Direct writing on graphene ‘paper’ by manipulating electrons as ‘invisible ink’

Zhang, Wei; Zhang, Qiang; Zhao, Meng-Qiang; Kuhn, Luise Theil

Published in:
Nanotechnology

Link to article, DOI:
10.1088/0957-4484/24/27/275301

Publication date:
2013

Citation (APA):
Direct writing on graphene ‘paper’ by manipulating electrons as ‘invisible ink’

Wei Zhang1, Qiang Zhang2, Meng-Qiang Zhao2 and Luise Theil Kuhn1

1 Department of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, Frederiksbergvej 399, DK-4000 Roskilde, Denmark
2 Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
E-mail: wzha@dtu.dk, phdweizhang@gmail.com and zhang-qiang@mails.tsinghua.edu.cn

Received 8 February 2013, in final form 2 May 2013
Published
Online at stacks.iop.org/Nano/24/000000

Abstract
The combination of self-assembly (bottom up) and nano-imprint lithography (top down) is an efficient and effective way to record information at the nanoscale by writing. The use of an electron beam for writing is quite a promising strategy; however, the ‘paper’ on which to save the information is not yet fully realized. Herein, graphene was selected as the thinnest paper for recording information at the nanoscale. In a transmission electron microscope, in situ high precision writing and drawing were achieved on graphene nanosheets by manipulating electrons with a 1 nm probe (probe current ∼2 × 10−9 A m−2) in scanning transmission electron microscopy (STEM) mode. Under electron probe irradiation, the carbon atom tends to displace within a crystalline specimen, and dangling bonds are formed from the original sp2 bonding after local carbon atoms have been kicked off. The absorbed random foreign amorphous carbon assembles along the line of the scanning direction induced by secondary electrons and is immobilized near the edge. With the ultralow secondary electron yield of the graphene, additional foreign atoms determining the accuracy of the pattern have been greatly reduced near the targeting region. Therefore, the electron probe in STEM mode serves as invisible ink for nanoscale writing and drawing. These results not only shed new light on the application of graphene by the interaction of different forms of carbon, but also illuminate the interaction of different carbon forms through electron beams.

1. Introduction

Drawing and/or writing is a powerful way to record information. Recently, manipulation of matter on an atomic and molecular scale became feasible with emerging nanotechnology. Resist-based lithography by light, ultraviolet, x-ray and electron irradiation is widely employed in the microelectronic industry via top-down methods [1]. However, its resolution is highly restricted by the diffraction effect. The other route to organize the atoms or molecules from the bottom up is quite promising, but the controllability is not yet satisfactory. For instance, a femtosecond laser can create powerful imprinting, but the resolution is limited to microscale areas [2]. The combination method, based on self-assembly (bottom up) and nano-imprint lithography (top down), can meet the requirement of nanoscale writing.

Among various sources for writing, electrons are a well-controllable tool for modifying or engineering the properties of different materials at the nanoscale. With the rapid development of electron microscopy with the field-emission electron gun, localized electron probes can be used for electron-induced processes on the nanometer and subnanometer scales [3–5]. New bond formation or dissociation can be feasible when the electrons are injected or removed. Electron-induced deposition is a facile way to grow nanowires or nanorods [6], contacting carbon nanotubes [7, 8] and fabricating complex arbitrarily shaped nanostructures [9–11]. As a result, bottom-up assembly can be well mediated by a top-down electron beam, which is...
resistless and usable in situ and has a resolution of less than 5 nm [1, 12]. The use of an electron beam for writing is a quite promising strategy; however, the ‘paper’ on which to record the information is not fully developed yet.

Graphene is known as an individual single layer or a few layers of a two-dimensional sp2-bonded carbon sheet, i.e. a single layer composed of a hexagonal network of carbon atoms [13]. Graphene has the distinct characteristic of being the thinnest material known [14]. Graphene is a flat and uniform sheet and is therefore feasible as the thinnest paper. It can be made by mechanical exfoliation [13], chemical vapor deposition (CVD) [15] or liquid-phase exfoliation [16], as well as reduction of graphene oxide [17, 18]. Tailoring the properties of graphene and its related nanoarchitectures heavily depends on both the crystallographic orientation and the actual atomic structure of the edges, which involves quite challenging processing [19]. The carbon species in graphene are sensitive to a variety of irradiation effects, including knock-on displacements, electronic excitations, radiolysis and radiation-induced diffusion. Therefore, an electron beam is a very effective tool for probing the interaction between electrons and carbon atoms on amorphous carbon [20] and graphene [21–23]. For instance, the irradiation of amorphous carbon with a 100 or 200 keV electron beam induces the formation of sp2 carbon onions [24]. By adjusting the electron beam mode and the dose for electron acceleration energies, the deposited amorphous carbon can be converted into graphene via catalyst-free fabrication [25]. Graphene nanopores can shrink or expand under electron beam irradiation by direct thermal heating dependent on the ratio of the nanopore diameter to membrane thickness [26]. The nanopores etched under an electron beam at room temperature in graphene sheets are shown to heal spontaneously by filling up with either nonhexagonal, graphene-like or perfect two-dimensional hexagonal structures [27]. Furthermore, the exfoliated few-layer graphene has been used as a support for the early growth phase by electron beam induced deposition in order to achieve nanoscale writing [28]. Stimulated by the fact that graphene can be used as a template for the manipulation of the tip of atomic force microscope in a hydrogen atmosphere [29], and that electron beam can achieve sculpting in graphene [30], here direct writing and drawing with high precision (a few nanometers in one dimension) is achieved on graphene by manipulating electrons in a transmission electron microscope (TEM). We demonstrate that amorphous carbon could be selected for position- and size-controllable deposition on the target area of the graphene using electrons as invisible ‘ink’.

2. Experiments

The synthesis of graphene was carried out using high-temperature catalytic chemical vapour deposition (CVD) on layered double hydroxide catalysts similar to our previous report [31]. After graphene deposition, the as-obtained products were treated by aqueous HCl solution at 80 °C for 3 h and subsequent aqueous NaOH solution at 150 °C for 6 h to remove the residual catalysts. The as-obtained graphene nanosheets with a diameter of about 2 μm and a thickness of about 1 nm were obtained by filtration, washing and freeze-drying for further characterization.

The graphene was dispersed in ethanol by sonicating for 30 min. One drop was taken onto the holey carbon film supported on a copper grid, followed by 10 min heating on the heating stage at 120 °C. The use of a holey carbon film for support has also been reported in the literature [28, 30].

A JEOL JEM-3000F microscope equipped with a field-emission gun, operated at 300 kV, was employed for TEM observation and analysis. An energy dispersive x-ray (EDX) microanalysis detector with an ultra-thin window was used to conduct chemical analysis of samples in scanning transmission electron microscopy (STEM) mode, including EDX spectrum elemental maps and line scan profiles. The beam-deflection capability of the EDX system has been used to ‘write’ the letters on the graphene. The STEM image was initially displayed for imaging optimization on a cathode ray tube screen. Subsequently the image was acquired by use of a second system consisting of INCA software (Oxford Instruments, UK). The 1 nm probe was used with a probe current ∼2 × 10–9 A m–2 in STEM mode. The minimum spot size 9 was applied in STEM mode.

3. Results and discussion

The graphene nanosheets were distributed on a holey carbon film. As shown in figure 1(a), the graphene can be clearly visualized. The imaging contrast was enhanced by high angle annular dark field (HAADF) imaging in figure 1(b). The graphene flakes were closely packed against each other, and their edges were identified (indicated by arrows shown in figure 1(b)). The high-resolution TEM image shown as figure 1(c) indicates that the graphene flakes are almost single layer, judging by the distinct edge contrast (see the arrow). Ripples and twists exist in the sheet. The chemical composition of the graphene was 98 wt% C and 2 wt% O, determined by the EDX analysis.

The single layer region of the graphene was selected as the ‘paper’ for electron ‘ink’ writing. As shown in figure 2(a), one layer of graphene and two layers are clearly identified by bright-field STEM imaging. Therefore, the fine probe in the TEM mode is sufficient to precisely pattern the graphene. With approximately 60 s per scanned line, when the EDX counts of carbon increased from zero to 60 (as illustrated in figure 2(b)), the bold (dense) letter ‘N’ and symbol ‘Λ’ were successfully written on the single layer graphene. The font size (width of stroke lines) is 5 nm for their main part. In fact, we found that the writing action started once the number of EDX counts started to increase. When there are fewer than 10 counts it is difficult to visualize the writing trace. The aforementioned condition is quite suitable for optimum writing on a single graphene sheet. Using the same EDX counts, a regular (delicate and pretty) ‘N’ (after flip horizontal) with a font size of 2–3 nm for the main part occurred on the double layer graphene. Clearly the HAADF STEM image (figure 2(c)) offers the better contrast in comparison with the bright field STEM image. Through EDX
elemental mapping (see the eclipsed area for the local bold bottom-left part of A), more carbon atoms were deposited by virtue of electron manipulation. A high-resolution TEM image of the ‘written’ graphene is shown in figure 2(d) (see the arrow).

Not only direct writing, but also facile drawing of various shapes can be realized by electron manipulated carbon deposition. Figures 3(a) and (b) show the target area ‘A’ from the blank graphene ‘paper’ to the filling with a quadrilateral or triangular region (figure 3(c)). The shape of the target area can be well delineated by using the pre-defined shapes to acquire the EDX spectrum (in INCA software).

In comparison with the use of other intense electron beams (TEM and high-resolution TEM) with graphene, our application with a focused electron beam is very promising because the STEM mode provides a high precision probe-targeting position [32], which greatly reduces irradiation damage from the electron beam to adjacent regions. In order to remove carbon atoms from the graphene sheet by direct knock-on collision, the minimum incident electron beam energy is 86 keV [33]. Such elastic scattering represents electrostatic deflection of incoming electrons by the Coulomb field of each atomic nucleus. Herein, the graphene sample was manipulated by a 300 keV electron beam. Such high energy electrons break the local carbon–carbon bonding sp2 in the graphene. On one hand, the carbon atom is preferred for displacement within a crystalline specimen; on the other hand, the electron beam sputters the carbon atoms out of their matrix. Such scattering phenomena can be easily detected when observing single or a few layer graphene. The high angle elastic scattering (here in STEM mode) occurred on an atom at the surface of a specimen, and the surface atom leaves the specimen and enters the vacuum. As shown in figure 4, dangling bonds were formed from the original sp2 bonding after local carbon atoms were kicked off. The dangling bonds can attract carbon species from the vacuum onto the surface. Such absorbed random foreign amorphous carbon is used to stabilize the edge [34]. These foreign carbon species assemble along the line scanning direction and are immobilized near the edge. Meanwhile, the Coulomb interaction of incoming electrons with the atomic electrons that surround each nucleus gives rise to inelastic scattering. This leads to the emission of x-rays (here EDX for elemental analysis). The induced radiolysis effects also result in many defects and local disorder in the graphene. It is known that when using a gas precursor in the electron beam induced deposition technique secondary electrons play a critical role in a variety of nanofabrication processes [35–37]. Therefore, the carbon deposition occurred due to secondary electrons.

It is very difficult to characterize the line edge roughness of graphene (such as graphene nanoribbon with zig-zag or armchair edge) by a routine TEM without a spherical aberration corrector; therefore, the line edge roughness of graphene is assumed to be correlated with the amorphous carbon/sp2 carbon interface. Secondary electrons generated in the graphene have an escape length of the order of the graphene thickness. Because of the ultralow secondary electron yield of the graphene [38], more additional foreign carbon atoms influencing the accuracy of the pattern have been largely reduced near the targeting region. Such a reduction in line edge roughness increases the efficiency of writing. Specimen drift during writing also induces the roughness of carbon/carbon interface, which should be minimized during the nanopattern fabrication process. As shown in figure 2(d), the width of the straight written line can be quite uniform at only 2 nm. Such a width of the nanopattern on graphene paper is comparable with the probe size.
Figure 2. (a) Bright field STEM image of graphene. (b) Bright field and (c) HAADF STEM images of the counterpart after writing. The inset in (b) shows the carbon elemental map of the writing pattern marked by the eclipsed area. (d) High-resolution TEM image of local region after writing.

With continuous absorption and the complicated scenarios of electron–atom interaction, carbon deposition continues to increase with scanning time, crosslinking to form amorphous carbon lines along the scanning direction. Therefore, direct writing and drawing on graphene can be realized using controllable carbon deposition. Writing can be conducted in both bright field and HAADF STEM modes. In contrast to the bright field image, the HAADF STEM mode gives enhanced writing contrast as it is sensitive enough to detect a small local change in carbon concentration along the damaged graphene.

STEM writing can be performed from several to tens of seconds, depending on how pristine the sample is and the electron beam current. The electron beam can be tuned in the following aspects: (1) with a larger spot size, the probe current increased, which contributes to the writing efficiency; (2) lowering the magnification enlarges the writing scope at the cost of sacrificing the writing resolution.

Currently there are several emerging approaches for writing on graphene-based materials, e.g. using a catalytic atomic force microscope tip to write on graphene oxide [29], using a Cs-corrected electron beam to achieve sculpting of...
graphene [30], and electron beam induced deposition on graphene by applying a metalorganic gas precursor [28]. Herein the essence of our work lies in a direct writing of sub-10 nm lines on graphene with STEM. It is not necessary to choose any high-end instrument, and a routine microscope can be utilized to easily perform direct writing on the graphene sheet, which is therefore a promising nanotechnology to pattern nanostructures for electronic and sensor applications.

4. Concluding remarks

Direct high precision microscopic writing on graphene was achieved through an EDX line scan with 1 nm probe (probe current $\sim 2 \times 10^{-9}$ A m$^{-2}$) in STEM mode, by the dangling bonds from the local broken sp2 bonds absorbing and incorporating more carbon atoms in the vacuum and on the surface. The formation processes have been elucidated through STEM related microanalysis that probes direct growth of carbon along the electron scan tracing. The graphene preserved its morphology after writing/drawing. It is noted that other hydrocarbon contamination can be occasionally induced on some thin films irradiated under an electron beam. Herein position- and size-controllable writing on graphene in a high-vacuum environment can be easily achieved. These results not only shed new light on an application of graphene concerning the interaction of different forms of carbon but also illuminate the interaction of forms of carbon through an electron beam.

Acknowledgments

The authors have received much help from the referees’ insightful comments and valuable suggestions. Q Zhang acknowledges support from the National Basic Research Program of China (973 Program, 2011CB932602).

Q.4 References

[15] Li X S et al 2009 Large-area synthesis of high-quality and uniform graphene films on copper foils Science 324 1312–4
[18] Pei S F and Cheng H M 2012 The reduction of graphene oxide Carbon 50 3210–28 and references therein
[34] Jia X T, Campos-Delgado J, Terrones M, Meunier V and Dresselhaus M S 2011 Graphene edges: a review of their fabrication and characterization Nanoscale 3 86–95
Queries for IOP paper 463084

Journal: Nano
Author: W Zhang et al
Short title: Direct writing on graphene ‘paper’ by manipulating electrons as ‘invisible ink’

Page 1

Query 1:
Author: Please check the author names and affiliations carefully.

Page 1

Query 2:
We have been provided with ORCID numbers for the authors as below. Please confirm whether the numbers are correct.
 Wei Zhang 0000-0002-6414-7015

Page 1

Query 3:
Author: Please be aware that the colour figures in this article will only appear in colour in the Web version. If you require colour in the printed journal and have not previously arranged it, please contact the Production Editor now.

Page 5

Query 4:
Author: Please check the details for any journal references that do not have a blue link as they may contain some incorrect information. Pale purple links are used for references to arXiv e-prints.

Page 6

Query 5:
Author: [20]: Please provide page/article number.

Page 6

Query 6:
Author: [26]: Please check the page range given here.