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Abstract

We present an application of the SIPPI Matlab toolbox, to obtain a sam-
ple from the a posteriori probability density function for the classical tomo-
graphic inversion problem. We consider a number of different forward models,
linear and non-linear, such as ray based forward models that rely on the high
frequency approximation of the wave-equation and ’fat’ ray based forward
models relying on finite frequency theory. In order to sample the a poste-
riori probability density function we make use of both least squares based
inversion, for linear Gaussian inverse problems, and the extended Metropo-
lis sampler, for non-linear non-Gaussian inverse problems. To illustrate the
applicability of the SIPPI toolbox to a tomographic field data set we use a
cross-borehole traveltime data set from Arrenæs, Denmark. Both the com-
puter code and the data is released in the public domain using open source
and open data licenses. The code has been developed to fascilitate inversion
of 2D and 3D travel time tomographic data using a wide range of possible a
priori models and choices of forward models.
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posteriori

1. Introduction1

Tomographic inversion is used in many research fields such as geophysics2

and medical imaging. With this technique, images of an unknown 3D object3

can be obtained based on indirect observations from outside of the object.4

One such example is travel time inversion, that can for example be used to5

map the internal velocity structure of the earth, based on recordings of the6

arrival times of certain seismic phases generated as part of e.g. an earth-7

quake. Another example of a tomographic data set, is that obtained by8

measuring the travel time delay of a seismic or electromagnetic wave trav-9

elling between a source and a receiver. Given such a set of observed travel10

time data the tomographic inverse problem consists of inferring information11

about the velocity around and in-between the sources and receivers. It is this12

latter problem that we will address here using the SIPPI toolbox, which is a13

Matlab toolbox for sampling the solution to inverse problems with complex14

a priori information, Hansen et al. (this issue).15

We will specifically address the problem of first arrival travel time inver-16

sion using crosshole ground-penetrating radar (GPR) data. Such travel time17

data are sensitive to the subsurface variations in electromagnetic wave veloc-18

ity, that is related to the dielectric permittivity, which is strongly influences19

by water moisture, Topp et al. (1980). Inversion of such travel time data20

thus has the potential to map subsurface moisture content.21

For linear or weakly non-linear inverse problems least squares based meth-22

ods are widely applied. Deterministic least squares methods is presented by23
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e.g. Menke (1989), while a probabilistic approach is given by e.g. Tarantola24

and Valette (1982) and Tarantola (2005).25

A probabilistic approach to linear travel time tomography, based on se-26

quential simulation, was proposed by Hansen et al. (2006) and Hansen and27

Mosegaard (2008) who utilized the equivalence of classical least squares in-28

version (e.g. Tarantola and Valette, 1982) and kriging (e.g. Journel and29

Huijbregts, 1978). An application of this approach to crosshole georadar30

data is given in Nielsen et al. (2010). A related method based on kriging31

through error simulation (Journel and Huijbregts, 1978), equivalent with the32

probabilistic least squares approach, was proposed and applied to cross hole33

GPR tomographys by Gloaguen et al. (2005a,b). Recently this approach was34

applied for inversion of an anisotropic velocity field, Giroux and Gloaguen35

(2012). These methods are only strictly valid for linear inverse problems,36

and rely on an inherent assumption of Gaussian statistics describing both37

the noise model and the a priori model. Specifically the a priori model must38

be given in form of a Gaussian a priori model defined by a mean and a co-39

variance model. Choosing such a Gaussian prior model may not be trivial.40

A number of methods have been developed to estimate this model prior to41

inverting the data (Asli et al. (2000); Hansen et al. (2008a); Irving et al.42

(2009); Looms et al. (2010)).43

For examples of least squares based deterministic tomographic inversion44

of GPR cross hole data see e.g. Irving et al. (2007) and Dafflon et al. (2011).45

Examples of stochastic inversion is presented for inversion of time lapse cross46

hole 1D travel time data by Scholer et al. (2012) and 2D time lapse electrical47

resistivity data by Irving and Singha (2010). Hansen et al. (2008b) demon-48
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strate an application of the extended Metropolis sampler (Mosegaard and49

Tarantola, 1995) to a nonlinear cross hole tomographic problem, where the50

a priori model is non-Gaussian and defined by any geostatistical method.51

Here we will demonstrate the use of the SIPPI Matlab toolbox for solving52

the crosshole traveltime tomography inverse problem in a probabilistic frame-53

work. Initially we will briefly describe the theory describing different linear54

and non-linear solutions to the forward problem of computing the travel time55

delay between a propagating wave traveling between a source and a receiver.56

Then we will demonstrate how these forward models can be utilized with57

SIPPI. We will then make use of a reference data set obtained at Arrennæs,58

North Sealand, Denmark, to demonstrate all the inversion methods available59

in SIPPI, such as classical least squares estimation and simulation, and sam-60

pling methods such as the rejection sampler and the extended Metropolis61

sampler, see Hansen et al. (this issue).62

2. Theory, first arrival travel time computation63

The travel time delay of a propagating wave between a source and a64

receiver can be defined in a number of ways. We will consider methods65

based on the eikonal equation, 1st order sensitivity kernels and the Born66

approximation.67

2.1. The eikonal equation68

The eikonal equation describes the arrival time along a closed curve, u(x),69

travelling with the speed defined by the velocity field, m(x) (Sethian and70

Popovici, 1999)71

| ∇u(x) | m(x) = 1 (1)
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Solving Eq. 1 allows locating the travel time, d, between a source and a re-72

ceiver along the closed curve. To solve the eikonal equation we make use of an73

efficient implementation of the multistencil fast marching method proposed74

by Hassouna and Farag (2007), and made available by Dirk-Jan Kroon1 un-75

der an open source license. This forward model is non-linear and, as the76

eikonal equation corresponds to a high frequency approximation to the wave77

equation. Therefore it is often referred to as the high frequency ray approx-78

imation.79

2.2. Forward models based on 1st order sensitivity kernels80

The travel time d between a source and a receiver can be given by81

d =

∫
G(x)

1

m(x)
dx (2)

where m(x) is the velocity field in which the signal travels. G(x) is the sen-82

sitivity kernel that describes the sensitivity of each model parameter (within83

the Fresnell zone) to the travel time. G(x) can be computed under a wide84

range of assumptions and thus defines the forward problem of computing the85

travel time delays in different ways.86

2.2.1. Ray based forward model87

Using the high frequency approximation to the wave equation results88

in a sensitivity kernel G(x) that can be described by a ray connecting the89

source and receiver. Hence, this kernel can be obtained by solving the eikonal90

1http://www.mathworks.com/matlabcentral/fileexchange/24531-accurate-fast-

marching
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equation, which provides the fastest possible forward model. We will refer91

to this type of forward model as ray based.92

2.2.2. Fat ray based forward model93

Using a finite frequency (band limited) approximation to the wave equa-94

tion leads to a sensitivity kernel where the sensitivity of the travel time delay95

also appears in a zone around the fastest ray path. A number of works have96

defined sensitivity kernels based on geometrical rules assigning sensitivity97

within the first Fresnel zone. Forward models based on these types of ker-98

nels will be referred to as fat ray based forwards (Husen and Kissling, 2001;99

Jensen et al., 2000).100

2.2.3. Born based forward model101

The Born approximation to the wave equation (considering only 1st or-102

der scattering) is an exact analytical expression for the sensitivity kernel103

for a point source, which can be derived for both seismic (Dahlen et al.,104

2000; Spetzler and Snieder, 2004; Marquering et al., 1999; Liu et al., 2009)105

and electromagnetic wave propagation (Bursink et al., 2008). The Born ap-106

proximation also leads to a senstivity kernel with sensitivity outside the ray107

approxiamtion (i.e. a fat ray). The Born approximation is only strictly valid108

for a homogeneous velocity field, but have in practice been used also when109

the velocity field has relatively small velocity contrasts. For large velocity110

contrast this method becomes unstable and cannot be used. Forward models111

based on the Bron approximation will be referred to as Born based forward112

models.113
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3. Cross hole GPR tomography at Arrenæs114

As a case study we will demonstrate the capabilities of SIPPI for solving115

tomographic inverse problems. The implementation is generally applicable116

for travel time based tomographic problems, but here we will apply the tool-117

box to a cross hole GPR tomographic problem.118

Initially we will present a 3D data set. Then we will demonstrate how the119

the different types of forward models have been implemented in sippi forward traveltime120

for easy utilization as part of SIPPI. Finally we demonstrate the use of121

SIPPI to solve the GPR cross hole tomography inverse problem using both122

linear and non-linear forward models, and simple and more complex a priori123

models.124

3.1. Data : 3D GPR Crosshole traveltime data from Arrenæs125

As a reference data set we consider a 3D tomographic data set recorded as126

part of a ground penetrating radar (GPR) cross borehole survey at Arrenæs,127

North Sealand, Denmark. The data set we use here is identical to data128

presented by Looms et al. (2010), and is here made available in the public129

domain.130

The observed data are first arrival times of electromagnetic waves propa-131

gating from a source location in one borehole to a receiver location in another132

borehole. Thus, the forward problem consists of estimating the travel time133

delay caused by the subsurface velocity field, given the recording geometry.134

The inverse problem is then to infer information about the subsurface velocity135

structure.136

The subsurface at Arrenæs consists mostly of sand, with various degree137
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of coarseness. The velocity of the subsurface is believed to represent natural138

moisture content. The lower the velocity the higher the moisture content,139

Topp et al. (1980).140

Figure 1 shows the relative position of four boreholes, AM1, AM2, AM3,141

and AM4. Tomographic travel time delay have been recorded between bore-142

holes AM1-AM3 and AM2-AM4, respectively. The locations of the source143

and receiver positions down through the boreholes are shown in Figure 1 and144

is marked by red dots in two of the boreholes. Note that the coloured ray145

like structure on Figure 1 reflect the high frequency ray kernel ralated to a146

constant velocity model. The colours of each ray reflect the average velocity147

along each of the rays, and can be used as a rough indicator of the subsurface148

velocity structure.149

[Figure 1 about here.]150

Data are available as ASCII and binary Matlab formatted files for both151

the two 2D data sets, AM13 data and AM24 data, and the combined 3D data152

set, AM1234 data that combines the data sets AM13 data and AM24 data .153

The Matlab mat files contain the location of the sources and receivers154

in the S and R variables. Observed data is in the d obs variable and the155

associated uncertainty (in form of the standard deviations) is in the d std156

variable. A covariance model describing static like errors related to cross157

borehole GPR data, as given by Cordua et al. (2009), is available in the Ct158

variable.159
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3.2. The forward model - traveltime computation160

As described in Hansen et al. (this issue), the only problem dependent161

part of using SIPPI is the implementation of a solution to the forward prob-162

lem. We have implemented the m-file sippi forward traveltime that can163

be used to solve the forward problem of computing the travel time delay164

between a set of sources and receivers. All properties relating to solving the165

forward problem is defined in the forward Matlab structure. The output is166

the data structure d:167

[d]=sippi_forward_traveltime(m,forward,prior,data);

To make this solution of the forward problem available for the various in-168

version algorithms available in SIPPI, one can either implement an m-file169

sippi forward that simply calls sippi forward traveltime, or one can170

specify the m-file to be used for solving the forward problem directly using171

forward.forward function=’sippi forward traveltime’. Note that this172

m-file and the specification of the forward structure is specific to the tomo-173

graphic travel time inverse problem, while all other parts of the SIPPI toolbox174

are applicable to inverse problems in general.175

Source and receiver geometry. The locations of the sources and receivers must176

be provided in the forward.sources and forward.receivers fields. Both177

the sources and receivers must point to a matrix with a number of rows178

equal to the number of rows (i.e. number of data) of data{id}.d obs, and a179

number of columns reflecting the dimension of the prior model. For example,180

two sets of sources and receivers defined in 3D could be given by181
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forward.sources=[1 1 5 ; 1 1 10];

forward.receivers=[5 5 5 ; 5 5 10];

Forward model. Four types of forward models are available through sippi forward traveltime182

by specifying the forward.type field to one of eikonal, ray, fat, or born.183

forward.type=’eikonal’ defines a forward model based on the solution184

to the eikonal equation, Eq. 1. This forward model is non-linear.185

The other three available forward model types, ray, fat, and born, refer186

the the ray, fat and Born based sensitivity kernels presented earlier. When187

sippi forward traveltime is called using any of these types of forward188

models, a matrix operator, reflecting the choice of forward model, is com-189

puted as forward.G.190

One can choose either a linear or non-linear formulation for solving such191

forward problems by specifying the forward.linear field. By default a non-192

linear formulation is assumed, such that forward.linear=0. This cause193

forward.G to be recalculated for each call to sippi forward traveltime.194

Different velocity models will result in different sensitivity kernels, and hence195

different forward operators, forward.G. Therefore the forward problem is196

non-linear.197

One can also choose a linear formulation, using forward.linear=1. In198

this case forward.G is only computed once, when sippi forward traveltime199

is called for the first time, and hence any subsequent calls to solve the for-200

ward model requires only a fast matrix multiplication. One can provide201

a velocity model for which the sensitivity kernel will be computed using202

forward.linear m. If this is not specified the sensitivity kernel will be com-203

puted for the a priori mean model, given in prior{1}.m0.204
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forward.type=’ray’ selects the high frequency ray approximation pre-205

sented earlier. This type of forward model is based on the same high fre-206

quency assumption as the eikonal type forward model. The difference is207

that here the forward operator forward.G is explicitly computed, which al-208

lows for a very fast forward model using forward.linear=0. If one would209

consider using the ray type forward model in a non-linear formulation, we210

suggest to use the eikonal type of forward model instead, which provides211

similar results but is computationally much more efficient. Used in the linear212

formulation this type forward model resemble the ’straight ray’ approxima-213

tion, as the the travel delay is due to the travel time delay along straight ray214

path that connects the source and receivers. The ’rays’ on Figure 1 reflect215

such a linear ’ray’ type forward model.216

forward.type=’fat’ selects a finite frequency (band limited) approxi-217

mation to the wave equation, where the travel time delay i sensitive to a zone218

around the fastest ray path. Specifically the fat type forward model uses219

the empirical description of the travel time sensitivity kernel as proposed by220

Jensen et al. (2000), which is based on 1st order Fresnel zone sensitivity. The221

fat type forward model can be used both as linear and non-linear forward222

model.223

forward.type=’born’ selects a forward model based on the Born ap-224

proximation as presented earlier. Here we will make explicit use of the for-225

mulation of the sensitivity kernels given by Buursink et al. (2008). The born226

type forward model is only strictly valid for a homogeneous velocity field, but227

have in practice been used also when the velocity field has relatively small228

velocity contrasts. For large velocity contrasts this method becomes unstable229
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and should not be used.230

Using either forward.type=’fat’ or forward.type=’born’ the width231

of the sensitivity around the ray path, is related to the frequency of the232

propagating wave. Therefore this frequency must be set as forward.freq.233

The frequency must be specified in the inverse unit of the observed travel234

time data given in data{id}.d obs.235

As an example of choosing the fat type forward model in a non-linear236

formulation using a wavelet frequency of 0.1 GHz, where traveltime data is237

measured in nanoseconds, is238

forward.type=’fat’;

forward.freq=0.1;

forward.linear=0;

3.3. Solving the inverse problem239

Having defined the forward problem, we will demonstrate the methods240

available in SIPPI for solving the inverse tomographic problem.241

3.3.1. 2D non-linear inversion - AM13242

Initially we will consider the 2D traveltime data set, AM13, recorded be-243

tween well AM1 and AM3, using a simple Gaussian type a priori model. 702244

travel time data and the position of associated source and receiver locations245

is available in the Matlab file AM13 data.mat. To use SIPPI, the forward,246

data, and prior structures need to be defined.247

Setting up the forward structure. We use the high frequency ray approxi-248

mation, in form of the eikonal type forward model, such that the forward249

data structure can be setup using250
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D=load(’AM13_data.mat’);

forward.sources=D.S;

forward.receivers=D.R;

forward.type=’eikonal’;

Setting up the data structure. The high frequency approximation, assumed251

by using the eikonal solution, will always provide the fastest travel time252

between a source and a receiver, and always faster than the travel time253

of a wave with a finite finite frequency in a inhomogeneous velocity field.254

Therefore we allow for a small modelization error, Ct, in form of a constant255

correlated Gaussian error of 1 ns2 between all data. This will allow a small256

bias correction (the same for all data observations) to account for the relative257

high travel times caused by the use of the high frequency forward model. The258

data in form of 702 observed traveltimes, d obs, and associated uncorrelated259

uncertainties, d std (of 0.7 ns), is available in the Matlab file AM13 data.mat.260

The data structure can be setup as261

D=load(’AM13_data.mat’);

id=1;

data{id}.d_obs=D.d_obs;

data{id}.d_std=D.d_std;

data{id}.Ct=1; % modelization error

SIPPI allows using only a subset of the available data, which can be use-262

ful to test a certain setup relatively fast. The number of data consid-263

ered is given by data{id}.i use. To use every 20th data one could use264

data{id}.i use=20:20:702. If not set it is automatically set to all data. In265

the current case this will be data{id}.i use=1:1:702.266
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Setting up the prior structure. Looms et al. (2010) demonstrate a method267

for inferring the structural parameters of a Gaussian type a priori model.268

They tested their method on the data we use here and find an optimal a269

priori model for profile AM13 and AM24 independently. Initially we will270

make use of the same a priori model for both profile AM13 and AM24 and,271

therefore, based on the findings in Looms et al. (2010), we choose to use a272

Gaussian type a priori model as defined by a Spherical type covariance model273

with an isotropic covariance model with a range of 6m, a variance of 0.0003274

m2/ns2, and a mean of 0.145 m/ns. We make use of the FFTMA type a priori275

model. The complete definition of the a priori model can then be given as276

im=1;

prior{im}.type=’FFTMA’;

prior{im}.name=’Velocity (m/ns)’;

prior{im}.m0=0.145;

prior{im}.Va=’.0003 Sph(6)’;

prior{im}.x=[-1:.2:6];

prior{im}.y=[0:.2:13];

A sample of the corresponding a priori model can then be generated and277

visualized using sippi plot prior sample(prior) as shown in Figure 2a.278

[Figure 2 about here.]279

Sampling the a posteriori pdf using the extended Metropolis algorithm. Given280

the forward, prior, and data structures the extended Metropolis algorithm281

can be setup and run using e.g.282
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options.mcmc.nite=500000;

options.mcmc.i_plot=200;

options.mcmc.i_sample=250;

sippi_metropolis(data,prior,forward,options);

This will cause the extended Metropolis sampler to run for 500000 iterations.283

The currently visited model will be saved to disk for every 250 iterations as284

specified by options.mcmc.i sample285

As the Metropolis algorithm is running, some properties are visualized286

for every options.mcmc.i plot iterations, such as the currently accepted287

model, the step length for each prior type, and the log-likelihood curve. Such288

figures are often useful in the phase where the properties of the Metropolis289

algorithm are selected, prior to performing a full sampling.290

Figure 3 shows the log-likelihood value as function of the iteration num-291

ber. The Metropolis algorithm has reached burn-in after about 2000 itera-292

tions as it reaches the plateau of log-likelihood values of approximately -90.293

[Figure 3 about here.]294

Recall that the way the sequential Gibbs sampler works, is controlled by295

the prior{1}.seq gibbs structure, Hansen et al (this issue). Here we make296

use of the default settings297

prior{1}.seq_gibbs.i_update_step=50

prior{1}.seq_gibbs.i_update_step_max=1000

prior{1}.seq_gibbs.P_target=0.3000

This means that the step length of the Metropolis sampler is adjusted for298

every 50 iterations with the goal of achieving an acceptance rate of 0.3. After299

1000 iterations the step length will be kept constant.300
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Figure 4 shows the step length of the sequential Gibbs sampler as well301

as the acceptance rate in the first 3000 iterations. In the first 1000 it-302

erations the step length is allowed to vary, and after 1000 iterations the303

step length stabilize around 10−3. Initially the acceptance rate is about304

0.2. Then it decreases rapidly until the step length is gradually adjusted,305

such that the acceptance rate ends up around 0.3, just as requested by306

prior{1}.seq gibbs.P target. Recall that while the step length is be-307

ing changed, and until the Metropolis algorithm has reached burn-in, the a308

posteriori pdf is not sampled, Cordua et al. (2012).309

[Figure 4 about here.]310

Figure 2b shows 5 independent realizations of the a posteriori pdf, obtained311

after the Metropolis algorithm has reached burn-in. Comparing the realiza-312

tions of the a posteriori pdf to the realization of the a priori pdf, Figure 2a,313

reveals that the apparent scales and spatial structures visible in the a priori314

realizations are also present in the a posteriori realizations. The location of315

these structures is not resolved in the a prior realizations. But in the a pos-316

teriori realizations it is clear that relative high velocity structures dominate317

in the lower right corner while areas of lower velocity dominate the upper318

part of the model. Features such as these, that appear on many realizations319

of the a posteriori pdf are well resolved features, Mosegaard (1998).320

Once the extended Metropolis sampler has finished a number of plots for321

quality control can be generated using sippi plot posterior. First a figure322

visualize a sample of the a posteriori pdf, as in Figure 2a. Second, a figure323

shows the acceptance ratio and step length as a function of iteration number,324

16



as in Figure 4. Third, a figure shows the distribution of data residuals, i.e. the325

difference between observed and simulated travel time data, corresponding326

to number a realizations of the a posteriori pdf, as in Figure 5. Note how the327

distribution is very close to Gaussian, as defined in the noise model. Note328

also how the distribution is not entered around 0 ns, but has a mean value329

(i.e. a bias) of about -1.5 ns. This is due to allowing a constant modelization330

error of 1 ns2, that was applied in order to account for the use of the eikonal331

type forward model, that will always provide the fastest possible travel time332

between a source and a receiver. This is correctly reflected in the negative333

bias correction.334

[Figure 5 about here.]335

Finally sippi plot posterior provides a figure that illustrates the cor-336

relation coefficient of the currently accepted model in the last iteration to337

any of the other models sampled from the a posteriori pdf. This is used to338

estimate the number of iterations between independent realizations of the339

a posteriori pdf, e.g. Cordua et al. (2012). An example generated for the340

present example, is shown in Figure 6. The correlation coefficient between341

the current model at iteration 500000 and the models close to iteration num-342

ber 500000 is close to 1, and such models are not statistically independent.343

However, in a number of iterations away from the last considered model, the344

correlation coefficient decreases, until it reached a level of around 0.7. We use345

this level of the correlation coefficient to determine the approximate number346

of iterations between independent realizations of the a posteriori pdf obtained347

by the Metropolis algorithm. For the present case this was estimated to be348

around 10000 iterations between independent realizations.349
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[Figure 6 about here.]350

Sampling the a posteriori pdf using the rejection sampler. Sampling the a351

posteriori pdf for the tomographic inverse problem using rejection sampling,352

can in principle be performed using353

options.mcmc.nite=500000;

sippi_rejection(data,prior,forward,options);

The maximum a posteriori likelihood Lmax is set to 1, if not, as here, specif-354

ically set using options.mcmc.Lmax, see Hansen et al. (this issue). Figure355

7 (green bars) shows a histogram of the likelihood of all the a posteriori ac-356

cepted models using the extended Metropolis algorithm as considered above.357

The log-likelihood distribution of a posteriori accepted models is in the inter-358

val -105 to -75. However, the blue line indicates the maximum log-likelihood359

of -824 obtained after generating 500000 independent realizations of the a360

priori pdf and evaluating the corresponding log-likelihood as part of running361

the rejection sampler. Thus, the ’best’ model found after 500000 realizations362

is very far from leading to a data fit within data uncertainties. Even if Lmax363

could somehow be chosen around -68 (as indicated by the log-likelihood val-364

ues of the accepted a posteriori models obtained from Metropolis sampling)365

the probability of locating just one realization from the a posteriori pdf using366

independent sampling of the a priori pdf, will be extremely low. The main367

problem with the rejection sampler is that it is computationally very ineffi-368

cient for anything but very low dimensional problems. In general we suggest369

to make use of the extended Metropolis sampler to sample the a posteriori370

pdf of non-linear non-Gaussian inverse problems.371
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[Figure 7 about here.]372

Sampling the a posteriori pdf using least-squares. As discussed in Hansen et373

al. (this issue), if the forward problem is linear, and a linear forward map-374

ping operator given as forward.G is provided, then the a posteriori pdf can375

be sampled using least squares, kriging through error simulation or direct se-376

quential simulation. Here we will consider using classical least squares type377

inversion, using lsq type=’lsq’. We will use exactly the same specification378

of the a priori model and the data model as used above.379

To solve the linear Gaussian inverse problem using least squares type380

inversion, using the ray,fat, and born type forward model approximation,381

we use382

forward.linear=1;

forward.type=’ray’;

forward.freq=10;

lsq_type=’lsq’;

nr=15;

% ’ray’ type forward model

forward.type=’ray’;

[m_reals_ray,m_est_ray,Cm_est_ray] =

sippi_least_squares(data,prior,forward,nr,lsq_type);

% ’fat’ type forward model

forward.type=’fat’;

forward.freq=10;

[m_reals_fat,m_est_fat,Cm_est_fat] =
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sippi_least_squares(data,prior,forward,nr,lsq_type);

% ’born’ type forward model

forward.type=’born’;

[m_reals_born,m_est_born,Cm_est_born] =

sippi_least_squares(data,prior,forward,nr,lsq_type);

It is difficult to see any large difference between realizations from the a poste-383

riori pdf using the three different types of forward models. Therefore Figure384

8 shows the three a posteriori mean models, considering the a) ray, b) fat, c)385

and born type forward model, which demonstrates that on average there is a386

difference between the solutions obtain with these different forward choices.387

[Figure 8 about here.]388

3.3.2. 2D non-linear inversion - AM24389

We now consider the 2D data recorded between borehole AM2 and AM4,390

perpendicular to the data set recorded between borehole AM1 and AM3.391

We make the same assumptions about the a priori and the forward model as392

considered in the application of the extended Metropolis sampler above393

D=load(’AM24_data.mat’);

forward.sources=D.S;

forward.receivers=D.R;

forward.type=’eikonal’;

As above we make use of the extended Metropolis algorithm to sample the394

a posteriori pdf. Figure 9 shows 20 realizations of the 1D velocity from395

the a posteriori pdf considering the data sets AM13 and AM24, at location396
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x=2.5m, where the two profiles cross each other. Also shown is the mean of397

200 a posterior realization for both data sets.398

[Figure 9 about here.]399

Figure 9 reveals that where the two profiles intersect, the inferred velocity400

profile is quite similar even when the two data sets are inverted independently.401

In the top part of the model, where the consistency between realizations are402

weakest, the relative position of the relatively high velocity layers at depths403

of 2.8m and 5m is in agreement, while the velocity estimates of the more404

shallow parts differ only slightly. The reason for the observed inconsistencies405

can be related to the use of a 2D forward model describing data collected in406

a 3D world.407

3.3.3. 3D inversion using a Gaussian a priori model - AM1234408

Setting up an inversion using 3D data and a 3D parametrization of the409

a priori model is very similar to the 2D example above. Using the AM1234410

data sets one can use411

D=load(’AM1234_data.mat’);

forward.sources=D.S;

forward.receivers=D.R;

forward.type=’eikonal’;

The a priori model is identical to the one used above, except that a 3D412

parametrization needs to be specified. We also make use of a larger pixel size413

in order to keep the running time reasonable.414
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prior{im}.x=[-1:.5:6];

prior{im}.y=[-1:.5:6];

prior{im}.z=[0:.5:13];

Sampling the a priori and a posteriori pdf, can be performed in exactly the415

same manner as done for the 2D cases above. Figure 10 shows 5 independent416

realizations of the a posteriori pdf, obtained after the Metropolis algorithm417

has reached burn-in. Figure 11 compare the mean of an a posteriori sample418

obtained from inverting the AM13, AM24, AM1234 data sets, at the location419

where the two 2D profiles intersect. Also shown is realizations from the a420

posteriori pdf corresponding to the AM1234 data set. Above 8m depth the421

a posteriori mean is very similar for all cases. Below 8m depth, the inferred422

velocity is higher inverting the 3D data set compared to the 2D data set.423

[Figure 10 about here.]424

[Figure 11 about here.]425

3.3.4. 2D inversion with unknown covariance model properties426

Most all inversion methods relying on a Gaussian a priori model, re-427

quire that the properties of the covariance model, such as the mean, range,428

anisotropy, and variance are known prior to inversion. The choice of a pri-429

ori covariance model highly affect the inversion result and, therefore, some430

work has been done to estimate a (prior) covariance model consistent with431

observed data, Asli et al. (2000); Hansen et al. (2008a); Looms et al. (2010).432

As mentioned in Hansen et al. (this issue) the FFTMA method allows for433

separating such structural properties of the covariance model from the ran-434
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dom component. SIPPI allows such properties to act as model parameters,435

that can be inferred as part of an inversion.436

To demonstrate this we use the same data and setup as used previously437

from the 2D travel time data set obtained between borehole AM1 and AM3,438

i.e. data set AM13, but where the a priori model is changed to allow for439

inference of the horizontal and vertical range.440

im=0;

% prior - HORIZONTAL RANGE

im=im+1;

prior{im}.type=’gaussian’;

prior{im}.m0=8;

prior{im}.std=6;

prior{im}.name=’range_1’;

prior{im}.prior_master=3;

prior{im}.norm=20;

% prior - VERTICAL RANGE

im=im+1;

prior{im}=prior{im-1};

prior{im}.name=’range_2’;

% prior - 2D VELOCITY FIELD

im=im+1;

prior{im}.type=’FFTMA’;

prior{im}.name=’Velocity (m/ns)’;

prior{im}.m0=0.145;
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prior{im}.Va=’.0003 Sph(6)’;

prior{im}.x=[-1:.2:6];

prior{im}.y=[0:.2:13];

Note that the only difference to the first example of inverting the AM31 data441

set with a known a priori covariance model, is the definition of two a priori442

parameters, named range 1 and range 2. Also, these two prior structures443

point to the third prior structure (the FFTMA type prior) as their ’master’,444

indicating which prior structure it belongs to. This ensures that when the445

value of such a prior model is updated, so is the value of covariance model446

of the corresponding prior master structure.447

A sample of this a priori model is shown in Figure 12a. It is apparent that448

allowing variability in the ranges, determines an a priori model with much449

more a priori variability as compared to when the ranges is kept constant.450

We now make use of the extended Metropolis sampler to sample the a451

posteriori pdf, in three cases where we use only 35 (every 20th observed452

data), 140 (every 5th observed data) and all 702 observed data, respectively.453

The subset of the data is chosen using the data{id}.i use=20:20:702 and454

data{id}.i use=5:5:702 respectively. The corresponding samples from the455

a posteriori pdf is shown in Figures 12b-d.456

[Figure 12 about here.]457

Because the horizontal and vertical ranges of the a priori covariance is also458

model parameters, the a posteriori distribution of these model parameters can459

also be quantified. Figure 13 shows the 1D marginal posterior distribution460

of the horizontal and vertical range respectively using every a) 20th, b) 5th461

24



, and c) all available observed data. When few observed data are used only462

very little information can be inferred about the ranges (red lines). But, as463

the number of data increases, so does the resolution of the range parameters.464

When all 702 data are used the 1D marginal a posteriori distributions of465

the ranges reveal that the horizontal range is relative long, between 7m and466

15m, while the vertical range is better resolved with values between 4.8m467

and 7m. These findings are consistent with the result reported by Looms et468

al. (2010). Looms et al. (2010) find the range estimates priori to inversion469

of the travel time data, while in the present approach information about the470

ranges is inferred as part of the inversion.471

As the number of considered observed data increase so does the resolution,472

which is seen as the differences between the a posteriori realizations become473

smaller. Thus increasing the amount of data leads to a better constrained474

posterior sample. It is, however, important to notice that the posterior statis-475

tics inferred from an a posteriori sample using only a subset of the data is476

consistent with the full solution: Features that appear well resolved from a477

sample of the a posteriori pdf obtained using a subset of the data, will be478

consistent with the full inverse problem, unless some unaccounted for bias479

is present in data. There might be cases where the resolution provided by480

subset of the available data will be adequate. This will off course also result481

in an easier, more computationally efficient, sampling problem.482

Traditional applications in inverse problems with Gaussian a priori mod-483

els, rely on the existence of, or choice of, an a priori covariance model to484

describe spatial variability. The combination of the FFTMA prior model485

with the extended Metropolis sampler as implemented in SIPPI opens up486
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new possibilities for solving non-linear inverse problems with unknown prop-487

erties of the structural covariance model describing spatial variability.488

[Figure 13 about here.]489

3.3.5. 2D inversion with training image based prior490

The a priori knowledge about the subsurface at Arrenæs does not readily491

call for a multiple point based a priori model, nor is such a model readily492

available. To demonstrate the use of a multiple point based a priori model,493

we generate a synthetic data set based on an a priori model defined by the494

training image in Figure 4 in Hansen et al. (this issue), and the SNESIM495

type a priori model, Strebelle (2002), defined using496

im=1;

prior{im}.type=’SNESIM’;

prior{im}.ti=’snesim_std.ti’;

prior{im}.index_values=[0 1]; % optional

prior{im}.m_values=[.1 0.18]; % optional

prior{im}.scaling=.75; % optional

prior{im}.rotation=30; % optional

Figure 14a shows 5 realizations of this a priori model. The first model is cho-497

sen as the reference velocity model, from which synthetic data are computed498

by solving the forward problem. Finally some random Gaussian noise, ac-499

cording to the observed data uncertainties, are added to obtain an ’observed’500

data set.501

id=1;

m_ref=sippi_prior(prior);
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d_ref=sippi_forward(m_ref,forward,prior,data);

data{id}.d_obs=d_ref{1}+

randn(size(d_ref{1})).*data{id}.d_std;

data{id}.Ct=0;

Then the Metropolis algorithm is run in the exact same manner as in the502

previous examples. Figure 14b shows 5 realizations from the a posteriori503

pdf obtained by running the extended Metropolis algorithm.504

This small example demonstrates that the difficulty of using a more com-505

plex a priori model using SIPPI, lies mostly in the difficulty to locate or506

choose such a model. Implementation wise there is only very little differ-507

ence in choosing a simple covariance based prior model as opposed to a more508

complex prior model based on multiple point statistics.509

[Figure 14 about here.]510

4. Conclusions511

We have demonstrated the use of the SIPPI toolbox to sample the solution512

to cross hole travel time tomographic inverse problems. A number of different513

forward models ranging from simple ray theory, based on high frequency514

wave-theory, to fat ray forward models based on finite frequency theory are515

available. We have demonstrated how such a tomographic inverse problem516

can be solved by sampling the a posteriori pdf, for a non-linear formulation517

of the inverse problem using the extended Metropolis algorithm for both 2D518

and 3D cases. We have also shown how least squares based techniques can be519

used to directly generate samples of the a posteriori pdf in the case of linear520
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inverse Gaussian problems. Examples are based on a cross hole georadar521

data set. We have demonstrated that SIPPI facilitates a novel approach,522

based on a combination of the FFTMA method and the extended Metropolis523

sampler, that allow sampling the a posteriori pdf of linear and non-linear524

inverse problem with a Gaussian a priori model, where the properties of the525

covariance can be treated as parameters, and thus inferred as part of the526

inversion. Thus, the structural parameters defining the Gaussian a priori527

model, need not be known prior to inversion. All code and data is available528

using open licenses.529
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Figure 1: Apparent ray coverage (using the linear high frequency approximation). The
color of each ray reflects the apparent average velocity along the ray path.
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Figure 2: 5 realizations from the a) a priori model, and b) a posteriori pdf considering
dataset AM13.

36



Figure 3: Likelihood as a function of iteration number.
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Figure 4: Step length and acceptance rate of the Metropolis algorithm during the first
3000 iterations.
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Figure 5: Distribution of the difference between observed traveltime data and the travel-
time data associated to 10 realizations of the a posteriori pdf.
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Figure 6: Correlation coefficient between the last accepted model from the a posteriori
pdf, and all other realizations of the a posteriori pdf.
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Figure 7: Distribution of log-likelihood of the models considered in 500000 iterations of the
Metropolis sampler (green), and the one model of 500000 considered model using rejection
sampling with maximum-likelihood (blue dashed line).
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Figure 8: 5 realizations of the a posteriori pdf, using the a) ray, b) fat, and c) Born type
linear forward models.
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Figure 9: 20 realizations at x=2.5 considering data sets AM13 (green lines) and AM24 (red
lines). The solid black line and dashed line show the corresponding average 1D velocity
profile of 200 realizations of the a posteriori pdf.43



Figure 10: 5 realizations from the a posteriori pdf using the AM1234 3D data set
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Figure 11: 20 relizations of the a posterior pdf considering the 3D AM1234 data set of the
center of the 3D grid where the two 2D profiles intersect (thin black) lines. Also shown is
the mean of all s posteriori realizations considering the AM13 (green), AM24 (red), and
AM1234 data sets (yellow).
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Figure 12: 5 realizations from the a) a priori distribution and a posteriori distribution of
the velocity field, using b) 35, c) 140, and d) 702 observed data respectively.
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Figure 13: 1D marginal a posteriori distribution of the horizontal (hx) and vertical (hx)
range, using 35, 140 and 702 data observations respectively.
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Figure 14: Sample from the a) a priori and b) a posteriori distribution, considering the
SNESIM type prior model, and synthetic data. The reference true model is the first of
the 5 a priori realizations.
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