
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 17, 2024

An exact approach for aggregated formulations

Gamst, Mette; Spoorendonk, Simon

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Gamst, M., & Spoorendonk, S. (2013). An exact approach for aggregated formulations. DTU Management
Engineering. DTU Management Engineering Report No. 3.2013

https://orbit.dtu.dk/en/publications/2b2b32e0-9b64-419f-bfd2-51fa36e1163b


Mette Gamst
Simon Spoorendonk

March 2013

Report 3.2013

DTU Management Engineering

An exact approach for aggregated 
formulations



An exact approach for aggregated formulations

Mette Gamst∗ Simon Spoorendonk∗

March 7, 2013

Abstract

Aggregating formulations is a powerful approach for transforming
problems into taking more tractable forms. Aggregated formulations
can, though, have drawbacks: some information may get lost in the
aggregation and – put in a branch-and-bound context – branching may
become very difficult and even cause an infeasible solution.

In this paper, we consider (mixed) integer program formulations
and propose a method for ensuring an optimal solution to the original
(disaggregated) problem using an aggregated formulation. The method
is based on Benders’ decomposition on a combination of the disaggre-
gated mathematical formulation and the aggregated formulation. The
method allows usage of relaxed aggregated formulations and enables
branching on both aggregated and disaggregated variables. Also, the
method guarantees an LP bound at least as good as those for the
disaggregated and aggregated formulations.

The paper includes general considerations on types of problems for
which the method is of particular interest. Furthermore, we prove the
correctness of the procedure and consider how to include extensions
such as cutting planes and advanced branching strategies.

1 Introduction

Aggregating (mixed) integer program formulations is a popular modeling
approach for reaching simpler and more tractable mathematical formula-
tions. Variable aggregation is among others performed as part of Dantzig-
Wolfe decomposition [8]. Algorithms such as branch-and-price and branch-
and-cut-and-price have gained much attention in state-of-the-art research
as they tend to show superior performance across many applications [15].
Aggregation may lead to mathematical formulations with a different solu-
tion polytope than that for the original (disaggregated) formulation, and the
aggregated formulation may be a relaxation of the original problem. In a
branch-and-bound context, aggregation can also lead to a formulation where
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branching is not trivial, for example when optimality cannot be guaranteed
by branching on the aggregated variables. Examples of problems, where
aggregation has such side effects are:

• The Split Delivery Vehicle Routing Problem (SDVRP) introduced by
Dror and Trudeau [9] is a vehicle routing problem, where customers
have a certain demand, which can be satisfied through multiple vis-
its. The disaggregated formulation contains variables for each edge
and vehicle and for each customer and vehicle [12, 14]. It is difficult
to solve to optimality due to symmetry in the solution polytope. An
alternative approach in the literature is to solve an aggregated for-
mulation containing only variables for edges and for customers [5].
The latter is faster to solve, but it is a relaxation: feasible solutions
to the aggregated formulation are not always feasible to the original
formulation.

• The Cutting Stock problem (CS) was introduced by Kantorovich [13]
and consists in cutting a given number of items on stocks subject to
item and stock lengths such that the number of used stocks is mini-
mized. The CS is typically modeled using the Gilmore-Gomory for-
mulation [11], which consists of pattern variables and takes on a set
cover-like form. Column generation is used for generating pattern vari-
ables. Branching on the variables in the Gilmore-Gomory formulation
complicates the structure of the pricing problem from the tractable
integer knapsack problem to the more difficult constrained shortest
path problem. This slows down the column generation process [1].
The disaggregated formulation for the CS is an arc-flow formulation,
which contains much symmetry and is thus less tractable.

• The k-splittable flow problem (kFP) was presented by Baier et al. [4]
and consists in routing a commodity through a capacitated network
using at most k paths. The disaggregated formulation keeps track
of flow on each of the k paths, i. e. it contains a path index on
variables [18]. This causes symmetry in the solution polytope and a
large number of variables and constraints. An alternative approach
is to perform Dantzig-Wolfe decomposition such that the path index
is left out [10]. While the latter approach generally performs better,
branching on the aggregated variables is difficult and produces large
search trees.

Generic branching in aggregated formulations is a well-known challenge
in operations research, and almost all work on aggregated formulations uses
application specific branching, see e. g. [6, 18, 19]. Some more generic
branching strategies have been proposed, though. Villeneuve et al. [21]
consider branching on original variables in Dantzig-Wolfe decompositions.
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They argue that an original formulation can always be derived from a master
and a pricing problem. Branching can thus be performed in the original
formulation, which is then re-decomposed into an equivalent master and
pricing problem. Branching rules on the original variables will be present
in the master or in the pricing problem; either way, branching may change
the pricing problem because of extra constraints or because of a changed
reduced cost function.

Vanderbeck [20] presented a generic branching strategy for branch-and-
price algorithms. The strategy consists of branching on disaggregated vari-
ables similar to Villeneuve et al. [21] but such that branching can always
be imposed by fixing variable bounds in the pricing problem. This imposes
only few changes to the pricing problem variable bounds, it allows for early
pruning of parts of the sub tree, and it reduces symmetry in the branch-
and-bound tree.

In this paper, we propose a general method for solving aggregated for-
mulations based on applying Benders’ decomposition [7] on a combination of
the disaggregated and aggregated formulations. The proposed exact method
ensures feasibility even when the aggregated formulation is a relaxation of
the original problem, and it provides a finite branching strategy based on the
original, disaggregated variables. The method also provides an LP bound,
which is at least as good as those for the disaggregated and aggregated
formulations.

The constraints of the disaggregated formulation and constraints linking
the disaggregated and aggregated variables are added to the aggregated for-
mulation. It is LP-relaxed and decomposed into a Benders’ master and sub
problem. The master problem is the aggregated formulation plus Benders’
cuts. The Benders’ dual sub problem is the disaggregated formulation and
the linking constraints. Given a fractional solution optimal to the master
problem, branching is imposed on the disaggregated variables in Benders’
dual sub problem. In each branching child, the Benders’ dual sub problem
is resolved with the added branching constraint and the resulting Benders’
cut is added to the master problem.

The Benders’ master problem can be solved using branch-and-price.
Then the proposed method does not change the solution polytope of the pric-
ing problem, but instead modifies the reduced costs to reflect the branching
strategy. This, and the fact that the method can handle relaxed aggre-
gated formulations (i. e., aggregated formulations which do not exactly
represent the original problem) compliment the work by Vanderbeck [20]
and Villeneuve et al. [21]. Neither Villeneuve et al. or Vanderbeck con-
sider relaxed aggregated formulations, and both their branching strategies
potentially change the solution polytope of the pricing problem (but not
necessarily the reduced costs).
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Farka’s Lemma has previously been used to derive cutting planes in
an equivalent fashion to the Benders’ cuts. Applegate et al. [2, 3] derive
cuts for the travelling salesman problem by linking a path and and an edge
formulation. The classical edge formulation is solved using a cutting plane
approach and the fractional solution is mapped into a linear programming
relaxed path formulation. An infeasible mapping of the solution implies that
Farka’s Lemma can be used to generate a cut using the dual ray. A similar
approach is used for the vehicle routing problem by Ralphs and Galati [16]
and by Ralphs et al. [17].

This paper is structured as follows. First in Section 2, we give an
overview of the proposed solution approach. Then in Section 3, we prove the
correctness of the method by applying it to a general framework. Section 4
analyzes drawbacks and benefits. Finally, Section 5 concludes the work.

2 Overview of exact solution method

The proposed solution method is two-fold. First a new formulation must
be constructed from a disaggregated and an aggregated formulation, and
Benders’ decomposition must be applied on the new formulation. Then the
actual solution procedure is begun, where the branching strategy is applied
via Benders’ dual sub problem.

The first procedure is outlined in Algorithm 1. Given is a disaggregated
formulation, (P1), and an aggregated formulation, (P2). We generate for-
mulation (P3) by including all constraints and variables of (P1) and (P2),
constraints to link the variables of (P1) and (P2), and finally we apply the
objective function of (P2). Formulation (P3) is LP-relaxed and Benders’
decomposition is applied to project out the disaggregated variables.

Algorithm 1 Preparation procedure

1: (P1) is the disaggregated formulation
2: (P2) is the aggregated formulation
3: (P3) consists of (P2) with LP-relaxed variables, the constraints and

variables of (P1), and of constraints linking the variables of (P1) and
(P2).

4: LP-relax all variables in (P3) and denote the resulting formulation (LP3)
5: Apply Benders’ decomposition on (LP3) to project out the disaggregated

variables

The actual solution procedure is shown in Algorithm 2. Given are the
master and dual sub problem for (P3) from Algorithm 1. As we have LP-
relaxed formulation (P3), we use branch-and-bound (denoted b&b in the
algorithm) to eventually reach an integer solution. In each branch-and-
bound node, we solve the Benders’ master and dual sub problem. If the
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solution to the latter contains fractional variables, then branching nodes
are generated. In each branching child, the branching rule is applied to
the disaggregated variables in the dual sub problem and the Benders’ cut
resulting from the branching rule is added to the master problem in the
branching child.

Algorithm 2 Solution procedure

1: The b&b tree root node consists of Benders’ master and dual sub prob-
lem from Algorithm 1

2: while (An open b&b node exists) do
3: Solve the Benders’ master and dual sub problem
4: Keep track of bounds and prune b&b tree accordingly
5: if (a variable in the Benders dual sub problem solution is fractional)

then
6: Generate branching children
7: for (each branching child) do
8: Copy the Benders’ master and dual sub problem from the parent

node
9: Impose branching constraint on disaggregated variable in Ben-

ders’ dual sub problem
10: Resolve the dual sub problem
11: if an integer solution is reached then
12: Go to line 19
13: else
14: Add any resulting Benders’ cut to the master problem
15: Add branching child to the b&b tree as an open node
16: end if
17: end for
18: else
19: A feasible solution is reached. Update bounds
20: Close branch-and-bound node
21: end if
22: end while

The interesting parts of the two procedures are the generation and de-
composition of formulation (P3) (Step 3-5 in Algorithm 1) and the branching
procedure (Step 5-17 in Algorithm 2). The remaining steps of the algorithms
are textbook procedures.

3 Correctness of proposed solution procedure

In this section, we prove the correctness of the proposed solution procedure
using a general framework. First we go through the preparation procedure in
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Algorithm 1 and prove its correctness. Then follows the solution procedure
in Algorithm 2.

The formulations in the following contain integer variables. The pro-
posed work is trivially also applicable on mixed integer programs and on
binary integer programs.

We first consider the disaggregated (original) formulation, which con-
tains variables xk defined on the index k ∈ K. The disaggregated formula-
tion denoted (P1) is:

min
∑
k∈K

c̃xk (1)

s.t.
∑
k∈K

Axk ≥ b (2)

xk ∈ Zn ∀k ∈ K (3)

The objective function (1) minimizes the cost of the solution. Constraints
(2) constrain the values of variables, and bounds (3) ensure that variables
take on feasible integer values.

The problem stated in (1)-(3) can be reformulated using aggregated vari-
ables. Instead of variables xk defined on index k ∈ K, we consider aggre-
gated variables x. The aggregated formulation denoted (P2) is:

min cx (4)

s.t. Gx ≥ f (5)

x ∈ Zm (6)

The objective function (4) minimizes the cost of the solution using the aggre-
gated variables. Constraints (5) constrain the solution polytope similarly to
constraints (2) from the previous formulation, and bounds (6) force variables
to take on feasible values.

Definition 1. Consider the objective functions (1) and (4). Given the same
solution polytope, the cost coefficients are defined such that the optimal
solution values of (1) and (4) are equal.

Even though (P1) and (P2) represent the same problem, their polytopes
may differ. Constraints (2) and (5) may constrain the problem differently,
thus solutions to (P2) can be infeasible to (P1):

Proposition 1. Let z(P1) be an optimal solution value to formulation (P1)
and z(P2) an optimal solution value to formulation (P2). Then:

z(P1) ≥ z(P2)
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Proof. (P1) formulates the original problem, and (P2) contains all feasible
solutions to the original problem. Taking Definition 1 into account gives the
desired result.

Definition 2. In the case where:

z(P1) > z(P2)

for some instances, we say that (P2) is a relaxation of (P1)

Formulation (P2) may be attractive to consider, even when it is a relax-
ation of (P1). One reason is that (P1) may be undesirable due to symmetry
in the solution polytope or due to large numbers of variables and constraints.
Another reason is that (P2) may provide good lower bounds.

Even when (P2) gives better bounds and thus is beneficial to solve, we
still need to consider if a solution is feasible to the original problem. We do
that by linking the variables of the formulations. The linking constraints
are essential to the solution method, thus they must be chosen carefully.

Definition 3. Let xko and x0 be variables in (P1) resp. (P2). The linking
constraints are:

Hx0 =
∑
k∈K

Dxk0 (7)

such that

xk ∈ Z⇒ x ∈ Z (8)

i. e. such that any feasible solution to (P1) can be transformed into a
feasible solution to (P2).

How to formulate the linking constraints is highly problem dependent.
Examples of typical linking constraints are:

• x0 =
∑

k∈K x
k
0 for problems where the variables in the aggregated for-

mulation only differ from those in the disaggregated formulation by
an index. For example for the SDVRP: the disaggregated formula-
tion contains a binary variable for each edge and vehicle indicating if
the vehicle travels on the edge, while the aggregated formulation con-
tains integer variables for each edge counting the number of vehicles
traveling on the edge.

• cx =
∑

k∈K c̃x
k can be used to link all problems according to Defini-

tion 1. Using the objective functions to link the formulations may not
always be a good choice, though, since the derived Benders’ cuts are
unable to exploit any problem structure.
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• Hx0 =
∑

k∈K Dx
k
0 for a given property of the problem. For example

consider the cutting stock problem where the disaggregated formula-
tion contains arc-flow variables each representing the cut of a given
item, while the aggregated formulation contains pattern-based vari-
ables representing cuts of a selection of items. The the left hand side
of the equation above would sum over pattern variables containing a
given item, and the right hand side would sum over arc-flow variables
representing the cut of the given item.

Let (LP1) be the LP-relaxation of formulation (P1) and (LP2) the LP-
relaxation of formulation (P2). Furthermore, let z(LP1) be an optimal so-
lution value to (LP1) and z(LP2) an optimal solution value to (P2). Using
the linking constraints, we want to consider the feasibility of solutions to
(LP1) and to (LP2).

Proposition 2. Given a feasible solution to (LP1) the following holds true:(
xk ∈ Zn, ∀k ∈ K

)
⇒ x ∈ Zm

Proof. This trivially follows from Definition 3.

Assumption 1. Given a feasible solution to (LP2), the following holds true:

x ∈ Zm ⇒
∑
k∈K

xk ∈ Zn

When Assumption 1 holds true, then branching can be imposed on the
variables of (LP2) to eventually reach a solution feasible to both (P2) and
(P1). Branching can be performed using e. g. the methods proposed by
Vanderbeck [20] or Villeneuve et al. [21]. The method proposed in this paper
is still applicable and is beneficial in a branch-and-price context where the
complexity of the pricing problem depends on variable bounds.

Assume that Assumption 1 does not hold true. In this case, integrality
cannot be imposed directly on the x variables in (LP2). The proposed work
could be especially beneficial in this case.

Proposition 3. If Assumption 1 does not hold true, then a feasible solution
to (P2) is not necessarily feasible to (P1).

Proof. Given a solution to (P2) with feasible values for x, it is not clear how
to reach feasible values for the variables xk. Considering Proposition 1, we
may even have that the solution is infeasible to (P1).

Having considered the relationship between (P1) and (P2), the two for-
mulations are now combined. We add the linking constraints (7) and the
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constraints and bounds of (P1) to (P2). The resulting formulation is denoted
(P3i):

min cx (9)

s.t. Gx ≥ f (10)

x ∈ Zm (11)

Hx =
∑
k∈K

Dxk (12)∑
k∈K

Axk ≥ b (13)

xk ∈ Zn ∀k ∈ K (14)

Theorem 1. Consider the formulations (P1), (P2) and (P3i). Then:

z(P1) = z(P3i)

Proof. (P2) contains all feasible solutions to the original problem, and (P1)
formulates the original problem. Hence (P1) constrains the problem at least
as much as (P2), see Proposition 1. Using Definition 1 we have that z(P3i)
must be equal to z(P1).

The integrality constraints on the aggregated variables in (P3i) are dropped.
The resulting formulation is denoted (P3):

min cx (15)

s.t. Gx ≥ f (16)

Hx =
∑
k∈K

Dxk (17)∑
k∈K

Axk ≥ b (18)

xk ∈ Zn ∀k ∈ K (19)

Theorem 2. Consider the formulations (P1), (P2) and (P3). The following
holds true:

z(P1) = z(P3)

Proof. Given a solution with integer variables xk then the linking constraints
ensure that a solution can be transformed such that all the x variables are
also integer – this is according to Definition 3. Using Theorem 1 gives us
the desired result.

Proposition 4. Let (LP3) be the LP-relaxation of (P3). Consider the LP-
relaxed formulations (LP1), (LP2) and (LP3). Then:

z(LP3) = max{z(LP1), z(LP2)}
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Proof. Given Definition 1 and the fact that all constraints of both (P1)
and (P2) are included, then z(LP3) can never be smaller than z(LP1) or
z(LP2).

Benders’ decomposition is applied on (LP3) to project out the xk vari-
ables. From this we get the Benders’ Master Problem (BMP):

min cx

s.t. Gx ≥ f
uir(b+Hx) ≤ 0 ∀i = 1, . . . , R

x free

with uir, i = 1, . . . , R being the dual extreme rays of the Benders’ dual sub
problem and h and g being some coefficients given by the cut. Note that
Benders’ cuts based on dual extreme points are omitted from the (BMP)
since the Benders dual sub problem is only solved to ensure feasibility.

Given a solution x̄ to the (BMP), Benders’ Dual Sub Problem (BDSP)
is:

min 0

s.t. Hx̄ =
∑
k∈K

Dxk∑
k∈K

Axk ≥ b

xk free ∀k ∈ K

This ends the correctness of Algorithm 1: we have proved that (P2)
contains all feasible solutions of (P1) and given examples on how to link
the two formulations. Finally, (P3) is proved to be correct for the original
problem and Benders’ decomposition is applied on the LP-relaxed (P3) to
project out the disaggregated variables.

In the following we prove the correctness of the solution procedure in Al-
gorithm 2. Focus is on proving that an optimal solution to (BMP), where all
variables in (BDSP) are integer, is also optimal to the original formulation.

Corollary 1. The solution value of (BMP) is equal to that of (LP3):

z(BMP) = z(LP3)

Proof. This follows from the Benders’ decomposition principle [7].

The following is key to the proposed work, as it proves the actual cor-
rectness of the solution procedure.

10



Lemma 1. Any feasible solution to (BMP), where all variables xk in the
feasible corresponding (BDSP) are integer, is feasible to (P3).

Proof. Consider applying Benders decomposition on (P3). The Benders
Master Problem would be similar to (BMP) and the Benders Sub Problem
to (BDSP) but with integrality constraint on the xk variables.

Theorem 3. An optimal solution to (BMP) with integer variables xk in
the corresponding (BDSP), is optimal to (P1).

Proof. This follows trivially from Lemma 1 and Theorem 2.

To obtain a valid integer solution to (P3), we embed (BMP) into a
branch-and-bound scheme as shown in Algorithm 2. We branch on disjunc-
tions in the xk-variable space to reach feasible solutions for (P3). Given a
variable xki with fractional solution value v, the disjunctions are enforced in
the (BDSP) as

xki ≤ bvc ∨ xki ≥ dve

and are therefore implicitly enforced in (BMP) using the Benders’ cuts.
In this way we eventually reach an optimal solution to (BMP) with

integer variables xk in the corresponding (BDSP). From Theorem 3 we have
that this solution is optimal to our original problem formulation (P1). The
solution procedures in Algorithm 1 and 2 thus provide an exact approach
for solving aggregated formulations.

4 Analysis of the proposed method

In the following we consider possible extensions of the proposed solution
method.

4.1 Cutting planes

Cutting planes can be used to strengthen the formulations (P1), (P2) and
(P3). The cuts may be generated iteratively in a cutting plane algorithm.
Here we define the cuts to be valid inequalities, see Definition 8.1 in Wolsey
[22]. Note that if put in a branch-and-bound context, then the cuts may only
be valid in the current node and its sub tree. The following thus considers
using cutting plane algorithms in the current branch-and-bound node and
its sub tree.

Consider using a cutting plane algorithm for solving the disaggregated
formulation (P1), the aggregated formulation (P2), the combined formula-
tion (P3) or all three. Denote a cut for (P1)

πxk ≤ π0 (20)
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a cut for (P2)

λx ≤ λ0 (21)

and a cut for (P3)

γxk + µx ≤ ω0 (22)

Definition 4. The cut (20) is a valid inequality to (P1), the cut (21) is a
valid inequality to (P2), and the cut (22) is a valid inequality to (P3)

Corollary 2. It is feasible to both pre-generate or iteratively add cuts of
type (20) to (P1), cuts of type (21) to (P2), and cuts of type (22) to (P3)

Proof. According to Definition 4, then (20) are valid inequalities to (P1),
(21) are valid inequalities to (P2), and (22) are valid inequalities to (P3).
The cuts can thus be included in their respective formulations from the
beginning. They can always be added iteratively according to the cutting
plane algorithm defined in Section 8.5 in Wolsey [22].

Assume that all cuts were pre-generated and added to (P1), (P2) resp.
(P3). Formulation (P3) with cuts is denoted (P3c) and is defined as:

min cx (23)

s.t. Gx ≥ f (24)

Hx =
∑
k∈K

Dxk (25)

λx ≤ λ0 (26)∑
k∈K

Axk ≥ b (27)

πxk ≤ π0 (28)

γxk + µx ≤ ω0 (29)

xk ∈ Zn ∀k ∈ K (30)

Corollary 3. The cuts (26), (28) and (29) are valid inequalities to (P3)

Proof. This follows trivially from Definition 4 and from Theorem 2

Applying Benders’ decomposition on the formulation above gives the
following Benders’ Master Problem with cuts (BMPc):

min cx

s.t. Gx ≥ f
λx ≤ λ0 (31)

uir(b+Hx) ≤ 0 ∀i = 1, . . . , R

x free
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with uir, i = 1, . . . , R being the dual extreme rays of the Benders’ dual sub
problem and h and g being some coefficients given by the cut.

Given a solution x̄ to the master problem, the Benders’ Dual Sub Prob-
lem with cuts (BDSPc) is:

min 0

s.t. Hx̄ =
∑
k∈K

Dxk∑
k∈K

Axk ≥ b

πxk ≤ π0 (32)

γxk ≤ ω0 − µx̄ (33)

xk free ∀k ∈ K

Corollary 4. The cuts (26), (28) and (29) are valid inequalities to (P3).
Furthermore, cuts (31) (equivalent to (26)) are valid to (BMPc) and cuts
(32)-(33) (equivalent to (28)-(29)) are valid to (BDSPc)

Proof. The cuts (26), (28) and (29) are valid to (P3) according Corollary 3.
Using the Benders’ decomposition principle, cuts (31) are in (BMPc) because
they are based on the aggregated variables. Similarly the cuts (32) and (33)
are in (BDSPc) because they are (partly for (33)) based on the disaggregated
variables, which are projected out.

Theorem 4. The proposed solution approach allows usage of cutting planes
to solve formulation (P1), (P2), (P3) or all three.

Proof. Corollary 4 shows that cuts added to (P1), (P2) and (P3) are valid
inequalities to the proposed solution approach. Furthermore, according to
Corollary 2, the cuts can be iteratively added in a cutting plane context.

The proposed solution method thus allows including cuts valid for both
the aggregated and disaggregated formulations. This potentially strengthens
the formulations and thus improves the solution time.

4.2 Branching strategy

An important performance parameter for branch-and-bound algorithms is
the size of the branch-and-bound tree. When branching on variables, the
number of branches may be smaller for aggregated formulations than for
disaggregated formulation, simply because the former contains fewer vari-
ables. We thus propose to use the proposed branching strategy with care.
Branching strategies on the aggregated or disaggregated variables may ex-
ist, cutting off large parts of the solution polytope without complicating the
problem structure. These strategies could be more attractive.
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Recall that the proposed method does not require integral values for the
aggregated variables. Also, recall that when the aggregated formulation is a
relaxation of the disaggregated formulation, then having integral values for
all aggregated variables does not guarantee a feasible or optimal solution to
the original problem. We may still, however, be interested in integral values
for aggregated variables as this could cut off large part of the solution space
faster than only branching on disaggregated variables.

Consider the branching rule on aggregated variables:∑
i∈λ

xi = v vs.
∑
i∈δ

xi = u (34)

for given sets λ and δ and constants v and u. The branching cut (34) can
be added to the (BMP) in each branching child. The branching cut can
be viewed as a valid inequality to the problem in the resulting branch-and-
bound node. According to Theorem 4 adding the branching cut is hence
feasible.

Consider the branching rule on disaggregated variables∑
i∈λ

xki = v vs.
∑
i∈δ

xki = u (35)

for given sets λ and δ and constants v and u. The branching cut (35)
is added to the (BDSP) in each branching child. Again, the branching
cut can be viewed as a valid inequality to the problem in the resulting
branch-and-bound node, and adding the branching cut is feasible according
to Theorem 4. This branching strategy may also not guarantee an integer
solution; however, it may still be useful to cut off large parts of the solution
polytope.

4.3 Column generation

The (BMP) can be solved using column generation, where a pricing problem
generates columns with negative reduced cost (or positive reduced cost for
maximization problems). The reduced cost is calculated using the dual
variable values of the current solution to (BMP). Define y0 to be the non-
negative duals of the constraints in (BMP) and yi the non-positive duals of
the Benders’ cuts in (BMP). The reduced cost is:

c−Gy0 −
R∑
i=1

(uirH)yi ≤ 0

In the proposed method, branching rules are imposed by Benders’ cuts in
the (BMP). The dual variables, yi, and the coefficients, uirH, of these cuts
thus influence the reduced costs, i.e., the Benders’ cuts change the objective
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of the pricing problem. The Benders’ cuts do not, however, change the
solution polytope of the pricing problem.

The proposed solution method must be used with care in column gen-
eration context, if changing the objective function of the pricing problem
causes extra computational time. If the objective function of the pricing
problem does not influence the computational time significantly, then the
proposed method may be attractive.

When solving the aggregated formulation using column generation, then
branching is often done by bounding variables values in the pricing problem.
If this causes extra computational time, then the proposed solution method
may be very beneficial to use as alternative, as it does not change the variable
bounds in the pricing problem.

5 Conclusion

Aggregating formulations is often very desirable to reduce the number of
variables and/or constraints. The resulting formulation may be easier to
solve and provide good bounds. The formulation, however, may be a re-
laxation of the original problem. It may also cause complicated branching,
because branching cannot always be performed on the aggregated variables.

We propose a generic solution method for aggregated formulations. The
method consists of combining the aggregated and disaggregated formulations
and adding variable linking constraints. The combined formulation is Ben-
ders’ decomposed such that the resulting Benders’ Master Problem (BMP) is
equivalent to the LP-relaxed aggregated formulation plus possible Benders’
cuts. The resulting Benders’ Dual Sub Problem (BDSP) is equivalent to the
LP-relaxed disaggregated formulation plus the linking constraints. If the
optimal solution to the (BMP) results in fractional variables in the (BDSP),
then we branch on the original, disaggregated variables in the (BDSP). Two
branching children are generated: in each child a fractional variable in the
(BDSP) is floored (first branching child) or ceiled (second branching child)
and the (BDSP) is resolved. From this solution, we get a cut, which is added
to the (BMP) in the branching child and the procedure repeats.

The paper proves the correctness of the proposed generic solution ap-
proach, and that the approach guarantees an LP bound at least as good
as those for the disaggregated and aggregated formulations. The paper fur-
thermore considers how to include cutting planes in both the aggregated
and disaggregated formulations. Finally, it considers how to extend the
method with advanced, problem specific solution approaches such as spe-
cialized branching strategies and column generation.

A relevant question to ask is, if it is more beneficial to repeatedly solve
the (BDSP) than to solve the disaggregated formulation in a branch-and-
bound scheme. The linking constraints restrict the solution polytope of
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the (BDSP), potentially reducing both the amount of symmetry and the
number of possible non-zero variables. It is important to carefully consider
the linking constraint in order to restrict the solution space of the (BDSP)
as much as possible.
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[3] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Implementing the
dantzig-fulkerson-johnson algorithm for large traveling salesman prob-
lems. Mathematical Programming, 97(91-153), 2003.

[4] G. Baier, E. Kohler, and M. Skutella. On the k-splittable flow problem.
Algorithmica, 42:231–248, 2005.

[5] J. M. Belenguer, M. C. Martinez, and E. Mota. A lower bound for the
split delivery vehicle routing problem. Operations Research, 48(5):801–
810, 2000.

[6] G. Belov. Problems, Models and Algorithms in One- and Two-
Dimensional Cutting. PhD thesis, Technischen Universitaet Dresden,
Germany, 2003.

[7] J. F. Benders. Partitioning procedures for solving mixed-variables pro-
gramming problems. Numerische Mathematik, 4:238–252, 1962.

[8] G. B. Dantzig and P. Wolfe. Decomposition principle for linear pro-
grams. Operations Research, 8:101–111, 1960.

[9] M. Dror and P. Trudeau. Split delivery routing. Naval Res. Logist.,
37:383–402, 1990.

[10] M. Gamst and B. Petersen. Comparing branch-and-price algorithms
for the multicommodity k-splittable maximum flow problem. European
Journal of Operational Research, 217(2):278–286, 2012.

[11] P. C. Gilmore and R. E. Gomory. A linear programming approach to
the cutting-stock problem - part ii. Operations Research, 11:863–888,
1963.

16



[12] M. Jin, K. Liu, and R. O. Bowden. A two-stage algorithm with valid
inequalities for the split delivery vehicle routing problem. International
Journal of Production Economics, 105(1):228–242, 2007.

[13] L. Kantorovich. Mathematical methods of planning and organising
production. Management Science, 6(366-422), 1960.

[14] C.-G. Lee, M. A. Epelman, C. C. W. III, and Y. A. Bozer. A shortest
path approach to the multiple-vehicle routing problem with split pick-
ups. Transportation Research Part B: Methodological, 40(4):265–284,
2006.

[15] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation.
Operations Research, 53(6):1007–1023, 2005.

[16] T. Ralphs and M. Galati. Decomposition and dynamic cut generation in
integer linear programming. Mathematical Programming, 106:261–285,
2006.

[17] T. Ralphs, L. Kopman, W. Pulleyblank, and L. Trotter. On the capaci-
tated vehicle routing problem. Mathematical Programming, 94:343–359,
2003.

[18] J. Truffot and C. Duhamel. A branch and price algorithm for the k-
splittable maximum flow problem. Discrete Optimization, 5(3):629–646,
2008.
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Aggregating formulations is a powerful approach for transforming problems into taking more tracta-
ble forms. Aggregated formulations can, though, have drawbacks: some information may get lost in 
the aggregation and - put in a branch-and-bound context - branching may become very difficult and 
even cause an infeasible solution.
In this paper, we consider (mixed) integer program formulations and propose a method for ensuring 
an optimal solution to the original (disaggregated) problem using an aggregated formulation. The 
method is based on Benders’ decomposition on a combination of the disaggregated
mathematical formulation and the aggregated formulation.  The method allows usage of relaxed ag-
gregated formulations and enables branching on both aggregated and disaggregated variables. Also, 
the method guarantees an LP bound at least as good as those for the disaggregated and
aggregated formulations.
The paper includes general considerations on types of problems for which the method is of particular 
interest. Furthermore, we prove the correctness of the procedure and consider how to include exten-
sions such as cutting planes and advanced branching strategies.
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