooth model.

Boundary jacobian constraint (bJac):
This prior term, prevents the boundary from crossing itself as a result of the
fitting process. Effectively achieved by penalizing if a boundary point of the
model lies inside one of the spheres given by m, r. This term enforce that the
inequalities of |b+k −mj | > rj and |b−k −mj | > rj should hold for the mj position
with respect to all the boundary positions bk of the model.

Radial thickness constraint (rReg):
The radial thickness prior, prevents the radial field r from becoming very small.
As the radii in r goes to zero this penalty term goes to infinity.

Medial angles constraint (mAng):
This term controls the quality of the medial mesh m, penalizing if the angles of
the triangles in m become excessively small.
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Tract medReg bCurv bJac rReg mAng bAng bGrad tVal
CC 0.1 0.0 0.01 0.00001 75 75 10000 0.01

CST-L 0.0015 0.0 0.01 0.00009 125 125 10000 0.01
CST-R 0.0015 0.0 0.01 0.00012 125 125 10000 0.01
SLF-L 0.5 0.0 0.01 0.0009 350 100 5000 0.01
SLF-R 0.5 0.0 0.025 0.00085 350 450 8000 0.01
ILF-L 0.0015 0.0 0.01 0.00009 150 100 5000 0.01
ILF-R 0.1 0.0 0.01 0.00001 75 50 4500 0.01
UNC-L 0.1 0.0 0.015 0.0001 100 50 5000 0.01
UNC-R 0.1 0.0 0.015 0.0001 100 50 5000 0.01
IFO-L 1.0 0.0 0.01 0.0002 1250 475 9000 0.01
IFO-R 1.0 0.0 0.012 0.0003 100 850 9500 0.01

Table 3.1: List the weights of the model priors in the cost function of eq. (3.16),
which are used to fit the cm-reps. The weights are shown for 11 different WM
tracts. Each row of the table, correspond to a different WM tract while each
column lists the model prior weights.

Boundary angles constraint (bAng):
This term controls the quality of the surface boundary mesh b, penalizing if the
angles of the triangles become excessively small.

Boundary gradient constraint (bGrad):
This prior ensures that the Riemannian gradient ∇mr has magnitude close to
1 at the edge of the medial sheet which according to eq. (3.17) removes the
influence of the surface normal when estimating spoke directions at the edge.
The spoke directions at the sheet edge will thus correspond approximately to
∇mr.

Tangent validity constraint (tVal):
This prior safeguards a problem that may occur when estimating gradients at
the edge of the medial sheet where it may happen that ∇um is almost parallel
to ∇vm. These should not be parallel and thus the term penalize if the angles
between the two partial derivatives are small.

The models are fitted using all of these prior terms , weighted according to wi
of eq. (3.16). The weights used to fit the cm-rep, to the binary segmentations
of the 11 WM tracts, are specified in Table 3.1.

Avoiding local cost function minima:
The cost function of eq. (3.16) may contain several minima that could lead to an
optimization method finding a suboptimal set of spline parameters. One way of
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avoiding local minima solutions is by making the cost function smoother. This
can be done by smoothing the binary image M(x) using a Gaussian function
with zero mean and smoothing scale given by its standard deviation. Smoothing
has the effect of removing noise and small scale image details. The cm-rep model
is fitted at a fixed number of smoothing scales, a strategy denoted as multi-scale
fitting where the cm-rep model is estimated at a smoother scale is used as the
starting point for estimating the model at a less smooth scale. As previously
mentioned, the cm-rep model is fitted using an optimization strategy described
in [104].
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Results

A separate cm-rep model was fitted to individual binary representations of each
WM tract of the CC, the CST, the UNC, the SLF, the ILF and the IFO. These
were represented at three different scales for the pupose of multi-scale fitting,
given by the standard deviations of σ=(2 mm, 1 mm, 0.8 mm). To obtain a
good starting guess from which to start the fitting, a previously published cm-
rep atlas [177] was used. Having a good starting guess for m and r decreases
the possibility of local minima and ensures faster convergence.

The results of fitting all the sheet-like models are shown in Figure 3.11. It
shows the surface of a cm-rep model in yellow and the binary target image (not
smoothed) in purple.
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(a) CC (b) CST

(c) UNC (d) SLF

(e) ILF (f) IFO

Figure 3.11: Shows the binary representations of WM tracts (purple) and the
fitted cm-rep models (yellow) for the CC, the CST, the UNC, the SLF, the ILF
and the IFO. Visualized using the neurological convention
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Chapter 4

Image Registration

4.1 Introduction

The purpose of image registration is to bring the discrete image representation
of two or more objects into the same space of meaningful correspondence. If we
choose the image F (x) as a fixed image of reference and M(y(x)) as the moving
image the objective of image registration is to determine the spatial deformation
y(x) that ensures

F (x) ≈M(y(x)). (4.1)

To solve an image registration problem several components are required. 1) An
image interpolation scheme giving continuous support of an image, 2) a simi-
larity measure quantifying how similar M(y(x)) is to F (x), 3) a deformation
model specifying how to deform the coordinates of the moving image and 4) an
optimization algorithm searching for the deformation which optimizes the sim-
ilarity measure. These four components will be introduced during section 4.2.
Section 4.3 proceeds to introduce a non-parametric image registration approach
known as Thirion’s demons which has been applied in chapter 8, as a technique
for correcting geometric image distortions. The last sections of this chapter will
cover high dimensional image registration with application to diffusion tensor
models, thus in section 4.4 we introduce two common strategies used to deform
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diffusion tensors (DT) when the deformation is known. This naturally leads to
section 4.5 where a method for high dimensional image registration is described.
Finally section 4.6, introduces methodology for building population specific at-
lases useful for voxel-based (localized) cross subject statistical analysis. The
atlas building strategy applies to scalar image registration approaches as well
as high dimensional registration techniques.

4.2 Methodology

4.2.1 Image interpolation

To enable the deformation of an moving image M , requires the evaluation of
M at spatial grid coordinates which do not coincide with the grid coordinates
of the image. Conceptually, this can be achieved by modelling the image inten-
sities as a continuous function across the image domain. Such that the image
is described by the functional mapping M(p) : <d → Re1 which evaluates the
spatial coordinate p and outputs the intensity value M(p). This mapping is
commonly referred to as an image interpolation function. For reasons of effi-
ciency, the linear interpolation function is highly popular. When d = 3, the
(tri)-linear interpolation function is given by

M(p) = M(x0, y0, z0) · ε1 · ε2 · ε3 (4.2)

+ M(x1, y0, z0) · (1− ε1) · ε2 · ε3
+ M(x0, y1, z0) · ε1 · (1− ε2) · ε3
+ M(x0, y0, z1) · ε1 · ε2 · (1− ε3)

+ M(x0, y1, z1) · ε1 · (1− ε2) · (1− ε3)

+ M(x1, y0, z1) · (1− ε1) · ε2 · (1− ε3)

+ M(x1, y1, z0) · (1− ε1) · (1− ε2) · ε3
+ M(x1, y1, z1) · (1− ε1) · (1− ε2) · (1− ε3)

where M(p) becomes a distance weighted average of the voxel intensities found
at the 8 nearest integer grid positions. The weights of ε1, ε2, ε3 reflects the
relative influence of the intensities at the nearest voxels, and are estimated by
εi = ∆(i)/(h(i)), with h corresponding to the voxel-wise spacings and ∆(i) is
the distance to the nearest integer grid position along the ith dimension. The
formula of eq. (4.2) can be simplified to lower (d=1 or d=2) and generalized
for higher dimensionality as done in [108]. Other popular choices of image
interpolation functions are the cubic [76], [84] and sinc interpolations [154] which
generally result in smoother functions, however these choices usually come at
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the cost of significantly increased computational requirements. The nearest
neighbour interpolation is not used for image registration problems, since this
function is non-continuous across voxels, however it is often used to deform
images containing region of interests, that needs to be deformed similarly to a
moving image.

4.2.2 Similarity measures

To align the two images M (moving image) and F (fixed image) based on their
intensities, a definition of optimality φ is required. This optimality measure is
expressed using the following integral

D(M,F ) =

∫

Ω

φ(M(y(x)), F )dx, (4.3)

where Ω denotes the region of interest within the imaging domain and y is the
function deforming the spatial domain as to rearrange the voxels of M . The goal
of image registration is to determine y as to achieve an optimal value of D(M,F),
however there are several ways of specifying φ, the appropriate choice depending
on the images being registered. For images of the same modality, acquired on
the same scanner, specifying φ as the sums of square difference (SSD) is suffi-
cient while different modalities and or different scanners require more complex
similarity measures, such as cross correlation, correlation ratio [107], [108] or
mutual information (MI) [37], [158].

Sums of square differences

Using a sums of square difference (SSD) metric leads to the discrete similarity
measure

DSSD(M,F ) =
1

2

∫

Ω

(M(y(x))− F )2dx ≈ 1

2
· h
∑

i

(M(y(xi))− F (xi))
2, (4.4)

where h is the size of a volume element of a voxel, according to the midpoint
quadrature rule [64]. It is implicitly assumed that R = M(y) + ε, with the noise
ε assumed to be Gaussian distributed with zero mean and unknown variance.

A key feature of this similarity measure is the existence of the Gateaux deriva-
tive [108] which is

ODSSD
i (M,F ) = h · OM(y(xi)) · (M(y(xi))− F (xi)). (4.5)

This makes it possible to find the optimal y of an SSD similarity measure using
gradient based optimization methods.
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Mutual information

Mutual information (MI) was introduced by [158] as a similarity measure for
image registration. It is a statistical measure indicating how much is known
about a voxel in M given knowledge of the corresponding voxel in F . It is
defined as

DMI(M,F ) = H(p(M)) +H(p(F ))−H(p(M,F )). (4.6)

H(p(M)) and H(p(F )) are the marginal entropies of the probability distribution
of the image intensities, similarly H(p(M,F)) is the entropy for the joint proba-
bility of the two images. H(p) denotes Shannon’s definition of entropy [136] and
quantifies the concentration of probability as calculated in a discrete setting by

H(p) =
∑

i

p(i) · log(p(i)), (4.7)

where the index i sums over all possible bins of the probability density. The
marginal and joint probability densities are estimated from normalized his-
tograms as in the following equation,

p(j) =
hist(j)∑n
j p(j)

and p(j, k) =
hist(j, k)∑n
j

∑n
k p(j, k)

. (4.8)

The n number of bins in which to divide the intensity range of the images for
estimating normalized histograms, is decided by the user and n need not be the
same for F and M .

To improve the robustness of the MI measure [143] suggested the normalised
mutual information (NMI). NMI was experimentally shown able to increase the
robustness of image registration when images have varying field of views. The
NMI similarity measure is evaluated by

DNMI(M,F ) =
H(p(M,F )

H(p(M)) +H(p(F ))
, (4.9)

and is usually the preferred cost criteria when performing multi modal image
registration.

4.2.3 Deformation models

It is generally assumed that the deformed coordinates of y(x) can be expressed
as,

yi(xi) = T (xi) + u(xi), (4.10)
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where xi is the coordinate vector of the ith grid position, T denotes a global
scale deformation model typically modelled using a rigid or an affine model
while u is a small scale localized displacement field of non-rigid nature. When
the deformation is only due to rigid motion, the non-rigid part may not be part
of the image registration problem and u = 0.

The rigid model

It is the choice of model when spatially aligning images of the same object but
under the assumption that the difference between the M , R images is purely
due to rigid motion. This is often the case in MRI examinations where several
images of the same subject are acquired during a single examination.

A proper rigid coordinate deformation must preserve Euclidean angles and
length after the deformation. The deformation model performs the spatial co-
ordinate mapping ϕ : <d → <d and for d=3, the rigid model that deforms the
vector xi = [x y z]T is given by

yi = R · xi + t = R(φx)R(φy)R(φz) · xi + [tx ty tz]
T ,

(4.11)

R(φx) =




1 0 0
0 cos(φx) −sin(φx)
0 sin(φx) cos(φx)


 R(φy) =




cos(φy) 0 sin(φy)
0 1 0

−sin(φy) 0 cos(φy)




R(φz) =




cos(φz) −sin(φz) 0
sin(φz) cos(φz) 0

0 0 1


 .

Three consecutive rotations are followed by 3 translations resulting in a 6 pa-
rameter model. Due to its low dimensional nature, this model is often estimated
using none gradient based optimization methods.

The affine model

The 3D affine model is a 12 parameter model with 6 parameters corresponding
to those of the rigid model, 3 additional parameters are used to model the
shearing of an image and the last 3 parameters model the scale. A formulation
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of the model for deforming the xi coordinates is

yi = R · Z · S · xi + t

S =




sx 0 0
0 sy 0
0 0 sz


 Z =




1 z1 z2

0 1 z3

0 0 1


 . (4.12)

S is the scaling matrix, Z is the shearing matrix while t and R are given in
eq. (4.11). The model can also be formulated directly as a 12 parameter linear
deformation model expressed in the following matrix form

yi = Q(xi) · w (4.13)

=




xi1 xi2 xi3 1 0 0 0 0 0 0 0 0
0 0 0 0 xi1 xi2 xi3 1 0 0 0 0
0 0 0 0 0 0 0 0 xi1 xi2 xi3 1






w1

:
w12




where the subscript index ix denotes the xth dimension of the ith voxel while
[w1...w12]T are the 12 parameters of the affine model. This formulation is pop-
ular for gradient based optimizer due to its simple linear form. On the other
hand, the explicit formulation in eq. (4.12) benefits from direct access to the
rotation/translation/shearing and scaling parameters.

Flexible deformation models

The class of locally flexible deformation models belong to the family of non-
rigid deformations which change the shape of an object such that Euclidean
distances and angles are no longer preserved between the original and the de-
formed object. A highly flexible model is usually the choice of model when
attempting to establish correspondences between different subjects. However it
has a wide range of applications, for instance it has been used to do MRI arte-
fact corrections [73], assessing longitudinal brain changes [139] and providing an
initialisation for automated tissue segmentation [38], [156].

A very popular model is the free form deformation (FFD) model introduced by
Ruckert et al. [134]. This model is based on multivariate splines and for the 3D
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mapping u(xi) : <3 → <3 it is given by

yi1 = xi1 +

n1∑

j=1

n2∑

k=1

n3∑

l=1

bj(xi1)bk(xi2)bl(xi3)w1
jkl

yi2 = xi2 +

n1∑

j=1

n2∑

k=1

n3∑

l=1

bj(xi1)bk(xi2)bl(xi3)w2
jkl

yi3 = xi3 +

n1∑

j=1

n2∑

k=1

n3∑

l=1

bj(xi1)bk(xi2)bl(xi3)w3
jkl (4.14)

b(x) =





(x+ 2)3, −2 ≤ x < −1
−x3 − 2(x+ 1)3 + 6(x+ 1), −1 ≤ x < 0
x3 + 2(x− 1)3 − 6(x− 1), 0 ≤ x < 1
(2− x)3, 1 ≤ x < 2

.

The deformation of a voxel along a given direction is found as the sum of a
voxels spatial coordinate xi and the displacements of the cubic B-spline where
the value of the B-spline is given by a linear combination of basis functions b(x)
and their affiliated parameters in w1, w2, w3. The number of basis functions
(n1, n2, n3) along each dimension determines the flexibility of the model so that
more basis functions yield increasing flexibility. The centre of the basis functions
are usually positioned equidistantly throughout the image domain, achieved by
translating and scaling the basis functions of eq. (4.14).

Another popular approach (especially in neuroscience) is to model the deforma-
tion using a low order discrete cosine transformation (DCT) [10], as expressed
in eq. (4.15)-(4.16)

yi1 = xi1 +

m∑

j=1

m∑

k=1

m∑

l=1

d[j](xi1)d[k](xi2)d[l](xi3)w1
jkl

yi2 = xi2 +

m∑

j=1

m∑

k=1

m∑

l=1

d[j](xi1)d[k](xi2)d[l](xi3)w2
jkl (4.15)

yi3 = xi3 +

m∑

j=1

m∑

k=1

m∑

l=1

d[j](xi1)d[k](xi2)d[l](xi3)w3
jkl.

The user specifies the desired number of basis functions m, with higher m yield-
ing increasingly oscillating functions. The DCT basis functions d[j](x) are de-
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fined,

k =
xiq −min(x:q) + 1

max(x:q)−min(x:q)

d[1](xiq) =
1√
n
, n = length(x:q) (4.16)

d[j](xiq) =

√
2

n
· cos( (π · k − 1)(j − 1)

2 · n )

where q = {1, 2, 3} indexes the dimension, such that k becomes an integer lying
in the range [1:n] where n is the size of the qth image dimension. To evaluate
d[j](xiq) for an image grid position i, the value k must first be determined.
This k is inserted into the cosine expression which allows to evaluate the basis
function value at i.

The two deformation models of FFD and DCT are widely used in registrations
involving brains, due to their implementation in software tools such as FSL [139]
((http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/)) and SPM [10]
(http://www.fil.ion.ucl.ac.uk/spm/). The DCT is often thought to be more
constrained since it is usually only evaluated for lower orders thus it is not
expected to have the same flexibility as the FFD, however it has been argued
in [10] that only only low order deformations are required for image registration
of brains. A 1D illustration of both the FFD(8 basis functions) and DCT(m=7)
is shown in figure 4.1. Since both models have a linear parametrization, they
are differentiable and gradient based optimization made possible.

Other highly flexible deformation models are the thin plate splines [21] and
multivariate lower order polynomials [172]. A more recent suggestion is to use
polyrigid or polyaffine models [8]. Model free alternatives also exists however
such approaches lack the constraints imposed by a parametric model thereby
increasing the possibility of unrealistic deformations. Regardless of the model,
image registration leads to ill posed optimization problems. Addressing this
problem, is done by regularization, the topic of the next section.

4.2.4 Regularization

Image registration based solely on similarity measures is inherently ill-posed:
For every spatial location xi one is asking for a higher dimensional function
u(x) : <d → <d, to be estimated from the scalar intensity information only.
In general there are many different deformation fields which could yield the
same similarity measure optimum. The standard way to address an ill-posed
problem, is to regularize, by modifying the problem stated in eq. (4.3) such that
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(a) Cubic spline (b) DCT

Figure 4.1: Shows the basis functions of the B-spline deformation model and
the discrete cosine transformation (DCT). For simplicity these are shown in 1D.
The domain ranges from [1:128] thus using 8 B-spline basis functions results
in a spacing distance of 16 between each of the basis function. The DCT is
visualised using 7 basis function

the solution space is constrained to containing fewer local minima (ideally just
one). The modified problem to solve is

D(M,F ) =

∫

Ω

φ(M(y(x)), F ) + λS(u(x))dx (4.17)

From a mathematical point of view, the regularizer denoted by S(u(x)) should
make the registration problem well-posed and turn the problem into a convex
function. In practice even the modified (regularized) similarity measure will
allow for many local minima, and the results will depend on a good starting
point for registration process and the right choice of λ. Two popular regularizers
which are available from most image registration tool-kits and have been used
during this thesis are the membrane energy also called diffusion energy and the
bending energy.

In a discretize setting the membrane energy is given by

S(u(x)) =
∑

i

3∑

j=1

3∑

k=1

(
∂uji
∂xki

)2

(4.18)

and is the summation of the deformation field derivatives squared with respect
each of to the 3 directions. This has the effect of penalising extreme local
stretching/compression of the deformation model. The bending energy imposes
similar constraints on the deformation model but also penalize curvature and is
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given by

S(u(x)) =

3∑

k=1

∑

i=1

(
∂2uki
∂2x1i

)2

+

(
∂2uki
∂2x2i

)2

+

(
∂2uki
∂2x2i

)2

+ (4.19)

2

[(
∂2uki

∂x1i∂x2i

)2

+

(
∂2uki

∂x1i∂x3i

)2

+

(
∂2uki

∂x2i∂x3i

)2
]

These types of regularization (membrane and bending energies), may seem ad
hoc but are meaningful from a physical point of view. It makes sense that
two neighbouring voxels of the same tissue would experience similar types of
deformation. The estimation of 1st and 2nd order derivatives of the field is
elaborated upon in [10] and depends on the choice of deformation model but in
case of the FFD and DCT models previously presented, it boils down to taking
the derivatives of the basis functions.

4.2.5 Optimization

The purpose of optimization methods is to either minimise or maximise a prob-
lem usually stated in the form of a cost function, such as eq. (4.17). In the
context of image registration problems, the optimization aims to find deforma-
tion model parameters minimizing the unconstrained cost functions specified
through the similarity measures of eq. (4.4)-(4.9) or in case of ill-posed prob-
lems eq. (4.17). We can widely classify the optimization algorithms used for
image registration in two groups. Algorithms that do not need gradients and
those that require gradients. Due to time complexity issues, the first group is
used to solve small scale problems with a low number of parameters as opposed
to the second group which solves large scale problems with a high number of
parameters.

Small scale problems

If the number of parameters is low, search based optimization methods are
suited for estimating parameters, thus these type of methods are used with
rigid and affine deformation models. The general concept of the optimization
methods is to search the parameters space by adjusting each parameter in turn
until no further change is observed in the cost function similarity measure. Most
search based methods are more intelligent than this description recognizing that
such an approach could lead to a huge number of function evaluation before an
optimum is found. The key to these method is in learning appropriate search
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direction based on previous iterates. Powell’s method [129] is the method used
during this thesis (also used by SPM8) however any properly calibrated search
method could potentially solve small scale problems [111], [74].

Large scale problems

If the number of parameters is high, gradient based optimization algorithms are
needed for efficiency reasons. One of the most efficient methods for solving image
registration problem is the Gauss-Newton method [108] suitable for solving the
problem of eq. (4.4) or the regularized cost function of eq. (4.17). The Gauss-
Newton method is an iterative method performing the basic iteration of

JTJhgn = −JT r (4.20)

w = w + αhgn

At each iteration it solves the linear system of equations to obtain a direction
hgn which is added to the current best solution of the parameters in w. The
system of equations is derived using a first order Taylor approximation of the
residual r(w+h) ≈ r(w)+r′(w)h = r(w)+J(w)hgn, which is put into eq. (4.4).
By taking the derivative of the expression and equating it to zero, the Gauss-
Newton system can be derived [112]. The Jacobian matrix J(w) contains the
elements J(w)ij = dri/dwj giving it the size of nvoxels × nparams. Instead of
evaluating and inverting the prohibitive large JTJ matrix on the left hand side
one may use a conjugated gradient [71] to solve the linear system. Since hgn is a
direction, α has to be set to a value that decrease the image similarity function.
This is a 1D sub-optimization problem solvable using a line-search method [113].

Levenberg [89] and Marquardt, [101] suggested a modification to the Gauss-
Newton equation renaming it to the Levenberg-Marquardt algorithm. The mod-
ified system being

(JTJ + µI)hlm = −JT r.
(4.21)

The constant µ is automatically tuned during the optimization such that if the
Gauss-Newton system is a poor approximation of the function it is increased,
thereby turning the direction hlm into a steepest descent direction. If the Gauss-
Newton system of equations serves as a good approximation, the Gauss-Newton
direction is used. A properly chosen scheme for updating µ mitigates the need
for a line-search method.

The optimization methods described here are only a subset of the method which
have been applied to solve image registration problems. Other popular choices
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are the steepest descent, conjugate gradient and L-BFGS algorithms [112], [62],
[94]. These algorithms only need access to evaluating the gradient and not the
Jacobian which in the case of SSD is given by g = JT · r. As such any problem
which is solvable by a Gauss-Newton or a Levenberg-Marquardt approach is
also solvable using these algorithms, albeit probably solved less efficiently.

The image registration approaches used in the thesis, rely on gradient and
Gauss-Newton optimization, only in combination with the SSD type of simi-
larities measure. The implementation of gradient based optimization in relation
to NMI or MI is more complicated, see for instance [124], [123].

4.2.6 Multilevel and smoothing

The multilevel method is a practical approach to improving robustness of image
registration as to avoid local minima of the similarity based function but also
to speed up the convergence rate of the algorithm. A multilevel approach solves
the image registration problem at increasingly higher resolutions. Image regis-
trations are initiated on a down-sampled and Gaussian smoothed representation
of the moving image M and the fixed image F and upon solving the problem
the deformation model is propagated on to a finer image resolution. The image
registration is repeated for this and any consecutive resolution levels, until the
finest resolution is reached.

The idea behind the approach is that at coarser resolutions, the similarity mea-
sure is less influenced by details and appears smoother to an optimizer. A
smooth problem is easier to solve and should lead to a good starting point, from
which the more detailed problem can be solved efficiently. A multilevel strategy
can be the key to a successful and efficient image registration as demonstrated
by many authors [145], [146], [63].

4.2.7 Example

To demonstrate some of the elements explained during the previous sections,
an example registration was constructed. An intra subject registration was con-
ducted with the purpose of bringing a T2 modality image into the space of an
MPRAGE. It was performed using SPM8 using a rigid deformation and NMI
similarity criteria as shown in figure 4.2. The figure shows the deformed T2 im-
age in figure 4.2(c) which is more similar to figure 4.2(a) than the original image
shown in figure 4.2(b). A clear change of codependency of the joint probabilities
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distribution p(M,F) is observed. The distribution is depicted prior to registra-
tion in 4.2(d) and after registration in 4.2(e). This change in codependency,
is supported by the NMI similarity, increasing from 1.02 to 1.12.

A two stage multi-level registration scheme sampled at 4 mm, 2 mm was applied
to solve this particular image registration problem. In addition a FWHM of
5 mm was used to smooth the normalized histograms of the NMI similarity
measure where the histogram was based on 256 bins.
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(a) Fixed image (b) Moving image

(c) Deformed moving image

(d) log(p): before (e) log(p): after

Figure 4.2: Example of multi-modal rigid image registration, visualized using
the neurological convention. Shows the same coronal, sagittal and axial slice of
the original images in (a)-(b) and the rigidly transformed image in (c). Further
(d) and (e) shows the logarithm of the joint histograms (p) from before and
after registration.
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4.3 Thirion’s demons

Thirion’s approach [147] to solving the problem of image registration, was orig-
inally thought to be somewhat ad hoc. It has later been shown to be theoret-
ically well founded [157], minimizing a mean square error similarity function.
It is a non-parametric approach, estimating the displacement field without the
constraints of a deformation model. Thus any smoothness constraints on the
deformation field has to come from regularization. Thirion’s demons impose
the regularization constraints, through smoothing of the gradient, making it
particularly efficient compared to other non-parametric approaches. Compared
to methodology previously introduced, Thirion’s demons differs in terms of the
similarity function, its deformation model and how it ensures regular deforma-
tion fields, further it employs an iterative update of the deformation field that
does not use the traditional gradient based optimizers. The image interpolation
step however remains the same as previously introduced.

In Thirion’s original formulation each voxel is a demon which has an attraction
force along a direction, derived from the image gradient. The classic implemen-
tation proposed by Thirion is found in algorithm (4.1). The iterative updates

Algorithm 4.1 Thirion’s demons

repeat

v(x) = (M(y(x))−F (x))∇F (x)
∇F (x)2+(M(y(x))−F (x))2

v(x) = G(0, σ) ∗ v(x)
u(x) = u(x) + v(x)
y(x) = x+ u(x)

until Convergence

of this algorithm proceeds for a fixed number of iterations, or until stopped by
other ad hoc criteria. Step 2 of the algorithm, convolves the force field with a
Gaussian kernel evaluated through the operator ∗ and was mentioned in [157] to
enforce an approximate fluid regularization on the image registration problem.
The Gaussian kernel determines the smoothness of the field through the stan-
dard deviation σ. Step 3 and 4 of the algorithm performs an additive update of
the deformation field.

A symmetric deformation field update was later proposed [159], [132] and shown
to be more efficient while generating more regular deformations [86]. The
method was also extended to emulate a diffusion type of regularization by intro-
ducing an additional convolution operator step into the algorithm. Introducing
these improvements result in algorithm 4.2 minimizing the SSD similarity cost
function of eq. (4.22), with Ω denoting the image domain and v the transforma-
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tion update at a given iteration.

Algorithm 4.2 Thirion’s symmetric demons

repeat

v1(x) = (M(y(x))−F (x))∇F (x)
∇F (x)2+λ·(M(y(x))−F (x))2

v2(x) = (M(y(x))−F (x))∇M(y(x))
∇M(y(x))2+λ·(M(y(x))−F (x))2

v(x) = v1(x) + v2(x)
v(x) = G(0, σfluid) ∗ v(x)
s(x) = G(0, σdiff ) ∗ (u(x) + v(v)))
y(x) = x+ v(x)

until Convergence

∑

i∈Ω

(F (xi)−M(y(i)))2 +
σ2
i

σx2
·
∑

i∈Ω

(∇vi)2 (4.22)

Algorithm 4.2 can be reformulated to be solved by gradient based optimization
methods as in [86], in which case the velocity field v(x) becomes a voxel-wise
gradient descent direction which decreases the function in eq. (4.22). Using this
descent direction the limited memory-Broyden, Fletcher, Goldfarb and Shanno
(L-BFGS) [94] algorithm is used to minimize the problem. In line with Thirion’s
original suggestion σi = ||F (xi)−M(y(xi))||2. The parameter choices of σfluid
and σdiff , σx should be tweaked for a given problem and λ = 1/(σ2

x) can be
understood as the weighting parameter of regularisation. It can also be viewed
as a term penalising the noise level of the spatial deformation.

The efficiency of this method is one of the reasons for its large success which
it achieves due to the Gaussian convolution way of implementing regularization
which can be done extremely efficient in the Fourier domain. In contrast, tradi-
tional image registrations requires the evaluation of derivatives of regularisation,
which is computationally expensive. Although we did not take steps to produce
diffeomorphic fields it is possible to achieve [157].

Un-warping geometric distortions of echo planar imaging

The reason for introducing Thirion’s demons in this thesis, is to solve the prob-
lem of un-warping the geometric distortions of images from echo planar imaging
(EPI) sequences as presented in the abstract of chapter 8.

Diffusion weighted images (DWIs), acquired using EPI sequences, are subject to
many imaging artefacts, one of which is caused by static magnetic field inhomo-
geneity due to tissue susceptibility which causes a geometric displacement of the
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voxel intensities, along the phase encoding direction of the images. Correction
of this artefact is important to obtain anatomical correct images that can be
aligned with structural MRIs, see also section 3.3.

By acquiring two DWIs without diffusion weighting (b0), each with a reversed
read-out gradient polarity, the same image distortion can be induced in both
b0 images but with opposite distortion directions [73], [31]. This is illustrated
in Figure 4.3(a)-(b) showing two oppositely distorted b0 images and further
highlighted in Figure 4.3(c) where one b0 image shown in red has been overlaid
on top of the other b0 shown in green. The displacement field relating the dis-
placement between two reversely distorted b0 images, is estimated using image
registration similar to [73].

Thirion’s demons is used to estimate the deformation field u(x) : <3 → <1

for the matching problem F (x) ≈ M(y(x)) · (1 + J(u)). Modulation of the
intensities with the Jacobian is required since geometric distortions also lead
to an intensity pileup in distorted regions which needs to compensated. The
displacement field for geometrically un-warping all DWIs, is given by half the
estimated displacement field, u/2.

The registration pipeline:
A 3 stage image registration pipeline is proposed to increase the robustness of
estimating the deformation field. For each stage the deformation field of the
previous stage is used as a start guess for the next. The procedure is:

1) Estimate the field between two background thresholded b0 images being
matched.
2) Estimate the field between two double thresholded and smoothed b0 images
using a threshold for the background and a second for removing the cerebrospinal
fluid (CSF).
3) Estimate the field based on the true intensity of the two b0 images, intro-
ducing intensity modulation into the image registration problem only at this
stage.

The thresholding yields binary estimates of brain tissue which are easy to reg-
ister and only slightly affected by intensity modulation of the b0 intensity dis-
tortions. The image registration during stage 1-2 brings the deformation field
in the proximity of the desired solution while avoiding potential minima which
could occur due to the added complexity of Jacobian modulation. At stage 3,
the image registration occurs between the two b0s and intensity modulation
becomes essential.
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A demonstrator case

An example from utilizing the approach is shown in Figure 4.3. (d) Shows
the moving image (red) completely deformed into the domain of the fixed im-
age (green) and (e)-(g) shows the correctly undistorted image, the deformation
field estimated using Thirion’s and a displacement map from the highly popular
fieldmap [79] approach aiming to solve the same problem. It is noted how the
displacement maps obtained from the fieldmap approach and Thirion’s demons
have certain similarities but also dissimilarities. From inspection alone it is
hard to say which is the smoother field but Thirion?s demons result are obvi-
ously impacted by the smoothness prior present in image registration problems.
Tweaking of the smoothness penalty could potentially make the two more simi-
lar but may not be desirable if the field map results are inferior as indicated by
the results in chapter 8.
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(a) b0 (b) Reversed b0

(c) b0/b0 reverse (d) Deformed b0 vs b0 reverse

(e) Un-distorted (f) Thirion’s

(g) Fieldmap

Figure 4.3: Example of using Thirion’s demons to estimate a voxel displacement
map and correcting for geometric image distortions. Two b0 images with reverse
phase encodings are shown in (a)-(b) and overlaid on-top of each other as the
red/green overlay in (c). The brain of the b0 image in green is more compressed
than the red. In (d) the red b0 is fully transformed towards the green. (e) Shows
the b0 artefact corrected image using half the voxel displacement of the image
registration. (f) Shows the voxel displacement map of our approach which is
compared to the map of the field map approach in (g)
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4.4 Tensor reorientation strategies

Until now we have mainly been concerned with deforming 3D scalar images.
If the end goal is to perform cross subject analysis between diffusion tensors
(DT), special techniques are needed. Applying an image deformation to each
individual 3D volume of a 4D DT volume causes problem because the under-
lying direction of the DTs will not be changed unless something is done to
explicitly change the orientation. To illustrate this problem we have simulated
a rotation of a 4D DT volume with and without proper tensor reorientation.
Figure 4.4(a) shows the principal directions overlaid on the background of a
fractional anisotropy (FA) image while Figure 4.4(b) shows the directions after
rotation of the DT volume (no reorientation). Clearly the principal directions of
the DTs shown as blue arrows are no longer aligned with the anatomy. Solutions
to this problem were suggested by Alexander et al. [5] and the result of using
one of these solutions is shown in Figure 4.4(c) where proper reorientation have
been applied to the DTs.

Lets now consider two strategies for properly reorienting tensors. The finite
strain (FS) and the preservation of principal direction (PPD) approach. First
we note that if an image deformation is given purely by a rotation matrix R,
the DT can be reoriented by D′ = RTDR. This will be the basis for the two
strategies which differ in how they approximate R from what we initially assume
to be affine deformations.

If the image deformation is made up by an 3× 3 affine matrix A (dis-regarding
translations), the above reorientation strategy still applies however it requires
knowing the rotational part of A. The (FS) approach [99] offers the solution, by
decomposing the matrix A into an orthogonal rotation matrix R and an affine
component F such that A = FR where R = (AAT )−1/2AT .

The PPD [5] algorithm was later suggested as a better approach for estimating
the rotation R. It works by defining ni = Aei/|Aei|, which is the re-normalized
ith eigenvector after applying the transformation A. The desired rotation R,
which is required to map the original e1 to n1 is estimated via PPD. The PPD
computes a separate R at each voxel and uses it to reorient only the DT in that
voxel. The Rs returned by PPD are unique rotation matrix mapping e1 to n1

and e2 to a unit vector perpendicular to n1 in the plane spanned by n1 and n2.
It is calculated by the first estimating the angle between n1 and e1, and applying
this rotation to e2 such that the rotation between n2 and R1e2 allows to estimate
a secondary rotation R2 resulting in the desired solution R = R1R2 which is
than applied to D as previously mentioned. The PPD angular estimation follows
the recipe of the original article [5].



4.4 Tensor reorientation strategies 75

(a) DT volume

(b) Rotated DT volume

(c) PPD corrected DT volume

Figure 4.4: Highlights the importance of reorienting DTs undergoing image
transformations. (a) Shows the principal directions of the DTs. (b)Shows the
principal direction of DTs undergoing an axial image rotation of 45 degrees
with no reorientation applied, resulting in erroneous orientation of the principal
directions with respect to the WM fibers. (c) Shows the effect of applying the
reorientation strategy of PPD to solve the problems in (b)
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1. Compute a rotation matrix R1, that maps e1 onto n1. The axis and angle
of this rotation are obtained from the vector and scalar products of e1 and
n1.

2. Estimate the projection vector P (n2) = n2 − (n2 · n1) · n1.

3. Compute a rotation matrix R2, that maps R1e2 onto P (n2) where the axis
of rotation is R1e1 and the angle is obtained from the dot product of R1e2

with the unit normalized P (n2)/|P (n2)|.

Both the FS and PPD can be generalised for higher order image deformations by
considering the Jacobian matrix of a deformation field. Assume a higher order
deformation is described by a displacement field u(x), than an affine matrix
A can be described by a local linear model derived from the Jacobian J of
u : A(x) = I + J(u(x)), where I is a 3× 3 identity matrix. This affine matrix A
allows the rotation R to be computed using either the FS or PPD approach.

These strategies are applicable using deformation fields derived based from reg-
istering 3D scalar images but can also be used to formulate an image registration
problem using all of the tensor components. This is the topic of the next section.

4.5 Tensor based image registration

High dimensional image registration is relevant when multi channel image data
is available and all are believed to contribute with information relevant to im-
proving correspondences between the moving image and the reference image.
The diffusion tensor (DT) fits this description and has been the subject of sev-
eral papers suggesting DT based image registration approaches [135], [117], [44]
and [180]. Another interesting approach with particular emphasize on large
scale deformations is presented by Cao et al. [27]. This approach deviates from
the other DT registration approaches by matching based on the principal eigen-
vector direction only, instead of using the full DT.

We have used the approach implemented in the diffusion tensor imaging tool kit
(DTI-TK) (http://dti-tk.sourceforge.net/), as described by Zhang, in [180], [181].
These papers suggested the use of a piecewise affine (PWA) deformation model,
to construct a similarity measure aimed at optimizing not only the similarity
between tensor components but also the orientation of the tensors. Approaches
prior to this did not explicitly optimize with respect to tensor orientation but
retrospectively took care of the tensor reorientation via the previously described
PPD algorithm.
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The components of Zhang’s approach are the same as those needed for scalar
image registration problems, thus requiring an interpolation method, a defor-
mation model, a similarity measure and an optimization method. An overview
of these components as used in high dimensional registration, is given next.

Interpolation: The Log-Euclidean framework

As with any image registration problem, an interpolation method is needed
for re-sampling images. Using a standard approach may lead to inappropriate
results since an Euclidean average of DTs might change the shapes of the DTs
in an undesirable way, potentially producing non SPD DTs. This problem was
observed in [150], [7] where an average of two DTs led to the determinant of
the Euclidean mean of the DTs to become larger than the average determinants
of the original DTs. Thereby demonstrating that tensor averaging introduces
increased dispersion of the tensors, which is physically unrealistic.

The purpose of the log-Euclidean framework independently proposed by [7] is
to minimize unrealistic effects, while maintaining SPD properties of the tensors.
Using the log-Euclidean metric space, a mean is calculated by

E(D) = e
∑n

i=1 wiln(Di). (4.23)

In order to use this mean for image re-sampling, each wi must be the weight-
ings relating to of each of the nearest neighbour tensors Di. The weights are
determined by the distance to the positions of the tensors similar to the case of
ordinary image re-sampling as seen in the introduction.

The formula in eq. (4.23) suggest to take the matrix logarithm, perform the
Euclidean operation (the average) and finally exponentiate the results. This
approach is general for the log-Euclidean framework and allows other Euclidean
based operations to be evaluated as well, see [7] and [120]. In terms of the metric
space, the null eigenvalue space can only occur at infinite metric distance and
thus becomes impossible to achieve in practice. This ensures the preservation
of SPD DTs.

The log-Euclidean technique is a specific instantiation, of the more general Rie-
mannian metrics presented by [61], however this technique suffers from an in-
creased computational burden and thus the log-Euclidian framework is pre-
ferred.
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Figure 4.5: Shows the local division of space used by the PWA deformation
model. On the left is shown a 4× 4 division of the spatial image domain, each
part of the ith domain is equipped with an affine model Ai. On the right is an
illustration of how the PWA model deforms the grid.

Deformation: The piecewise affine model

The piecewise affine (PWA) model is a locally flexible deformation model which
consists of several affine models dividing the image domain. Each individual
model is responsible for optimally deforming the ith part of the moving image
towards a corresponding part of the fixed image. This localized model is illus-
trated in Figure 4.5 showing how the model would be defined across a 2D image,
using a 4× 4 PWA model. The models are indexed by A1..A16 with the index
i running from left to right, therefore the top-left model of the Figure 4.5 is A1

and the bottom right is denoted A16. When a smooth deformation displacement
field is desired across the entire domain, the interpolation scheme of [93] is used.

Similarity: Tensor based

The SSD similarity, enabling explicit optimization of the orientation between
the moving tensor image (M) and the fixed tensor image (F), can be written

D(M,F ) =
∑

i

∫

Ωi

||M(RSx+t)−RF (x)RT ||2dx+λ
∑

i,j

∫

Ωi∩Ωj

||Aix−Ajx||2dx.

(4.24)
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This equation consist of a two part sum, the first part is the tensor similarity
which sums the SSD norm across i rectangular regions of the image. The sec-
ond part is a regularization term weighted by λ. It enforces smoothness along
the boundaries of the (i, j) neighbouring regions of the PWA model. We note
how the similarity part of the function uses the reorientation ideas presented
in section 4.4, to explicitly orientate the tensor of the fixed image into the de-
formed moving image. This is of course possible due to the choice of the PWA
deformation model where each affine model can be written as a combination of
rotation R, scale and shearing contained in S and the translational components
in T .

Optimization

To solve the problem of eq. (4.24), a conjugate gradient optimizer [62] is used
since, the form of the function is differentiable with respect to rotation, scaling,
shearing and translation. The analytical gradients of the function with respect
to the parameters can be found in the paper by Zhang, [181].

The PWA model is fitted in a coarse to fine manner starting with a few affine
models, covering large regions of the domain. Once convergence is achieved
using the coarse PWA model, the domain is subdivided and the coarse affine
model parameters are propagated into the subdivided domain where the cost
function is again solved. Upon convergence at the finest level, the PWA model
is discretized into a displacement field u(x) used to deform the moving image
into the space of the fixed image. At this stage the PPD algorithm presented
in the previous section, is applied to reorient the tensors.

An example of applying the registration algorithm is shown in Figure 4.6. It
shows the tensors of a slice in the fixed image domain F in (a), the same slice
of the original moving image M is shown in (b) and the result of deforming the
tensors of M into the space of F is shown in (c). Visual inspection of (a)-(d)
suggests that the deformed moving tensor is considerably better aligned than
the original tensor.
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(a) Fixed image (b) Moving image

(c) Deformed moving image (d) Zoomed region

Figure 4.6: Illustrates high dimensional tensor image registration using neuro-
logical convention, where (a) shows the tensors ellipsoid profiles of a slice in
the fixed image domain, (b) shows the corresponding slice of the moving tensor
image and (c) the deformed the tensors of the moving image. The fixed image
in (a) has a higher voxel resolution (1.75 × 1.75 × 1.75 mm3) than the moving
image (2.3 × 2.3 × 2.3 mm3) in (b). After deforming the tensor image, it is
output at 1.75× 1.75× 1.75 mm3 in (c). (d) shows a regional zoom of the fixed
and deformed images taken near the splenium. This enables a detailed view of
the registration performance
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4.6 Building an atlas

The inter variability of anatomy shape across brains makes the interpretation of
medical images challenging. The construction of an atlas addresses this problem
by defining a common reference space to compare anatomy between subjects,
between groups of subjects and corresponding sites. To combat this challenge,
the Talairach atlas [144] was one of the first atlas spaces proposed for the brain.
The Talairach brain is one brain dissected and photographed and an anatomical
meaningful coordinate system built from it. Researchers desiring to use this
atlas have to somehow bring their images into this coordinate space, a task
suited for image registration whether intensity based or correspondence based.
The Montreal neurological institute (MNI) atlas [54] was later developed as an
atlas based on a large population of healthy subjects thus constructing a space
more suitable to represent a previously unseen brain. Today the MNI atlas is
one of the most used in neuro imaging and different variations of MNI based
atlases exist.

If an MNI atlas is deemed inappropriate for a specific study or not available
one could build a population specific atlas from the available subjects. We use
the ideas proposed by [22], [77] to build an intensity based atlas M0 which is
unbiased with respect to the anatomical shape variations across subjects. The
procedure for building the atlas is described in algorithm 4.3.

Algorithm 4.3 Population specific atlas construction

Require: Rigidly register subset images to a fixed image.
Require: Estimate mean M0

repeat
Rigidly register all images to M0

Update M0

until Convergence
repeat

Affinely register all images to M0

Update M0

until Convergence
repeat

Non-rigidly register all images to M0

Update M0

until Convergence

The approach usually runs for a fixed number of iterations to before declar-
ing convergence. At each repeated registration the results of the most recent
registration is used as start guess for the current registration. During the fi-
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nal stage of the process, deformation fields and deformed images are usually
output. Figure 4.7 shows the construction of a human atlas using 25 healthy
subjects. The atlas was constructed using high dimensional tensor registration
and is used in the paper described in chapter 9, to supply a common reference
space for studying the diffusion indices of an MS population. The figure depicts
the atlas after completing each of the steps 3-5. Throughout this process, the
atlas becomes less blurred enabling improved registration accuracy at the next
step. Alternative approaches to estimating population specific unbiased atlases
using image registration are found in, [19], [133] and [142].
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(a) Rigid-FA (b) Rigid-DEC

(c) Affine-FA (d) Affine-DEC

(e) Non-rigid-FA (f) Non-rigid-DEC

Figure 4.7: Shows an axial slice of a tensor atlas as it converges to the mean
atlas and becomes crispier as the deformations become more flexible, shown
in neurological convention. (a)-(b) Shows the FA and the RGB directionally
encoded colormap (DEC) of a slice of the tensor atlas after rigid registration
where RGB(R=left/right, G=anterior/posterior, B=inferior/superior). (c)-(d)
shows the FA and DEC slice after affine registration and (e)-(f) shows the FA
and DEC after the PWA registration. Regions of improvements are indicated
by the yellow arrow.
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Chapter 5

Cross Subject Statistical
Analysis

5.1 Introduction

This chapter introduces statistical analysis methods used to identify and/or
quantify the information content of hypothesized multiple sclerosis (MS) im-
age markers. To draw meaningful inference based on statistical methods re-
quires pre-processed images. Strategies for pre-processing diffusion MRI were
described during chapter 3 and chapter 4. Throughout this chapter it is as-
sumed that such strategies have been applied to the images, enabling cross
subject correspondence and the statistical methods detailed in this chapter are
only applicable under this assumption.

In section 5.2, the classical linear regression model is revised as a tool for
analysing the information content of image markers.
The model is also used in section 5.3, which describes localized sample based
analysis also known as voxel-based analysis (VBA). VBA allows for the identifi-
cation of localized regions of the brain that might indicate disease pathology and
has been used to study diseases such as Alzheimer’s disease [24], amyotrophic
lateral sclerosis (ALS) [179], MS [116], [28], [174], pediatric chromosome 22q11.2
deletion syndrome [177] and multiple others.
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Finally, section 5.4 presents a method proposed in the manuscript of chapter 9
which is used to examine whole-structure hypothesis based on scalar diffusion
indices (FA, TN) derived from diffusion MRI. For instance, to answer if the
multivariate diffusion indices of an entire WM tract are significantly different
between two groups of subjects.

5.2 The general linear model - Disease score mod-
elling

We define the disease score model as a model that is based on one or more
covariates (imaging markers) is able to predict the disease score, to some degree
of certainty. A popular model form is the general linear model (GLM)

Yi = β0 + β1Xi1 + ...+ βnXik + εi, i = 1...n, (5.1)

where n is the number of independent values equal to the number of study
subjects and k denotes the number of covariates assumed to generate the in-
dividual disease score observations in Yi. Covariates could be imaging markers
or confounds such as gender and age. Collecting all observations in Y and the
covariates in the design matrix X, eq. (5.1) can be re-written in matrix form

Y = Xβ + ε. (5.2)

It is assumed that the underlying process generating Y is the result of a stochas-
tic process generating independent and identically distributed variables from a
normal distribution Yi v N(µ, σ2). In this case the optimal least squares solu-
tion is given by

β̂ = (XTX)−1XTY. (5.3)

To quantify and compare the performance of several models based on competing
imaging markers we can use the coefficient of determination R2 as a performance
metric. It attains the value 0 for a poorly performing model and 1 for a model
which predicts Y without error. Roughly speaking, a higher R2 value indicates
a more informative marker. A general definition of R2 is

R2 = 1− SSQerr
SSQtot

, SSQerr = ||Ŷ − Y ||2, SSQtot = ||Ȳ − Y ||2 (5.4)

and corresponds to the fraction of the variance explained by the fitted model Ŷ
relative to the usual variance.

Further information about linear regression analysis and model comparison mea-
sures such as R2 can be found in books detailing GLMs [46], [48], [162].
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5.3 Localized sample based analysis

The purpose of a localized statistical analysis is to examine if localized changes
of the brain are related to the overall state of a disease such as MS. The analysis
is done by fitting a GLM to the cross subject values of each voxel and deciding
whether the parameters of interest are significantly different from the null hy-
pothesis. If so, it is rejected in favour of the alternative hypothesis, indicating
a disease relevant voxel.

To examine where the image values of two groups are different, we formulate
a separate GLM for each voxel. Y contains cross subject values of a specific
voxel and X is the design matrix corresponding to the grouping variables and
cross subject confounding covariates. After fitting the GLMs to all voxels of
the image domain, Student’s t-test [162] may be used to test the hypothesis of
group differences,

t =
x̄− ȳ

Sxy ·
√

(1/nx) + (1/ny)
. (5.5)

In this two sample t-test x̄, ȳ correspond to the GLM group parameter estimates,
possibly adjusted for confounding covariates. Sxy is the pooled variance between
the two groups, of sample sizes nx and ny. If we assume unequal variance of
the two populations, the denominator of the test changes and the test becomes
known as Welch’s t-test [167].

Once calculated, the volume of t-tests can be visually inspected. However, for
ease of interpretation the t-test are usually thresholded to retain only voxels
that are most likely to correspond with the rejection of a null hypothesis. This
is done by choosing a probability value α from the theoretic t-test distribution
and finding the corresponding t-test threshold. If we desire less than α = 0.05
probability of erroneously rejecting that the group means are the same, the
threshold t must full-fill P (T = t) = 1 − 0.05. This rejection threshold should
not be confused with the p-value which is defined as the probability threshold
where a hypothesis goes from being accepted to being rejected.

Multiple comparisons

The selection of the null hypothesis rejection criteria α becomes difficult when
doing multiple voxel-based tests, since each individual voxel test is performed
with α probability of falsely rejecting the null hypothesis. This means that
the chance that at least one hypothesis is falsely rejected becomes much higher
than α. Bonferroni [49] suggested to solve this problem by dividing α with the
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number of hypothesis test conducted. Bonferroni’s strategy leads to a very con-
servative choice of α often unable to detect any volumetric differences, therefore
less conservative approaches are needed to select an appropriate α. One prob-
lem with the Bonferroni approach which makes it overly conservative, is that it
does not take into account that neighbouring voxels are highly correlated. Ac-
curately accounting for such effects may significantly change the value of α. The
correlation of voxels may originate from several sources but a dominant source
is the smoothing of data often used to increase the signal to noise ratio [97] prior
to statistical analysis.

To account for the problem of multiple comparisons [95], [106], the small volume
correction (SVC) approach suggested by Worsley et al. [173] can be used to esti-
mate Family Wise Error (FWE) corrected p-values with respect to small regions
of interest (ROIs). The SVC accounts for spatial correlation of the images and
is less conservative than whole-brain corrections such as the Boneferroni but
requires prior knowledge of ROIs. The ROIs should be specified independently
from the study being conducted and requires a priori ROI specific hypothesis
to be formulated before doing the SVC analysis.

The above ways of dealing with the multiple comparison problems rely on ran-
dom field theory [97], developed in the context of functional MRI and the topic
is further treated in [49], [173] and [66]. We have used the SVC analysis strategy
to do the voxel-based ACM analysis described in the manuscript of chapter 10
where we formulated the hypothesized areas of interest to be the motor-related
tracts.

Multivariate hypothesis tests

If the type of analysis is multivariate, the ordinary t-test is altered to Hotelling’s
t-squared statistic [75],

T 2 =
(nxny)

(nx + ny)
(x̄− ȳ)S−1(x̄− ȳ). (5.6)

The mean model parameters of the two groups are collected in vectors x̄, ȳ and
the pooled covariance matrix is estimated in S.
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5.4 Tract-oriented analysis

This statistical method investigates whole-tract hypothesis. It enables to answer
whether the multivariate diffusion indices defined on a sheet-like model of a
WM tract (described in section 3.7), results in significant difference between
two groups of subjects.

The first part of this section describes how a tract-oriented statistical model is
formulated and estimated. The model serves as a compact functional description
of diffusion indices sampled on the WM tract. The compact description of
otherwise high dimensional data, makes statistical inference tractable as it takes
care of the inherent high-dimension, low-sample-size problem. The second part
of tract-oriented analysis draws statistical inference about subjects based on the
compact model description using permutation tests, resulting in a significance
value suggesting whether groups are different.

The tract-oriented analysis approach described in detail during this section has
been used to compare MS and healthy control subjects as described in the paper
of chapter 9.

Part 1: The tract-oriented statistical model

The statistical model enables a compact functional description of the diffusion
indices which are parameterized as a function of medial sheet position, using
the cm-rep model.

To estimate the model, diffusion indices must first be sampled. Diffusion indices
are sampled along the spokes of the cm-rep model introduced in section 3.7. An
example of the cm-rep model is depicted in the middle box of Figure 3.10 which
shows sampling spokes in red. The spoke lines are used to sample indices on
both sides of a medial sheet m shown in green and the average of these samples
are projected onto the medial sheet m. For the ith subject, we can express these
samples as a function of the sheet position t, fi(t) : t ∈ m.

Having completed the sampling for n subjects resulting in f1...fn anatomically
corresponding functions of the diffusion indices, the statistical model is esti-
mated. The model estimation is outlined through eq. (5.7)-(5.9). First the
sample correlation function is estimated by

c(s, t) =

∑n
i=1(fi(s)− f̄(s))(fi(t)− f̄(t))√∑n

i=1(fi(s)− f̄(s))2
∑n
i=1(fi(t)− f̄(t))2

, (5.7)
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where s and t refers to positions on the medial sheet and f̄(t) is the cross subject
mean. The linear model basis ξ of the statistical model can now be estimated
using the eigen decomposition satisfying eq. (5.8)

∫
c(s, t)ξ(t)dt = λξ(s). (5.8)

With the eigenvectors in ξ and the eigenvalues in λ, the model parameters of
the ith subject are estimated by

b =

∫
ξ(t)(fi(t)− f̄(t))dt. (5.9)

The procedure of eq. (5.9)-(5.7) is commonly known as a principal component
analysis (PCA) where b is known as the principal component parameters (the
parameters of our statistical model). Exact reconstruction of the observations
in fi(t) is possible from the parameters of b using the model expression

f(t) = f̄(t) +

n∑

j=1

ξj(t) · bj . (5.10)

Since fi(t) is affected by noise, an exact reconstruction is usually not desirable.
Instead it is assumed that the last j parameters of b, describing the least amount
of signal can be removed. We use the strategy of only retaining model compo-
nents that have eigenvalues larger than the mean eigenvalue. This is equivalent
to Kaiser’s rule [80] which is just one way of selecting a suitable number of
model parameters.

Another popular choice is the 95 percentile rule where one retains the number of
parameters needed to model 95 percent of the data in f . Normalized eigenvalue
plots may also be used to determine an appropriate number of parameters.
Figure 5.1 shows such plots for a statistical model based on 25 healthy controls
and 35 MS patients of the study presented in the manuscript of chapter 9 which
was based on FA and TN diffusion indices. The figure shows the eigenvalue
plots of 11 tract-oriented statistical models, based on the sheet-like models of
the corpus callosum (CC), the inferior longitudinal fasciculus (ILF), the uncinate
fasciculus (UNC), the superior longitudinal fasciculus (SLF), the corticospinal
tract (CST) and the inferior fronto-occipital fasciculus (IFO). Both Kaiser’s
rule and the 95 percent rule are indicated on the plots. It is seen that Kaiser’s
rule tends to remove more parameters than the 95 percentile rule. Based on
Kaiser’s rule and depending on the WM tract, we retain between 12-18 model
parameters, to form the basis of the statistical decisions made using permutation
tests.
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(a) CC (b) CST-L (c) CST-R

(d) IFO-L (e) IFO-R (f) ILF-L

(g) ILF-R (h) SLF-L (i) SLF-R

(j) UNC-L (k) UNC-R

Figure 5.1: Normalized eigenvalue plots (scree plots) are shown for the statistical
models of 11 separate WM tracts. The plots shows the percentage-wise amount
of variation modelled by each parameter of a model. Also shown are two model
reduction criteria of Kaiser’s rule and the 95 percent rule. Kaiser’s rule generally
favour smaller models.
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Part 2: Permutation tests using Hotelling’s test size

Permutation tests [168] refers to a class of non-parametric tests that use random
shuffling of the data to estimate the distribution of a test statistic under the null
hypothesis. Permutation tests provide exact significance values since they make
no assumptions about the true statistical test distributions however permutation
tests are usually also computationally more expensive than standard statistical
tests. Permutation tests are useful when we have insufficient information about
the distribution of the data or are uncomfortable making assumptions about the
distribution.

We use permutation test to obtain p-values for the tract-oriented statistical
hypothesis, testing whether the tract specific parameters of eq. (5.9) are signifi-
cantly different between two groups of subjects. Suppose that X1, ..., Xm ∼ FX
and Y1, ..., Yn ∼ FY are samples from two independent distributions where each
Xi is a vector of linear model parameters from the ith subject. To test whether
the mean of FX is significantly different from that of FY , algorithm 5.1 is used.
The algorithm starts by computing an observed test size corresponding to the

Algorithm 5.1 Permutation test - Determining a p-value

Require: Compute an observed test statistic T 2
obs using eq. (5.6).

repeat
Randomly shuffle the data of two groups, X1, ..., Xm, Y1, ..., Yn.
Calculate T 2

i for the ith shuffle using eq. (5.6).
until B shuffles are done

Require: Estimate the p-value: p = 1
B

∑B
i=1 I(T 2

i > T 2
obs)

true groupings of the data. Next, a repeated shuffling of data from the two
groups, enables the algorithm to draw T 2

i samples from the null distribution.
By generating enough T 2 statistics, the approximate null hypothesis distribution
is generated and can be compared to the observed value T 2

obs. This compari-
son is performed in the final step of the algorithm where the indicator function
I(T 2

i > T 2
obs) counts the number of null hypothesis observations that were larger

than the true observation T 2
obs.



Chapter 6

Tissue Segmentation

6.1 Introduction

The amount of white matter (WM) lesions segmented based on brain magnetic
resonance images (MRI) have previously been used as an image marker, for
multiple sclerosis (MS) disease assessment [56]. Another usage of lesion seg-
mentations is to examine population-wide topographical distributions of WM
damage [28].Both of these applications rely on volumetric binary lesion seg-
mentations which a trained radiographer may spend hours to delineate. In
addition, such manual segmentations may defer widely depending on the level
and experience of the radiographer performing the segmentation. Automatic
segmentations methods based on statistical models may help to improve the
efficiency and consistencies of lesion segmentations.

One of the earliest works on automatic lesion segmentation was by Leemput et
al. [155]. He suggested to detect lesions as outliers of a parametric model which
is usually based on a Gaussian function with mean and variance parameters
specifying the probabilities of the classes, WM, grey matter (GM) and cere-
brospinal fluid (CSF). It was further suggested to combine the probabilities of
the Gaussian model with a Markov random field (MRF) prior probability that
favours segmentations that have spatial clustered voxels of the same class. The
optimal solution of this problem was found iteratively through an expectation-
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maximization (EM) algorithm which on each iteration updates the parameters
of the Gaussian functions and subsequently classifies voxels according to the up-
dated parameters. Since then, a large number of papers have explored similar
approaches [182], [60], [166], [169] and tissue classification of brain MRI using
MRF priors remain one of the most popular approaches.

We use a MRF inspired approach as well, but replace the Gaussian functions
with non-parametric probability density functions. The probabilities functions
are obtained from a K-nearest neighbour (K-NN) approach which has previously
been shown to achieve state of the art performance [6]. The problem is solved
using the iterated conditional modes (ICM) which is a computationally efficient
solver. Using ICM allows the approach to be used in a semi automatic manner as
a tool that may benefit radiographers. This efficient solver allows radiographers
to do on-line adjustment on the smoothness of the segmentations after which
they can manually edit segmentations to minimize false positive/negative voxel
classifications.

The structure of this chapter is the following. Section 2 will introduce the multi
modal features used to segment a brain into tissue classes. Section 3 explains
how to perform segmentations based on K-NN, using MRF neighbourhood pri-
ors. In section 4, criteria for assessing the quality of the segmentations are
described.

These sections form the basis for the paper described in chapter 11. The main
findings of the paper are; 1) The inclusion spatial features are beneficial to
segmentation while the benefits of including diffusion indices is less clear and 2)
that the addition of the MRF neighbouring constraint leads to an improvement
of segmentations compared to K-NN and yields favourable results compared to
support vector machines (SVMs) [30] and the original implementation of the
parametric approach in [155].

6.2 Image features

A variety of information could be used as features for the purpose of classifying
the tissue type of a voxel. This includes intensity features (MRI) and spatial
features (image coordinates) as described next.
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Intensity features

The intensities of three structural MRI are used as input features for the seg-
mentation approach. They are an MPRAGE, a T2 and a FLAIR image. These
contain different tissue contrasts, potentially boosting the performance of a clas-
sifier. Unfortunately the intensities of the structural images vary across the
image domain due to magnetic field in-homogeneity of the MRI scanner. This
artefact is removed using the N3 method [137] of Freesurfer which can be down-
loaded from
http://surfer.nmr.mgh.harvard.edu/. The classification approach assumes that
the structural images of the same subject are in anatomical correspondence.
This is ensured by intensity based registration using a rigid model and the op-
timality criteria of Mutual Information (MI) which is used to align the T2 and
the FLAIR images with the MPRAGE image. Similarly diffusion MRI and the
indices of fractional anisotropy (FA) and the mean diffusivity (MD) [41] were
aligned with the MPRAGE.

Spatial features

Spatial feature information such as the (x, y, z) coordinates of a voxel is useful
information since the tissue classes of lesions, WM, GM and CSF occurs in
certain regions of the brain. We explore two approaches for obtaining spatial
features.

The first approach is based on ideas suggested in [6]. The intensity weighted
centre of gravity of each 2D axial slice of the FLAIR image is determined and
the coordinates of each axial slice are adjusted with respect to the axial centre
of gravity, putting the coordinate at the centre of gravity to (0, 0, z). These co-
ordinates can then be used as spatial features. Note that the image coordinates
along the longitudinal axis are unchanged by the centroid correction.

The second approach, is based on information contained in the SPM-MNI152
atlas. This T1-weighted image atlas contain WM, GM and CSF probability
maps generated on the basis of healthy subjects. These maps encode the proba-
bility of observing either of the tissue types in a region of the brain. To use this
atlas as a spatial prior, the T1-weighted image is non-rigidly registered (using
SPM8) to the MPRAGE image of an MS patient and the deformation field of
the non-rigid registration is used to deform the probability maps of WM, GM
and CSF into the MPRAGE space. The deformed maps can then be used as
spatial features.
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Skull removal

To limit the domain of the tissue segmentation problem the skull is removed
from all image features. This is achieved using the SPM-MNI152 atlas and
its associated probability maps. A binary mask is constructed in atlas space
by a summation of the maps and thresholding of the summary mask. Using
image registration the mask is spatially normalized to a subject space. A single
morphological erosion is performed on the mask removing the outer boundary
of the mask. All voxels not within the binary mask are dis-regarded by the
segmentation method.

6.3 Markov random field segmentation

A Markov random field (MRF) approach classifies voxels while emphasizing
spatially smooth segmentations. This is done by specifying a prior encoding the
spatial smoothness and combining the prior with a likelihood probability. These
are the components of Bayes formula. Therefore we shall initiate this section
by introducing Bayes formula following which we give details on obtaining the
likelihood and the prior.

Bayes formulation

Bayes theorem [15]

P (φ|X) =
P (X|φ) · P (φ)∑
φ P (X|φ) · P (φ)

∝ P (X|φ) · P (φ), (6.1)

states that the posterior probability P (φ|X) is proportional to the probability
of observing X given the classification φ, multiplied with the probability of ob-
serving φ when nothing is known about X. These probabilities are commonly
referred to as the likelihood and the prior. The denominator term is a normal-
izing constant which can be ignored. For the purpose of voxel classification X
corresponds to the image features of a voxel and φ is classification label.

If an image consists of n voxels, the posterior probability of observing a classi-
fication field across the image domain can be specified as

P (φ1...n|X1...n) =

n∏

i=1

P (Xi|φi) · P (φi) (6.2)
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To determine the most likely classification of eq. (6.2), requires specification of
the model form of the likelihood and the prior. The likelihood is traditionally
assumed to follow a Gaussian function [155], specified by a mean and variance
parameters, or a mixture of Gaussians functions. We take another approach and
estimate the likelihood of each voxel using a non-parametric approach where
the probabilities arise through a K-NN classification scheme. Using a MRF
formulation, the prior is specified to favour classifications that are spatially
smooth, meaning it decreases the probability of singular voxel being classified
differently from its neighbours.

Details on how to estimate the K-NN likelihood and specify the neighbourhood
priors which result in a MRF problem formulation are given next.

K-Nearest Neighbour likelihood

The Nearest Neighbour (NN) classifies an unseen voxel based on a training
dataset but with no assumption about the form of probability function gener-
ating the intensities of the data [43].

We let X, denote an n dimensional vector of imaging features for a voxel in the
training dataset. We write it as X = ([x1, x2..., xn−1, xn], φ), to indicate that
for each voxel there is both a feature vector and an associated class label φ. A
training dataset will consist of m training examples each with a feature vector
and a classification label φ. To classify an unseen voxel Y = [y1, y2, ...yn−1, yn],
the expression

j = arg min
i
d(Xi, Y ), i = 1, 2, ...,m, (6.3)

is evaluated for all training examples and the class label of Xj is assigned to the
voxel in Y . We use the Euclidean squared difference d(X,Y ) = ||X − Y ||2, to
find the nearest neighbours.

To turn the NN classifier into a K-NN classifier, the K nearest neighbours with
the smallest Euclidean differences are kept and classification is declared based on
the most frequent class label. The K-NN solution is based on the freely available
software package FLANN (http://mloss.org/software/view/143/) [110] which
requires specification of the parameter K. We have experimented with K in the
range [40 : 220] and found K = 100 to offer good lesions segmentations.

The training dataset:
The training dataset consist of feature vectors from four classes each with a
distinct label, φ = {CSF = 1, GM = 2,WM = 3, LES = 4} corresponding to
cerebrospinal fluid (CSF ), gray matter (GM), white matter(WM) and lesions
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(LES). We construct the training dataset to ensure all classes are equally
represented by randomly selecting an X from each class until one of the classes
become empty. To ensure equal importance of all imaging features, each feature
is mean centered and scaled with respect to variance.

From K-NN to probabilities:
The output of the K-NN classifications are four, 3D images containing the num-
ber of votes in favour of a given class. The Bayesian formulation of eq. (6.2)
requires that these images be transformed into voxel-wise probabilities P (Xi|φi).
They are transformed by dividing the number of votes for a given label by K.
From these probability maps a threshold can be set to obtain binary segmen-
tations of the desired tissue class. The purpose of this threshold is to control
the ratio of false/true positive classifications. We choose this threshold as to
optimally classify lesions calibrated according to the dice score similarity crite-
ria [45]. Instead of thresholding the lesion probability maps, the threshold is
used to scale the lesion probabilities relative to the three other probability maps
such that we can continue working with the probability that a voxel takes on a
given label. The scaling is done such that the most likely classification of the
rescaled probabilities, correspond to the result of thresholding the initial lesion
probability map.

Specifying the MRF through neighborhood priors

A MRF is specified using a Gibbs distribution

P (ϕ) =
1

Z
e−

∑
c Vc(ϕ) (6.4)

where c denotes an index over a number of neighbouring voxels, Vc denotes the
neighbourhood interaction function and Z is constant, usually ignored.

To form a MRF formulation, the K-NN likelihood is inserted it into eq. (6.2) and
combined with a simple neighbourhood prior that follows the Gibbs distribution.
The posterior probability of a MRF is

P (φ1...n|X1...n) =

n∏

i

P (Xi|φi) · e−
∑

c∈n(i) Vc(φi) (6.5)

P (φ1...n|X1...n) =

n∏

i

P (Xi|φi) · e−
∑

j,k,l∈n(i) β(φi,φjkl) (6.6)

The exponential part of the last equation specifies the multi class neighbour-
hood interaction function. The local neighbourhood n(c) of a voxel is defined
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Figure 6.1: Shows the intensity histograms of a FLAIR image derived from four
different tissue classes. A considerable amount of class distribution overlap is
observed. Our segmentation method resolves some of this ambiguity by using
several intensity features, spatial features and MRF neighbourhood priors.

as the 6 nearest neighbours in a 3D regular grid configuration. The interaction
function expressed by the exponentiated summation, considers the ith voxel and
penalize if the (j, k, l) voxels of the local neighbourhood n(c) differs from the
class of the ith voxel. The penalties are specified by a 4 × 4 matrix β which
contain the penalty magnitudes associated with neighbour classification transi-
tions. Using the notation that φ = {CSF = 1, GM = 2,WM = 3, LES = 4}, it
is possible to penalize LES classes being spatially close to voxels of GM classes,
by setting the value of β(2, 4) and β(4, 2) to something larger than 0. If such
voxel neighbourhood configurations occur it will decrease the probability of the
segmentation according to eq. (6.5). To avoid penalizing voxel transitions, the
matrix entries should be 0. Our specific implementation penalize the transitions
of Gm↔ LES and CSF ↔ LES using the matrix

β =




0 0 0 0.1
0 0 0 0.1
0 0 0 0

0.1 0.1 0 0


 . (6.7)

The MRI intensity distribution between tissue classes usually have an amount
of overlap as shown in Figure 6.1. This intensity overlap often leads to misclas-
sification of tissue and by using the neighbourhood prior some of this ambiguity
can be resolved.
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An optimal solution

Having specified the prior and the likelihood, the following maximization is
solved

I = arg max
φ1...n

P (φ1...n|X1...n). (6.8)

I denotes an image of the optimal classification labels which are estimated iter-
atively via the ICM [18] method. One iteration of the ICM consist of a checker-
board traversal of the image, first considering the local probability of voxels on
the white chess fields, changing the classifications if justified by the posteriors
and second considering the voxels coinciding with the black chess fields chang-
ing only the classifications if justified by the posteriors. Once the classifications
no longer change during iterations convergence is assumed. The ICM approach
usually only converges to a local solution. Methods exist such as simulated an-
nealing [85] or graph cuts [23] have the potential of escaping local cost function
minima but were not explored.

An example of solving the problem using ICM is shown in Figure 6.2. It shows
the posterior probability maps of the CSF , GM , WM and LES classes over-
laid on a FLAIR image. We note how some of the GM is cut off due to the
skull removal. This is of little consequence since we are focused on WM lesion
segmentation however if we where interested in using the GM volume as an
imaging marker, the skull removal would need to be altered.

6.4 Assessment of segmentation quality

6.4.1 Similarity scores

To rate the performance of a single segmentation, the similarity index (SI) based
on the dice score [45] and the overlap fraction (OF) are used. Both of these
measures compare the segmentation results of the proposed method with the
segmentations of the radiographers. The performance measures are evaluated
according to eq. (6.9)

SI =
2|Vref

⋂
Vseg|

|Vref |+ |Vseg|
, OF =

|Vref
⋂
Vseg|

|Vref |
, (6.9)

where Vref is the assumed segmentation of the radiographer and Vseg is the
segmentation of the method. The range of these measures are [0,1] with a higher
value indicating that the segmentations of Vref and Vseg are very similar.
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(a) FLAIR (b) Radiographers lesions

(c) CSF (d) GM

(e) WM (f) LES

Figure 6.2: Shows the results of tissue segmentation using the KNN+MRF
approach, using neurological convention.(a)Shows an axial slice of a FLAIR
image while (b) shows the same slice overlaid by lesion masks annotated by a
radiographers. Using the same slice (c-f) shows the posterior probability of a
voxel belonging to CSF , GM , WM and LES after solving eq. (6.8). To supply
spatial context to the visualization all have been overlaid on a FLAIR image.
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Cross validation

To rate method performance across multiple subjects one could train the method
on all subjects, apply it to segment all subjects and evaluate the average similar-
ity scores with respects to the radiographers segmentations. Such an approach
will generally overestimate the performance since the voxels being classified are
present in the training dataset. This problem is solved using cross validation.
The idea of cross validation is to leave out a subset of data from the training
dataset and evaluate performance by classifying the left out subset.

We use leave out cross validation, both to train and test the performance of the
method. The total amount of subjects used for this purpose are 15. During the
training phase, 10 subjects are included for which 10 leave-one out validations
are performed. This results in 10 performance scores which are used to asses
method performance as a function of K, β. Once these have been fixed, test
performance is evaluated by segmenting the five subjects which were initially
left out from the training. The average of their segmentation performance scores
indicate test performance.

To improve the validity of the results the training and testing validation is
repeated three times. Each time with a randomized division of the 15 subjects
into training and test sets. See the paper in chapter 11 for further details and
results of this validation.



Chapter 7

Contribution Overview

This chapter summarizes the main methodological developments and findings
presented in the manuscripts of part II.

7.1 Correcting geometric distortions of Echo Pla-
nar Imaging using demons and reversed phase
encoding

Diffusion weighted images (DWIs) acquired using echo planar imaging (EPI)
sequences are subject to a number of imaging artefacts. One of these artefacts
is the geometric distortions caused by magnetic field inhomogeneities which are
particularly large near air-tissue interfaces. The artefact manifests as a local
displacement of voxels equivalent to tissue expansion or compression. Correction
of the geometric distortion is important to obtain anatomical correct DWIs
enabling alignment with structural MRI and prompting more reliable results
(biomarkers) of any posthoc analysis of the images.

The work presented in chapter 8 solves the distortion correction problem by im-
plementing a method based on the idea of Chang et al. [31]. It relies on the fact
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that reversing the phase encoding direction of an EPI sequence leads to oppo-
sitely directed image distortion which can be used to correct distorted images.
If one can identify corresponding voxels in two oppositely distorted images of
the same subject, it is possible to infer the true location of the voxels by tak-
ing the midway distance between the correspondences. We use intensity based
image registration to establish these correspondences by estimating the full de-
formation between two oppositely distorted images. The registration problem
is solved using Thirion’s demons [147] in a way that accounts for the intensity
build up also caused by the distortion artefact. The estimated deformation field
is divided by 2 to yield a voxel displacement map for correcting EPI data.

The results of the method are compared to other popular correction tech-
niques such as the field map (FM) [79] and the point spread function (PSF)
approach [178].

A comparison of the methods is performed by applying all three methods to the
first non-diffusion weighted (b0) of five healthy subjects. To assess the quality
of each undistorted b0 image, it is compared to a rigidly aligned minimally dis-
torted MPRAGE. The comparison is performed using mutual information (MI),
with higher MI suggesting larger image similarity. To increase specificity of the
comparisons, MI was evaluated within smaller regions of interest (ROIs) with
the conclusion that our proposed method was consistently amongst the top per-
forming within all ROIs. It did however turn out to be inferior in one of the five
patients. Visual inspection of the FM corrected b0 of this patient seemed to be
slightly more similar to the MPRAGE than the registration approach, partic-
ularly near image boundaries at the frontal lobe. It is however noted that the
difference appeared very small but it seems enough to change the MI comparison
score. To emphasize how close they were it is noted that the difference in MI
was at the third decimal place. The MI was 0.8208 for the registration based
approach and 0.8278 for the FM approach. To put this number into context,
the patient where the two approaches differ the most achieved an MI of 1.0721
for the FM approach and an MI of 1.1706.

The proposed method was not used in the diffusion MRI (dMRI) MS studies of
the thesis since these EPI sequences were not acquired using additional phase
reversed images as required by the method. The results of the study indicates
that the method could be beneficial in future studies, since it doesn’t appear to
compromise image quality while reducing scan time in comparison to the FM
and PSF approaches.
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7.2 Tract-oriented statistical group comparison
of diffusion in sheet-like white matter

Identifying specific structures of the brain where the pathology of MS patients
differs from healthy subjects could add knowledge about MS and may be useful
for developing image based biomarkers for disease assessment.

The paper presented in chapter 9 proposes and validates a method for doing
tract-oriented group analysis of diffusion indices in WM tracts with sheet-like
shape topology. The analysis consist of building an atlas space where sheet-like
models of WM tracts are made of the corpus callosum, the inferior longitudinal
fasciculus, the uncinate fasciculus, the superior longitudinal fasciculus, the corti-
cospinal tract and the inferior fronto-occipital fasciculus. Multivariate diffusion
indices are sampled on the sheet-like models of the tracts and used to build
tract-oriented statistical models. Statistical analysis of the model parameters
is used to determine group difference. The usage of sheet-like models makes it
possible to do statistical analysis of the diffusion indices on the entirety of WM
tracts. This isn’t possible using tube-like models which has previously been
suggested as the tract based model in work by Goodlett et al. [70].

Since MS is known to significantly alter diffusion indices of WM [36], we demon-
strate the methodology on MS patients revealing significant difference compared
to a population of healthy subjects. In particular we noted a strong consistent
difference between the two groups, in the splenium of the corpus callosum. We
were however unable to detect whole-tract differences between the clinically
defined, relapse remitting (RR)-MS and secondary progressive (SP)-MS phe-
notype groups. We expect the approach may be useful in a variety of other
studies investigating if the diffusion indices along a sheet-like manifold give rise
to significant group difference.

7.3 Secondary progressive and relapse remitting
multiple sclerosis leads to widespread de-
creased anatomical connectivity

Brain disconnection plays a major role in determining the severity of disabili-
ties in MS. We use the method of anatomical connectivity mapping (ACM) to
examine how the connectivity reflects the state of MS patients.

The ACM is estimated in way that is particularly suited for group studies. This
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approach minimizes the potential of the ACM estimates being biased due to
cross subject brain shape and size. A problem described by Bozzali et al. in [24]
who proposed linearly scaling the ACM with respect to brain size as a solution to
this problem. We suggest to minimize the problem by first estimating the voxel
displacement (using image registration) from subject space to a common atlas
space and to use the displacement field to deform the multi-tensor volumes
from native space into the common atlas space. In this space, whole-brain
probabilistic tractography is performed and converted into an ACM. Using this
estimation approach, the ACMs of a study will be in approximate anatomical
correspondence enabling voxel-based analysis (VBA).

In the manuscript of chapter 10, ACM is is used to examine the hypothesis
that the phenotypes of RR-MS and SP-MS experience decreased connectivity
compared to healthy controls. We find decreased connectivity within the WM
of MS patients and from summary WM statistics of the ACMs we note a ten-
dency of SP-MS having lower connectivities compared to RR-MS. VBA between
these two phenotypes reveal that ACM can detect differences between them, re-
sulting in significant difference in the bilateral projection fibers of the motor
tracts. Complementary to these finding a VBA based on FA was unable to
reveal similar significant effects. In addition we find a general increase in cor-
relation between EDSS and ACM compared to the correlation between FA and
EDSS. In summary, it is shown that ACM is able to reveal MS disease-related
changes that could not otherwise be seen.

7.4 Segmenting Multiple Sclerosis Lesions using
a Spatially Constrained K-Nearest Neigh-
bour approach

Whole-brain measures of pathologically diseased tissue are used in multiple scle-
rosis (MS) treatment studies as unspecific markers of disease severity [57]. The
T2-weighted lesion load is one of these markers. It has been found to yield mod-
erate disease score correlation with the extended disability status scale (EDSS)
and has been used in studies throughout the last 20 years [56], [114], [90], [57]. It
is estimated by identifying white matter (WM) lesion voxels from a T2-weighted
magnetic resonance image (MRI) and summing the voxel count. Another usage
of lesion segmentations is to examine population-wide topographical distribu-
tions of WM damage [28]. These applications rely on volumetric binary lesion
segmentations. Manually delineating lesions is a tedious and time consuming
task. Therefore computerized segmentation methods are considered as highly
useful tools for improving efficiency.
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The manuscript in chapter 11 suggests a computerized method for segmentation
of WM lesions based on multi-modal MRI. The method combines a voxel-wise
K-nearest neighbour classification scheme with a prior assumption that segmen-
tations should be smooth.

It investigates the discriminative performance of several image features encom-
passing structural MRI (MPRAGE, FLAIR, T2), dMRI (fractional anisotropy
(FA), mean diffusivity (MD)) and spatial coordinates (centroid corrected coor-
dinates, atlas based tissue probability maps). The combination of MPRAGE,
T2, FLAIR, fractional anisotropy and tissue probability maps, are found to
give the best segmentation performance with a median Dice score above 0.7,
derived from an unseen test dataset. The improvement due to the inclusion of
the smoothness prior is found to be minor. The performance of the method is
compared to the method of Koen et al. [155] and support vector machines [30]
achieving median Dice score 0.453 and 0.48 for the two respective approaches.
Compared to the performance of the inter-rater and intra-rater of two radiogra-
phers our approach was inferior. Correspondingly, the quality of segmentations
is likely to be inadequate in a clinical setting. However the approach could
be followed by a post-processing stage of manual lesion editing conducted by
radiographers. Each clinician would then be able to select a desired level of
segmentation smoothness from which they prefer to do manual editing. Or al-
ternatively the smoothness could perhaps be decided based on phenotype or
the EDSS scores of the last neurological exam. Overall the approach has the
potential to improve the efficiency of the clinicians (radiographers).

7.5 Conclusion

To fulfil the objectives of the thesis, methodology for determining MS biomarkers
from MRI images were proposed.

Biomarkers based on dMRI requires correction of image distortions and we
showed how a geometric distortion correction can be achieved using an ad-
ditional phase reverse image acquisition and image registration. This resulted
in the same performance as alternative methods but demanding less scan time.

Two dMRI based analysis methods were proposed, intended for group-wise stud-
ies between clinically different disease groups and healthy controls. A tract-
oriented statistical group comparison of sheet-like WM enabled us to detect
whole-tract difference between a group of healthy controls and MS patients on
11 WM fascicles. We were unable to discriminate the RR-MS from the SP-MS
using this approach. It was however possible to detect localized differences us-
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ing the ACM technique where a group-wise, voxel-based analysis revealed large
widespread connectivity differences between the ACM of healthy subjects and
MS patients but also between the RR-MS and the SP-MS phenotypes. The fact
that we were unable to make such findings based on voxel-based FA analysis and
the fact that ACM achieved widely better EDSS disease score correlation com-
pared to FA suggests ACM to be more sensitive towards measuring the disease
severity state of MS.

A method for segmenting WM lesions was found to work best with a combi-
nation of MRI modalities and a spatial input feature. The method performed
better than competing methods but was inferior to that of trained clinicians.
As a consequence, the usage of the method in a clinical setting will have to be
combined with manual editing of the WM lesion segmentations output by the
method.

In conclusion we have applied various analysis method to an MS study enabling
us to derive pathology and non pathology specific image markers with the ability
of revealing disease-related abnormalities and detecting phenotype differences
not seen using traditional dMRI derived indices (FA).
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Introduction

Echo Planar Imaging (EPI) sequences are subject to imaging artefacts, caused
by subject motion, eddy currents effects and field inhomogeneity distortions
(susceptibility) causing a geometric displacement of voxel intensities along the
phase encode direction. Inhomogeneity correction is important to obtain an
anatomical correct image which can be aligned with structural MR images.
To estimate the displacement field that allows correction, we extend an existing
technique, based on acquiring a full EPI sequence and one additional EPI image
acquired with reversed gradient polarity along the phase encoding direction
[2, 6]. The EPI with reversed gradient polarity contains the same intensity
information as a corresponding image of the EPI sequence but with distortions
causing voxel shifts in the reverse directions. To find the displacement field
between two reversely distorted EPI’s, an image registration problem is solved as
in [2]. We propose to use the simpler, more efficient Thirion’s demons algorithm
[3, 4] and suggest a different registration pipeline for obtaining the displacement
fields and name it phase reversed demons (PRD). The PRD is compared to
two other correction methods that require additional MRI sequences, leading
to increased scan time. These are the gradient field map (FM) [1] and the
point spread function (PSF) [5]. We compare the three methods applied to five
subjects. The results are compared visually and quantitatively by estimating the
statistical dependence with a structural T1-weighted image. The quantitative
results indicate that the (PRD) approach is competitive by being more similar
with the structural image but inspection of regions in subjects also demonstrates
individual cases where the other methods are favourable.
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Method

Diffusion data and preprocessing Five subjects were scanned, acquiring a
structural T1-weighted (MPRAGE) (TR=1900 ms and TE=2.32 ms, 224 slices
with 0.9 mm3 isotropic voxels) and a whole brain diffusion weighted (DWI) EPI
using Twice-Refocused spin echo sequence [7] (TR=11440 ms, TE=89 ms, Echo
Spacing=0.66 ms, 61 slices, with 2.3 mm3 isotropic voxels and GRAPPA=2),
consisting of 10 b0 and 61 diffusion weighted images, at b-value 1500 mm/s2.
The images were acquired on a Siemens Verio 3T MR scanner using a 32 channel
head coil. We correct the DWI using a displacement field, estimated with the
three approaches:

Image registration (PRD) As mentioned in the introduction, this method
requires one additional b0 with same sequence parameters as the b0s of the
DWI but with reversed gradient polarity. Thirion’s demons estimates the dis-
placement field φ, as the minimizing solution to a non-linear sum of squares cost
function based on the differences between a displaced b0 image and a b0 im-
age with reversed gradient polarity. To increase numerical stability of the cost
function optimization, Thirion’s demons incorporate a diffusion prior in a way
particularly efficient, compared to other registration implementations as argued
in [3]. The displacement field for geometrically correcting EPI images is given
by half the estimated displacement field, φ/2.

Avoiding local registration minima’s of the cost function A three stage
successive registration is proposed to avoid getting stuck in any local minima’s
of the cost function. For each of these three stages, the solution of the previous
stage is used as a start guess for the next, similarly the influence of the diffusion
prior is decreased at each stage. The procedure is: 1) Estimate the field between
the two background thresholded/smoothed b0 images. 2) Estimate the field
between two double thresholded and smoothed b0 images using a threshold for
the background and one for the Cerebral Spinal Fluid (CSF). 3) Estimate the
field based on the true intensity images. Note that we only introduce intensity
modulation into the image registration cost function during stage 3 of the image
registration. Intensity modulation is done by multiplying the corrected EPI
images with the factor (1+ (Jacobian of the field)).

The field map (FM) A double gradient echo sequence was acquired on the
scanner to estimate the b0 field inhomogeneity with TR=479 ms, TE1=4.92
ms, TE2=7.38 ms and isotropic voxel resolution of 3 mm3. Using the field map
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toolbox of SPM8 [1] the displacement field was estimated and re-sliced to DWI
resolution.

The PSF Point spread function was mapped using the same EPI parame-
ters as the b0-acquisition with an additional sequence parameter PSF rFoV=4,
displacement maps were then calculated using online software, see [5].

Method comparisons The first b0 of the DWI sequence is corrected using
the three methods and compared to the minimal distorted MPRAGE, used as
the gold standard of an undistorted image. Using mutual information (MI), the
MPRAGE and its affiliated brain mask shown in Figure 1 were rigidly aligned
to the corrected b0 image. The mask consists of eight labelled regions allowing
for region wise analysis. Within the mask, intensities were scaled to the range
[0 512] and MI estimated using 512 histogram bins. MI is calculated for each
subject and for each region of interest across subjects. MI is a suitable criterion
that quantifies the dependence between the distributions of the two images with
increased dependence suggesting higher similarity.

Results

The MI calculated within each subject revealed that the PDR method was better
in 4 of 5 subjects while the FM was better in the last subject. The comparison
of methods based on MI scores is plotted in Figure 1 and show that the PDR
perform similarly or better than the other methods in most regions. Figure 2(a-
c) allows for a visual comparison of a corrected b0 using the 3 different methods,
demonstrating how similar they are. To emphasize where/how the methods
actually differ, Figure 2(d) shows an absolute difference between a PSF and
PDR corrected axial slice. Largest within mask differences are observed near
CSF/tissue edges. Since PDR has increased MI in these regions, this could
indicate increased accuracy of the PDR. To emphasize where we found PSF to
be preferred, Figure 2 (e-f) compares PSF/PDR in region 5, 6 near the Petrous
temporal bone. Arrows indicate where PSF had better performance.
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Discussion

The PRD method demands less additional scan time compared to FM and PSF
while achieving similar performance. Because it can be further improved, it
is a viable alternative for inhomogeneity correction. We observed needs for
improvements in brain region 5 and 6 where it was sometimes worse than PSF
but on par with the FM (results not shown). Speaking against PSF is the
sensitive to brain masking. For instance in Figure 2 (c) is shown an unmasked
image with structures appearing outside the brain. About the MI measure; It
is sensitive to choosing appropriate histogram bin sizes which may alter the
conclusions. However, we found that conclusions were robust for both 256 and
512 number of bins. We observed magnitude difference in MI in frontal regions
5-8 compared to 1-4, possibly caused by more structural details in the back of
the brains.
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ABSTRACT
Identifying specific structures of the brain where pathology differs between groups of subjects may aid to develop imaging-
based markers for disease diagnosis. We propose a new technique for doing multivariate statistical analysis on white matter
tracts with sheet like shapes. Previous works assume tube-like shapes, not always suitable for modelling the white matter tracts
of the brain. The tract-oriented technique aimed at group studies, integrates the usage of multivariate features and outputs a
single value of significance indicating tract-specific differences. This is in contrast to voxel based analysis techniques which
outputs a significance per voxel basis, and requires multiple comparison correction.

We demonstrate our technique by comparing a group of controls with a group of Multiple Sclerosis subjects obtaining
significant differences on 11 different fascicle structures.

Index Terms— Diffusion MRI, Continuous Medial Representation, White Matter Atlas, Multiple Sclerosis

1. INTRODUCTION

We propose a method for doing tract-oriented group-wise analysis using multivariate diffusion indices, suitable when a white
matter (WM) structure (a tract) can be modelled as a sheet-like manifold. Such techniques may be used for studying diseases
and deriving disease related markers from Diffusion Weighted Imaging (DWI), an imaging modality particularly sensitive to
WM abnormalities because it can provide markers sensitive to micro-structural changes in WM. This is quantified by the
Diffusion Tensor (DT) model, fitted to the DWI of each voxel from which, the principal direction (PD) (the most probable fibre
direction), and the scalar diffusion indices, Mean Diffusivity (MD), Fractional Anisotropy (FA) and the Tensor Norm (TN) can
be estimated [1].

Voxel Based Analysis VBA [2] and Tract Based Spatial Statistics (TBSS) [3] are among the popular methods for testing
group differences based on diffusion indices. Some of the deficiencies that our approach does not suffer from are that VBA
usually requires arbitrary smoothing of data, due to problems with inaccurate image registration failing to properly align corre-
sponding structures while also suffering from problems due to multiple voxels comparisons. Being voxel based these methods
are unable to answer hypothesis relating to the entirety of a tract.

Goodlet et al. [4] suggested a solution to this problem, by applying functional statistical analysis to diffusion indices re-
stricted to tracts with tube-like shape. This approach gracefully handles problems due to inaccurate registration using a reduced
statistical model avoiding the multiple comparison problem by restricting analysis to the model space. Since tracts are generally
not tubular, we propose to extend the approach to tracts with sheet-like manifold shape [5].

Our approach builds an atlas space where sheet-like models of tracts are made of the corpus callosum (CC), the inferior
longitudinal fasciculus (ILF), the uncinate fasciculus (UNC), the superior longitudinal fasciculus (SLF), the corticospinal fas-
ciculus (CST) and the inferior fronto-occipital fasciculus (IFO). Multivariate diffusion indices are sampled on the tracts and
used to build tract-oriented statistical models. Statistical analysis of the model parameter space is used to determine group
difference. This approach inherits all the best features of [4] while allowing to analyse a wider range of WM structures. For
instance, sheet-like models makes it possible to do statistical analysis of the entire CC.

Since Multiple Sclerosis (MS) is a disease known to significantly alter diffusion indices of WM [6], we demonstrate the
methodology on data from an ongoing MS study.



2. DATA

Thirty-five MS subjects with a Secondary Progressive (SP) condition (n=14) or a Relapse Remitting (RR) condition (n=21),
were included. Control subjects (n=25) were age and gender matched with the MS group. The study was ethically approved.

For each subject, a whole brain diffusion MRI was acquired consisting of 71 sequentially recorded images, including 10 b0
images with no diffusion sensitivity and 61 sensitive to diffusion, with a b-value of 1200 s ·mm−2 using an isotropic voxel size
of 2.3 mm3 and an image matrix of size 96 × 96 × 61. To make possible retrospective inhomogeneity distortion correction, a
field map sequence was acquired.

We retrospectively correct for image artefacts due to motion and eddy current effects by co-registering the DWIs with the
first b0 image of the sequence, using a 12 parameter affine model while also accounting for inhomogeneity distortions. The
DWIs were re-sliced into the space of the first b0 image.

The DTs are fitted non-linearly using a Levenberg-Marquardt optimizer, resulting in a 4D DT volume.

3. METHOD

The proposed method, as shown in Fig. 1, consists of four steps. First, we build a DT atlas to establish the spatial correspondence
across study subjects, a prerequisite to group-wise comparison of corresponding WM tracts, and to delineate major tracts.
Second, we construct a skeleton-surface-based geometric model of each tract to provide a shape-based coordinate system of the
tract interior for efficient sampling of its diffusion properties. Third, we derive a statistical model of each tract that summarizes
its diffusion properties with a multivariate function defined on its skeleton surface. The final step applies the statistical model
to carry out tract-oriented hypothesis testing that considers each tract as a whole.

3.1. Atlas

A DT atlas is built from the control subjects to capture the normal characteristics of WM tracts. The construction uses DTI-TK,
implementing a state-of-the-art tensor-based registration [7] and an iterative bootstrap procedure to simultaneously estimate a
cohort-specific atlas and the correspondence among the cohort subjects [8]. The MS subjects are subsequently registered to the
control DT atlas using DTI-TK.

Finally, tensor-deflection tractography [9] is used to track eleven WM fasciculi, based on recommendations in [10] and
streamline termination criteria of FA=0.15.

3.2. White Matter Models

We derive the skeleton-surface-based geometric model of each segmented tract using deformable modelling with the continuous
medial representation (cm-rep) as described in [5]. The cm-rep provides a natural framework to describe the geometry of sheet-
like structures. It represents the skeleton of each structure with a 2-D surface mesh m. Each vertex of the skeleton mesh
stores the thickness of the structure at that location, which is collectively known as the radial field r. Together, it establishes a
curvilinear shape-based coordinate system of the entire interior of the structure. The second box in Fig. 1 illustrates the cm-rep
using a 2-D example where the 2D skeleton curve m is coloured in green and the radial field r is shown as blue circles.

3.3. Tract-Oriented Statistical model

The purpose of building a statistical model is to get a compact functional description of diffusion indices parametrized as a
function of a sheet-like manifold. Such a model has the benefit of taking care of the inherent high-dimension, low-sample-size
problem.

The basis of the statistical model is a linear model used to describe the variation across the population. To build the model,
diffusion indices are sampled along the spokes of the cm-rep model, shown in the second box of Fig. 1. The spokes shown in
red, are used to sample data on both sides of a manifold and the average of these samples are projected onto the medial sheet
m. For the ith subject, we can express these samples as a function on the sheet fi(s) : s ∈ m. Based on the sample functions
for n subjects, the sampling correlation is estimated

c(s, t) =

∑n
i=1(fi(s)− f̄(s))(fi(t)− f̄(t))√∑n

i=1(fi(s)− f̄(s))2
∑n

i=1(fi(t)− f̄(t))2
, (1)



CC CST-L CST-R UNC-L UNC-R SLF-L SLF-R ILF-L ILF-R IFO-L IFO-R
Cont vs. MS * 0.0004 0.0009 0.0041 0.0002 0.0025 0.0020 0.0002 0.0002 * 0.00002
RR vs. SP 0.38 0.1960 0.1130 0.0599 0.1931 0.0440 0.6980 0.9860 0.1238 0.7660 0.1040

Table 1: Results of permutation test in PCA space testing the equality of group means. The top row indicates which tracts are
tested while R, L refers to right or left hemisphere structure. The smallest significance values resolved is larger than 1/50000,
thus a significance of * means smaller than 1/50000.

where s and t refers to positions on the manifold and f̄(s) is the cross subject mean at position s. The linear model basis ξ is
estimated by an eigen decomposition of the correlation matrix, satisfying eq. (2)

∫
c(s, t)ξ(t)dt = λξ(s) (2)

This is a Principal Component Analysis (PCA), with the eigenvectors in ξ and the eigenvalues in λ. The linear component
parameters of the ith subject are estimated using

bi =

∫
ξ(t)(fi(t)− f̄(t))dt. (3)

Exact reconstruction of fi(s) is possible from bi but since fi(s) is affected by noise, it is assumed that the least influential
components can be removed. Only model components with eigenvalues larger than the mean eigenvalue of all the components
are kept which is equivalent to Kaisers rule [11].

3.4. Group-Wise Comparisons

To do comparisons, Hoteling’s squared t-test is used

T 2 =
(nxny)

(nx + ny)
(x− y)S−1(x− y). (4)

The mean model parameters of the two groups are collected in vectors x, y and the pooled covariance matrix is estimated in
S. We utilize permutation tests [12] to determine the test size distribution under the assumption of a true H0 hypothesis(equal
means) to determine the significance level. The number of permutations fixed at 50000. To asses the importance of spatial
location, the linear discriminant score S−1(x − y) is projected from PCA space to sample space where visualization and
interpretation is possible.

4. RESULTS

The method was evaluated using the indices of FA and TN and hypothesis tests performed for the CC, the CST, the ILF, the
UNC, the SLF and the IFO. The significance of the tracts specific tests are listed in Table 1 and suggest a difference between
MS and controls on all tracts while a comparison of the groups RR and SP showed weak evidence of WM difference in the
UNC-L and SLF-L.

We find that the first principal component parameter of any tract distinguishes controls from the MS subjects, illustrated in
Fig. 2(a). The control group has a tighter distribution, attributed to less variation in the control group compared to the MS group
which is reasonable due to the heterogeneous nature of MS. MS subjects are found on the positive axis while controls are on
the negative. To further explore this component, Fig. 2(b)-(c) visualizes the change of setting b1 to plus its standard deviation
and reconstructing FA and TN changes on the CC sheet, using eq. (3). The FA, and TN reconstructions are shown on a flattened
manifold sheet with the mapping <3 → <2 achieved through Maximal Variance Unfolding [13]. They reveal that controls have
a higher FA/lower TN compared to the MS population who experience the reverse relationship since they are on the negative
b1 axis (results not shown). The 10 percent most important samples assessed by the linear discriminant score, are shown in
Fig. 2(d)-(e) on the manifold(d) and a flattened representation(e). Several regions appear important in distinguishing the two
groups but the most coherent region appears in the Splenium.



5. DISCUSSION

We have demonstrated a method for doing tract-oriented group-wise inferences on tracts with sheet-like topology. Results show
increased FA and lower TN in the controls when compared to an MS population, confirming previous studies [6]. Testing for
RR and SP phenotype differences did not find a significant difference.

Future MS studies may investigate if specific components contain discriminative power within the population as to yield
disease markers or attempt to answer which diffusion modalities and in which tracts they best explain the disease course.
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Fig. 1: Illustrates the method pipeline of the analysis consisting of; 1) building a tensor atlas and 2) modelling the WM tracts
of the corpus callosum in black, the inferior longitudinal fasciculus in brown, the uncinate fasciculus in yellow, the superior
longitudinal fasciculus in light green, the corticospinal fasciculus in red and the inferior fronto-occipital fasciculus in dark
green. 3) Forming a statistical model from sampling diffusion within the model interior, shown for a 2D example with the
medial curve in green, sampling spokes in red and the surface of the model in blue and 4) drawing conclusion with respect to
group differences



(a) Boxplot distribution of b1

(b) FA: +ξ1(t)b1 (c) TN: +ξ1(t)b1 (d) Region-importance (e) Flat region-importance

Fig. 2: A comparison of controls and MS for the CC. (a) Boxplot distribution of the MS and control subjects projections
in PCA space, using the first component. MS subjects lie on the positive and controls on the negative axis. (b)-(c) Varies
the first component in the positive directions and reconstruct the impact on FA and TN. Results are displayed on a flattened
sheet manifold with splenium indicated by arrows. (d) Shows the region importance on the CC manifold while (e) is a flat
representation of the importance but using only the 10 percent most important sampling regions as measured by FA
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Abstract 

Multiple sclerosis (MS) damages central white matter pathways which has considerable impact on 

disease-related disability. To identify disease-related alterations in anatomical connectivity, 34 

patients (19 with relapsing remitting MS (RR-MS), 15 with secondary progressive MS (SP-MS) and 

20 healthy subjects underwent diffusion magnetic resonance imaging (dMRI) of the brain. Based on 

the dMRI, anatomical connectivity mappings (ACM)s were estimated, as the values of an ACM 

quantify the connectedness shared by each voxel with all other brain voxels. To avoid biases caused 

by inter-individual brain-shape differences, they were estimated in a spatially normalized space. The 

ACM results of voxel-based analyses were compared with similar analyses based on fractional 

anisotropy (FA), also obtained from dMRI. In both RR-MS and SP-MS patients, large portions of the 

cerebral white matter revealed decreases in ACM and FA when compared with healthy controls. 

Patients with SP-MS exhibited reduced ACM values relative to RR-MS in the motor projection tracts, 

specifically in the corona radiata, whereas there were no consistent decreases in FA between SP-MS 

and RR-MS patients. Regional ACM statistics exhibited moderate correlation with clinical disability 

as assessed by the expanded disability status scale (EDSS). The correlation between these statistics 

and disability was either similar to or stronger than the correlation found between FA statistics and the 

EDSS scale. Together, the results highlight the potential of ACM to identify alterations of the 

anatomical connectivity in MS as well as the potential of ACM to study the relationship between 

these alterations, the clinical phenotype, and impairment. 

 

Keywords: multiple sclerosis, phenotype, probabilistic tractography, anatomical connectivity 
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1. Introduction 

Multiple sclerosis (MS) is an auto-immune disease that diffusely affects the structural and functional 

integrity of white matter (WM) tracts, contributing to disease-related disability. Regional structural 

abnormalities can be readily detected with magnetic resonance imaging (MRI) which explains the 

pivotal role of conventional MRI techniques for early diagnosis of MS (Rocca et al., 2012). However, 

the WM lesions as demonstrated by T2-weighted MRI only show a weak correlation with disease-

related disability (Filippi et al., 1994; Filippi and Rocca, 2007). The poor relation between clinical 

disability and lesion loads as revealed by T2-weighted MRI has motivated the search for other MRI 

markers which may reflect more closely the disease-related structural changes leading to disability.  

Diffusion magnetic resonance imaging (dMRI) is an imaging modality sensitive to the mobility of 

water molecules. It is sensitive to disease-induced changes in microstructure because the regional 

diffusion process of water is determined by the microstructural boundaries of the brain tissue. To 

characterize the regional diffusion properties and to estimate the most probable axonal fiber direction 

of a voxel region, diffusion tensor imaging (DTI) can be used (Basser, 1995). The DTI model enables 

the estimation of simple scalar diffusion indices such as the mean diffusivity (MD), fractional 

anisotropy (FA) (Basser and Pierpaoli, 1996) and many others, which have been successfully applied 

to study microstructural abnormalities in patients with MS, showing reduced FA (increased MD) in 

both MS lesions and normal appearing white matter (NAWM) (Werring et al., 1999; Ciccarelli et al., 

2001; Gallo et al., 2005), presumably reflecting axonal damage (Ciccarelli et al., 2003). Further, 

regional changes in the diffusion indices have been linked to disease-related disability (Ozturk et al., 

2010) and to specific clinical phenotypes (Preziosa et al., 2011).  

While DTI-derived indices are assumed to reflect local microstructural properties, other measures 

such as anatomical connectivity mapping (ACM) assess to which degree a voxel is connected with the 

rest of the brain. ACM provides a voxel-specific measure of whole-brain anatomical connectivity by 

initiating probabilistic streamlines from all voxels within a whole-brain mask and counting the 

number of streamlines passing through each voxel within the mask, as was first proposed by 

(Embleton et al., 2007). ACM has recently been applied to identify regions showing reduced whole-

brain anatomical connectivity in patients with Alzheimer’s disease (Bozzali et al., 2011) and in 

patients with a relapsing remitting (RR) course of MS (Bozzali et al., 2013). The latter study revealed 

reduced anatomical connectivity in the thalamus and caudate nucleus but not in the cerebral WM of 

the MS group relative to a healthy control group. In addition, regional ACM values in the corpus 

callosum, right hippocampus and cerebellum showed a positive linear relationship with individual 

scores of the Paced-Auditory-Serial-Addition-Test (PASAT) (Rao et al., 1989), suggesting that the 

anatomical connectedness of these regions might be particularly relevant to measuring cognitive 

function in MS.  

Here we apply ACM to study the disruption of anatomical connectivity in relapsing remitting MS 

(RR-MS) and secondary progressive MS (SP-MS). We minimized the influence of inter-subject 

anatomical differences by estimating ACM in a common stereotactic space. Given the diffuse 

pathology of MS, we hypothesized ACM to reveal widespread reductions in the cerebral WM 

compared with healthy controls and that these reductions will differ depending on the clinical form of 

MS. We further hypothesized an ACM reduction in motor-related tracts. The reduction should be 



apparent when comparing patients to healthy controls and when comparing RR-MS patients to SP-MS 

patients. The basis of the ladder hypothesis is that the SP-MS patients in our study exhibit an 

increased motor disability compared to RR-MS patients, as measured by a higher extended disability 

status scale (EDSS) score (Kurtzke, 1983) where the EDSS score is known to be highly influenced by 

motor disability. 

 

2. Materials and Methods  

2.1 Subjects 

Thirty-four patients suffering from MS fulfilling the revised McDonald criteria (Polman et al., 2005) 

participated in this study (Table 1) of whom 19 patients had been diagnosed with the RR-MS disease 

course, while 15 patients had been diagnosed with the SP-MS disease course. Patients were recruited 

from The Danish Multiple Sclerosis Center (at Rigshospitalet, Copenhagen, Denmark) and only 

clinically stable patients who had not experienced a relapse in the three months preceding the MRI 

measurement were included in the study. MS patients with neurological co-morbidity and with signs 

of depression or other psychiatric disorders were excluded from the study. All patients were 

neurologically examined and clinical disability was rated using the EDSS score (Kurtzke, 1983). The 

patients were treated with disease-modifying drugs (Interferon-beta, glatiramer acetate, natalizumab). 

Twenty healthy subjects without a history of neurological or psychiatric disease were included as 

control subjects. The study was approved by the Scientific Ethical Committee of the municipalities of 

Copenhagen and Frederiksberg (protocol no. KF01 – 131/03 with addendum) and all subjects gave 

written informed consent. 

2.2. Magnetic resonance imaging 

All MRI data were acquired on a Siemens TRIO 3 tesla scanner using an eight-channel surface head-

coil (In vivo, FL, USA). The structural MRI protocol included a three-dimensional T1-weighted 

image using a magnetization prepared rapid gradient echo (MPRAGE) sequence with a repetition time 

(TR) of 11400 ms, echo time (TE) of 2.32 ms, flip angle (FLA) of 9
○
 and a matrix of 182 x 218 x 182, 

resulting in a 1 mm
3
 isotopic resolution. Also acquired was a three-dimensional T2-weighted image 

(T2) with a TR of 3000 ms, TE of 354 ms, FLA=180
○
 and a matrix of 196 x 256 x 192, resulting in a 

1.1 mm
3
 isotropic resolution and a three-dimensional T2-weighted fluid attenuation inversion 

recovery (FLAIR) image using the sequence parameters, TR=6000 ms, TE=353 ms, FLA=180
○
 and a 

matrix of 220 x 256 x 192 (1.1 mm
3
 resolution).  

Diffusion MRI (dMRI) was acquired using a twice-refocused spin echo sequence (Reese et al., 2003) 

(TR=8200 ms, TE =100 ms, in-plane matrix = 96 x 96; 61 slices) resulting in 2.3 mm
3
 isotropic voxel 

resolution. For each subject, ten non-diffusion weighted images (b0) and 61 diffusion weighted 

images (DWIs) were acquired using a b-factor of 1200 s/mm
2
. In addition, a field map was obtained 

used a double gradient echo sequence (TR=479 ms, TEshort=5.19 ms, TElong=7.65 ms, FLA=60
○
, 

matrix=128 x 128; 47 slices) resulting in a voxel resolution of 2 x 2 x 3 mm
3
. 

 



2.3. Preprocessing 

The DWIs were simultaneously corrected for eddy currents and motion by co-registering them with 

the first of the ten b0 images using a 12 parameter affine transformation (Collignon et al., 1995). To 

correct for susceptibility artefacts, a voxel displacement map was estimated based on the individual 

field maps and the field map correction approach, available through SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/) (Jezzard and Balaban, 1995). The voxel displacement map and the 

affine model displacements were combined and the DWIs re-sliced into the space of the first b0 image 

using tri-cubic interpolation. After re-slicing the DWIs, the gradient directions of the DWIs were 

updated by applying the rotational part of the affine model to the gradient directions (Alexander et al., 

2001).  

Based on T2, FLAIR and MPRAGE modalities WM lesions were segmented using an automated 

segmentation method described by (Dyrby et al., 2008). A radiographer manually adjusted the 

segmented lesions, resulting in a binary lesion mask for each MS subject. The FLAIR image was co-

registered with the first b0 image of the dMRI and both the FLAIR and the lesion mask re-sliced into 

the space of the b0 image, using tri-cubic and nearest-neighbour interpolation for the respective 

images. 

2.4 Anatomical Connectivity Mapping (ACM)  

2.4.1 Fiber reconstruction: The multi-tensor 

The multi-tensor model by (Tuch et al., 2002) was chosen as the multi-fiber model and the parameters 

of the model were fitted using a Levenberg-Marquardt optimization available through the Camino 

software (http://cmic.cs.ucl.ac.uk/camino/) (Cook et al., 2006). The maximum number of tensors was 

fixed to two per voxel, as the findings reported in (Tuch et al., 2002) suggest this to be the maximum 

number of resolvable fibers using b-factor near 1000 s/mm
2
. To determine the number of fibers in a 

voxel, we used the classification approach proposed by (Alexander et al., 2002), also from Camino.  

2.4.2 Spatial normalization of the multi-tensors 

To ensure ACMs with cross-subject comparability, it is important to prevent cross-subject brain shape 

variability from biasing the connectivity values of the ACM. To avoid this, the tensor models were 

spatially normalized into a common space (Alexander et al., 2001; Cercignani et al., 2012) prior to 

calculating the ACM, as opposed to calculating the ACM in native space and then normalizing the 

ACM, as was done in previous cross-subject ACM studies (Bozzali et al., 2011; Bozzali et al., 2013). 

The optimal spatial normalization was found by matching the FA map of each subject with the 

FMRIB58_FA atlas (58 healthy subjects) (Smith et al., 2004), using the FSL image registration 

routines flirt and fnirt (http://www.fmrib.ox.ac.uk/fsl/) (Jenkinson and Smith, 2001). To prevent 

severe MS pathology from influencing the spatial normalization, the option of cost function masking 

was enabled, using lesion masks to ensure that the spatial normalization is derived solely from tissue 

outside of lesions. The result of the spatial normalization was used to transform both the FA images 

and the multi-tensors of the subjects. To ensure proper orientation of the tensors after spatial 

normalization, the preservation of principal direction (PPD) algorithm (Alexander et al., 2001) was 



used to re-orient each single tensor of the multi-tensor. The FA and multi-tensor volumes were re-

sliced to 2 mm
3
 isotropic resolutions matching the FMRIB58_FA Atlas.    

2.4.3 Probabilistic whole-brain tractography 

The values of an ACM reflect the connectivity/dis-connectivity that each individual voxel has with 

the rest of the brain and are estimated using probabilistic tractography (Parker and Alexander, 2003). 

The ACM is estimated by repeating probabilistic tractography for every seed voxel of the brain and 

counting the number of streamlines passing through each individual voxel. Besides the probabilistic 

tractography method, the ACM estimation also requires the specification of a brain mask specifying 

the seed voxels.  

The binary brain mask of seed voxels was derived from the FMRIB58_FA atlas where FA≤0 voxels 

are identified as background. This whole-brain mask is used both as a seed mask and as a streamline 

stopping criteria. We used the probabilistic tractography method by (Parker and Alexander, 2003) and 

available in Camino (Cook et al, 2006), to propagate streamlines where the fiber orientation 

distribution function (fODF) of each voxel was simulated using the Bingham distribution at a signal-

to-noise ratio (SNR) of 16. Probabilistic tracking is performed using, an interpolated tracking 

approach with a tracking step size of 1/10 the voxel size and using two streamline stopping criteria; 

the brain mask and if a streamline turns more than 180 degrees over the extent of a voxel, the ladder 

criteria preventing a streamline from doubling back on itself. 

2.4.4 Number of streamlines 

To minimize the uncertainty associated with voxel-wise connectivity estimates of an ACM it is 

important to choose a sufficiently large number of streamlines. We therefore estimated the average 

uncertainty of an ACM voxel as a function of the number of streamlines in five healthy subjects. 

Individual subject ACMs were estimated five times for a fixed number of streamlines (i.e., 10, 50, 

100, 150, 300, 500, 700 streamlines per seed voxels) and the voxel-wise coefficient of variation (CV) 

was calculated (Dobson, 2002). For a given number of streamlines, the average CV across all voxels 

within the seed mask reflects the estimation uncertainty (the precision of an ACM estimate). By 

increasing the number streamlines while repeatedly estimating the average CV, we obtained the CV 

uncertainty measure as a function of streamlines. The average CV function is inversely proportional to 

the average SNR, and for the sake of completeness we supply both. 

2.5 Group-wise statistical analysis 

2.5.1 Between-group comparison  

Two voxel-based, group-wise hypotheses were tested. The first hypothesis was that ACM reveals 

decreased connectivity of the cerebral WM (FMRIB58_FA>0.25), in a group of RR-MS and a group 

of SP-MS patients who are compared with a group of healthy subjects. The second hypothesis was 

that SP-MS patients (high range EDSS) have decreased connectivity relative to RR-MS patients (low 

range EDSS).  



The hypotheses were investigated by fitting a general linear model (GLM), including group, age, 

gender and atrophy as independent covariates and the ACM values as the dependent variable. Prior to 

fitting voxel-wise GLMs, the ACM data were smoothed using a Gaussian kernel with a full-width 

half-maximum value of 4 mm. After fitting the GLMs, the GLM parameters were examined using 

one-tailed two sample t-tests with the assumption of unequal variance, testing for voxel-wise 

significant differences between the group parameters of the GLM.  

The same voxel-based, group-wise analyses were repeated using the DTI-derived indices of FA. The 

additional FA-based analyses enabled us to compare the outcome of analyses based on a measure 

reflecting the microstructural tissue properties (FA) with analyses based on whole-brain connectivity 

(ACM). 

To estimate the atrophy covariate of each subject, a WM mask (FMRIB58_FA>0.25) containing unit 

values was modulated with the determinant of the Jacobian of the deformation field used to spatially 

normalize from subject to atlas space. The determinant reflects the amount of expansion/contraction 

experienced by a voxel and is thus proportional to atrophy. This estimation approach corresponds to 

the voxel-based morphometry (VBM) approach described in (Ashburner and Friston, 2000; Good 

et al., 2001). To remove the influence that overall brain size may have on the determinant of the 

Jacobian, it was scaled using the intra cranial volume (ICV) calculated as the sum of WM, grey matter 

(GM) and cerebrospinal fluid (CSF) segmentations, estimated using the SIENAX (Smith et al., 

2002b) segmentation routine of FSL 4.0.  

To account for the problem of multiple comparisons (Logan et al., 2008; Miller, 1977), we adopted a 

small volume correction (SVC) approach (Worsley et al., 1996). The bilateral motor projection tracts, 

projecting from the pontine crossing tract region towards the motor cortex and the bilateral 

association tract of the superior longitudinal fasciculus were defined as WM regions of interest (ROI) 

for this purpose. We reasoned that these WM tracts would be particularly sensitive to disease-related 

reductions in the ACM of patients with MS. To specify the voxels corresponding to these ROIs, we 

used the expert delineations of the JHU-ICBM-DTI-81 atlas (S Mori and Nagae-Poetscher, 2005) 

which are in correspondence with the FMRIB58_FA space. The bilateral motor projection tracts were 

assumed to coincide with the subset of atlas delineations, consisting of the pontine crossing tract, the 

internal capsule, the cerebral peduncle, the corticospinal tract, and the corona radiate. The bilateral 

superior longitudinal fasciculi were given by the corresponding atlas delineation. Within these ROIs, 

the SVC method of SPM8 was used to correct for multiple non-independent comparisons, yielding a 

family wise error (FWE) corrected p-value. The threshold for achieving statistical significance was set 

to 0.05. 

2.5.2 Within-group correlation analyses 

For these analyses, we expected that regional reduced anatomical connectivity in the motor projection 

tracts might be closely related to inter-individual variations in clinical disability. The analyses were 

conducted by estimating a regional median ACM statistic within the aforementioned WM ROIs of the 

atlas, which were correlated with the EDSS scores using Pearson’s correlation coefficient. For the 

sake of comparison, the linear correlation was also calculated for the median FA of the ROIs. These 

analyses were supplemented by GLM analyses using models adjusted for confounding covariates. We 



fit the GLM using EDSS as the outcome measure, and using the median statistic, age and gender as 

explanatory covariates. The fitting correlation of the GLM and its coefficient of determination r
2
 

(Dobson, 2002) were used as supplementary indicators of the disease-related information inferred 

from the ACM and FA respectively.  

White matter lesion load is often used as an imaging marker in MS treatment studies (Filippi et al., 

2011). For comparison we therefore estimated the individual lesion loads normalized to the skull size 

using the SIENAX routine of FSL 4.0 (Smith, 2002a) and correlated inter-individual variations in 

lesion load with inter-individual variations in the EDSS score. 

 

3. Results 

3.1 Number of streamlines  

ACM estimation using probabilistic tractography with different numbers of streamlines per voxel 

revealed a decreasing SNR benefit as the number of streamlines increases (Table 2). SNR became 

stable in the range 300 to 700 streamlines, prompting us to choose 500 streamlines per seed voxel to 

yield asymptotically stabile ACM estimates. Depending on the desired average SNR, an acceptable 

ACM may be estimated with fewer streamlines. 

3.2 Reduced connectivity in patients 

Patients with RR-MS and SP-MS showed widespread voxel-based ACM reductions in cerebral WM 

compared to healthy subjects (Figs. 1(a) and 1(c)) and applying SVC in the ROIs of the pre-defined 

bilateral WM tracts of interest (the motor projection tracts and the superior longitudinal fascicle) 

resulted in widespread FWE-corrected and significant voxels in all ROIs (FWE results not shown). 

This widespread reduction in anatomical connectivity was also reflected by a significantly lower 

median ACM statistic estimated within the cerebral WM of the RR-MS and SP-MS groups, compared 

with healthy control subjects (p-value<0.0001, one-tailed two-sample t-test; Fig. 2(a)). While both 

patient groups displayed voxel-wise decreased ACM values in the cerebral WM, there were overall 

more voxels showing an ACM reduction in patients with SP-MS relative to patients suffering from 

RR-MS (Fig. 1 (a) and 1(c)). 

Patients with RR-MS and SP-MS also demonstrated widespread decreases in FA (Figs. 1(b) and 1(d)), 

resulting in significant FWE-corrected voxels in the pre-defined ROIs (FWE results not shown). 

Accordingly, the median FA statistics of the cerebral WM were significantly reduced in patients with 

RR-MS and SP-MS (p-value<0.0001, two-sample t-test; Fig. 2(b)). In summary, the results show that 

both RR-MS and SP-MS are associated with widespread decreases in ACM and FA and further 

suggest that when using global summary statistics, FA and ACM appear equally informative about the 

clinical phenotypes.  

3.3 Decreased connectivity of SP-MS relative to RR-MS  

When investigating the hypothesis of decreased anatomical connectivity of the SP-MS patients 

compared to RR-MS patients, we found the median ACM statistics across the cerebral WM to be 



decreased in patients with SP-MS relative to patients with RR-MS (p = 0.027, two-sample t-test; Fig. 

2(a)). Median FA statistics were not significantly different between the two groups (p = 0.126, two-

sample t-test; Fig. 2(b)). Voxel-based analysis revealed localized decreases of the ACM values in 

patients with SP-MS relative to RR-MS (Fig. 3(a)). Within the aforementioned bilateral WM tracts of 

interest, we identified a large number of voxels where ACM values were significantly reduced in SP-

MS patients relative to patients with RR-MS (Fig. 3(a); Table 3). Table 3 lists the location of these 

spatially coherent significant voxels. According to the JHU-ICBM-DTI-81 atlas, a large number of 

voxels able to survive the SVC analysis were located in the left and right posterior corona radiata, the 

pontine crossing tract, the internal capsule and the corticospinal tract as well as the right superior 

longitudinal fasciculus. In contrast, the same voxel-based group comparison based on FA, revealed no 

FWE-corrected significant differences between SP-MS and RR-MS and thus this is not reported in 

Table 3. For comparison, the uncorrected voxel-based t-test analyses based on FA are depicted in Fig. 

3(b), underlining the difference in results between ACM and FA based analyses. 

In addition to the pre-defined WM tract ROIs, Fig. 3(a) also reveals regions of decreased ACM in the 

splenium and genu of the corpus callosum. In addition to being near GM/WM boundaries which 

might indicate partial volume contamination, these differences did not survive whole-brain correction 

for multiple comparisons and may therefore be perceived as statistical trends.  

3.4 Correlations between ACM and clinical disability  

The region-specific median ACM statistics of the bilateral WM tracts of interest showed significant 

correlations with the individual EDSS scores, displayed in Table 4, containing analysis results of the 

previously identified WM regions (Table 3). Correlation based on the corresponding FA statistics 

generally did not result in the same significance (Table 4). Using a GLM adjusted for age and gender 

effects instead, significant EDSS correlations were found both for ACM and FA (Table 4). Based on 

the adjusted GLM, the magnitude of correlations between the ACM statistics and EDSS scores, as 

well as the amount of variance explained by the GLM, were generally higher than using FA statistics. 

Especially the median ACM statistics of right posterior corona radiata, right superior longitudinal 

fasciculus and the pontine crossing tract showed a stronger correlation with the EDSS scores than the 

corresponding median FA statistics (Fig. 4). 

Pearson’s linear correlation coefficient between skull-normalized lesion load and the EDSS was 0.316 

(p-value<0.05), while the GLM adjusted for age and gender had fitting correlation 0.59 (p-

value<0.01) and the coefficient of determination value r
2
=0.354, equivalent to the mid-range 

statistical performance listed in Table 4.  

 

4. Discussion 

Based on the technique of ACM, we found widely reduced anatomical connectivity in the cerebral 

WM of patients with RR-MS and SP-MS compared to healthy subjects. SP-MS patients showed 

voxel-wise reduced ACM values relative to RR-MS in the motor projection tracts, while no consistent 

decreases were found based on FA. Finally, regional ACM statistics correlated moderately with 

clinical disability as reflected by the EDSS score.  



 

4.1. Reduced connectivity in patients 

Voxel-based and ROI-based analyses provided converging evidence for a reduction in the ACM 

values of MS patients, compared to a group of healthy subjects. The voxel-wise reductions of ACMs 

were found in large parts of the cerebral WM, showing that MS diffusely affects the structural 

connectivity of the brain as reflected by ACM.  

Previously, ACM has been investigated in patients with RR-MS (Bozzali et al., 2013). In that study, 

ACM changes were found in the subcortical GM nuclei but not in WM. We showed that MS is also 

associated with a widespread change of anatomical connectivity in WM. Critically, the ACM values 

of cerebral WM were substantially decreased, not only in more severely affected patients with SP-

MS, but also in patients with the RR-MS disease course, who were generally less impaired than 

patients with SP-MS.  

Several pathological processes may have contributed to reducing the ACM in patients with MS. 

Axonal damage, Wallerian degeneration, local inflammation and demyelination, all contribute to 

changing the ACM values, since these pathologies are believed to alter the diffusion process, leading 

to changes in the principal directional uncertainty of the fODF. The decreased ACM values of MS 

patients widely summarizes these pathological processes, since a connectivity value of an ACM voxel 

obtains its value based on streamlines that may have passed through areas of the WM tract with 

different underlying pathology. As a consequence ACM values do not reflect any tissue-specific 

pathology process, but rather reflect the accumulated effects of pathologies present along a WM tract.  

In addition to voxel-wise ACM reductions, MS patients also exhibited widespread decreases in FA, 

suggesting that both ACM and FA are sensitive to measuring MS-related changes, although they may 

not have the same interpretation. The decrease in FA, agrees with the findings of (Preziosa et al., 

2011) reporting widely decreased FA within the major WM tracts of MS patients.   

4.2. Decreased connectivity of SP-MS relative to RR-MS 

Despite the widespread voxel-wise reductions in FA and ACM, suggesting similar discriminative 

power between healthy controls and MS, the information of FA and ACM values are quite different. 

A decrease of an ACM voxel generally reflects accumulated pathology of the whole brain, whereas an 

FA decrease is specific to a localized pathologic state. This difference explains why group-wise, 

voxel-based comparisons based on ACM resulted in significant differences between SP-MS and RR-

MS patients, while we were unable to find differences using FA. Additionally, the median ACM 

statistic of the entire cerebral WM was significantly lower in patients with SP-MS than in patients 

with RR-MS. Together, these findings highlight the potential use of ACM to capture alterations in the 

connectivity pattern which are characteristic to the different clinical forms of MS.  

The significant voxel-based ACM decreases were largely found within the bilateral motor projection 

tracts. The structural anatomy of these tracts is expected to considerably impact patients’ EDSS score, 

a score which is known to be strongly related with motor impairment. The strongly localized ACM 

reductions in patients with SP-MS are plausible as the patient group with RR-MS had less motor 



impairment as reflected by their EDSS scores. Additionally ACM decreases of SP-MS were found in 

the superior longitudinal fasciculus which could be motor-related but might also be related to 

differences in distinct cognitive functions between both groups. Since we did not expose patients to 

cognitive tests, we cannot comment on this possibility.  

4.3. Correlation between ACM and clinical disability 

Region-specific median ACM statistics calculated within WM ROIs correlated with MS disability as 

indicated by the EDSS score which is a summary measure of disability in eight functional systems, 

but weighted towards ambulation (Kurtzke, 1983). Negative correlations were found between the 

median ACM statistics and individual EDSS scores of the MS group. In contrast to our results, the 

study by (Bozzali et al, 2013) found no voxel-based correlation between ACM and the EDSS scores 

in patients with RR-MS. We attribute these negative findings to the fact that they examined voxel-

based correlations, the smaller range of inter-subject variation in EDSS scores and the smaller sample 

size in that study as compared with our study which covers a larger EDSS range. There are also 

methodological differences in the ACM estimation which could cause differences between the results. 

Correlation analyses did not reveal any significant correlations between the median FA statistics and 

individual EDSS scores. However, when applying a GLM that adjusted for between-subject 

differences of age and gender, we found a linear relationship with clinical disability for both the 

median ACM and median FA. Using the GLM, the explanatory power of the linear relation was 

generally stronger for the median ACM statistics as opposed to the corresponding FA statistics. The 

median ACM in the right posterior corona radiata, right superior longitudinal fasciculus and the 

pontine crossing tract correlated more strongly with the EDSS scores than the corresponding median 

FA. Conversely, there was no WM tract ROI where the correlation was stronger for FA, a statement 

which is upheld also for the WM ROIs which have not been included in the table. Since ACM and FA 

provide complementary information, it is possible that a combined measure that integrates the 

structural information provided by FA and ACM might be most sensitive to disability and disease 

progression. Adding to the discussion, we should also note that the GLM based on lesion loads, was 

able to explain an amount of variance similar to the median ACM values in Table 4.  

These findings suggest that ACM may be used to relate regional anatomic disconnection with disease-

related disabilities. A similar finding was made in a study involving amyotrophic lateral sclerosis 

patients, in which a tract-specific probabilistic index of the cortico-pontine motor tract was found to 

achieve better disease score correlation than FA (Ciccarelli et al., 2006). Accordingly, (Bozzali et al., 

2013) demonstrated that ACM values in the anterior body of the corpus callosum correlated with the 

number of correct responses in the Pace Auditory Serial Addition Test (PASAT) in patients with RR-

MS. Together, these findings suggest that ACM has the potential to unravel interesting relations 

between altered anatomical connectivity and disease-related disabilities. In this context, the use of 

specific motor or cognitive tests, for instance measurements of ankle dorsiflexion and hip flexion 

strength (Reich et al., 2008), may be used to inform future ACM studies in patients with MS to find 

out how altered anatomical connectivity in specific tracts affect specific motor and cognitive 

functions. 

 



4.4. Methodological considerations 

When ACM is applied to patients with MS, probabilistic tractography needs to measure isotropic 

diffusion components in the affected brain tissue due to inflammation, demyelination, gliosis, and 

axonal injury. We combined the multi-tensor model with the Bingham distribution (Bingham, 1974), 

used with the probabilistic tracking method of (Parker and Alexander, 2003) in order to capture these 

effects. Additionally, we used a conservatively large number of streamlines per voxel (500 

streamlines). Although previous studies have based ACM estimations on just 10 streamlines (Bozzali 

et al., 2011; Bozzali et al., 2013; Embleton et al., 2007), our SNR investigations suggested that such a 

low number of streamlines may lead to under sampling of the ACM connectivity distributions. 

We introduced a spatially normalized ACM technique, suited for group studies to account for the 

integrated pathology occurring along WM tracts of MS patients. Our approach is conceptually similar 

to the atlas building approach of (Cercignani et al., 2012) and in contrast to previously published 

ACM studies by (Bozzali et al., 2011; Bozzali et al., 2013), it ensures that the connectivity estimates 

of ACM become minimally dependent on the individuals brain shape and size variation.  

 

5. Conclusion 

We successfully applied a modified version of ACM, optimized for between-group comparisons to 

detect consistent differences in anatomical WM connectivity between two clinical sub-groups of MS. 

We were able to relate alterations in the ACM of WM with disease-related disability and showed that 

ACM provides complementary information to conventional DTI-based indices of microstructure such 

as FA. However further large scale studies are warranted to explore the potential of ACM to map the 

magnitude and spatial distribution of anatomical disconnection in brain diseases and relate these 

connectivity changes with disease-related disabilities.   
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Tables 

Table 1: Clinical and demographics of the study population. 

Characteristics Healthy 

(n=20) 

 

RR-MS 

(n=19) 

 

SP-MS 

(n=15) 

 

p-value 

Healthy-RR 
p-value 

Healthy-

SP 

p-

value 

SP-RR 

Age (years) 

 

44.60±9.87 

(25, 68) 

39.45±8.98 

(24, 56) 

49.34±11.31 

(29, 64) 

0.10 0.19 0.01 

Gender 13m / 7f 6m / 13f 6m / 9f NA NA NA 

EDSS 

 

NA 3.05±1.4 

(0, 4.5) 

5.36±1.14 

(3.5, 7) 

NA NA < 0.001 

Lesion loads 

(milliliters) 

NA 21.78±15.93 

(3.03, 64.65) 

32.70±19.41 

(3.69, 

60.66) 

NA NA 0.05 

Description: Lists the mean ± standard deviations, the range of the population characteristics (in 

parenthesis) and the significance values (p-value) of group-wise comparison based on two-sample, 

two-tailed t-test. The lesion loads are un-normalized loads. NA means not applicable. 

 

Table 2: Uncertainty associated with ACMs for increasing number of streamlines. 

Number of streamlines 10 50 150 300 500 700 

Average CV 0.049 0.023 0.014 0.012 0.011 0.012 

Average SNR 20.32 44.21 69.44 85.84 87.42 85.54 

Description: Shows the average voxel-wise coefficient of variation (CV) and the average signal to 

noise ratio (SNR) each of these CV/SNR volumes are evaluated from a five-time repeated estimation 

of the same ACM following which they are averaged for five healthy subjects.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3: Regions of significantly decreased ACM of SP-MS relative to RR-MS patients. 

Region of interest Nvox PFWE-peak MNI-coordinates 

(x, y, z) - in mm 

Pontine crossing tract 41 0.0001 (1, -31,-31) 

R-superior longitudinal fasciculus 114 0.004 (41, 13, 31) 

L-posterior corona radiata 41 0.005 (-27, -35, 25) 

R-posterior corona radiata 18 0.005 (29, 59, 23) 

R-superior corona radiata 29 0.006 (25, 3, 21) 

R-corticospinal tract 34 0.01 (5, 23, 31) 

L-retrolenticular internal capsule 16 0.03 (-35, -37, 7) 

R-retrolenticular internal capsule 56 0.038 (27, 29, 9) 

Description: Region of interest is the name of a WM ROI, in the JHU-ICBM-DTI-81 atlas with R/L 

referring to a hemisphere. Nvox are the number of voxels in a region surviving the corrected 

threshold. PFWE-peak is the SVC significance of the peak t-test voxel. MNI-coordinates are the 

coordinates of the t-test peak voxel. The horizontal line indicates PFWE-peak smaller than 0.01 or 

between 0.01-0.05. 

Table 4: Region-specific median ACM/FA disease score correlations and GLM analyses. 

Region of interest  Pearson’s  

correlation  

GLM with correction 

 for age and gender 

r
2
 

 ACM FA ACM FA ACM FA 

Pontine crossing tract -0.458 (**) -0.218 0.574 (**) 0.487 (**) 0.329 0.237 

R-superior longitudinal fasciculus -0.468 (**) -0.301 0.573 (**) 0.507 (**) 0.328 0.257 

L-posterior corona radiata -0.354 (*) -0.304 0.518 (**) 0.525 (**) 0.270 0.276 

R-posterior corona radiata -0.620 (**) -0.099 0.699 (**) 0.531 (**) 0.489 0.282 

R-superior corona radiata -0.173 -0.205 0.509 (**) 0.497 (**) 0.259 0.247 

R-corticospinal tract -0.281 -0.164 0.498 (**) 0.499 (**) 0.248 0.249 

R-retrolenticular internal capsule -0.529 (**) -0.256 0.656 (**) 0.521 (**) 0.431 0.271 

L-retrolenticular internal capsule -0.515 (**) -0.207 0.594 (**) 0.537 (**) 0.352 0.289 

Description: Region of interest is the name of a WM ROI delineated in the JHU-ICBM-DTI-81 atlas 

with R/L referring to a hemisphere. Pearson’s correlation, list the correlation coefficients between 

the median ACM or the median FA and the EDSS disease scores; (*) means, p-value<0.05 and (**), 

p-value<0.01. GLM with correction list the correlation between EDSS and the disease score 

prediction based on a general linear model (GLM) including covariates of age, gender and either the 

median ACM or median FA. r
2
 is the coefficient of determination summarizing the percentage of 

variance explained by the GLM. 



Figures 

 

Fig. 1: The axial, coronal and sagittal slices of (a)-(d) are shown in neurologic convention. Slices in 

(a) show the uncorrected voxel-based t-tests, thresholded at significance level 0.005, used to test if the 

ACMs of RR-MS patients are decreased compared to healthy controls while (b) shows the 

corresponding, thresholded t-test based on FA. (c) and (d) shows the results of similar group 

comparisons between SP-MS patients and healthy controls with the voxel-based t-tests derived from 

ACM depicted in (c) and the t-tests based on FA shown in (d). The background images of (a)-(d) are 

from the FMRIB58_FA atlas.  

 

 



 

Fig. 2: Shows the distribution of the median ACM values within the major cerebral WM.  

(a) The box plots give the distributions of median ACM values within the cerebral WM region 

(FMRIB58_FA>0.25) for healthy controls, RR-MS and the SP-MS patients. (b) The box plots show 

the corresponding distributions of the median FA values for the entire cerebral WM region. 

 

Fig. 3: (a) Shows clusters of t-test voxels, thresholded at an uncorrected significance of 0.005, used to 

test whether the SP-MS patients have significantly reduced connectivity compared to RR-MS patients. 

The thresholded t-tests voxels are overlaid on the mean ACM and reveal significance at the left 

posterior corona radiate (coronal slice), the pontine crossing tract (coronal slice) and the right 

posterior corona radiata (axial and sagittal slice). Similarly, (b) shows the result of testing where the 

SP-MS patients have a decreased FA compared to the RR-MS patients and only a few significant 

voxels are found. The t-tests depicted in (a) and (b) have been overlaid the FMRIB58_FA atlas.  



 

Fig. 4: Shows the region-specific median ACM plotted against the EDSS score and the region-

specific median FA plotted against EDSS where ACM and FA are sampled from within the same WM 

ROI of the JHU-ICBM-DTI-81 atlas. The plots also show the GLM (straight line), fitted using the 

median FA/ACM as depend covariates and the EDSS as the independent. Subfigure (a) shows a 

cross-subject plot of the median ACM and median FA obtained from the pontine crossing tract (PCT) 

ROI. Similarly, (b) shows the median ACM and median FA plots based on the right superior 

longitudinal fasciculus (SLF) ROI. 
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Abstract. We propose a method for the segmentation of Multiple Scle-
rosis lesions. The method is based on probability maps derived from a
K-Nearest Neighbours classification. These are used as a non parametric
likelihood in a Bayesian formulation with a prior that assumes connec-
tivity of neighbouring voxels. The formulation is solved using the method
of Iterated Conditional Modes (ICM). The parameters of the method are
found through leave-one-out cross validation on training data after which
it is evaluated on previously unseen test data. The multi modal features
investigated are 3 structural MRI modalities, the diffusion MRI mea-
sures of Fractional Anisotropy (FA), Mean Diffusivity (MD) and several
spatial features. Results show a benefit from the inclusion of diffusion
primarily to the most difficult cases. Results shows that combining prob-
abilistic K-Nearest Neighbour with a Markov Random Field formulation
leads to a slight improvement of segmentations.

1 Introduction

The amount of lesions occurring within the White Matter of brain MRI images is
commonly used as a biomarker of Multiple Sclerosis (MS) disease progression [1].
In this paper, the biomarker corresponding to the sites of White Matter lesions
is determined based on supervised learning.

The main ideas inspiring the work presented in this paper are [3, 5, 6, 7].
In [3] it was suggested to detect lesions as outliers of a statistical model which
models the classes White Matter (WM), Grey Matter (GM) and Cerebrospinal
Fluid (CSF). The authors suggested to incorporate a Markov Random Field
(MRF) to enforce neighbourhood context with initial class labels coming from
a parametric statistical model. Similarly we use a MRF solved using Iterated
Conditional Modes (ICM) [6] as has also been studied in the context of lesion
segmentation in [7] but we take a different approach than [3, 7] in obtaining
the initial class labelling and their probabilities. These are based on a non-
parametric model from [5] who estimated probability maps from the technique



of K-Nearest Neighbour (K-NN) using MRI modalities combined with the spatial
information pertaining to the subjects own coordinate system. The derived K-
NN probability maps are finally introduced in a Bayesian formulation using a
prior which imposes the constraints of smooth image segmentation.

We investigate the possibility of including two different spatial/coordinate
indices and two different Diffusion Tensor Imaging (DTI) [8] indices, namely the
FA and MD as segmentation features. The FA and MD are two complementary
diffusion indices, measuring the free motion of water molecules within a voxel
and have shown to be sensitive towards measuring WM tissue disintegration [2].

It is demonstrated through use of a Similarity Index(SI) [9] and a division
of the imaging material into training and validation data, that diffusion MRI
yields an improvement to the lesion classification and that the inclusion spatial
features are beneficial. Finally the addition of class neighbouring constraint leads
to a further improvement of segmentations.

2 Data

The MRI images were acquired on a 3 Tesla Siemens scanner. The following
modalities were acquired, a T1 weighted MPRAGE image with an isotropic voxel
size of 1mm3, a T2 weighted image and a FLAIR image both having voxel size
1.1mm3. A Diffusion Weighted Image (DWI) series was acquired using a Twice-
Refocused Spin Echo sequence [10] with a b value of 1200 smm−2, consisting of
71 image volumes of which 61 are diffusion weighted and 10 were acquired with
no weighting. The DWI images have the voxel size of 2.3mm3.

Imaging material from 15 patients was collected and based on FLAIR a
radiographer drew lesions in all patients to be used as training data and as a
gold standard for measuring segmentation performance. Similarly WM, GM and
CSF regions were annotated.

3 Preprocessing

RF-inhomogeneity the structural MRI was reduced using the N3 method [11] of
Freesurfer and available for download at (http://surfer.nmr.mgh.harvard.edu/).

Subject motion was corrected in two steps. First, the T2 and FLAIR modal-
ities were rigidly transformed to the MPRAGE, using the criteria of Mutual
Information (MI) and cubic interpolation with SPM8 [12]. Second, the DWI vol-
umes were aligned to each other, EPI corrected [13] and transformed into the
space of MPRAGE. The rotational part of the transformations are extracted
and gradient directions compensated using the approach in [14]. The DTI model
and the derived measures of Fractional Anisotropy (FA) and Mean Diffusivity
(MD) were estimated via the Camino software [15].

We investigate 2 possibilities for including spatial feature information.
1) We subtract the 2 axial intensity weighted centre of gravity, from the

image coordinates of the FLAIR modality. The longitudinal coordinate remains
unmodified. This results in 3 spatial features.



2) The SPM-MNI152 atlas and its WM, GM and CSF probability maps are
non-rigidly warped towards the MPRAGE modality of an MS subject. The 3
warped probability maps are included as features and are expected to serve as
strong spatial priors given that we only expect lesions in healthy WM regions.

4 Method

4.1 K-Nearest Neighbour

The idea of a Nearest Neighbour (NN) classification is to classify a voxel based
on a supervised dataset(the training data) but with no assumption about the
underlying probability function of the data [16]. We denote X as the feature
vector with n channels so for instance X = ([x1, x2..., xn−1, xn], φ). A training
dataset will consist of m training examples each with a feature vector and a
classification label φ. Xj is declared a nearest neighbour to the unseen feature
vector Y = [x1, x2, ...xn−1, xn] if

j = argmin︸ ︷︷ ︸
i

d(Xi, Y ), i = 1, 2, ...,m, (1)

where d(X,Y ) = ||X−Y ||2. To turn the NN classifier into a K-NN classifier, the
K features with the smallest Euclidean differences are kept and classification
is usually declared based on the majority vote from features with the same
label φ. We segment the brain into four classes each with a distinct label, φ =
{CSF,GM,WM,LES} where LES is the lesion label. The value of K affects
the strength of the classifier and its choice will depend on the class separation in
feature space. We construct the training dataset to ensure all classes are equally
represented by randomly selecting an X from each class until the first class
become empty. To ensure equal importance of all features, each feature is mean
centred and scaled with respect to variance. The K-NN problem is now solved
using the freely available software package FLANN [17].

The output of the K-NN classifications are four, 3D images containing the
number of votes for a given class. These are transformed into probability maps,
with a probability being the number of votes for a given label divided by K. A
threshold can be used to obtain binary segmentations. This threshold has to be
chosen to optimally classify lesions. We use it to scale probabilities such that we
can continue working with the probability that a voxel takes on a given label.

4.2 Including neighbourhood context

Since K-NN only sees one voxel at the time it cannot emulate human behaviour
of seeing spatial context. We thus suggest to modify the K-NN probabilities
to respect spatial class coherence. It is enforced through a Markov Random
Field (MRF) formulation. Lets denote the outcome of labelling an image as
a stochastic variable φi, i = 1...n, limited to take on the discrete values of



φ = {CSF = 1, GM = 2,WM = 3, LES = 4}. An MRF is specified using a
Gibbs distribution

Pφ =
1

Z
e−

∑
c Vc(φ) (2)

where c denotes an index over all voxels and Vc the neighbourhood interaction
potential function. Z is a normalization constant which can safely be ignored.
The expression in Eq. (2) plays the role of a prior when used with Bayes rule

Pφ|Y =
PY |φ · Pφ

PY
∝ PY |φ · Pφ (3)

which gives a posterior probability of labelling given data. In previous applica-
tions [3] the likelihood PY |φ is often based on a Gaussian probability function.
Here the probability maps estimated from the K majority voting are proposed
instead. If we choose a simple interaction potential considering only 6 neighbours
in 3D, we can combine Eq. (2) and (3) into

Pφ|Y = PY |φ · e−
∑

c

∑
i,j,k∈n(c) β(φ,φijk)·[1−δ(φ,φijk)]. (4)

This multi class prior is known as the Potts model [6] where β is a 4x4 matrix of
entries penalising neighbourhood transitions. For instance β is larger than zero
for LES → GM neighbour transitions. Hereby encoding the assumption that
lesions voxels are usually not neighbours to gray matter voxels. The entry for the
transition LES →WM is set to zero since this neighbourhood is expected and
should not be penalised. The notation n(c) defines the neighbour indices which
are of the simplest form consisting of 6 neighbours in 3D and δ is the Kronecker
delta function evaluating to 0 or 1. Equation (4) is solved using ICM ensuring
only a local optimum.

5 Experiments and Results

5.1 Optimal K and threshold

To determine the optimal value of K and the probabilistic threshold, leave-one-
out cross validations are made for different combinations of K and thresholds
while some subjects are left out to perform test validation upon. We vary K
from 40− 220 in steps of 20 and divide the interval [0.55, 1] into 45 distinct and
equidistantly spaced thresholds. Since 15 subjects is a low number to train the
model and test on, 3 nested cross validation were performed instead by splitting
the data 3 times, into a training set of 10 and a test sets of 5 subjects. Some
overlap exist between the training data but none between the 3 times 5 test
data. This yield a total of 30 cross validations and 15 test subjects that have not
been seen by the model. To measure performance, the Similarity Index (SI) [9],
also known as the Dice score and the Overlap Fraction(OF) are used. They are
estimated according to Eq. (5)

SI =
2|Vref

⋂
Vseg|

|Vref |+ |Vseg|
, OF =

|Vref
⋂
Vseg|

|Vref |
, (5)



where Vref is the segmentation of the radiographer and Vseg is the segmentation
of the method.

The results of running one such cross validation experiment with the prob-
abilistic K-NN using a training set with a total of approximately 106 feature
vectors divided amongst the 4 classes and using the features of MPRAGE, T2
and FLAIR is shown in Fig. 1. The plot shows the median SI surface for the 10
cross validations as a function of K and threshold. In this case the best solution
is found at K = 100 and threshold = 0.96. This threshold is consistent across
the 3 nested validations while the best performing K was 80 and 100 for the two
other validations. The general observation is that decreasing K gave decreas-
ingly worse performance. The average of 3 median SI score serve as a baseline
for improvement using more features and is listed under the MTF abbreviation
in Table 1.

Fig. 1. Shows the median SI over 10 leave-one-out validations as a function of threshold
and the number of nearest neighbours K

5.2 Feature selection

To find the most appropriate features for segmentations we investigate a subset
of combinations. In all experiments MPRAGE, T2 and FLAIR are included as
baseline features, as it has been demonstrated in [18] that lesion segmentations
can benefit from including all three. Each additional feature is included in turn.
Instead of repeatedly showing curves corresponding to Fig. 1, we compile the
best results for each feature combination in Table 1. It shows both the training
and test results using the probabilistic K-NN. The best SI was found to be using
MPRAGE, T2, FLAIR, the normal probability maps and FA. The contribution
of FA is comparably small and was found to be largest in patients with the
small lesion loads. We further observe that test scores with probability maps are
generally better compared to centroid corrected coordinates. This suggest that
centroid corrected features are overly biased towards training data compared to
normal probability maps.

5.3 Improving segmentations using ICM

Having identified a feature combination, its K and the threshold, Eq. (4) is
solved. Suitable values of β are identified by fixing all previously mentioned



List of feature abbreviations used for Table 1
MTF MPRAGE, T2 and FLAIR
FA Fractional Anisotropy
MD Mean Diffusivity
xyz Slice wise mass-centroid corrected coordinates
M Normal WM, GM and CSF probability maps, from MNI

Features Leave-one-out validation Test results
med SI min SI max SI med OF med SI min SI max SI med OF

MTF 0.644 0.303 0.838 0.668 0.618 0.394 0.825 0.688
MTF, MD 0.661 0.337 0.839 0.693 0.643 0.418 0.834 0.698
MTF, FA 0.656 0.360 0.840 0.694 0.648 0.406 0.835 0.716
MTF, MD, FA 0.666 0.383 0.848 0.712 0.678 0.430 0.839 0.727
MTF, M 0.682 0.367 0.853 0.724 0.679 0.401 0.836 0.751
MTF, M, FA 0.705 0.402 0.850 0.716 0.702 0.467 0.837 0.743
MTF, M, MD, FA 0.701 0.389 0.845 0.707 0.677 0.459 0.843 0.700
MTF, xyz 0.680 0.345 0.839 0.713 0.668 0.419 0.842 0.720
MTF, xyz , FA 0.681 0.361 0.841 0.721 0.676 0.434 0.842 0.729

Table 1. Lists the average results for the optimal parameters estimate over 3 cross val-
idation and test experiments. The first column lists the feature combinations. Columns
2-4 shows the average SI over the 3 cross validations while column 5 shows the average
of the median overlap fraction. Based on the optimal parameters estimate from from
cross validation, the test results of column 6-9 are achieved. The features with best
performance have been highlighted in gray.

parameters and varying β. Again we perform leave-one-out cross validation for
a set of β values. This validation lead to choosing β=0.1 whereby the average
SI performance over the 30 validations is increased by 0.0105 thus increasing
the best average of the median SI training scores from 0.705 to 0.716. This
choice of β further results in a test score of 0.713. To visually verify the effect
of these numbers for the best performing features, Fig. 2(a) shows a transversal
slice of the FLAIR modality. For the same slice, Fig. 2(b) shows the K-NN
lesion probability map. Figure 2(c) contains lesions as manually annotated by a
radiographer and (d) the thresholded segmentation of the K-NN approach using
K = 100 and threshold = 0.96. A number of false lesion voxels are observed in
Fig. 2(d) and by solving Eq. (4) these are reduced as indicated in Fig. 2(e). In
practice better results can be obtained if the radiographer changes β on a per
subject basis.

5.4 Comparing to other types of classification

The K-NN+ICM method was compared to the freely available unsupervised and
parametric method of [3]. The best performing parameters of [3] were determined
using cross validation on training data and applied to test data. It achieved a
median SI training score of 0.470 and a test score of 0.453. The method of [3] is
unsupervised and only considers the inclusion of FLAIR, MPRAGE and T2. We
therefore also compare it to a Support Vector Machine (LIBSVM) approach [4]
based on FLAIR, MPRAGE, T2, FA and normal appearing probability maps of
MNI space. The median training score was found to be 0.492 and the median
test score was 0.48. Thus K-NN+ICM outperformed both the parametric and
the more advance non parametric approach. Five of the subjects in the study



(a) FLAIR modality (b) Lesion probability (c) Manual lesions

(d) K-NN (e) K-NN+ICM
Fig. 2. (a) Shows the FLAIR modality and (b) the matching lesion probability map
using the K-NN. (c) shows the manual segmentation while (d) shows the thresholded
segmentation of the K-NN method. Finally (e) shows the segmentation achieved using
K-NN and ICM. The arrows in (d) show false positive, removed in (e)

had been annotated by two different raters. The median SI score, between the
two raters was 0.739 indicating that manual raters are better at segmenting.
Further the first rater had repeated the annotations 3 times per subject with a
median within SI score of 0.8939.

6 Summary

We have investigated and performed validation experiments for selecting appro-
priate features to include in a probabilistic K-NN classifier with MRF. Despite
a lower acquisition resolution of the diffusion weighted images the inclusion of
FA increased the specificity of the segmentation. This demonstrates that the
modality offers some complementary information useful for lesion segmentation.
The spatial features of normal probability maps warped non linearly from MNI
space were found to be better than that of centroid corrected native coordi-
nates. With further experimentation of the registration parameters for spatially
normalizing the normal probability maps we expect this could become an even
better feature. Finally, based on the optimal choice of features it was demon-
strated how the combination of the non parametric K-NN probabilities and ICM
results in improved segmentations when comparing to the K-NN itself as well
as other methods. Since ICM only guarantees convergence to a local optimum,



future works is to investigate methods that guarantees solutions closer to the
optimum [19].
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