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Outline

Wind power forecasting

Use of several providers of MET forecasts
Uncertainty and confidence intervals
Scenario forecasting

Value of wind power forecasts

Optimal bidding for a wind farm owner

Electricity price forecasting

Impact of wind power on EU cross-border power flows
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Wind Power Forecasting - History

Our methods for probabilistic wind power forecasting hagerbimplemented in the
Anemos Wind Power Prediction SystemandWPPT

The methods have been continuously developed since 1993Haboration with
Energinet.dk,
Dong Energy,
Vattenfall,
Risg
The ANEMOS projects partners/consortium (since 2002)
ENFOR
The methods have been used operationally for predicting wawer in Denmark
since 1996. ‘
Anemos/WPPT is now used all over Eu(_o_g , Australia, andiNarberica.
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Sources for uncertainty - Need for adaptivity

Errors in MET forecasts and measurements will end up in girowind power forecasts.

A need for automatic adaptation of the prediction modelsies t
changes in the population of wind turbines,

changes in unmodelled or insufficiently modelled charasties (important
examples: roughness and dirty blades),

changes in the NWP models.

An adequate forecasting system must agaptive and recursive model estimatiorto
handle these issues.

We started (some 20 years ago) assuming Gaussianity; busthivery serious (wrong)
assumption (still assumed by many forecasting providers)!

Following the initial installation the software t(&l{iluaomatically calibrate the models to

the actual situation. e
il
-
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Combined forecasting

A number of power forecasts are
weighted together to form a new
Improved power forecast.

These could come from parallel
configurations of WPPT using NWP
Inputs fromdifferent MET

providers or they could come from
other power prediction providers.

In addition to the improved perfor-
mance also the robustness of the sys-
tem is increased.

DMI —(WPPT

(_DWD J——=(WPPT)——=(Comb)——=( Final ]
(et Office)——=(WPPT)

i

The example show results achieved for the
Tung Knob wind farms using combinations
of up to 3 power forecasts.
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Typically an improvement on 10-15 pct
In accuracy of the point prediction is
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Uncertainty estimation

In many applications it is crucial that a pre-
diction tool delivers reliable estimates (prob-

abilistc forecasts) of the expected uncertainty *

of the wind power prediction.

We consider the following methods for esti-
mating the uncertainty of the forecasted wind
power production:

Resampling techniques.

Ensemble based - but corrected -
guantiles.

Quantile regression.

Stochastic differential equations (new
approach).

The plots show raw (top) and corrected (bot-
tom) uncertainty intervales based on ECMEF
ensembles for Tung Knob (offshore park),
29/6, 8/10, 10/10 (2003). Shown are the
25%, 50%, 75%, quantiles.

i
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Quantile regression - An example

Effect of variables:
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25% (blue) and 75% (red) quantiles
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pow.fc horizon

Forecasted power has a large influence. '
The effect of horizon is of less Iimpo e.

Some increased uncertainty for westerly winds.
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Example: Probabillistic forecasts
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™ Notice how the confidence intervals var .
W But the correlation in forecasts errors is not describedso
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Correlation structure of forecast errors

= Itis important to model thenterdependence structureof the prediction errors.
“ An example of interdependence correlation matrix:

horizon[h]

5 10 15 20 25 30 35 40
horizon [h]

=
—
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Correct (top) and naive (bottom) scenarios
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Use of Stochastic Diff. Equations

The state equation describes the future wind power proatucti

dLEt = — Q(’U,t) . (CBt —ﬁﬂo)dt—f-

2\/9(ut)oz(ut)ﬁt|0(1 — ﬁﬂo)aﬁt . (1 — th)d’wt,
with a(u¢) € (0, 1), and the observation equation
Yh =T¢, |0 T €h,

whereh € {1,2,...,48}, tn = k, en ~ N(0, s*), zo = “observed power at t=0} and
Pio point forecast byWPPT (Wind Power Prediction Tool)

L\“I i |
: . "
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SDE approach — Correlation structures
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Use of SDESs provides a possibility to model eg. ti
correlation structures.

SDEs provide a perfect framework foombined wi
Today both theAnemos Prediction PlatformandWPPT provide
both wind and solar power production.

e vafrying wind power dependent

ower forecasting
rations forecasts of
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Type of forecasts required

@ Point forecasts (normal forecasts)a single value for each time point in the future.
Sometimes with simple error bands.

@ Probabilistic or quantile forecasts the full conditional distribution for each time
point in the future.

" Scenarios probabilistic correct scenarios of the future wind powerduction.

=
—
=
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Wind power — asymmetrical penalties

The revenue from trading a specific hour on NordPool can beeegpd as

Pp x (Actual— Bid) if Actual > Bid

Ps x Bid . . .
o i { Py x (Actual— Bid) if Actual < Bid

Ps is the spot price ané’p/ Py is the down/up reg. price.
The bid maximising the expected revenue is the follongagntile

E|Ps| — E|Pp]
E|Py] — E[Pp]

In the conditional distribution of the future wind power drtion.

.
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Wind power — asymmetrical penalties

It is difficult to know the regulation prices at the day aheaxkl — research into
forecasting is ongoing.

The expression for the quantile is concerned with expeciégeg of the prices — just
getting these somewhat right will increase the revenue.

A simple tracking ofC'p andCy is a starting point.

The bids maximizing the revenue during the period September 200to March
2010:

Quantile

—— Monthly averages — !'Operational tracking

00 04 0.8

| | | | |
2009-09-01 2009-11-01 L%G{Qj%—_Ol 2010-03-01

i
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Sizing of energy storage

Naive

Correct
o o
o oq |
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Storage (hours of full wind prod.)

lllustrative example based on 50 day ahead scenarios as sittlation C
calculating the risk for a storage to be too small.
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Risk calculations — Examples

=
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™ Imbalance ramp forecasting;
probabilities of ramp events

@ Calculation of required storage as
a function of horison (possibly ob-
tained by varying hydro power pro-
duction). Also show is the proba-
bility that this storage will be suffi-
cient.

Probability of 10%, 2h up-regulation event (%)

Energy stored (h of full production)

30
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Forecasting the electricity prices
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Using forecasted penetration of wind power

A better model for price forecasting is obtained ...

(o)}
o O

Price [EUR/MWh]
N w B Ul
o o

o

Forecasted WP penetration 0 0

Hour

... by using forecasted penetration instead of forecastadijstion. In conclusion: The

forecasted penetration (forecasted wind pow: reddetal) is an important explanatory
variable. |
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Effect of wind power forecasts

Forecasted Wind power penetration also affects the digtoib of prices

10
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Mean
Std. Dev.

42.9807 41.1261 40.2579 '88.0966 33.2420 26.0200
16.9512 15.3161 14.1772 13. 5 11.2317
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Prices related to up/down regulation

™ Consider thaip regulation as an example.

@ Here Quantile Regression is used to obtain quantiles foptices related to up

regulation (given the event 'up regulation’).
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Wind and EU cross-border power flows

I
20% capacity
40% capacity
60% capacity
80% capacity
100% capacity

I
—2% variation

—1% variation
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+2% variation

|

=

Map of impact andsensitivity of EU cross-border power flows
to predicted wind power penetration in Germanyere if within

10-15% of installed capacity
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Conclusions

The forecasting models must bdaptive (in order to taken changes of dust on
blades, changes roughness, etc., into account).

Reliable estimates of tHerecast accuracyis very important (check the reliability by
eg. reliability diagrams).

Reliable probabilistic forecasts are important to gainfthieeconomical value

Usemore than a single MET provider for delivering the input to the prediction tool
— this improves the accuracy of wind power forecasts witil 2@ct.

Estimates of theorrelation in forecasts errorsimportant.

Forecasts ofcross dependenciédetween load, prices, wind and solar power are
important.

Probabilistic forecasts are very important for asymmetric cos$ functions.

Probabilistic forecasts can providsk related answersfor questions like
What is therisk that this storage is noglarge enough for the next 5 hours?

What is therisk for an increase in wind_gowker production of more that 50 pct
over the next two hours? ——

What is therisk for a cut-off due to high wind speeds the next couple of hours.
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