Burn-out, circumferential film flow distribution and pressure drop for an eccentric annulus with heated rod

Andersen, P.S.; Jensen, A.; Mannov, G.; Olsen, A.

Publication date: 1973

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
BURN-OUT, CIRCUMFERENTIAL FILM FLOW DISTRIBUTION AND PRESSURE DROP FOR AN ECCENTRIC ANNULUS WITH HEATED ROD

by

P. S. Andersen
A. Jensen
G. Mammov
A. Olsen

12 pages + 3 tables + 23 illustrations

Abstract

Measurements of
1. Burn-out,
2. Circumferential film flow distribution and
3. Pressure drop
in a 17×27.2×3500 mm annulus geometry are reported in this preliminary report. The eccentricity was varied between 0 and 3 mm. The pressure and rod heat flux were held constant at 70 bar and 100.7 W/cm². Burn-out curves are presented for mass velocities between 200 and 1500 kg/m²s and for inlet subcoolings of 10 °C and 100 °C. The film flow and pressure drop measurements correspond to the steam qualities x = 19 % and 24 % for the mass velocity G = 602 kg/m²s and x = 20 % and 23 % for G = 1200 kg/m²s.

The influence of the circumferential rod film flow variation on burn-out is discussed.
CONTENTS.

1. Introduction... 2

2. Experimental Equipment and Procedure...................... 3

3. Results.. 5
 3.1. Burn-Out... 5
 3.2. Film Flow... 5
 3.3. Frictional Pressure Drop................................. 7

4. Conclusions.. 8

5. Nomenclature.. 9

6. References.. 10

Tables

Figures
1. Introduction.

The present investigation is a part of a joint project "The Scandinavian Subchannel Project" between AEC, Risø, AB Atomenergi, Sweden and IFM, Norway with the goal of developing reliable prediction methods based upon subchannel analysis for diabatic two-phase flows. One objective is to perform burn-out predictions in rod clusters by means of a "film-flow model" capable of taking into account variations in mass velocities and heat fluxes along the rods and also mutual interactions of the rods and the shroud.

The present diabatic steam-water experimental programme was primarily designed to answer some basic questions on the relationship between film flow rate and burn-out under asymmetrical conditions.

Experimental film flow measurements in eccentric annuli with air-water mixtures have been reported by Butterworth [1] and Schraub et al. [2]. Both experimenters found that the circumferential variation in the rod film flow rate was very small.
2. Experimental Equipment and Procedure.

The experiments were carried out in the 0.8 MW loop of the Laboratory of Reactor Technology at KTH in Stockholm. For a detailed description of this loop see ref. [3].

The annular test section consists of a directly heated 17 mm stainless steel rod mounted inside a 27.2 mm i.d. unheated stainless steel tube. The heated length of the rod is 3500 mm. The rod can be mounted in positions corresponding to the eccentricities, $E = 0, 0.75, 1.5, 2.5$ and 3.0 mm. The outer tube is provided with holes for spacers, axial pressure drop distribution measurements and needle contact probes (for the measurements of the axial film thicknesses; these measurements are not reported herein).

The rod film may be sucked off through suction holes beginning 10 mm above the end of the heated length. The tube film is sucked off through suction holes at the same level. During three experimental periods (period 3, 4 and 5) the geometry of the perforated areas were as indicates in table 1.

<table>
<thead>
<tr>
<th>Exp. period</th>
<th>Fraction of perimeter perforated</th>
<th>Fraction of perimeter Comment</th>
<th>Tube perforation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>360°</td>
<td>90°, 1,6 mm holes over a length of 55 mm</td>
<td>See Fig. 1.</td>
</tr>
<tr>
<td>4</td>
<td>62.5°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>62.9°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Geometrical data for 17/27.2/3500 mm test section.
The steam-water mixtures extracted through rod and tube perforations were condensed in separate heat exchangers and metered by Venturis or orifices. The relative amounts of steam and water were determined by heat balances. Rod and tube suction were not performed simultaneously.

The relative positions of the rod and tube perforations, which have been realized experimentally, are summarized in the sketch Fig. 3. Note that only in "position 2.5" for concentric annulus the two perforations are not "facing" each other.

The spacers were 2 mm dia. pins with semi-spherical tips mounted radially on the tube.

There were 500 mm between spacer levels. Table 1 indicates the number of pins per spacer level for the three experimental periods.

3. Results.

3.1. Burn-Out.

Fig. 4 summarizes all the burn-out measurements on concentric and eccentric annulus. The graph gives the total burn-out power Q_{bu} as a function of the mass velocity G for the subcoolings $\Delta t_{sub} = 10^\circ C$ and $\Delta t_{sub} = 100^\circ C$. For each subcooling the eccentricity, E is a parameter. It is clear that burn-out is adversely affected by eccentricity for $G \geq 500$ kg/m2.s.

For smaller mass velocities the effect may be reversed (at least for the larger subcooling). The burn-out measurements were performed during experimental period no. 5.

3.2. Film Flow.

In general a two-phase mixture is being sucked out through the perforation in tube and rod. Plotting the sucked out water flow rate, \dot{m}_w, versus the steam flow rate, \dot{m}_s, one obtains a "suction curve". Examples are shown in Figs. 5 and 6 for rod and tube respectively. The shape of the suction curves reflects the steam content in the film, the waviness of the film surface and the water content in the core. For the present purpose the "film flow rate", \dot{m}_f, is defined by a straight line extrapolation to $\dot{m}_s = 0$ (the dotted lines in Figs. 5 and 6 are examples of the method of extrapolation).

Fig. 7 presents suction curves for rod obtained for concentric annulus (Eco) under various experimental conditions. We note that there is very good agreement between experiments with a 62.3° perforation. In particular: 1) Fin geometry is of no significance (compare results for experimental periods 4 and 5), 2) Turning the perforation by 90° (pos. 2.5) does not alter the results. This is taken to indicate that the film is evenly distributed around the rod for concentric conditions.

However, comparing suction results from a fraction of the perimeter (i.e. 62.3°) with results from suction from the total perimeter one notes a marked difference. The film flow rate deduced from "total suction" is unexplainably lower (by about 20%) than that from "partial suction". It might be speculated that water deposited on the fins accounts for the difference. However, the two sets of fins (one 0.5 mm in height the other 1.0 mm) gave identical results. Fig. 8 similarly displays tube suction curves for concentric annulus for three cases of "partial" suction (62.9°) and one case of suction from the total perimeter. Good agreement is found between all the results.

The experimental data for rod film flow are summarized in table 2. Figs. 9 through 12 display the angular (circumferential) distribution of rod film flow. The results are presented as the film flows corresponding to suction from 62.3° of the perimeter versus "position" i.e. the angular position of the rod (refer to the sketch, Fig. 3). The eccentricity, E, is parameter in all the graphs.

It is obvious that eccentricity has a very pronounced effect on the circumferential distribution of the rod film flow. The greater the eccentricity the more uneven the film flow rate. The maximum film flow rate occurs at the maximum gap width (position 1). For the highest eccentricity ($E = 3$ mm) the minimum film flow rate (occurring at the minimum gap, position 4) is very close to zero.

The total rod film flow rates, \dot{m}_f, have been computed by assuming film flow symmetry around the geometrical line of symmetry. The results are summarized in table 3. In Figs. 13 and 14 these results are displayed as a function of the steam quality x for $G = 602$ and 1200 kg/m2.s respectively. Also shown in these graphs are the burn-out qualities for $q'' = 100.7$ w/cm2 obtained by linear interpolation in plots of measured values of x_{bo} versus q''. Since for long heated lengths x_{bo} versus q'' is almost independent of the heated length then the burn-out qualities thus obtained are realistic estimates of the actual burn-out qualities at the two relevant mass velocities and $q'' = 100.1$ w/cm2. Figs. 13 and 14 may therefore be interpreted as displaying the decrease of the relative total rod film flow rate as one moves vertically upward a long heated rod. The approximate 45° slopes of the lines connecting the experimental points indicate that evaporation controls film depletion.
Experiencing Fig. 13 for \(G = 1200 \text{ kg/m}^2\text{s} \) it seems clear that total film flow rate controls burn-out. Burn-out occurs when the total film flow rate becomes zero. The lower burn-out qualities observed for the eccentric geometries must then be explained by the corresponding lower total film flows rather than by the uneven distribution of the film around the rod perimeter.

This conclusion is not entirely contradicted by Fig. 14 for \(G = 602 \text{ kg/m}^2\text{s} \) although the picture here is less clear.

The experimental data for tube film flow are summarized in Table 4. Figs. 15 through 18 show the angular distribution of tube film flow. The effect of eccentricity is almost as pronounced as for the rod film and the lowest film flow rate is also found in the narrow gap (pos. 4). The total tube film flow rate is not very dependent upon eccentricity. This is in contrast to what was found for the rod film flow rate for \(G = 1200 \text{ kg/m}^2\text{s} \).

3.3. Frictional Pressure Drop.

In Figs. 19 to 23 is given the result of the diabatic pressure drop measurements at 70 bar for a constant heat flux \(q^1 = 100.7 \text{ W/cm}^2 \) and two values of flow, \(G = 600 \text{ kg/m}^2\text{s} \) and \(1200 \text{ kg/m}^2\text{s} \). The figures are given with the eccentricity \(E \) as parameter.

The multiplier is determined from the total pressure drop corrected for the influence of the hydrostatic head by means of the Bankoff-Jones void formula. The single phase pressure drop as determined from measurements has been expressed as

\[
\left(\frac{d \pi}{dz} \right)_{\text{friction}} = 0.40 \text{ Bo}^{-0.25} \frac{1}{\text{Bo}^2} \frac{G^2}{W_1}
\]

It can be seen from the figures that the influence of eccentricity is small. However, a slight decrease in the frictional pressure drop may be observed for increasing eccentricity.

Experiments with a 17.27.2.3500 mm annulus geometry with heated rod have led to the following preliminary conclusions:

1. Rod eccentricity has a pronounced adverse effect on burn-out at mass velocities greater than 500 \(\text{ kg/m}^2\text{s} \). At smaller mass velocities eccentricity may have a small beneficial effect at small subcoolings.

2. The circumferential variation of the rod and tube film flow rate becomes increasingly pronounced for increasing eccentricity. The film flow rate is smallest in the narrow gap. The rod film flow becomes close to zero at the highest eccentricity (3 mm) even at steam qualities rather far removed from the burn-out quality.

3. The total rod film flow rate decreases with increasing eccentricity for \(G = 1200 \text{ kg/m}^2\text{s} \), but remains relatively unaffected at \(G = 602 \text{ kg/m}^2\text{s} \).

4. Burn-out performance seems primarily to be controlled by the total rod film flow rate.

5. Eccentricity has possibly a small (beneficial) effect on the pressure drop.
5. Nomenclature.

- D_H: hydraulic diameter
- E: eccentricity
- G: mass velocity
- $\dot{\gamma}_f$: total film flow rate
- $\dot{\gamma}_f^{p}$: film flow rate ("partial suction")
- $\dot{\gamma}_s$: steam flow rate ("partial suction")
- $\dot{\gamma}_w$: water flow rate ("partial suction")
- P: pressure
- Q: total power
- \dot{q}'': specific power
- $Re = \frac{GD_H}{\mu}$: Reynolds number
- x: steam quality
- x_o: steam quality at outlet
- s: axial coordinate
- Δt_{sub}: inlet subcooling
- ρ_l: density of liquid
- φ: two-phase multiplier
- μ: dynamic viscosity

6. References.

Table 2: Rod film flow rates on 62.3 in g/s.

<table>
<thead>
<tr>
<th>Pos. 1</th>
<th>Pos. 2</th>
<th>Pos. 3</th>
<th>Pos. 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Xo</td>
<td>G</td>
<td>Xo</td>
</tr>
<tr>
<td>100.7</td>
<td>120.1</td>
<td>100.7</td>
<td>120.0</td>
</tr>
<tr>
<td>23.7</td>
<td>6.0</td>
<td>23.8</td>
<td>6.5</td>
</tr>
<tr>
<td>(7.7)</td>
<td>(5.8)</td>
<td>(6.9)</td>
<td>(5.3)</td>
</tr>
<tr>
<td>6.3</td>
<td>4.8</td>
<td>6.5</td>
<td>4.5</td>
</tr>
<tr>
<td>(5.0)</td>
<td>(4.2)</td>
<td>(5.5)</td>
<td>(3.7)</td>
</tr>
<tr>
<td>2.5</td>
<td>3.0</td>
<td>2.5</td>
<td>3.0</td>
</tr>
<tr>
<td>(0.4)</td>
<td>(2.0)</td>
<td>(0.4)</td>
<td>(2.0)</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>(3.8)</td>
<td>(3.8)</td>
<td>(3.8)</td>
<td>(3.8)</td>
</tr>
</tbody>
</table>

Numbers in () brackets: Exp. period No. 4.
Numbers in [] brackets: Exp. period No. 5.
(Exp. period No. 3 corresponds to suction from the total perimeter. See fig. 1.)

For fin configurations corresponding to Exp. periods No. 4 and 5.

Table 3: Total rod film flow rates.

<table>
<thead>
<tr>
<th>Pos. 1</th>
<th>Pos. 2</th>
<th>Pos. 3</th>
<th>Pos. 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Xo</td>
<td>G</td>
<td>Xo</td>
</tr>
<tr>
<td>100.7</td>
<td>120.1</td>
<td>100.7</td>
<td>120.0</td>
</tr>
<tr>
<td>23.7</td>
<td>6.0</td>
<td>23.8</td>
<td>6.5</td>
</tr>
<tr>
<td>(7.7)</td>
<td>(5.8)</td>
<td>(6.9)</td>
<td>(5.3)</td>
</tr>
<tr>
<td>6.3</td>
<td>4.8</td>
<td>6.5</td>
<td>4.5</td>
</tr>
<tr>
<td>(5.0)</td>
<td>(4.2)</td>
<td>(5.5)</td>
<td>(3.7)</td>
</tr>
<tr>
<td>2.5</td>
<td>3.0</td>
<td>2.5</td>
<td>3.0</td>
</tr>
<tr>
<td>(0.4)</td>
<td>(2.0)</td>
<td>(0.4)</td>
<td>(2.0)</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>(3.8)</td>
<td>(3.8)</td>
<td>(3.8)</td>
<td>(3.8)</td>
</tr>
</tbody>
</table>
Table 4: Tube film flow rates on 62.3° in [g/a].

<table>
<thead>
<tr>
<th>EXP. PERIOD</th>
<th>FH</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.5</td>
<td>5.0</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>8.0</td>
</tr>
</tbody>
</table>

For fin configurations corresponding to Exp. periods No. 4 and 5, see Fig. 21.

Numbers in [] brackets: Exp. period No. 3 corresponds to suction from the total perimeter.

Numbers without brackets: Exp. period No. 5.

Numbers in () brackets: Exp. period No. 4.

(Exp. period No. 3 corresponds to suction from the total perimeter.)

For fin configurations corresponding to Exp. periods No. 4 and 5, see Fig. 21.
SKETCH OF EXPERIMENTAL ROD POSITIONS

TUBE SUCTION PERFORATION

FOLD-OUT OF INTERNAL SURFACE

Pos. 1

Pos. 2

Pos. 3

Pos. 4

E = 0

Fig. 2

P.O.B. 2.5

SKETCH OF EXPERIMENTAL ROD POSITIONS

Pos. 1

Pos. 2

Pos. 2.5

Pos. 3

Pos. 4

12 x 1.068

14.93

22 x 2.5 = 55

5

6

0.25

1.6"
SUCTION CURVES FOR ROD, E = 1.5 mm

DETERMINATION OF \(\dot{m}_f \) BY EXTRAPOLATION

<table>
<thead>
<tr>
<th>(q^*) Rod (W/cm²)</th>
<th>(G_c) kg/m²</th>
<th>(x_0) g/cm²</th>
<th>Symbol</th>
<th>Pos.</th>
<th>(\dot{m}_f) [g/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.5</td>
<td>1200</td>
<td>22.7</td>
<td>•</td>
<td>1</td>
<td>6.6</td>
</tr>
<tr>
<td>100.7</td>
<td>1198</td>
<td>22.9</td>
<td>▼</td>
<td>2</td>
<td>5.2</td>
</tr>
<tr>
<td>100.6</td>
<td>1202</td>
<td>23.0</td>
<td>□</td>
<td>3</td>
<td>4.3</td>
</tr>
<tr>
<td>100.7</td>
<td>1202</td>
<td>22.9</td>
<td>◤</td>
<td>4</td>
<td>3.5</td>
</tr>
<tr>
<td>100.7 ± 0.2</td>
<td>1201 ± 3</td>
<td>22.9 ± 0.2</td>
<td>Mean values</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exp. period No. 5

Fig. 4: Burnout in Annulus Geometry. Two inlet subcoolings and four eccentricities

Fig. 5: Determination of \(\dot{m}_f \) by extrapolation

\(\dot{m}_f \) [g/s]
Suction curves for tube, \(E = 1.5 \text{mm} \)

Determination of \(m_f \) by extrapolation

\[
\begin{array}{cccc}
\text{Exp. period} & q_{\text{rod}} & G & x_0 \\
4 & 100.4 & 601 & 23.7 \\
5 & 100.9 & 602 & 23.7 \\
5 & 101.3 & 603 & 23.6 \\
3 & 101.0 & 600 & 24.4 \\
\end{array}
\]

Exp. period No. 5

Mean values

Suction from 62.3°

Suction from total perimeter

(measured values reduced by 62.3/360)
SUCTION CURVES FOR TUBE, $E=0$
CONPARISON BETWEEN DIFFERENT SUCTION PROCEDURES

<table>
<thead>
<tr>
<th>Exp.</th>
<th>p'_{rod} [w/cm²]</th>
<th>G [kg/m²s]</th>
<th>ξ_0 [%]</th>
<th>Symbol</th>
<th>Suction from</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>100.4</td>
<td>601</td>
<td>23.6</td>
<td>○</td>
<td>pos,1</td>
</tr>
<tr>
<td>5</td>
<td>100.9</td>
<td>601</td>
<td>23.8</td>
<td>●</td>
<td>pos,1</td>
</tr>
<tr>
<td>5</td>
<td>101.0</td>
<td>603</td>
<td>23.6</td>
<td>△</td>
<td>pos,2.5</td>
</tr>
<tr>
<td>3</td>
<td>101.0</td>
<td>600</td>
<td>24.4</td>
<td>✕</td>
<td>total perimeter</td>
</tr>
</tbody>
</table>

\dot{m}_w [g/s]

\dot{m}_s [g/s] Fig. 8

ROD FILM FLOW ON 62.3°

ANGULAR DISTRIBUTION

$p = 70$ bar
$q'_{rod} = 100.7$ w/cm²
$G = 602$ kg/m²s
$\xi_0 = 22.0$ %

<table>
<thead>
<tr>
<th>Symbol</th>
<th>E [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>0</td>
</tr>
<tr>
<td>■</td>
<td>1.5</td>
</tr>
<tr>
<td>●</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Exp. period No 4
$E = 0$ mm

\dot{m}_f [g/s]

Fig. 9
ROD FILM FLOW ON 62.3° ANGULAR DISTRIBUTION

$p = 70$ bar
$q_{rod}^* = 100.7 \text{ w/cm}^2$
$G = 602 \text{ kg/m}^2\text{s}$
$x_o = 23.9\%$

Exp. period 4 5

$E[\text{mm}]$

0 1.5 2.5 3.0

Exp. period No 4

Fig. 10

ROD FILM FLOW ON 62.3° ANGULAR DISTRIBUTION

$p = 70$ bar
$q_{rod}^* = 100.7 \text{ w/cm}^2$
$G = 1201 \text{ kg/m}^2\text{s}$
$x_o = 20.2\%$

Exp. period 4 5

$E[\text{mm}]$

0 1.5 2.5 3.0

Exp. period No 4

Fig. 11
ROD FILM FLOW ON 62.3° ANGULAR DISTRIBUTION

\[p = 70 \text{ bar} \]
\[q_{\text{rad}} = 100.8 \text{ w/cm}^2 \]
\[G = 1200 \text{ kg/m}^2\text{s} \]
\[x_0 = 23.7\% \]

Fig. 12

TOTAL ROD FILM FLOW VERSUS QUALITY

\[p = 70 \text{ bar} \]
\[q_{\text{rad}} = 100.7 \text{ w/cm}^2 \]
\[G = 1200 \text{ kg/m}^2\text{s} \]

Filled symbols are interpolated burn-out results.
TOTAL ROD FILM FLOW VERSUS QUALITY

\[p = 70 \text{ bar} \]
\[q_{\text{rod}} = 100.7 \text{ w/cm}^2 \]
\[G = 602 \text{ kg/m}^2\text{s} \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>E (mm)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0</td>
<td>Suction from 360</td>
</tr>
<tr>
<td>O</td>
<td>0</td>
<td>Suction from 625</td>
</tr>
<tr>
<td>▽</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>▼</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>◇</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>

Filled symbols are interpolated burn-out results.

Fig. 14

TUBE FILM FLOW ON 62.9°

\[q_{\text{rod}} = 100.7 \text{ w/cm}^2 \]
\[G = 603 \text{ kg/m}^2\text{s} \]
\[p = 70 \text{ bar} \]
\[\chi_0 = 189 \% \]
TUBE FILM FLOW ON 62.9° ANGULAR DISTRIBUTION

P = 70 BAR
q'rod = 100.7 w/cm²
G = 602 kg/m² s
X₀ = 23.7%

<table>
<thead>
<tr>
<th>Eccentricity (mm)</th>
<th>Experimental period No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>2.5</td>
<td>5</td>
</tr>
</tbody>
</table>

Fig. 16

TUBE FILM FLOW ON 62.9° ANGULAR DISTRIBUTION

P = 70 BAR
q'rod = 100.6 w/cm²
G = 1201 kg/m² s
X₀ = 20.1%

<table>
<thead>
<tr>
<th>Eccentricity (mm)</th>
<th>Experimental period No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>4</td>
</tr>
</tbody>
</table>

Fig. 17
TUBE FILM FLOW ON 62.9° ANGULAR DISTRIBUTION

\[P = 70 \text{ BAR} \]
\[q_{\text{rod}} = 100.9 \text{ w/cm}^2 \]
\[G = 1201 \text{ kg/m}^2 \text{s} \]
\[x_0 = 23.1\% \]

\[\dot{m}_f \] [g/s]

<table>
<thead>
<tr>
<th>Eccentricity (mm)</th>
<th>Experimental period</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>No.</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>▼</td>
</tr>
<tr>
<td>25</td>
<td>□</td>
</tr>
</tbody>
</table>

Fig. 18

\[\varphi^2 \]

Two-phase friction multiplier as function of steam quality

\[P = 70 \text{ bar} \]

\[\times G = 600 \text{ kg/m}^2 \text{s} \]
\[\circ G = 1200 \text{ kg/m}^2 \text{s} \]

Eccentricity E=0 mm

Fig. 19
Two-phase friction multiplier as function of steam quality

Eccentricity $E=1.5\text{mm}$

Fig. 20

$G = 600\text{ kg/m}^2\cdot\text{s}$

$G = 1200\text{ kg/m}^2\cdot\text{s}$

P = 70 bar

Eccentricity $E=2.5\text{mm}$

Fig. 21
Fig. 22

Two-phase friction multiplier as function of steam quality

Eccentricity E=30mm

$P = 70$ bar

$G = 600\ kg/m^2\cdot s$

$G = 1200\ kg/m^2\cdot s$

Fig. 23

Becker's correlation

$\phi^2 = 1 + 2400 (\phi)^{0.96}$

$E = 0\ mm, 10.5\ mm, 20\ mm$

$P = 70\ bar$

$G = 600\ and\ 1200\ kg/m^2\cdot s$

Two-phase friction multiplier as function of steam quality and eccentricities