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Abstract

From a probabilistic point-of-view, the solution to an inverse problem can
be seen as a combination of independent states of information quantified
by probability density functions. Typically, these states of information are
provided by a set of observed data and some a priori information on the
solution. The combined states of information (i.e. the solution to the in-
verse problem) is a probability density function typically referred to as the
a posteriori probability density function. We present a generic toolbox for
Matlab and Gnu Octave called SIPPI that implements a number of methods
for solving such probabilistically formulated inverse problems by sampling
the a posteriori probability density function. In order to describe the a priori
probability density function, we consider both simple Gaussian models and
more complex (and realistic) a priori models based on higher order statistics.
These a priori models can be used with both linear and non-linear inverse
problems. For linear inverse Gaussian problems we make use of least-squares
and kriging-based methods to describe the a posteriori probability density
function directly. For general non-linear (i.e. non-Gaussian) inverse problems
we make use of the extended Metropolis algorithm to sample the a posteriori
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probability density function. Together with the extended Metropolis algo-
rithm we use sequential Gibbs sampling that allow computationally efficient
sampling of complex a priori models. The toolbox can be applied to any
inverse problem as long as a way of solving the forward problem is provided.
Here we demonstrate the methods and algorithms available in SIPPI. An
application of SIPPI, to a tomographic cross borehole inverse problems, is
presented in a second part of this paper.

Keywords: inversion, nonlinear, sampling, a priori, a posteriori

1. Introduction1

Inverse problems are abundant in almost any type of scientific research2

field. An inverse problem occurs when a set of unknown parameters, that3

describe a physical system, pixel values of an image or some mathematical4

expression, have to be inferred based on indirect observations of these pa-5

rameters. Examples of inverse problems are image debluring, tomographic6

reconstruction, solutions to certain differential equations, or reconstructing7

the earth’s interior based on surface observations. There are several ways to8

solve an inverse problem. In a probabilistic formulation the inverse problem9

can be seen as a way of combining information: Given knowledge about the10

system (differential equation, physical law, or blurring mechanisms), and a11

set of observations (signal intensities, pixel values, gravity field), and some12

prior expectations about the parameters, the goal is to quantify how prob-13

able a number of possible scenarios are of explaining the observations and14

the prior information. A successful probabilistic inversion will, in principle,15

locate all solutions to the problem and assign a probability to each scenario16

given the information at hand.17

2



In this paper we present a Matlab1 toolbox (SIPPI), compatible with Gnu18

Octave2, that can be used to solve inverse problems in a probabilistic formu-19

lation. In this formulation the solution to the inverse problem is a probability20

density function (pdf) referred to as the a posteriori pdf, that describe all21

information available about a system. While the toolbox is generally appli-22

cable to inverse problems, it has been designed specifically for geophysical23

inverse problems, where the model parameters typically describe a 1D-3D24

space, such as for example the subsurface of the earth.25

Initially we lay out the theory of probabilistically formulated inverse prob-26

lems. Then we show how so-called a priori information about the model27

parameters, and uncertainty of data observations can be specified. Finally28

we show how realizations of the a posteriori pdf can be generated using least29

squares based methods, and sampling techniques such as rejection sampling30

and Metropolis sampling.31

In a second part of this manuscript we demonstrate the application of32

SIPPI to a cross borehole traveltime tomographic inverse problem, Hansen33

et al. (this issue).34

2. Probabilistic Inverse Problem Theory35

Consider some data, d, which are indirect measurements of some model36

parameters, m, describing a system, such as for example the subsurface of37

the Earth. Let d and m be related through the function g:38

d = g(m) (1)

1http://mathworks.com/
2http://www.gnu.org/software/octave
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Eq. 1, referred to as the forward problem, can be solved with various degrees39

of accuracy for a number of physical problems.40

Inversion of geophysical data amounts to infer information about the41

model parameters, m, given some data, d, the forward relation between42

model parameters and data, g, and a priori existing knowledge about the43

model parameters. Such an inverse problem can be solved in a variety of44

ways. In this paper we will deal with the general probabilistic formulation of45

inverse problems. Note that many types of deterministic inversion methods46

can be formulated as special cases of the probabilistic inverse theory as we47

consider here.48

Tarantola and Valette (1982b) formulate a probabilistic approach for solv-49

ing inverse problems where all available states of information is described by50

pdfs. The solution to the inverse problem is the pdf that combines known51

states of information. In a typical inverse problem the states of information52

can be described by the a priori pdf and the likelihood function. The a53

priori pdf, ρM(m), describes prior knowledge about the model parameters.54

The likelihood function, L(m), is a probabilistic measure of how well a given55

model m explains observed data.56

The general solution to such a probabilistically formulated inverse prob-57

lem is the a posteriori pdf, which is proportional to the product of the a58

priori pdf and the likelihood function:59

σM(m) = k ρM(m) L(m) , (2)

where the k is a normalization constant and the likelihood is given by60

L(m) =

∫
D
dd

ρD(g(m)) θ(d|m)

µD(d)
(3)
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ρD(d) describes measurement uncertainties, typically related to uncertainties61

in the instrument that records the data. θ(d|m) describes the modelization62

error, i.e. the error caused by using an imperfect forward model g or an63

imperfect parameterization. µD(d) describes the homogeneous state of infor-64

mation that ensures that the parameterization is invariant to changes in the65

coordinate system. For the reminder of the text we shall assume that µD(d)66

can be approximated by a constant. For more details on the homogeneous67

pdf see e.g. Mosegaard and Tarantola (2002).68

The a posteriori pdf describes the distribution of models consistent with69

the combined states of information given by the a priori model and the data.70

The probabilistic formulation of inverse problems allows utilization of the71

movie strategy advocated by Tarantola (2005), who suggest to visualize and72

compare a sample from the a priori pdf and the a posteriori pdf, respectively,73

as movies. The ’prior movie’ will make it apparent what prior choices have74

been made. The difference between the prior and the posterior movie will75

emphasize the effect of using data.76

2.1. The linear inverse Gaussian problem77

Consider a linear forward problem, where the data d is linearly related78

to the model parameters m using the linear operator G, such that d = Gm.79

Let N (a,A) refer to a Gaussian distribution with mean a and covariance A.80

If in addition both the a priori model N (m0,CM), the noise model N (0,Cd)81

and the modelization error N (0,CT ) can be described by a Gaussian pdf,82

then the a posteriori pdf (Eq. 2) can be described analytically by a Gaussian83

pdf, N (m̃, C̃M) (Tarantola and Valette, 1982a):84

m̃ = m0 +CMG
t (GCMG

′ +CD)
−1(d0 −Gm0) (4)
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C̃M = CM −CMG
t(GCMG

′ +CD)
−1GCM (5)

Note that Gaussian measurement errors and modelization errors combine85

through addition of the covariance operators, such that the combined covari-86

ance model is given by CD = Cd + CT . This allows accounting of Gaussian87

modelization errors directly as given in Eqs. 4-5, Tarantola (2005).88

If m̃ and C̃M are available from Eqs. 4-5 then samples from the a posteriori89

pdf can be generated using e.g. Cholesky decomposition of the a posteriori90

covariance model, Eq. 5 in Le Ravalec et al. (2000).91

Sampling the a posteriori pdf of a linear inverse Gaussian problem can also92

be performed using sequential Gaussian simulation without the need for ex-93

plicitly computing m̃ and C̃M, Hansen et al. (2006). Hansen and Mosegaard94

(2008) extend this approach to work with direct sequential simulation. This95

allows a non-Gaussian a priori distribution of model parameters.96

An alternative approach is to use kriging through error simulation, Jour-97

nel and Huijbregts (1978, p. 495), in a co-kriging formulation as proposed by98

Gloaguen et al. (2004,2005). This approach may be faster than the methods99

based on sequential simulation, but is only valid for strictly Gaussian a priori100

models.101

The above mentioned methods rely on the fact that in a linear formula-102

tion, data can be seen as weighed averages of the model parameters. While103

not specifically making the link to inverse problems, such ideas has also been104

explored by Journel (1999) and Gómez-Hernández et al. (2005).105

2.2. The non-linear Inverse problem106

The linear and Gaussian assumptions considered above are convenient107

as they lead to computationally efficient algorithms. However, in reality108
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the inverse problem is typically non-linear and the Gaussian assumption not109

valid. This may lead to severe artifacts in the inversion if the least-squares110

based approaches, as described above, are used. Instead one can use sampling111

techniques to sample the a posteriori pdf.112

Rejection sampling. Perhaps the simplest method to sample the a posteriori113

pdf is the rejection sampler, that can be implemented as follows114

1. Propose a model candidate from the a priori pdf, mpro.115

2. Compute L(mpro)116

3. Accept the proposed model as a realization of the a posteriori pdf with117

probability118

Pacc = L(mpro)/Lmax (6)

where Lmax is the maximum value the likelihood function can obtain. Typi-119

cally the value of Lmax is not known and must be set to 1. The only require-120

ments for using the method is that one must be able to generate independent121

realizations of the a priori pdf and compute the corresponding likelihood.122

The collection of models accepted by the rejection sampling algorithm will123

be a sample of the a posteriori pdf. The main problem with the rejection124

sampler is that it is computationally very inefficient for anything but very125

low dimensional problems.126

The extended Metropolis sampler. Mosegaard and Tarantola (1995) propose127

an extended version of the Metropolis algorithm (Metropolis et al. (1953);128

Hastings (1970)) that allows sampling the a posteriori pdf of an inverse129

problem with, in principle, arbitrary complex a priori information as given130

by Eq. 2. Using the classical Metropolis algorithm one must be able to131
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evaluate the a posteriori probability σM(m) and, hence, typically also the a132

priori probability, in order to evaluate Eq. 2.133

The extended Metropolis algorithm differ from the classical Metropolis134

algorithm in that one does not need to evaluate the a posteriori probability135

σM(m), nor the a priori probability ρM(m) of a given model m. If only an136

algorithm is present that can sample the a priori pdf and a method exist for137

evaluating the likelihood, ρD(g(m)), then the extended Metropolis algorithm138

will sample the a posteriori pdf.139

The extended Metropolis algorithm is a Markov Chain Monte Carlo method140

and can be implemented as a random walk in the space of a priori acceptable141

models as follows. If initially a realization of the a priori pdf is generated as142

mcur, and the associated likelihood L(mcur) is evaluated using Eq. 3, then143

the following algorithm will sample the a posteriori pdf144

1. In the vicinity ofmcur, propose a new model candidate,mpro, consistent145

with the a priori model.146

2. Compute L(mpro)147

3. Accept the proposed model with probability Pacc = min( [ 1 , L(mpro)/L(mcur) ] )148

4. If the proposed model is accepted, then the transition from mcur to149

mpro is accepted, and the proposed model becomes the current model,150

mcur = mpro. Otherwise the random walker stays a location mcur and151

mcur counts again.152

There are only two requirements for running the extended Metropolis al-153

gorithm: 1) One must be able to evaluate the likelihood function, Eq. 3.154

This is most often trivial, even if it may be computationally demanding, as155

it requires one to solve the forward problem and evaluate the correspond-156
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ing data fit given the noise model. 2) One must be able to sample the a157

priori pdf such that aperiodicity and irreducibility is ensured, Mosegaard158

and Sambridge (2002). In addition, it is preferable to be able to control159

the exploratory nature (often referred to as the step length) of the sampling160

algorithm, i.e. step 1 in the above algorithm, which is closely linked to the161

computational efficiency. See Mosegaard and Tarantola (1995) for details on162

the extended Metropolis algorithm.163

The sequential Gibbs sampling algorithm provides such a general way to164

sample complex a priori models, with arbitrary step length ensuring aperiod-165

icity and irreducibility, Hansen et al. (2012). Sequential Gibbs sampling can166

be used with any pdf that can be sampled using sequential simulation, which167

is the case for most of the statistical models developed in the geostatistical168

community over the last decades. The resampling strategy inherent in the169

sequential Gibbs sampler was initially proposed by Hansen et al. (2008), and170

subsequently Irving and Singha (2010) and Mariethoz et al. (2010) proposed171

similar methods. Hansen et al. (2012) demonstrate how the method is simi-172

lar to an application of the Gibbs sampler and show that the method leads173

to a way of sampling the a priori pdf where aperiodicity and irreducibility is174

ensured.175

3. SIPPI176

SIPPI is a Matlab toolbox (SIPPI), compatible with Gnu Octave, that177

can be used to solve inverse problems in the formulation given by Eqs. 2-3 by178

allowing Sampling the solution to Inverse Problems with complex A Priori179

Information.180
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In order to solve a probabilistic framed inverse problem as presented181

previously, one needs (at least) three ingredients: 1) a choice of an a priori182

model, 2) a choice of how to solve the forward problem, and 3) a choice of a183

noise model model that describes the uncertainty of the observed data and184

the modelization error. Once these choices have been made one can solve the185

inverse problem using any of the applicable inversion methods.186

SIPPI provides a generic approach to defining the a priori model and the187

noise model in form of the two data structures prior and data.188

3.1. The a priori model189

All information about the a priori model is defined in the Matlab struc-190

ture called prior, which can specify any number of a priori type of models.191

For example an a priori choice of a 2D Gaussian velocity field can be spec-192

ified in prior{1} and a 1D parameter describing a bias correction can be193

specified in prior{2}. Once the prior has been defined, a realization of the194

corresponding a priori pdf can be generated by calling195

m=sippi_prior(prior);

m is a Matlab structure of the same size as prior. If 3 types of a priori196

models have been defined in prior{1}, prior{2}, and prior{3} then the197

corresponding realizations will be stored in m{1}, m{2}, and m{3}. Consid-198

ering the example above, m{1} will hold a realization of a 2D a priori model,199

while m{2} will hold a realization of a 1D a priori model. For the remainder200

of the text the index im will point to a specific number of a priori model,201

prior{im}.202
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A number of different types of a priori models can be selected using a203

type field to the prior data structure. The following 4 types of a priori204

models are available as part of SIPPI:205

im=1;

prior{im}.type=’GAUSSIAN’;

prior{im}.type=’FFTMA’;

prior{im}.type=’VISIM’;

prior{im}.type=’SNESIM’;

Generalized Gaussian. prior{im}.type=GAUSSIAN’ defines a 1D gener-206

alized Gaussian distribution;207

fgg(m0, σ, p) =
p1−1/p

2σΓ(1/p)
exp

(
− 1

p

|m−m0|p

σp

)
(7)

where p is the norm, σ the variance. fgg is symmetric around m0, the a priori208

mean value. In the limit of p → ∞ fgg will define a uniform distribution. The209

following code defines a 1D Gaussian distribution with mean 10 and standard210

deviation 2211

im=1;

prior{im}.type=’GAUSSIAN’;

prior{im}.m0=10;

prior{im}.std=2;

If not set, the norm is by default set to 2. The following code defines a 1D212

close to uniform distribution in the interval [8,12]213

im=1;

prior{im}.type=’GAUSSIAN’;
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prior{im}.m0=10;

prior{im}.std=2;

prior{im}.norm=60;

A histogram of a sample of size 100000 of these two 1D prior models is shown214

in Figure 1.215

[Figure 1 about here.]216

The FFTMA, VISIM and SNESIM type priors all describe a 1D to 3D a priori217

model defined on a Cartesian grid, which is defined as (for a 3D case)218

im=1;

prior{im}.prior.x=[0:1:10]; % X array

prior{im}.prior.y=[0:1:20]; % Y array

prior{im}.prior.z=[0:1:30] ;% Z array

For a 1D prior only prior{im}.prior.x needs to be defined, and for a 2D219

prior prior{im}.prior.x and prior{im}.prior.y need to be defined.220

Both the FFTMA and VISIM type a priori models describe a multivariate221

Gaussian a priori pdf, which requires the specification of an a priori mean222

and covariance model. The a priori mean m0 can be either a scalar, indicating223

a constant a priori mean model, or a matrix of the size of the a priori model,224

allowing for a varying a priori mean model. The model of spatial variabil-225

ity is defined by a, possibly anisotropic, covariance model (equivalent to a226

semivariogram model) given by the Cm (or equivalent the Va) field. The spec-227

ification of the covariance model uses the same notation as used in Pebesma228

and Wesseling (1998). For example a multivariate Gaussian model defined by229
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a 2D Spherical type covariance model with sill (or variance) 1, a maximum230

correlation length of 10 in the direction west to east (i.e. horizontal), and a231

perpendicular range (i.e. vertical) of 2.5 (hence an anisotropy factor of 0.25)232

and a mean of 10, is given by233

prior{im}.m0=10;

prior{im}.Cm=’1 Sph(10,90,0.25)’;

FFT Moving Average. prior{im}.type=’FFTMA’ defines a spatially cor-234

related multivariate Gaussian a priori model where a priori realizations are235

generated using the FFT Moving Average generator (FFTMA), Le Ravalec236

et al. (2000). The FFTMA algorithm is very efficient for generating uncon-237

ditional realizations from a multivariate Gaussian model. In addition it also238

allows separation of the random component field and the structural parame-239

ters that define spatial correlation. We will discuss the use of this feature in240

more details later.241

A 2D FFTMA type a priori model, on a 200x100 grid, can for example be242

given by243

im=1;

prior{im}.type=’FFTMA’;

prior{im}.prior.x=[0:.1:10]; % X array

prior{im}.prior.y=[0:.1:20]; % Y array

prior{im}.m0=10;

prior{im}.Va=’1 Sph(10,90,.25)’;

Figure 2a shows a set of five realizations from this choice of a priori model.244

[Figure 2 about here.]245
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VISIM. prior{im}.type=’VISIM’ defines a spatially correlated multivari-246

ate Gaussian a priori model where a priori realizations are generated using247

the VISIM algorithm, Hansen and Mosegaard (2008). VISIM can run us-248

ing sequential Gaussian simulation, in which case the model parameters are249

assumed normally distributed. It can also run using direct sequential simu-250

lation, which allows a (non-Gaussian) target distribution to be set that de-251

scribes the a priori distribution of the model parameters, while at the same252

time ensuring that the a priori chosen mean and covariance will be honored.253

An a priori model similar to the one described above for the FFTMA type254

prior, but with an a priori assumption of a bimodal distribution of model255

parameters can be given as256

im=1;

prior{im}.type=’VISIM’;

prior{im}.prior.x=[0:1:10]; % X array

prior{im}.prior.y=[0:1:20]; % Y array

prior{im}.m0=10;

prior{im}.Va=’1 Sph(10,90,.25)’;

% target distribution

N=10000;

prob_chan=0.5;

d1=randn(1,ceil(N*(1-prob_chan)))*.5+8.5;

d2=randn(1,ceil(N*(prob_chan)))*.5+11.5;

d_target=[d1(:);d2(:)];

prior{im}.target=d_target;

Figure 3 shows a set of five realizations from this VISIM type of a priori257

model a) without a specification of a target distribution, and b) using a258
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target distribution. Once [m,prior]=sippi prior(prior) has been called259

once, a data structure will be available as prior{im}.V, which allows access260

to all options available for running the VISIM algorithm. See Hansen and261

Mosegaard (2008) for more details on VISIM.262

[Figure 3 about here.]263

The FFTMA and VISIM type prior models only allow reproducing the first264

two moments of the distribution describing the spatial variability, the mean265

and the covariance (i.e. Gaussian variability between sets of two data points).266

Maximum entropy is implicitly assumed in higher order moments, Journel267

and Zhang (2006). This is the reason why geological structures such as for268

example meandering channels cannot be reproduced by Gaussian statistics.269

To achieve this one can make use of statistical models based on higher order270

moments.271

SNESIM. prior{im}.type=’SNESIM’ defines an a priori model based on272

a higher order statsistical moments (a multiple point statistical model) de-273

scribing spatial variability as inferred from a training image.274

There are several methods that allow sampling from an a priori model275

defined by multiple point statistics. Here, we use the SNESIM algorithm,276

originally developed by Strebelle (2000, 2002), and we make use of the im-277

plementation available in the SGeMS software package, Remy et al. (2008).278

It works by initially extracting a multiple point based statistical model from279

a training image. Then sequential simulation is used to generate realizations280

of this statistical model.281
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Optionally the scaling and rotation field can be speified. prior{im}.scaling=2282

scales the axis of the training image such that spatial structures appears283

twice as large. prior{im}.rotation=45 rotates the training image 45 de-284

grees clockwise.285

A 2D SNESIM type prior with the training image ’channels.ti’ (Figure 4)286

rotated 30 degrees and scaled by a factor of 0.75, with two categories (’0’287

and ’1’), and where the first category ’0’ reflect a model parameter value of288

8, and the second category ’1’ reflect a value of 12, is given by289

im=1;

prior{im}.type=’SNESIM’;

prior{im}.x=[0:.1:10];

prior{im}.y=[0:.1:20];

prior{im}.ti=’channels.ti’;

prior{im}.index_values=[0 1]; % optional

prior{im}.m_values=[8 12]; % optional

prior{im}.scaling=.75; % optional

prior{im}.rotation=30; % optional

Figure 5 shows a set of five realizations from this choice of a priori model.290

Once [m,prior]=sippi prior(prior) has been called, a data structure will291

be available as prior{im}.S which allow access to all options available for292

running the SNESIM algorithm as implemented in SGeMS. See Remy et al.293

(2008) for more details on setting up the SNESIM algorithm.294

[Figure 4 about here.]295

[Figure 5 about here.]296
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Distribution transform. A normal score transform can be defined for any of297

the Gaussian based a priori models, that allow the transformation of the298

normally distributed model parameters to any desired distribution, see e.g.299

Goovaerts (1997). It requires only that the user defines the ’target’ distribu-300

tion, in form of a sample of the target distribution in the d target field. For301

example a bimodal distribution with increased probability of values around302

8.5 and 11.5, can be given by303

N=10000;

prob_chan=0.5;

d1=randn(1,ceil(N*(1-prob_chan)))*.5+8.5;

d2=randn(1,ceil(N*(prob_chan)))*.5+11.5;

d_target=[d1(:);d2(:)];

prior{im}.d_target=d_target;

Note that the number N here reflects the size of the sample generated and304

used to describe the target distribution in the d target field, and can be305

chosen arbitrarily large. The larger the sample, the better accuracy of re-306

flecting a specific distribution. An example of combining this distribution307

transform with the FFTMA type prior used to generate Figure 2a is shown in308

Figure 2b.309

Note that when using the VISIM type prior one can use a target distri-310

bution directly, while ensuring that the chosen a priori covariance model is311

still honored. Using the distribution transform with the FFTMA prior will not312

preserve the properties of the a priori chosen covariance model.313

Randomizing the model of spatial variability. As mentioned for the ’FFTMA’314

prior type model, the structural parameters that describe the a priori model315
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covariance, can be separated from the random number series that defines the316

random component. Therefore, all properties of the covariance model can be317

treated as model parameters, such as scaling and rotation. The properties of318

the model covariance can be perturbed independently of the random number319

series defining the random component, Le Ravalec et al. (2000).320

In order to randomize a specific component of the covariance model, a321

GAUSSIAN type prior model needs to be defined for this component. The name322

of the specific prior model must be either range 1, range 2, or range 3 to323

define the range, or one of ang 1, ang 2, or ang 3 to define the rotation,324

and m0 to define the a priori mean, and sill to define the sill. In addition,325

one must set the prior master field to point the prior model that define the326

prior for the corresponding FFTMA a priori model.327

As an example, consider the FFTMA example used to generate Figure 2a.328

To randomize the maximum correlation length to be close to uniform between329

6 and 14, and randomize the primary rotation angle to be close to uniform330

between 40 and 130 degrees (from north) use331

im=1;

prior{im}.type=’gaussian’;

prior{im}.name=’range_1’;

prior{im}.m0=10;

prior{im}.std=4;

prior{im}.norm=80;

prior{im}.prior_master=3;

im=2;

prior{im}.type=’gaussian’;
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prior{im}.name=’ang_1’;

prior{im}.m0=90;

prior{im}.std=50;

prior{im}.norm=80;

prior{im}.prior_master=3;

im=3;

prior{im}.type=’FFTMA’;

prior{im}.prior.x=[0:1:10]; % X array

prior{im}.prior.y=[0:1:20]; % Y array

prior{im}.m0=10;

prior{im}.Va=’1 Sph(10,90,.25)’;

Figure 2c shows an example of 5 realizations from such an a priori model.332

3.1.1. A random walk in the a priori model space333

To perform a random walk in the prior probability space, as needed by334

the extended Metropolis sampler, we make use of sequential Gibbs sampling,335

Hansen et al. (2012). An application of the sequential Gibbs sampler es-336

sentially amounts to selecting a subset, which can be any subset of model337

parameters, and simulate these conditional to the rest of the model param-338

eters. The number of chosen model parameters in the subset controls the339

exploratory nature (i.e. step-length) of the sequential Gibbs sampler (which340

controls the degree of correlation between successive realizations), and hence341

the efficiency of the extended Metropolis sampler. All properties of the se-342

quential Gibbs sampler is controlled by seq gibbs structure, which is a field343

in the prior data structure. Two different methods for selecting the subset344
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of model parameters for conditional re-simulation have been implemented.345

Box type subset. If prior{im}.seq gibbs.type=1, then a line/rectangle/cube346

of model parameters (for the 1D, 2D and 3D case respectively) is selected347

as the subset used for conditional re-simulation. The width of the box is348

defined by prior{im}.seq gibbs.step. For example a box with dimension349

2x3x4 (in the units of the prior model considered - typically meters) is given350

by prior{im}.seq gibbs.step=[2 3 4]. The center of the ’box’ is chosen351

randomly352

Randomly selected subset. If prior{im}.seq gibbs.type=2, then a randomly353

selected number of the total number of model parameters is selected as354

the subset used for conditional resimulation. The number of data used355

for conditional re-simulation is given by prior{im}.seq gibbs.step. If356

prior{im}.seq gibbs.step is smaller than 1, it is interpreted as a per-357

centage of the total number of model parameters.358

As an example, five iterations of sequential Gibbs sampling can in SIPPI be359

performed using iterative calls to sippi prior as360

[m_current,prior]=sippi_prior(prior);

for i=1:5

[m_proposed,prior]=sippi_prior(prior,m_current);

end

Figures 6 and Figure 7 shows examples of using sequential Gibbs sampling361

with a box type selection and random type selection of model parameters for362

conditional re-simulation, respectively. The a priori model is in both cases363
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the same as the one used to generate the unconditional realizations of Figure364

3. The options for the box type re-simulation is365

prior{im}.seq_gibbs.type=1;

prior{im}.seq_gibbs.step=[4 4];

while the options for the random type re-simulation, with only 0.5 % of the366

total number of model parameter used as conditional data for re-simulation,367

is368

prior{im}.seq_gibbs.type=2;

prior{im}.seq_gibbs.step=0.995;

The sequential Gibbs sampler can be used with the FFTMA, VISIM, and369

SNESIM types a priori models. For the 1D GAUSSIAN type a priori model we370

use an alternate method. Given a current realization of the a priori model, a371

step length between 0 and 1 will generate a new realization of the prior, in the372

vicinity if the current realization. A step length of ’0’ indicates no change,373

while a step length of ’1’ will generate a new unconditional realization of the374

a priori model.375

Figure 8 shows the first 300 iterations when sampling the same a priori376

model as sampled in Figure 1 using a step length of 0.25, prior{im}.seq gibbs.step=0.25.377

After 100000 iterations the histogram of the sampled model parameters re-378

semble that of Figure 1, and is therefore not shown here.379

[Figure 6 about here.]380

[Figure 7 about here.]381

[Figure 8 about here.]382
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3.2. Data, data uncertainties, modelization errors and the likelihood function383

Observed data must be given in the data data structure along with a384

description of the noise model. As for the prior structure, the data structure385

may consist of many types of data, where each data type number id is386

defined in the data{id} structure. Observed data are stored in the d obs387

field. Uncorrelated uncertainty can be given either in the form of standard388

deviation, d std, or variance, d var. A simple data structure with such389

uncorrelated uncertainties can be given by390

id=1;

data{id}.d_obs=[0 3 4]’;

data{id}.d_std=[2 2 2]’;

If the data uncertainties are uncorrelated, the noise model can be described391

by a generalized Gaussian model as defined in Eq. 7, if the norm of the392

generalized Gaussian is set by data{id}.norm. If not specified a Gaussian393

noise model (using a norm of 2) is chosen by default.394

The noise model can also be given in form of a correlated Gaussian model,395

for both the data noise, Cd and the modelization error, CT . The following396

will for example specify a correlated Gaussian noise model:397

id=1;

data{id}.d_obs=[0 3 4]’;

data{id}.Cd=[4 0 .1 ; 0 4 0 ; .1 0 4];

If a Gaussian model for the modelization error, N (dT ,CT ), is available it398

can be specified as399
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data{id}.dt=[0 -1 0]’;

data{id}.Ct=[4 .1 .1 ; .1 4 .1 ; .1 .1 4];

where dT is a bias correction.400

One can choose to consider only a subset of the available data using the401

i use field. To use for example only data number 1 and 3 use402

id=1;

data{id}.d_obs=[0 3 4]’;

data{id}.i_use=[1 3];

Once the data structure has been setup in data, the log-likelihood and403

the likelihood of a given data response d can be computed using404

[logL,L,data]=sippi_likelihood(d,data);

3.3. The forward problem405

The forward problem is naturally problem dependent, and to use SIPPI,406

the user needs to supply the solution to the forward problem, wrapped in407

the m-file sippi forward.m.408

The input to sippi forward.m is the forward, data and prior Matlab409

structures. The forward structure can contain information on how to solve410

the forward problem. The output must be the data obtained by solving the411

forward problem, in form of the data structure d which must be of the same412

length as the data structure, and each entry of d{id} must have the same413

size as data{id}.d obs, or the size of data{id}.i use if a data subset is414

specified.415

As an alternative for providing sippi forward, one can provide a generic416

name for the m-file solving the forward problem by setting forward.forward function.417
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Part 2 of this paper will provide an example of setting up sippi forward.m,418

Hansen et al. (this issue).419

When the forward model has been setup, the process of generating an420

unconditional realization of the a priori model, m, followed by solving the421

forward problem and computing the likelihood of m can be done using422

m=sippi_prior(prior);

d=sippi_forward(m,forward,prior,data);

logL=sippi_likelihood(d,data);

In the specific case where the forward relation is linear, the linear forward423

operator must be specified as the matrix G424

forward.G

such that the forward problem can be solved using d{1}=forward.G * m{1}.425

3.4. Sampling the a posteriori pdf426

When the forward problem, sippi forward, and the prior, data, and427

forward data structures have been defined, the a posteriori pdf can be sam-428

pled using the rejection sampler or the extended Metropolis sampler in the429

general non-linear case. In the linear Gaussian case, least-squares based in-430

version can be utilized.431

3.5. Rejection sampling432

Simple rejection sampling, using 30000 iterations, of the a posteriori433

pdf can be performed using434

options.mcmc.nite=30000;

sippi_rejection(data,prior,forward,options);

24



By default the Lmax = 1, see Eq. 6. This can be manually changed by435

providing the options.mcmc.Lmax.436

3.5.1. Metropolis sampling437

All available a priori model types and noise models in SIPPI work seam-438

lessly as part of the extended Metropolis algorithm. The extended Metropolis439

sampling algorithm can be applied using440

options=sippi_metropolis(data,prior,forward,options);

The options structure define some properties of how the Metropolis algo-441

rithm will run.442

options.mcmc.nite determines the number of iterations of the extended443

Metropolis algorithm. options.mcmc.i sample sets how often the current444

model is saved to disc, measured in number of iterations. options.mcmc.i plot445

sets number of iterations between updating figures showing the progress of446

the algorithm. If any of these parameters are not set, the following values447

will be chosen by default448

options.mcmc.nite= 30000;

options.mcmc.i_sample= 500;

options.mcmc.i_plot: 50

Perturbation strategy. The choice of the number of model parameters to be449

perturbed in each iteration of the extended Metropolis algorithm can have450

large impact on its computational performance. By default a random type451

of model parameter is perturbed in each iteration. Thus if 3 types of a priori452

models have been specified in prior{1}, prior{2}, and prior{3}, the prob-453

ability of perturbing each individual type of prior model in each iteration is454
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1/3. This default behaviour can be changed by choosing a perturbation strat-455

egy. options.mcmc.pert strategy.i pert selects the number of a prior456

model types to perturb, and options.mcmc.pert strategy.i pert freq set457

the relative frequency of each selected type of prior model. Thus, to perturb458

prior model 1 and 3 (but never model 2), such that prior model 3 is perturbed459

9 times as often as prior type 1, one could use460

options.mcmc.pert_strategy.i_pert=[1 3];

options.mcmc.pert_strategy.i_pert_freq=[1 9];

Automatic adjustment of the exploration rate (step length). The exploratory461

nature of the Metropolis sampling algorithm, controlled by the ’step length’,462

has large impact on its computational demands. A small step-length pro-463

vides a dense local sampling, but the algorithm will use many iterations to464

move away from the initial point, i.e. a less exploratory algorithm. A large465

step length will lead to a very exploratory sampling algorithm that will not466

get trapped in local minima, but many models that are proposed will be467

rejected. Gelman et al. (1996) argues that a step-length leading to an ac-468

ceptance rate in the Metropolis sampler of about 20-40% will lead to a good469

compromise between exploration and rejection rate. SIPPI allows auto-470

matic detection of the step length leading to an acceptance rate specified by471

prior{im}.seq gibbs.P target, using the method given by Cordua et al.472

(2012). Note that the Metropolis sampler will not sample the a posteriori473

pdf correct until the step-length is fixed, and unchanged. Therefore one can474

set the number of initial iterations in which adjustment of the step length475

is allowed using prior{im}.seq gibbs.i update step max. After this, ac-476

tual sampling of the a posteriori pdf will start, if the algorithm has reached477
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burn-in. prior{im}.seq gibbs.i update step sets the number of itera-478

tions between updating the step length. prior{im}.seq gibbs.step min479

and prior{im}.seq gibbs.step max determine the minimum and maximum480

allowed step length.481

The default choice of the step length is to use infinitely long step-length,482

resulting in a prior sampler generating statistically independent realization483

of the prior in each iteration.484

As an example, a preferred acceptance ratio of 0.3, adjusted in the first485

1000 iterations, allowing step lengths in the interval 1 to 100 (using type 1486

data subset), can be specified using:487

prior{im}.seq_gibbs.type=1;

prior{im}.seq_gibbs.step_min=1;

prior{im}.seq_gibbs.step_max=100;

prior{im}.seq_gibbs.step=100;

prior{im}.seq_gibbs.i_update_step_max=1000;

prior{im}.seq_gibbs.P_target=0.3;

3.5.2. Linear Gaussian inverse Problems488

In the specific case where the forward problem is linear, and the a priori489

model Gaussian, as defined by the VISIM of FFTMA type a priori model, the490

a posteriori pdf can be sampled directly without the need for the Metropolis491

algorithm using492

[m_reals,m_est,Cm_est]=

sippi_least_squares(data,prior,forward,n_reals,lsq_type);

n reals sets how many a posteriori realizations, as output in m reals, that493

are generated. lsq type determines the method used to solve sample the a494
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posteriori pdf. m est and Cm est are the a posteriori mean and covariance495

as given by Eq. 5, and are only available if least squares types of inversion is496

performed.497

Three methods described previously, are available to generate samples498

of the a posteriori pdf, and can be selected by setting the the lsq type499

argument when calling sippi least squares.500

lsq type=’lsq’ use classical least-squares inversion where the complete501

Gaussian a posteriori pdf can be analytically derived in form of a posteriori502

mean and covariance of Eqs. 4-5. Then Cholesky decomposition of the a503

posterior covariance is used to generated realizations of the a posteriori pdf.504

lsq type=’error sim’ make use of kriging simulation through error sim-505

ulation to generate a sample of the a posteriori pdf, Journel and Huijbregts506

(1978); Gloaguen et al. (2005a,b); Hansen and Mosegaard (2008).507

lsq type=’visim’ make use of the VISIM algorithm for sampling the508

a posteriori pdf, Hansen and Mosegaard (2008). The type of prior model509

must be chosen as a VISIM type prior model. If the target distribution is510

set as prior{im}.target then VISIM runs as a direct sequential simulation511

algorithm. If it is not set, VISIM will run as a sequential Gaussian simulation512

algorithm.513

4. Conclusions514

A generic Matlab and Gnu Octave toolbox for sampling the a posteriori515

pdf of linear and non-linear inverse problems has been presented. Prior in-516

formation about the model parameters can be described by any number of517

the following types of a priori models: 1) 1D arbitrarily distributed pdf, 2)518
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1D-3D multivariate Gaussian pdf as sampled using the FFTMA method, 3)519

1D-3D multivariate Gaussian model as sampled using the VISIM algorithm520

(utilizing both sequential Gaussian simulation and direct sequential simula-521

tion), or 4) 1D-3D multiple-point based statistical models as sampled using522

the SNESIM algorithm.523

For linear Gaussian inverse problems the a posteriori pdf can be sampled524

using 1) traditional least squares inversion combined with Cholesky decom-525

position of the a posteriori covariance, 2) sequential Gaussian simulation, 3)526

direct sequential simulation and 4) Gaussian simulation through error simu-527

lation.528

For non-linear and non-Gaussian inverse problems the a posteriori pdf can529

be sampled using the rejection sampler or the extended Metropolis sampler.530

The computational efficiency of the extended Metropolis sampler can be con-531

trolled by using a flexible perturbation mechanism, based on sequential Gibbs532

sampling, allowing arbitrary long or short step length. The choice of the step533

length can optionally be automatized.534

The combination of the FFTMA method with the extended Metropolis535

algorithm allows treating the properties describing the Gaussian a priori536

model, to be treated as model parameters, and thus inferred as part of the537

inversion.538
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Figure 1: Histogram of 100000 unconditional realizations from a generalized Gaussian,
GAUSSIAN type prior model with norm 60 and 2.
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Figure 2: Unconditional realizations from a FFTMA type priori model with a) Gaussian
distribution, b) target distribution, and c) random structural parameters (range and ro-
tation).
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Figure 3: Unconditional realizations from a VISIM type a priori model with with a) Gaus-
sian distribution, b) target distribution.
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Figure 4: Example of a training image for use with the SNESIM type a priori model.
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Figure 5: Unconditional realizations from a SNESIM type a priori model.
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Figure 6: top) Random walk using sequential Gibbs sampling with box type re-simulation,
and the VISIM type a priori model. bottom) Black pixels indicate the model parameters
that are simulated conditional to the value of the model parameters indicated by pixels.
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Figure 7: top) Random walk using sequential Gibbs simulation with random choice of
model parameters for resimulation, and the VISIM type a priori model. bottom) Black
pixels indicate the model parameters that are simulated conditional to the value of the
model parameters indicated by white pixels.
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Figure 8: The first 300 realizations from the GAUSSIAN type a priori model with a mean
of 10, and a norm 60 and 2 respectively, using a step length of 0.25.
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