

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 09, 2024

A decomposition based on path sets for the Multi-Commodity k-splittable Maximum
Flow Problem

Gamst, Mette

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Gamst, M. (2013). A decomposition based on path sets for the Multi-Commodity k-splittable Maximum Flow
Problem. DTU Management Engineering. DTU Management Engineering Report No. 6.2013

https://orbit.dtu.dk/en/publications/f49158fe-5203-49d9-9ce0-24b627bcc039

Mette Gamst

March 2013

Report 6.2013

DTU Management Engineering

A decomposition based on path
sets for the Multi-Commodity
k-splittable Maximum Flow Problem

A decomposition based on path sets for the Multi-Commodity
k-splittable Maximum Flow Problem.

M. Gamst

March 15, 2013

Abstract

The Multi-Commodity k-splittable Maximum Flow Problem routes flow through a ca-
pacitated graph such that each commodity uses at most k paths and such that the total
amount of routed flow is maximized. The problem appears in telecommunications, specif-
ically when considering Multi-Protocol Label Switching. In the literature, the problem is
solved to optimality using branch-and-price algorithms built on path-based Dantzig-Wolfe
decompositions. This paper proposes a new branch-and-price algorithm built on a path
set-based Dantzig-Wolfe decomposition. A path set consists of up to k paths, each car-
rying a certain amount of flow. The new branch-and-price algorithm is implemented and
compared to the leading algorithms in the literature. Results for the proposed method
are competitive and the method even has best performance on some instances. However,
the results also indicate some scaling issues.

Keywords: Branch and price; Dantzig-Wolfe decomposition; Multi-commodity flow; k-
splittable; Combinatorial optimization

1 Introduction

The NP-hard Multi-Commodity k-splittable Maximum Flow Problem (denoted MCkMFP)
works on a capacitated graph and consists of maximizing the amount of routed flow for a given
set of commodities. Edge capacities must be satisfied and each commodity can use at most
k paths between its source and target vertex. The problem has application in telecommuni-
cations, specifically in Multi-Protocol Label Switching (denoted MPLS), see Evans and Filsfils
[7] for more details on the MPLS.

The Multi-Commodity k-splittable Flow Problem (denoted MCkFP) is a well-known prob-
lem in the literature and has been solved heuristically, approximately and optimally. Baier et
al. [1] presented the MCkFP. They proved that the problem is NP-hard and proposed ap-
proximation algorithms for the Maximum Budget-Constrained Single- and Multi-Commodity
k-splittable Flow Problems. Much work has been performed on non-exact solution methods
for (variants of) the MCkFP, see e.g. [4, 6, 8] for a selection of heuristics and [12, 13, 14, 16, 17]
for a selection of approximation algorithms.

Here we seek to solve the MCkMFP to optimality, hence we focus our literature review
on exact methods. A number of Dantzig-Wolfe decompositions are proposed in the literature.

1

Truffot and Duhamel [18, 19] decomposed the problem into a path-based formulation, where
each column represented a path for a commodity. They added an index to each variable for
keeping track of which of the h = 1, . . . , k paths, the variable represented. The pricing problem
was a polynomial shortest path problem. The path-based master problem allowed symme-
try in the solution space, which affected the performance negatively: the number of generated
columns and the size of the branch-and-price tree both grew large. Another path-based formu-
lation by Gamst et al. [9] eliminated some of this symmetry by leaving out the variable index
h = 1, . . . , k. The resulting branch-and-price algorithm showed better performance, however,
it suffered from complicated branching and from bounding problems on the number of used
paths per commodity. Gamst and Petersen [10] improved the latter branch-and-price algo-
rithm by proposing a new branching rule and by adding cuts to the master problem. Despite
better computational results, the algorithm still suffered from the same bottlenecks: compli-
cated branching and poor bounding on the number of used paths per commodity. A different
exact solution approach from the literature consists of solving an edge-based formulation of
the closely related Maximum Concurrent k-splittable Flow Problem in a branch-and-bound
scheme, see Caramia and Sgalambro [3]. Branching consisted of fixed edge usage imposed by
cuts. The approach outperformed standard MIP-solvers, but suffered from large branch-and-
bound trees.

In this paper we propose a new Dantzig-Wolfe decomposition for the MCkMFP. The
decomposition is based on path sets; a column in the master problem consists of up to k paths
each carrying a fixed amount of flow for a given commodity. The pricing problem generates
up to k paths for a given commodity and assigns flow to the paths – this corresponds to
the NP-hard single-commodity k-splittable flow problem. The goal of the path set-based
decomposition is to remedy the bottleneck of the path-based branch-and-price algorithms
from the literature by letting the pricing problem bound the number of used paths and by
simplifying branching in most cases.

The paper is organized as follows. First in Section 3, the new path set-based branch-
and-price algorithm is presented. The section explains the master problem, how to find an
incumbent, how to solve the NP-hard pricing problem heuristically and optimally, how to
reach feasibility early through primal heuristics, and how to branch in order to ensure feasible
solutions. The proposed branch-and-price algorithm is computationally evaluated and results
are presented and analyzed in Section 4. Finally, Section 5 concludes the paper.

2 Mathematical formulation

Given is a graph G = (V,E, L, k) consisting of a set of vertices V , a set of edges E, and a
set of commodities L. Each edge (ij) ∈ E has capacity uij > 0, and each commodity l ∈ L
consists of a source vertex sl and a target vertex tl. Finally, k is an upper bound on the
number of paths, each commodity can use. Note that if k = 1, the problem reduces to the
Multi-Commodity Unsplittable Flow Problem, see e.g. Barnhart et al. [2]. If k ≥ |E|, the
problem reduces to the Linear Multi-Commodity Flow Problem, see Baier et al. [1].

Let xhlij ≥ 0 be the amount of flow on edge (ij) ∈ E for the h’th path of commodity l ∈ L.
Note that h ∈ {1, . . . , k}. Similarly, yhlij ∈ {0, 1} denotes whether or not edge (ij) ∈ E is part
of the h’th path of commodity l ∈ L. Finally, variable zhl ≥ 0 holds the amount of flow on
the h’th path of commodity l ∈ L. The MCkMFP is formulated as:

2

max
∑
l∈L

k∑
h=1

zhl (1)

s. t. ∑
j∈V

xhlij −
∑
j∈V

xhlji =

zhl if i = sl
−zhl if i = tl
0 otherwise

∀i ∈ V, ∀l ∈ L,
∀h ∈ {1, . . . , k} (2)

∑
j∈V

yhlij −
∑
j∈V

yhlji =

1 if i = sl
−1 if i = tl
0 otherwise

∀i ∈ V, ∀l ∈ L,
∀h ∈ {1, . . . , k} (3)

∑
l∈L

k∑
h=1

xhlij ≤ uij ∀(ij) ∈ E (4)

xhlij − uijyhlij ≤ 0
∀(ij) ∈ E,∀l ∈ L,
∀h ∈ {1, . . . , k} (5)

∑
j∈V

yhlij ≤ 1
∀(ij) ∈ E,∀l ∈ L,
∀h ∈ {1, . . . , k} (6)

xhlij ≥ 0
∀(ij) ∈ E,∀l ∈ L,
∀h ∈ {1, . . . , k} (7)

yhlij ∈ {0, 1}
∀(ij) ∈ E,∀l ∈ L,
∀h ∈ {1, . . . , k} (8)

zhl ≥ 0
∀h ∈ {1, . . . , k},
∀l ∈ L (9)

The objective function (1) maximizes the total sum of routed flow. Constraints (2) ensure
flow conservation for the flow variables, and constraints (3) ensure flow conservation for the
decision variables. Constraints (4) make sure that edge capacities are never violated. When-
ever an edge holds flow for a path for a commodity, then both the flow and decision variables
must be set. This is ensured in constraints (5). Sub-tours are eliminated in constraints (6),
which forbid a path to leave a vertex more than once. The constraints also make sure that
each of the k paths for a commodity is unsplittable. Finally, bounds (7)-(9) force variables to
take on feasible values.

3 Solution approach

A new Dantzig-Wolfe decomposition [5] is proposed for solving the MCkMFP. The idea behind
the decomposition is to use route configurations, i.e., to let the pricing problem generate and
assign flow to at most k paths for each commodity. The path-based decompositions of the
MCkMFP from the literature give polynomial pricing problems and complex master problems
with bounding issues on the number of used paths, see [9, 10, 18]. Using path sets moves
complexity from the master problem to the pricing problem: bounding the number of used
paths is removed from the master problem, but the pricing problem becomes NP-hard.

Jaumard et al. [11] considered route configurations instead of paths for the Routing and
Wavelength Assignment Problem, where pairs of vertices must be connected and each edge can

3

carry at most W paths. They showed that a branch-and-price algorithm based on path sets
eliminated symmetry in the solution space and increased performance significantly compared
to the classic, path-based formulation.

Let R be the set of generated path sets and Rl the set of generated path sets for commodity
l ∈ L. Each column consists of a path set r ∈ R based on up to k paths with given flow for
a given commodity. Let xlr ∈ {0, 1} be a binary variable indicating whether or not path set
r ∈ R for commodity l ∈ L is part of a solution. Also, the constant δijr denotes the total
amount of flow traveling on edge (ij) ∈ E in the path set r ∈ R, and the constant δr denotes
the total amount of flow routed by configuration r ∈ R

The master problem is:

max
∑
l∈L

∑
r∈Rl

δrx
l
r (10)

s.t.
∑
l∈L

∑
r∈Rl

δijr x
l
r ≤ uij ∀(ij) ∈ E (11)

∑
l∈L

∑
r∈Rl

xlr ≤ 1 ∀l ∈ L (12)

xlr ∈ {0, 1} ∀l ∈ L, ∀r ∈ Rl (13)

The objective function (10) maximizes the amount of routed flow. The first constraints (11)
ensure that edge capacities are never violated. The second constraints (12) say that each
commodity can use at most one path set. Note that not all commodities have to be routed in
order to maximize the total amount of routed flow. Finally, the bounds (13) force all variables
to take on feasible values.

3.1 Incumbent

Before starting the column generation iterations, we need an initial solution. This is found
using first a heuristic, and as a last resort by using fake edges. The heuristic is a randomized
local search procedure, which iteratively finds paths in a reduced graph [8]. The heuristic is
fast and often capable of finding a good solution. In the case where the heuristic is unable
to find a feasible solution, fake edges are used: the source and target of each commodity are
connected by a fake edge with capacity ε, where ε > 0 is a suitably small number. Flow on
any fake edges in the final solution is subtracted the solution value. Also, we ensure that fake
edges can never be part of any column from the pricing process.

3.2 Pricing problem

The pricing problem must decide the amount of routed flow; the resulting routed flow is
expressed as the constants δr (total amount of routed flow) and δijr (total amount of routed
flow on edges (ij) ∈ E) in the master problem. Let πij ≥ 0 and λl ≥ 0 be the dual variables
of constraints (11) resp. (12). Also, let variable fij ≥ 0 denote the amount of flow on
edge (ij) ∈ E. The total amount of flow routed by a configuration for commodity l ∈ L is
expressed as the sum of flow emanating from the source vertex

∑
(slj)∈E fslj . The reduced

4

cost for commodity l ∈ L is:

c̄lr =
∑

(slj)∈E

fslj −
∑

(ij)∈E

πijfij − λl ≥ 0

⇒
∑

(slj)∈E

fslj −
∑

(ij)∈E

fijπij ≥ λl

⇒
∑

(ij)∈E

π̃ijfij ≥ λl (14)

where

π̃ij =

{
1− πij ∀(ij) ∈ E : i = sl
−πij otherwise

The pricing problem consists of generating and assigning flow to up to k paths such that
the reduced costs (14) are maximized. This corresponds to the NP-hard single-commodity
k-splittable maximum flow problem: consider the case where πij = 0, ∀(ij) ∈ E. Then the
pricing problem is to find k paths such that

∑
(slj)∈E fslj > λl, i.e., the total amount of routed

flow must be maximized.

3.2.1 Heuristic

The pricing problem is solved heuristically using an algorithm very similar to the incumbent
heuristic mentioned in Section 3.1. The only modification is that instead of iteratively finding
any path in a reduced graph, we find the shortest path defined on the negated reduced cost
edge weights −π̃ij . Edges emanating from the source vertex sl for commodity l ∈ L may have
negative edge weight: −(1 − πij) when πij < 1, but since all other edges have non-negative
edge weights πij , πij ≥ 0, we avoid negative weight cycles by deleting all edges going into the
source.

3.2.2 Exact solution approach.

When the heuristic cannot find columns with positive reduced cost, the pricing problem is
solved to optimality by applying CPLEX on a mathematical formulation. Let yhij ∈ {0, 1}
denote whether or not edge (ij) ∈ E is part of the h’th path, where h = 1, . . . , k, and fhij ≥ 0
be the amount of flow traveling on edge (ij) ∈ E for the h’th path. Using the previously

5

introduced notation, the pricing problem for a commodity l is:

max
∑

(ij)∈E

π̃ij

k∑
h=1

fhij (15)

s. t.
k∑

h=1

fhij ≤ uij ∀(ij) ∈ E (16)∑
j∈V

fhij −
∑
j∈V

fhji = 0 ∀i ∈ V \{sl, tl}, ∀h ∈ {1, . . . , k} (17)

∑
j∈V

yhij −
∑
j∈V

yhji

≤ 1 if i = sl
≥ −1 if i = tl
= 0 otherwise

∀i ∈ V,∀h ∈ {1, . . . , k} (18)

fhij − uijyhij ≤ 0 ∀(ij) ∈ E,∀h ∈ {1, . . . , k} (19)∑
j∈V

yhij ≤ 1 ∀i ∈ V,∀h ∈ {1, . . . , k} (20)

∑
(ij)∈E

π̃ij

k∑
h=1

fhij ≥ λl + ε (21)

fhij ≥ 0 ∀(ij) ∈ E,∀h ∈ {1, . . . , k} (22)

yhij ∈ {0, 1} ∀(ij) ∈ E,∀h ∈ {1, . . . , k} (23)

The objective function (15) maximizes the left hand side of the reduced cost (14). Constraints
(16) make sure that edge capacities are satisfied. Constraints (17) and (18) ensure flow
conservation for both the flow and the binary variables. Constraints (19) force a binary
variable to be one, when flow is traveling on the corresponding edge for the corresponding
path h. Constraints (20) eliminate sub-tours by ensuring that a path leaves a vertex at most
once. Constraint (21) forces the solution to have positive reduced cost according to (14) and
with ε > 0 being a suitably small number. Finally, bounds (22) and (23) force variables to
take on feasible values.

3.2.3 Symmetry

The h-indices in formulation (15)-(23) introduce symmetry in the pricing problem solution
space. Let p(l, h) be the h’th path (h = {1, . . . , k}) for commodity l ∈ L. Path p(l, h) consists
of a set of connected edges going from vertex sl to vertex tl. Now, consider a solution for com-
modity l ∈ L with paths pa(l, 1), pb(l, 2) and pc(l, 3). Equivalent solutions are pa(l, 1), pb(l, 3),
pc(l, 2), and pa(l, 2), pb(l, 1), pc(l, 3). Obviously, more equivalent solutions exist.

To reduce the number of equivalent solutions, symmetry breaking constraints are intro-
duced: ∑

(slj)∈E

(
fh+1
slj
− fhslj

)
≤ 0 ∀h = {1, . . . , k − 1} (24)

The constraints (24) eliminate identical solutions, when paths carry different amounts of flow
by forcing paths carrying more flow to take on smaller values of h. The number of constraints
(24) to add is k−1, which is relatively small. The constraints do, however, not break symmetry
in the case where paths carry the same amount of flow.

6

3.3 Primal heuristics

Reaching feasible solutions early may improve the bounds of the branch-and-price algorithm
and hence help prune larger parts of the search tree. In the following, we propose two primal
heuristics to transform fractional solutions into feasible solution.

3.3.1 Heuristic for routes with same paths

A fractional solution S may consist of fractional routes using the same paths but carrying
different amounts of flow. In this case, a heuristic transforms the solution into being integer
by re-using the paths and by changing the flow according to the fractional usage of the routes.
This is shown in Algorithm 1, which initializes edge usage, and in Algorithm 2, which contains
the overall heuristic.

Algorithm 1 initializes edge usage for each commodity l ∈ L. As input the Algorithm
takes the set of edges E, the commodity to consider l, the partial heuristic solution R̄ and the
fractional solution S. The Algorithm considers each route configuration and if a path set is
fully used (xr = 1), then it is stored as part of the heuristic solution. If it is only partially
used (0 < xr < 1) then the routed flow on each edge in the fractional solution is saved. If two
path sets use different paths, then the Algorithm terminates early with a fail. If the Algorithm
succeeds, i.e., all fractional path sets use the same paths, then it returns the set of used edges
Ē and a vector of edge flow in the fractional solution f = {fij , (ij) ∈ Ē}.

Algorithm 1 Init_edge_usage_first(E, l, R̄, S)

1: for (each edge (ij) ∈ E) do
2: fij ← 0
3: end for
4: for (each route r ∈ R for commodity l) do
5: if xr = 1 then
6: R̄← r
7: end if
8: if 0 < xr < 1 then
9: for (each (p, fp) ∈ r with fp > 0) do

10: for (each edge (ij) ∈ p) do
11: if (r is not first route for commodity l and fij = 0) then
12: return (null, null)
13: end if
14: fij ← fij + fp · xr
15: end for
16: end for
17: end if
18: end for
19: return (Ē, f)

Now Algorithm 2 tries to build a new path set using the output of Algorithm 1. The
Algorithm takes as input the fractional solution S. For each commodity it initializes edge
usage by calling Algorithm 1. Then it considers each of the paths for the commodity in
the fractional solution and it greedily assigns as much flow as possible, using the output of

7

Algorithm 1. The new path set is stored as part of the heuristic solution.
In this way a new column may be generated heuristically. The column is added to the

master problem, and a new branch-and-price iteration is begun.

Algorithm 2 First_primal_heuristic(S)

1: R̄← empty solution
2: for (each commodity l ∈ L) do
3: (Ē, f)← Init_edge_usage_first(E, l, R̄, S)
4: if (Ē = null) then
5: return null
6: end if
7: r̄ ← empty path set
8: Let r ∈ R for commodity l be first path set with 0 < xr < 1
9: for (each (p, fp) ∈ r) do

10: fnew ←∞
11: for (each edge (ij) ∈ p) do
12: fnew ← min{fnew, fij}
13: end for
14: if (fnew > 0) then
15: r̄ ← r̄ ∪ {(p, fnew)}
16: for (each edge (ij) ∈ p) do
17: fij ← fij − fnew
18: end for
19: end if
20: end for
21: R̄← R̄ ∪ r̄
22: end for
23: return R̄

The heuristic has running time O(|L||R̄|k|E|), where |R̄| is the number of fractional routes,
whose paths combined use O(k|E|) edges.

3.3.2 Heuristic for routes with different paths

A fractional solution S may consist of fractional routes using different paths but edge usage
sums to integers. In this case, a heuristic tries to transform the solution into being integer by
finding ≤ k paths for each commodity, spanning all used edges from the source to the target
of the commodity. The flow on the edges of the ≤ k paths must be equal to the flow in the
fractional solution. The heuristic works as illustrated in Algorithm 3, which initializes edge
usage, and in Algorithm 4, which contains the overall heuristic.

Algorithm 3 initializes edge usage for each commodity. The Algorithm takes as input the
set of edges E, the commodity to consider l, the partial heuristic solution R̄ and the fractional
solution S. The Algorithm considers all route configurations for the given commodity. If a
path set is fully used (xr = 1), then it is stored as part of the heuristic solution. If it is only
partially used (0 < xr < 1) then the Algorithm saves the routed flow in the fractional solution,
the degree of usage in the fractional server, and the edge itself. Finally, the Algorithm checks
for integer usage; if an edges is used only partially, then the Algorithm fails. If the Algorithm

8

succeeds, i.e., edge usage is integer, then it returns the set of used edges in the fractional
solution Ē, a vector of edge flow in the fractional solution f = {fij , (ij) ∈ Ē}, and a vector of
the degree of edge usage in the fractional solution y = {yij , (ij) ∈ Ē}.

Now back in Algorithm 4, a new path set must be built. The Algorithm takes as input
the fractional solution S. For each commodity it initializes edge usage by calling Algorithm 3.
A depth first search is then run on the saved edges from the source to the target of the
commodity. If such a path exists, then we greedily assign as much flow as possible according
to the saved flow from above. When the available flow on an edge becomes zero, then the
edge is removed. The procedure repeats until either all edges are removed, until k paths are
found, or until no more paths can be found. If all edges are used (i.e., all edges are removed),
then the path set is saved. Otherwise the Algorithm fails.

Algorithm 3 Init_edge_usage_second(E, l, R̄, S)

1: Ē ← ∅
2: for (each edge (ij) ∈ E) do
3: fij ← 0
4: yij ← 0
5: end for
6: for (each route r ∈ R for commodity l) do
7: if xr = 1 then
8: R̄← r
9: end if

10: if 0 < xr < 1 then
11: for (each (p, fp) ∈ r with fp > 0) do
12: for (each edge (ij) ∈ p) do
13: fij ← fij + fp · xr
14: yij ← yij + xr
15: Ē ← Ē ∪ {(ij)}
16: end for
17: end for
18: end if
19: end for
20: for (each edge (ij) ∈ Ē) do
21: if (0 < yij < 1) then
22: return (null, null, null)
23: end if
24: end for
25: return (Ē, f,y)

The heuristic has running time O(|L||R̄(|k|E| + |V |)): removing all edges not used in S
requires an investigation of all edges on all paths from all routes in the fractional solution,
which takes O(|R̄|k|E|) time. Furthermore, the depth first search has running time O(|V | +
|E|). If the heuristic succeeds, then a column with the found paths is generated and added to
the master problem, and a new branch-and-price iteration is begun.

9

Algorithm 4 Second_primal_heuristic(S)

1: R̄← empty solution
2: for (each commodity l ∈ L) do
3: (Ē, f,y)← Init_edge_usage_second(E, l, S)
4: if (Ē = null) then
5: return null
6: end if
7: r̄ ← empty path set
8: while Ē is non-empty and |r̄| < k do
9: p← depth-first-search from sl to tl on edges Ē

10: if (p is empty) then
11: break
12: else
13: fnew ←∞
14: for (each edge (ij) ∈ p) do
15: fnew ← min{fnew, fij}
16: end for
17: r̄ ← r̄ ∪ {(p, fnew)}
18: for (each edge (ij) ∈ p) do
19: fij ← fij − fnew
20: if (fij = 0) then
21: Ē ← Ē\{(ij)}
22: end if
23: end for
24: end if
25: end while
26: if (Ē is non-empty) then
27: return null
28: end if
29: R̄← R̄ ∪ r̄
30: end for
31: return R̄

10

3.4 Branching

In the following, we analyze situations in which fractional solutions occur and consider how
the branching strategies affect the pricing problem.

The relaxed master problem solution is infeasible in the following situations:

1. A commodity is not fully routed, i.e., 0 <
∑

r∈R δ
l
rxr < 1 for commodity l ∈ L. This is

handled by the primal heuristic described in Section 3.3.1.

2. More than one path set is used for a commodity, i.e., δlr1xr1 > 0 and δlr2xr2 > 0 for
commodity l ∈ L and some path sets r1, r2 ∈ R

In the second case, we first consider edge usage. If an edge (ij) ∈ E is used partially by
paths for a commodity l, we systematically forbid or force edge usage:∑

r∈R:
(ij)∈r

δlrxr = 0 vs.
∑
r∈R:
(ij)∈r

δlrxr = 1 (25)

If all edge usage is integer, the solution may still be fractional. We know that all fractional
variables do not use the same paths, because this is handled by the first primal heuristic.
Hence the fractional solution must use different paths. The branching strategy is then to
forbid and force path paths as introduced by Gamst and Petersen [10].

Given a commodity and a sets of paths. Let a unique edge sequence (also denoted an edge
sequence) be a set of connected edges emanating from the commodity source, traveling until
it shares no edges with any other path. Given that the path sets do not use the same paths,
then we must be able to identify unique edge sequences.

Let b1, b2, . . . bh denote unique edge sequences, which are not all contained in all path
sets. We generate h + 1 branching children. In child i : 1 ≤ i ≤ h usage of edge sequences
bj , j = {1, 2, . . . , i} is forced and usage of edge sequences bj , j = {i + 1, i + 2, . . . , h} is
forbidden. This means that in the first child usage of edge sequence b1 is forced and usage of
edge sequences bj , j = {2, 3, . . . , h} is forbidden. In the second child, usage of edge sequences
b1 and b2 is forced and usage of edge sequences bj , j = {3, 4, . . . , h} is forbidden, and so on.

The final branching child h + 1 forbids usage of all b1, b2, . . . bh edge sequences. The
branching strategy is imposed through cuts in the master problem. Let i : 1 ≤ i ≤ h be the
branching child and let the constant δblr denote whether or not path set r ∈ R for commodity
l ∈ L uses edge sequence b. The cut is:

i∑
j=1

∑
r∈R

δ
bj l
r xr = 1 vs.

i∑
j=1

∑
r∈R

δ
bj l
r xr = 0 (26)

The branching restrictions must be taken into account by the pricing problem. Branching
cuts (25) and (26) are added to the master problem and must also be considered by the pricing
problem. Let their dual variables be βij ∈ R and βb ∈ R, respectively. The reduced cost is
rewritten to:

⇒
∑

(ij)∈E

(π̃ijfij − βijwij)− βbwb ≥ λl (27)

where

π̃ij =

{
1− πij ∀(ij) ∈ E : i = sl
−πij otherwise

11

and wij ∈ {0, 1} denotes whether or not edge (ij) ∈ E is used by any path in the generated
column, and wb ∈ {0, 1} indicates if path b is part of the generated column.

The pricing heuristic handles the new reduced cost through small modifications. Forbidden
edges are removed from the graph, while forced edges have their weight set to max{0, π̃ij −
βij} (note that this is an approximation of the edge weight on the left hand side of (27)).
Forbidden paths are handled by the pricing heuristic by transforming the graph into a graph
with forbidden sub paths. This can be done in polynomial time in the input size using the
graph extension algorithm by Villeneuve and Desaulniers [20]. Forced paths are pre-stored by
the heuristic, which then tries to find another k − b paths (where b is the number of forced
paths for the commodity).

The exact pricing algorithm handles the new reduced cost by including them in the math-
ematical formulation. Forced paths are by default in the solution and the exact algorithm
instead tries to find k − b paths where b is the number of forced paths for the commodity.
The resulting formulation is:

max
∑

(ij)∈E

(
π̃ij

k∑
h=1

fhij − βijwij

)
(28)

s. t. Constraints (16)–(20), (24) and bounds (22)–(23)∑
(ij)∈E

(
π̃ij

k∑
h=1

fhij − βijwij

)
≥ λl (29)

∑
(ij)∈b

yhij ≤ |b| − 1 ∀b ∈ Bp,∀h ∈ {1, . . . , k} (30)

k∑
h=1

yhij ≤ 0 ∀(ij) ∈ B−ij (31)

k∑
h=1

yhij ≥ 1 ∀(ij) ∈ B+
ij (32)

yhij −Mfhij ≤ 0 ∀(ij) ∈ E,∀h ∈ {1, . . . , k} (33)
k∑

h=1

yhij − kwij ≤ 0 ∀(ij) ∈ Bij (34)

wij ∈ {0, 1} ∀(ij) ∈ E,∀h ∈ {1, . . . , k} (35)

The objective function maximizes the reduced cost (27). Note that duals for forced and
forbidden paths are left out: forced paths are already included so their dual cost can be
considered a constant and thus be left out of the objective function. Forbidden paths are
never used, as explained below for constraints (30), hence their dual cost is never paid and
can thus be left out of the objective function. Constraints (16)-(20) and bounds (22)-(23) are
unchanged from the original pricing problem formulation. Constraints (30) consider forbidden
paths: Bp denotes the set of forbidden paths, each path is denoted b ∈ Bp, and the number of
edges on the path is denoted by |b|. Constraints (31) and (32) forbid or force usage of edges:
B−ij denotes the set of forbidden edges and B+

ij the set of forced edges. Constraints (33) ensure

12

Name |V | |E| |L|

Random5-35 5 35 1
Random10-45 10 45 1
Random15-60 15 60 1
Random20-140 20 140 1

tg10-2 12 40 1
tg20-2 22 80 1
tg40-1 42 154 1
tg40-5 42 154 1
tg80-1 82 322 1

Random10-40 10 40 3
Random11-42 11 42 11
Random20-80 20 80 20
Random22-56 22 56 22

Table 1: Sizes of test instances. First column denotes the instance name, then follows the
number of vertices, the number of edges, and finally the number of commodities.

that if the binary variable is set, then the corresponding edge on the corresponding path h
also carries flow. Here M is some suitably large number to allow edges to carry less than one
unit of flow. Constraints (34) set variable wij to 1, if the edge (ij) ∈ E is part of any path.
The variable wij is needed in the objective function to calculate the correct reduced cost, and
it is bounded in (35).

The extra branching constraints do not add significant complexity to the pricing problem,
which is already NP-hard.

4 Computational evaluation

The proposed branch-and-price algorithm is implemented using the framework COIN [15]
with ILOG CPLEX 12.1 as LP-solver. Computations concerning the selection of branching
candidates and branching children are handled by COIN. The computational evaluation is
performed on a 16-core Intel R© Xeon R© CPU X5550, 2.67GHz machine with 24 GB of RAM.

The computational evaluation is performed on benchmark instances from the literature
[18]: single- and multi-commodity Random instances are randomly generated and the single-
commodity tg instances are generated by the Transit Grid generator1 using topologies from
transportation networks. See Table 1 for details.

Results for testing the new branch-and-price algorithm are seen in tables 2 - 4, where
the new algorithm is denoted RBP. The results are compared to the leading algorithms from
the literature: the 3-index branch-and-price algorithm (3BP) by Truffot et al. [18], the 2-
index branch-and-price algorithm branching on edge sequences (2BP) by Gamst et al. [9] and
the 2-index branch-and-price algorithm branching and cutting on edge sequences (2BCP) by
Gamst and Petersen [10]. Note that results for the algorithms from the literature are reached
using the same computational environment except from having ILOG CPLEX 10.2 as standard
LP-solver.

The first columns of the tables contain the name of the benchmark instance, the value of
k and the optimal solution value. Then follows for each algorithm the size and depth of the

1http://www.informatik.uni-trier.de/~naeher/Professur/research/generators/maxflow/tg/index.
html

13

branch-and-bound tree, and the time spent on solving the instances. Results marked with
”-” indicate that the instance could not be solved because of excessive time or memory usage.
Best results are marked with bold and summed in the bottom row.

As can be seen from the results, the new branch-and-price algorithm does not branch
much, which is a significant improvement compared to the results from the literature, where
branching constituted a problem. The algorithm is competitive with the leading algorithms
from the literature on many instances, but it displays some difficulty solving instances with
larger values of k and where k restricts the solution. Solving the pricing problem to optimality
using CPLEX is the reason for the large time usage.

14

3
B

P
2
B

P
2
B

C
P

R
B

P

P
ro

b
le

m
k

z*
si

ze
d
ep

th
va

rs
ti

m
e

si
ze

d
ep

th
va

rs
ti

m
e

si
ze

d
ep

th
va

rs
ti

m
e

si
ze

d
ep

th
va

rs
ti

m
e

R
an

d
om

5-
35

2
12

8
1

0
14

0
.0

0
1

0
7

0
.0

0
1

0
7

0
.0

0
1

0
6

0.
04

3
18

2
1

0
27

0.
01

1
0

9
0
.0

0
1

0
9

0
.0

0
1

0
8

0.
06

4
22

3
13

6
48

0.
01

1
0

12
0
.0

0
1

0
12

0
.0

0
1

0
12

0.
27

5
26

2
19

9
60

0.
03

1
0

12
0
.0

0
1

0
12

0
.0

0
1

0
14

0.
48

6
29

7
21

10
78

0.
03

1
0

14
0.

01
1

0
14

0
.0

0
1

0
17

1.
22

7
32

6
67

12
98

0.
10

1
0

14
0
.0

0
1

0
14

0
.0

0
1

0
21

0.
70

8
32

6
1

0
10

4
0
.0

0
1

0
11

0.
01

1
0

11
0
.0

0
1

0
21

0.
29

R
an

d
om

10
-4

5
2

14
2

5
2

15
0
.0

1
4

1
9

0
.0

1
8

2
9

0
.0

1
1

0
3

0.
17

3
20

9
9

3
33

0
.0

2
21

3
15

0.
03

20
3

12
0
.0

2
1

0
4

0.
31

4
26

0
45

17
68

0.
08

41
1

12
24

0.
56

34
4

20
0
.0

3
1

0
5

1.
00

5
30

6
36

9
22

10
2

0.
80

23
59

9
18

34
44

.9
6

40
4

20
0
.0

7
1

0
7

1.
88

6
34

5
97

3
26

13
7

2.
90

>
42

70
99

>
26

39
-

13
5

6
26

0
.2

2
1

0
9

3.
98

7
38

1
42

81
36

21
9

16
.5

5
>

35
45

51
>

22
46

-
31

3
8

34
0
.6

4
1

0
11

53
.5

2
8

41
3

22
98

5
43

26
5

10
2.

51
>

43
12

99
>

29
46

-
60

6
9

40
1
.3

1
1

0
13

-
9

42
9

>
11

01
99

>
58

38
0

-
>

38
82

28
>

26
60

-
25

07
11

46
5
.9

7
1

0
15

-
10

45
1

>
10

49
99

>
57

44
8

-
>

45
66

99
>

41
74

-
23

55
12

46
5
.9

1
1

0
37

-

R
an

d
om

15
-6

0
2

16
3

1
0

16
0
.0

0
1

0
8

0
.0

0
1

0
8

0
.0

0
1

0
8

0.
03

3
22

1
9

3
34

0
.0

2
41

6
15

0.
06

12
2

12
0
.0

2
1

0
12

0.
29

4
24

8
11

1
10

70
0.

32
>

10
04

54
>

26
50

-
11

1
6

20
0
.2

2
1

0
15

3.
66

5
26

8
55

7
18

10
1

55
1.

83
>

17
65

99
>

29
52

-
32

2
7

29
0
.7

6
1

0
18

8.
77

6
28

7
41

9
21

13
5

1.
59

>
27

78
01

>
31

45
-

35
4

9
30

0
.7

9
1

0
24

24
.2

1
7

29
5

19
09

7
35

19
4

72
.9

1
>

38
75

65
>

23
49

-
83

6
10

27
1
.7

4
1

0
34

95
.7

4
8

30
1

>
88

79
9

>
47

23
1

-
>

41
33

43
>

33
55

-
49

95
11

30
1
1
.3

2
1

0
38

-
9

30
6

>
15

30
99

>
51

22
9

-
>

54
70

79
>

28
48

-
22

63
11

19
4
.4

2
1

0
34

-

R
an

d
om

20
-1

40
2

15
8

1
0

14
0
.0

0
1

0
7

0
.0

0
1

0
7

0
.0

0
1

0
7

0.
15

3
22

8
1

0
30

0.
02

1
0

11
0
.0

0
1

0
11

0
.0

0
1

0
12

1.
64

4
25

3
99

35
31

10
3

75
.2

5
>

41
44

4
>

42
68

-
90

18
67

1
.0

4
1

0
15

5.
50

5
27

4
>

39
99

9
>

41
14

6
-

>
68

29
9

>
66

87
-

81
9

22
51

1
2
.6

5
1

0
18

14
.2

3
6

29
4

>
30

19
9

>
61

18
4

-
>

60
29

9
>

86
10

7
-

>
14

10
6

>
32

11
3

-
1

0
23

-
7

31
1

>
28

99
9

>
70

22
7

-
>

75
89

4
>

46
91

-
>

14
29

9
>

32
10

9
-

1
0

28
-

8
31

9
>

30
59

9
>

80
26

7
-

>
94

69
9

>
10

1
12

0
-

40
28

22
29

5
2
.9

5
1

0
44

-
9

32
5

>
39

59
9

>
93

31
5

-
>

10
89

90
>

63
10

5
-

13
0

9
25

0
.3

2
1

0
55

-
10

32
7

29
07

10
9

32
6

19
.1

5
>

27
26

85
>

49
68

-
17

3
22

0
.0

2
1

0
66

-
11

32
7

13
25

86
30

1
8.

75
49

3
22

0
.0

3
20

5
20

0
.0

3
1

0
12

0.
05

B
es

t
7

1
0

3
2

0

T
ab

le
2:

R
es
ul
ts

fr
om

so
lv
in
g
th
e
si
ng

le
-c
om

m
od

it
y
Ra

nd
om

in
st
an

ce
s
ex
ac
tl
y.

15

3
B

P
2
B

P
2
B

C
P

R
B

P

P
ro

b
le

m
k

z*
si

ze
d
ep

th
va

rs
ti

m
e

si
ze

d
ep

th
va

rs
ti

m
e

si
ze

d
ep

th
va

rs
ti

m
e

si
ze

d
ep

th
va

rs
ti

m
e

tg
10

-2
2

55
7

21
5

13
26

0.
21

35
5

14
10

0.
21

41
5

11
0
.0

4
1

0
7

0.
18

3
71

6
55

3
19

58
0.

70
39

50
5

20
28

32
.4

9
53

5
15

0
.0

6
1

0
10

0.
34

4
81

5
83

17
52

0.
10

6
1

8
0
.0

0
5

1
8

0
.0

0
1

0
9

0.
01

5
81

5
1

0
40

0
.0

0
1

0
8

0
.0

0
1

0
8

0
.0

0
1

0
9

0.
02

tg
40

-1
2

75
0

5
2

16
0.

07
4

1
10

0
.0

2
10

3
12

0.
07

1
0

5
-

3
90

8
>

99
99

>
40

96
-

>
83

28
2

>
61

94
-

23
1

11
21

3
.3

2
1

0
7

-
4

99
4

>
77

99
>

57
14

3
-

>
82

77
0

>
45

64
-

89
3

18
33

2
5
.1

5
1

0
9

-
5

10
04

15
7

65
0.

09
70

3
27

20
1.

41
11

2
18

0
.0

3
1

0
11

0.
11

6
10

04
1

0
96

0.
03

29
3

13
0
.0

2
43

6
13

0.
07

1
0

11
0.

39

tg
40

-5
2

82
8

>
20

59
9

>
46

80
-

>
64

24
8

>
45

57
-

14
4

9
23

1.
49

1
0

3
0
.7

4
3

10
62

>
17

29
9

>
59

13
9

-
>

77
10

3
>

44
65

-
27

6
8

22
4
.2

0
1

0
4

-
4

10
78

18
1

47
68

0.
61

>
14

89
34

>
22

50
-

15
20

21
22

26
.5

3
1

0
5

0
.1

7
5

10
78

3
1

90
0
.0

3
61

4
16

0.
04

76
20

16
1.

72
1

0
5

0.
22

B
es

t
2

4
8

2

T
ab

le
3:

R
es
ul
ts

fr
om

so
lv
in
g
th
e
tg

in
st
an

ce
s
ex
ac
tl
y.

3
B

P
2
B

P
2
B

C
P

R
B

P

P
ro

b
le

m
k

z*
si

ze
d
ep

th
va

rs
ti

m
e

si
ze

d
ep

th
va

rs
ti

m
e

si
ze

d
ep

th
va

rs
ti

m
e

si
ze

d
ep

th
va

rs
ti

m
e

R
an

d
om

10
-4

0
2

19
4

1
0

26
0
.0

0
34

5
21

0.
04

4
1

18
0.

01
1

0
11

0.
17

3
25

8
18

3
18

80
0.

39
21

3
12

24
0.

18
50

6
23

0
.0

6
1

0
19

0.
86

4
29

3
69

5
36

12
9

2.
23

29
56

16
41

4.
25

11
2

7
32

0
.2

0
1

0
23

3.
35

5
30

9
19

89
30

17
6

7.
91

>
25

37
16

>
25

56
1
.0

6
56

1
12

39
1
.0

6
9

3
32

4.
26

6
31

8
15

90
5

36
25

3
73

.8
4

>
61

00
06

>
24

59
-

12
94

13
60

2
.6

3
1

0
39

17
.1

6
7

32
1

>
15

31
99

>
56

28
6

-
>

33
59

59
>

26
54

-
26

18
2

18
47

5
7
.1

0
3

1
40

-
8

32
3

11
3

37
29

9
0
.5

2
20

08
14

37
1.

23
20

51
15

36
2.

43
1

0
43

-
9

32
3

33
3

49
31

8
1.

38
11

1
32

0
.0

1
18

5
32

0.
02

1
0

46
-

R
an

d
om

11
-4

2
2

34
3

1
0

50
0
.0

1
7

2
27

0
.0

1
6

1
27

0
.0

1
1

0
23

0.
04

3
34

4
1

0
75

0
.0

0
1

0
26

0
.0

0
1

0
26

0
.0

0
1

0
23

0.
10

4
34

4
1

0
10

0
0
.0

0
1

0
26

0
.0

0
1

0
26

0
.0

0
1

0
36

0.
13

R
an

d
om

20
-8

0
2

55
3

3
1

10
0

0.
03

4
1

50
0.

02
4

1
51

0
.0

1
5

2
38

0.
59

3
58

4
10

63
24

18
8

6.
14

57
7

59
0
.1

6
10

20
16

62
3.

45
3

1
46

1.
84

4
60

1
55

99
33

27
7

40
.0

5
10

41
10

60
2
.0

2
>

81
55

0
>

54
8

60
1

-
1

0
54

4.
31

5
61

7
13

29
1

44
34

0
11

7.
96

43
63

14
66

7
.3

5
49

69
5

34
67

19
8.

61
23

10
59

22
.7

4
6

62
1

>
48

99
9

>
40

38
0

-
39

98
11

63
6
.4

2
32

55
2

29
58

10
0.

08
7

3
73

58
.7

1
7

62
6

41
3

37
41

2
3.

48
17

2
57

0
.0

2
11

6
14

57
0.

22
1

0
64

8.
36

8
62

6
1

0
44

0
0.

03
1

0
57

0
.0

1
1

0
57

0
.0

1
1

0
69

3.
90

R
an

d
om

22
-5

6
2

38
9

11
4

81
0.

02
10

3
42

0.
02

9
3

42
0
.0

1
17

4
35

0.
27

3
40

7
1

0
10

8
0
.0

1
1

0
41

0
.0

1
1

0
41

0
.0

1
3

1
43

0.
19

4
40

7
1

0
14

4
0.

01
1

0
41

0
.0

0
1

0
41

0
.0

0
3

1
34

0.
25

B
es

t
6

1
3

1
3

0

T
ab

le
4:

R
es
ul
ts

fr
om

so
lv
in
g
th
e
m
ul
ti
-c
om

m
od

it
y
in
st
an

ce
s
ex
ac
tl
y.

16

Future work on the algorithm should focus on a faster, exact algorithm for the pricing
problem. An obvious strategy is to Dantzig-Wolfe decompose the pricing problem (such that
the pricing problem constitutes a nested decomposition), but this is not necessarily a good
idea. The nested decomposition results in a master problem very similar to that for the
path-based decomposition [10]. The nested master problem introduces large branching trees,
and one could question if the nested path set- and path-based decompositions would produce
better results than having just a path-based decomposition.

Future work on the proposed method could also focus on a different decomposition, where
flow is handled in the master problem and the pricing problem simply identifies the paths of
a path set. This reduces the complexity of the pricing problem, which would become similar
to the polynomial k-shortest path problem. It is, however, not trivial to formulate a master
problem, which handles flow on path sets in a good way. The master problem must ensure flow
conservation, either through path variables or original edge variables. Either strategy could
bring back issues from existing algorithms, i.e. large branch-and-bound trees and symmetry
in the solution space.

5 Conclusion

This paper presented a new path set-based decomposition and a corresponding branch-and-
price algorithm for the multi-commodity k-splittable maximum flow problem. A path set
consists of up to k paths, each carrying a given amount of flow. The pricing problem generates
path sets, which corresponds to solving the single-commodity k-splittable flow problem. The
master problem merges the path sets into an overall feasible solution with respect to edge
capacities. The strength of the path set-based branch-and-price algorithm is smaller search
trees and – to a great extend – simpler branching strategies when compared to the leading
branch-and-price algorithm from the literature [10]. The proposed branch-and-price algorithm
furthermore includes a method for generating the incumbent, two primal heuristics and a
method for solving the pricing problem heuristically.

Computational results showed that the proposed branch-and-price algorithm is competitive
with the leading algorithms from the literature on smaller instances, but displays some scaling
issues. Solving the NP-hard pricing problem to optimality is the main issue. Future work
should thus focus on faster ways of solving the pricing problem to optimality. Future work
could also focus on a different path set-based decomposition, where flow is handled by the
master problem.

References

[1] G. Baier, E. Kohler, and M. Skutella. On the k-splittable flow problem. Algorithmica,
42:231–248, 2005.

[2] C. Barnhart, C. A. Hane, and P. H. Vance. Using branch-and-price-and-cut to solve origin-
destination integer multicommodity flow problems. Operations Research, 48(2):318–326,
2000.

[3] M. Caramia and A. Sgalambro. An exact approach for the maximum concurrent k-
splittable flow problem. Optimization Letters, 2:251–265, 2008.

17

[4] M. Caramia and A. Sgalambro. A fast heuristic algorithm for the maximum concurrent
k-splittable flow problem. Optimization Letters, 4:37–55, 2010.

[5] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations
Research, 8:101–111, 1960.

[6] C. Duhamel and P. Mahey. Multicommodity flow problems with a bounded number of
paths: A flow deviation approach. Networks, 49(1):80–89, 2007.

[7] J. W. Evans and C. Filsfils. Deploying IP and MPLS QoS for Multiservice Networks:
Theory and Practice. Morgan Kaufmann, 2007.

[8] M. Gamst. A local search heuristic for the multi-commodity k-splittable maximum flow
problem. Optimization Letters, 2013. Published online.

[9] M. Gamst, P. N. Jensen, D. Pisinger, and C. Plum. Two- and three-index formulations
of the minimum cost multicommodity k-splittable flow problem. European Journal of
Operations Research, 202(1):82–89, 2010.

[10] M. Gamst and B. Petersen. Comparing branch-and-price algorithms for the multicom-
modity k-splittable maximum flow problem. European Journal of Operational Research,
217(2):278–286, 2012.

[11] B. Jaumard, C. Meyer, and B. Thiongane. On column generation formulations for the
RWA problem. Discrete Applied Mathematics, 157:1291–1308, 2009.

[12] R. Koch, M. Skutella, and I. Spenke. Approximation and complexity of k-splittable flows.
In Approximation and Online Algorithms, Third International Workshop, WAOA, pages
244–257, 2005.

[13] R. Koch, M. Skutella, and I. Spenke. Maximum k-splittable s, t -flows. Theory of
Computing Systems, 43(1):55–66, 2008.

[14] S. G. Kolliopoulos. Minimum-cost single-source 2-splittable flow. Information Processing
Letters, 94(1):15–18, 2005.

[15] R. Lougee-Heimer. The common optimization interface for operations research. IBM
Journal of Research and Development, 47:57–66, 2003.

[16] M. Martens and M. Skutella. Flows on few paths: algorithms and lower bounds. Networks,
48(2):68–76, 2006.

[17] F. Salazar and M. Skutella. Single-source k-splittable min-cost flows. Operations research
letters, 37:71–74, 2009.

[18] J. Truffot and C. Duhamel. A branch and price algorithm for the k-splittable maximum
flow problem. Discrete Optimization, 5(3):629–646, 2008.

[19] J. Truffot, C. Duhamel, and P. Mahey. Using branch-and-price to solve multicommodity
k-splittable flow problems. In Proceedings of International Network Optimization Con-
ference (INOC), 2005.

[20] D. Villeneuve and G. Desaulniers. The shortest path problem with forbidden paths.
European Journal of Operational Research, 165(1):97–107, 2005.

18

The Multi-Commodity k-splittable Maximum Flow Problem routes flow through a capacitated graph
such that each commodity uses at most k paths and such that the total amount of routed flow is
maximized. The problem appears in telecommunications, specifically when considering Multi-Protocol
Label Switching. In the literature, the problem is solved to optimality using branch-and-price algo-
rithms built on path-based Dantzig-Wolfe decompositions. This paper proposes a new branch-and-
price algorithm built on a path set-based Dantzig-Wolfe decomposition. A path set consists of up to
k paths, each carrying a certain amount of flow. The new branch-and-price algorithm is implemented
and compared to the leading algorithms in the literature. Results for the proposed method are com-
petitive and the method even has best performance on some instances. However, the results also
indicate some scaling issues.

ISBN 978-87-92706-99-7

DTU Management Engineering

Department of Management Engineering

Technical University of Denmark

Produktionstorvet

Building 424

DK-2800 Kongens Lyngby

Denmark

Tel. +45 45 25 48 00

Fax +45 45 93 34 35

www.man.dtu.dk

	main
	Rap 6 2013

