

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 17, 2024

An Implementation of the Frequency Matching Method

Lange, Katrine; Frydendall, Jan; Hansen, Thomas Mejer; Zunino, Andrea; Mosegaard, Klaus

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Lange, K., Frydendall, J., Hansen, T. M., Zunino, A., & Mosegaard, K. (2013). An Implementation of the
Frequency Matching Method. Technical University of Denmark. DTU Compute Technical Report-2013 No. 09

https://orbit.dtu.dk/en/publications/279c4fbb-bcd1-4743-ab45-89b5f5929c1f

DTU Compute Technical Report-2013-09

An Implementation of
the Frequency Matching Method

Katrine Lange∗, Jan Frydendall, Thomas Mejer Hansen,
Andrea Zunino, Klaus Mosegaard

DTU Compute, Technical University of Denmark,
Matematiktorvet, Building 303B, 2800 Kongens Lyngby, Denmark

Center of Energy Resources Engineering, Technical University of Denmark,
Søltofts Plads, 2800 Kongens Lyngby, Denmark

Abstract

During the last decade multiple-point statistics has become in-
creasingly popular as a tool for incorporating complex prior infor-
mation when solving inverse problems in geosciences. A variety of
methods have been proposed but often the implementation of these is
not straightforward. One of these methods is the recently proposed
Frequency Matching method to compute the maximum a posteriori
model of an inverse problem where multiple-point statistics, learned
from a training image, is used to formulate a closed form expression
for an a priori probability density function.

This paper discusses aspects of the implementation of the Fre-
quency Matching method and the techniques adopted to make it com-
putationally feasible also for large-scale inverse problems. The source
code is publicly available at GitHub and this paper also provides an
example of how to apply the Frequency Matching method to a linear
inverse problem.

Keywords: multiple-points statistics, training image, a priori in-
formation, maximum a posteriori model

∗Corresponding author, email address: katla@dtu.dk

1

1 Introduction to the Frequency Matching

Method

The Frequency Matching (FM) method defines the maximum a posteriori
model of an inverse problem using multiple-point statistics learned from a
training image (TI) as prior information. Inverse problems having such type
of a priori information arise in scientific fields involving modelling of unknown
parameters describing spatial properties. They are typical in the geosciences
where, for instance, a property of the subsurface of the Earth should be
modelled. The available data is often scarce, resulting in severely under-
determined inverse problem. This makes use of a priori information even
more beneficiary.

A priori information is often available as expectations to the subsur-
face showing certain structures, and when modelling spatial properties these
structures are provided by so-called training images. Models of parame-
ters describing spatial properties are often referred to as images, letting the
colours of the image illustrate the values of the property they are describing.

The Frequency Matching method was introduced by Lange et al. (2012),
to which we refer for a detailed motivation for the method and discussion
of the general use of multiple-point statistics when solving inverse problems
in the geosciences. The present paper describes a Fortran implementation
of the FM method with the purpose of making other users able to use the
Fortran version of the FM method on their respective problems.

1.1 Probabilistic Inverse Problem Theory

The FM method defines the maximum a posteriori model for an in-
verse problem, i.e., the model with maximum a posteriori probability, using
multiple-points statistics learned from a training image as a priori informa-
tion. To do so it formulates a closed form expression of the a priori probability
density function, which is based on a distance measure, c(m,mTI), from a
model or image m to a training image mTI . The distance measure expresses
how dissimilar the multiple-point statistics of the images are. Models with
multiple-point statistics similar to the multiple-point statistics of the train-
ing image have short distances to the training image and they are therefore
assigned high probabilities. Likewise models with dissimilar multiple-point
statistics will have large distances to the training image and they will there-

2

fore be assigned low probabilities.
The inverse problem is formulated using probabilistic inverse theory (Taran-

tola, 2005). The data misfit gives rise to the likelihood of a model. Assuming
Gaussian measurement noise of the data observations dobs with mean zero
and covariance matrix Cd, the likelihood function L is defined as:

L(m) = const exp

(
−1

2
‖dobs − g(m)‖2Cd

)
,

where g is the mapping operator from model space to data space and const
is a constant.

Using the distance function c the FM method defines a closed form ex-
pression for the a priori probability density function ρ of a model as:

ρ(m) = const exp
(
−α c(m,mTI)

)
. (1)

According to probabilistic inverse problem theory the posterior probabil-
ity density function σ is proportional to the product of the prior probability
density function and the likelihood function:

σ(m) = const ρ(m) L(m). (2)

Specifically using the a priori probability density function from equation
(1), the FM method then defines the solution to the inverse problem, mFM,
as the model maximizing the a posteriori probability density function from
equation (2)

mFM = argmax
m
{σ(m)}

= argmin
m
{− log σ(m)}

= argmin
m

{
1

2
‖dobs − g(m)‖2Cd

+ α c(m,mTI)

}
. (3)

The maximisation and minimisation is done over the set of all valid mod-
els m. In this set each model parameter (i.e., each element of the model
vector m) belongs to a predefined problem specific set of discrete values
taking into account hard data constraints. This means the frequency match-
ing model mFM is the solution to a combinatorial optimization problem. The
FM method does not dictate how this optimization problem should be solved.

3

1.2 Formulating A Priori Information

The multiple-point statistics of an image is represented by what the Fre-
quency Matching method defines as the frequency distribution. This is a
histogram of the counts of the different patterns found in the image. The
patterns, if their size is chosen wisely, are assumed to describe the multiple-
point statistics of the image that we seek to reproduce.

Assume the multiple-point statistics extracted from the training image
can be expressed as patterns of identical geometric shape consisting of n+ 1
voxels. This implies that a voxel is assumed statistically independent of all
voxels except the surrounding n voxels together with which the voxel forms
a pattern. The entire training image is scanned for patterns and the count
of appearances for each pattern is collected. These counts constitute the
frequency distribution. Let πTI and π be the frequency distributions of the
training image and a model image, respectively.

This section briefly defines the dissimilarity function c used in the closed
form expression of the a priori probability density function from equation
(1). The current choice of dissimilarity function has roots in the statistical
literature regarding the chi-square test for homogeneity (Sheskin, 2004).

Let m be the number of categories of voxels in the image then there exist
mn+1 different patterns. A majority of these will have the count of 0 as they
do not appear in the image. Given the frequency distributions of an image,
π, and of a training image, πTI the dissimilarity function value of the image
is defined as follows:

c(m,mTI) = χ2(π,πTI) =
∑
i∈I

(πTI
i − εTI

i)2

εTI
i

+
∑
i∈I

(πi − εi)2

εi
, (4)

where the set I consists of indices of patterns that occur in either the image
or the training image. εi denotes the count of the underlying distribution of
patterns with the ith pattern value for images of the same size as the image,
and εTI

i denotes the counts of the underlying distribution of patterns with the
ith pattern value for images of the same size as the training image. These
counts are computed as:

εi =
πi + πTI

i

nZ + nTI
nZ ,

εTI
i =

πi + πTI
i

nZ + nTI
nTI,

4

where nZ and nTI are the total number of counts of patterns in the frequency
distributions of the image and the training image.

2 The Implementation

2.1 Assumptions of the Implementation

The FM method itself has no limitations regarding non-linearity but the
current implementation assumes that the inverse problem is linear:

Gm = dobs, (5)

Here G is a known system matrix, dobs is a set of observed data values and
m is the model parameters to be determined.

The FM assumes that these model parameters can take only a limited
number of categorical values. Often the model parameters are binary. This
can for instance be the case when modelling the flow of the subsurface. The
model parameters are then either 0, which represents zones with high perme-
ability and therefore easy flow, or 1, which represents low-permeable zones.
Let sV + 1 be the number of categories voxel values can belong to, i.e., for
a binary image sV = 1. Per definition the voxel values of the images are
0, . . . , sV.

The FM model is defined as the minimiser of the negative logarithm of
the posterior probability density function as given by (3). The minimization
is in the current implementation performed using simulated annealing. We
will not go into details about the choice of this optimization method or the
method itself, but for more information on simulated annealing see Kirk-
patrick et al. (1983). Pseudo code for applying simulated annealing to the
FM is available in Lange et al. (2012).

2.2 Overview of the Procedures

Figure 1 shows an overview of the most important interactions among the
Fortran procedures in the implementation of the FM method. For now we
will provide a short walk-through of the procedures. A description of what
each of them do is provided in A.

The implementation is based on the FMM procedure which primary func-
tion is to set up and initialize all the inputs for the FM method and the

5

F
M

M
C
o
m
p
O
p
ti
m
a
l–

Im
a
g
e

In
fe
rT

re
e

T
re
e
2
H
is
t

C
o
m
p
O
b
jF
u
n

S
im

N
e
w
Im

a
g
e

C
o
m
p
O
b
jF
u
n

u
p
d
a
te
S
A

S
im

V
o
x
e
l

U
p
d
a
te
T
re
e

T
re
e
2
H
is
t

F
ig

u
re

1:
O

ve
ra

ll
st

ru
ct

u
re

of
th

e
F

M
im

p
le

m
en

ta
ti

on
.

6

simulated annealing scheme. The FMM procedure also has the task of ex-
tracting multiple-point statistics of the training image and representing it
using the—for that purpose designed—tree structure. (The tree structure
will be explained in details in section .) The procedure also generates the
frequency distribution. It is the only procedure that uses the training image
itself, as it passes on only the tree and its frequency distribution.

The simulated annealing is implemented in the CompOptimalImage proce-
dure. Provided with an initial model, the first thing the CompOptimalImage
procedure does is to extract the multiple-point statistics of the initial model
(InferTree) and compute its frequency distribution (Tree2Hist). It then com-
putes the objective function value of the initial model (CompObjFun). The
CompObjFun procedure calls two other procedures, CompChiDist and Comp-
DataFit, to compute each of the two terms of the objective function.

Vertical arrows in Figure 1 represent a loop, and in the CompOptimalImage
procedure it is used to loop through the iterations of the simulated annealing
algorithm.

For each iteration a perturbed image is generated by SimNewImage. This
is done by erasing the voxel values in a part of the image and then re-
simulating them using sequential simulation (Guardiano and Srivastava, 1993)
with the multiple-point statistics learned from the training image (SimVoxel).
Each time a voxel has been re-simulated the tree must be updated to fit the
new image (UpdateTree). Here again the vertical arrows represents loops
indicating that these two tasks are done voxel by voxel.

Afterwards, the frequency distribution of the perturbed image is com-
puted (again Tree2Hist). The objective function value of the perturbed image
is then computed (again CompObjFun) and finally, the perturbed model is
possibly accepted and the variables updated accordingly (UpdateSA).

The procedures in the implementation that have been left out of the di-
agram are auxiliary procedures mostly related to operations on trees. The
auxiliary procedures are described in B .

2.3 Compiling the Program

The program is written following the Fortran 2008 standard, hence a
compiler complying with this standard is needed to run the software. We have
used the open source GFortran-version 4.6-compiler from GNU to compile
and run the code. To simplify the compilation and linking process a Makefile
to be used with the GNU make program is provided.

7

It has been tested successfully on Mac (10.6 and 10.8) as well as GNU/Linux.

2.4 The Inverse Problem

The FMM procedure takes among other inputs the parameters from Eq.(5).
For that we have defined a structure called inverseproblem. It contains the
following parameters:

G: 2D array with the system matrix G.

dobs: 1D array with the vector of data observations dobs.

invCov: 2D array with the inverse of the covariance matrix, C−1d .

cat: 1D array with sV+1 elements, one for each category of voxel values. This
is used to transform the images with categorical voxel values to models
with physical parameter values. The model parameter associated with
a voxel with value i will be assigned the value cat(i + 1) in order to
compute the data fit.

The parameters specifying the inverse problem are passed between pro-
cedures in the variable InvProb. InvProb can be used to specify any arbitrary
linear problem. The implementation can therefore be applied to inverse prob-
lems also in other scientific fields outside of the geosciences.

2.5 Specifying Neighbourhoods

We distinguish between two types of voxels in an image: inner voxels
and non-inner voxels. Inner voxels are those that are sufficiently far from the
boundaries to have enough neighbouring voxels to make a pattern. Non-inner
voxels are the rest, i.e., those that are close to the boundary and therefore
do not have as many neighbouring voxels around them. How far away from
the boundary a voxel has to be in order to be an inner voxel depends on how
the neighbourhood of voxels are defined.

Several parameters are needed to specify the dimensions of neighbour-
hoods and these are collected in a special type of structure called Neighbor-
Mask. It contains the following parameters:

8

mat: 3D integer array of the shape of a neighbourhood of an inner voxel.
Voxels in positions where the element of mat is 1 are included in the
neighbourhood, and voxels where the corresponding element is 0 are
not included. The value corresponding to the center voxel does not
matter.

nc, mc, pc: integers denoting the coordinates of the center voxel in the mat
array. (The origin of a pattern is its bottom left upper corner.)

n, m, p: size of the patterns, i.e., the mat array includes n×m× p voxels.

nodes: 2D integer array with relative coordinates from the center voxel to
each of its neighbours. That means, given the image coordinates of
a voxel, nodes can be used to compute the image coordinates of all
of the neighbours of the voxel. The array has a row for each neigh-
bour in a pattern and three columns that holds the coordinates in each
dimension.

Neighbourhoods can be defined in two ways: 1) If the patterns have the
simple shape of a hyper-rectangle, the user can simply specify the size of the
patterns, m, n and p. These must be odd numbers and the center voxel of
the pattern is then assumed to be directly in the middle. This is the most
common type of pattern to use. 2) If the patters are not that simple, the
user can directly specify the mat array and its center coordinate (nc, mc,
pc). The size of the mat array do not have to be odd, and the center can be
located anywhere.

The parameter sN is used throughout the procedures as the number of
voxels in a pattern excluding the center voxel. This means that nodes has
sN rows. In the procedures the structure specifying the neighbourhoods is
called Nmask.

Figure 2 shows a tiny example of a training image and a neighbourhood
that could be used to describe the multiple-point statistics of it. To define
this non-rectangular neighbourhood the user will need to specify the mat
array:

Nmask%mat =

0 1 0
1 0 1
0 1 0

 ,

9

Center pixel

NeighbourhoodTraining image

Figure 2: Tiny training image used for illustration purposes. A neighbour-
hood is chosen to be the (up to) four nearest neighbours as shown on the right
of the figure. The pixels within the neighbourhood are numbered according
to their row, column and then layer index. How to define this neighbourhood
is explained in the text. The resulting tree can be seen in Figure 4.

.

and its center coordinates:

Nmask%nc = 2,

Nmask%mc = 2,

Nmask%pc = 1.

Then the FMM procedure derives the size of the patterns:

Nmask%n = 3,

Nmask%m = 3,

Nmask%p = 1,

leading to the following relative row, column and layer coordinates of neigh-
bours:

Nmask%nodes =

0 −1 0
−1 0 0

1 0 0
0 1 0

 .
Keep in mind, that even for 2D images the third dimension does exist, it will
just have the size one.

2.6 The Tree Structure

A tree is a complex structure and most vital for the computational feasi-
bility of the implementation. The purpose of the tree is to store the patterns

10

of a training image and their counts, and then to use them to describe the
multiple-point statistics of the training image.

The tree is implemented as a so-called linked list. This is the same ap-
proach that was applied in the SNESIM algorithm (Strebelle, 2002) when
creating search trees in order to overcome the problems of generating and
storing large data bases of patterns. In our implementation trees are fur-
thermore used to easily generate frequency distributions, which is the actual
input to the dissimilarity function c from Equation (4).

We like to think of trees as consisting of a set of nodes and edges as a tree
in the mathematical sense of a graph. A tree, T, is based on a root node,
and it is often that node we pass along the different procedures. From this
root node we can navigate deeper into the tree via links, which in this case
are pointers to the next nodes.

A node of a tree is defined as a structure streenode containing three vari-
ables:

depth: integer defining how deep into the tree this node is located.

repl: real array with sV+1 elements. The array holds the count of pat-
terns in the image that have a certain partial pattern and center value
0, 1, . . . , sV respectively. The partial pattern is dependent on the depth
of the root, and the deeper into the tree a node is located, the more
voxels of the patterns are used in the partial pattern.

next: array of pointers with sV+1 elements, these are the links to nodes
placed a level deeper into the tree.

Figure 3 shows the structure defined to describe a node. A tree of an
image is constructed by first creating the root node and then adding new
nodes as the image is being scanned and new patterns found. Assigning the
root node depth level 0, the maximum depth of a tree is sN, and at any depth
i there can maximum be (sV+1)i nodes.

Let T denote the root node of a tree; this node contains information of
the center values themselves, not including any neighbouring voxel values.
We define the T%repl array to hold the unscaled distribution of voxel values
of inner voxels in the image, so simply the counts of how many inner voxels
in the image have each of the values 0, 1, . . . , sV. T%repl(k) holds the count
of voxels with value k−1.

11

depth
repl next

(2)

ne
xt
(1
)

...next(sV+1)

Figure 3: Illustration of a node of a tree as represented by the streenode
structure.

The pointers in the array T%next point to sV+1 new nodes of the tree.
These nodes are at depth level 1 and they therefore contain information about
center voxels taking into consideration the value of their first neighbouring
voxel. (The neighboring voxels are ordered according to their voxel index.)
As the first neighbouring voxel can have sV+ 1 different values we need
the same number of pointers to cover all cases. This means, the pointer
T%next(i) points to the node representing all partial patterns, where the
first neighbouring voxel has value i−1.

The unscaled distribution for all values of center voxels will be stored
in the repl array of that node. It can be accessed by T%next(i)%repl. This
means the element T%next(i)%repl(k) holds the counts of patterns in the
image where the first neighbouring voxel has the value i−1 and the center
voxel has value k−1. In the same manner, the jth pointer of this node,
T%next(i)%next(j), points to the node of patterns where the values of the
two first neighbouring voxels are i−1 and j −1, respectively. The node holds
the unscaled conditional probability distribution of the value of a center
voxel given these specific values of the first two neighbouring voxels. This
is repeated until depth level sN, where all sN neighbouring voxels have been
included in the partial structure, that each node represents.

To sum up, an arbitrary node T provides us the following information:

T%depth: depth level in the tree where the node is placed.

T%repl(k): count of a specific partial pattern in the image with center value
k − 1. The partial pattern is unknown to this node, but the values of

12

the first T%depth neighbouring voxels are given by the location of the
node in the tree.

T%next(i) pointer to the node with the same partial pattern as the current
and where the T%depth+1th voxel has value i− 1.

Notice how a node T cannot give us any information about the partial
patterns it represents. From a node we can only extract information that are
deeper into the tree and not information that belong to a previous level.

The frequency distribution of an image is the (unscaled) distribution of
patterns. As the bottom level of the tree contains exactly the counts of pat-
terns with all of the possible combination of center and neighbourhood voxel
values, the frequency distribution can simply be constructed by combining
all existing repl arrays at depth level sN.

Recall that Figure 2 shows an example of a training image and an example
of a neighbourhood. This is a very tiny training image and neighbourhood
chosen for illustration purposes only. The resulting tree is seen in Figure 4.
The frequency distribution of the image is constructed by extracting all 4th
level repl arrays of the tree.

On each node is written the values of its repl array, and on each edge
is written the colour of the neighbouring voxel represented by the current
depth level. Black voxels are assigned the value 0 and white voxels have the
value 1.

To compare an image to a training image a tree describing its multiple-
point statistics must be derived and its frequency distribution determined.
This allows for the evaluation of c. However, constructing the tree is done in
a different manner than for a training image itself. When constructing the
tree we take advantage of the fact that the dissimilarity function c depends
only on the patterns of the image that also appear in the training image. We
therefore generate not the tree containing all patterns found in the image but
only those patterns that are also found in the training image. That means,
the tree of the image will have the same shape (same nodes and edges) as the
tree of the training image. This makes the frequency distribution consisting of
all bottom level repl arrays directly comparable to the frequency distribution
of the training image, as they, element by element, describe the count of
identical patterns in the two images.

Non-inner voxels of an image that is not a training image are treated
slightly different than non-inner voxels of a training image. They contribute

13

Root 1st level 2nd level 3rd level 4th level

[16, 12]

[13, 2]

black

[3, 10]

white

[1, 8]

white

[2, 2]

black

[6, 2]

white

[7, 0]

black

[0, 4]white

[1, 4]black

[2, 2]white

[6, 2]black

[3, 0]white

[4, 0]black

[0, 4]white

[0, 3]white

[1, 1]black

[0, 1]white

[2, 1]black

[2, 2]white

[4, 0]black

[1, 0]white

[2, 0]black

[4, 0]black

Figure 4: The tree structure of the tiny training image in Figure 2 using a
neighbourhood consisting of the four closest voxels. We assign black voxels
the value of 0 and white voxels the value of 1. Notice how the count of each
pattern is represented in the tree. For instance, the number of black pixels
with all black neighbouring pixels is 4. This is seen by starting in the root
node, following all edges labelled black until reaching the bottom level, and
then accessing the first element of the repl array. Also notice how for every
single node, if you sum the repl arrays of the nodes it is pointing to, you get
the repl array of the node itself. This means all repl arrays only hold counts
of inner pixel. 14

to the tree like inner voxels, but they are typically represented by multiple
patterns. They contribute with a total count of 1, like the inner voxels, and
the count for each type of pattern is proportional to their marginal condi-
tional probability density from the tree of the training image.

2.7 Perturbation Domain

The optimization problem defining the FM model from Equation 3 is
solved using an iterative solution method that searches through the model
space. The search is carried out by visiting new images that are defined as
perturbations of current images. They are created by perturbed the voxel
values in a certain domain of an image.

A set of parameters is needed to specify the size of the domain of an
image that then needs to be erased and re-simulated to create a perturbed
image. The domain is assumed to be hyper-rectangular. To define it we have
the DomainMask structure that contains the following parameters:
n, m, p: integers, dimensions of the domain to be re-simulated. These must

be odd numbers.

nodes: 2D integer array with relative coordinates from the center voxel of
the domain to each other voxel in the domain.

mat: 1D integer array with sN elements. This array holds a distance from the
center voxel of a neighbourhood to each of its neighbouring voxels. It is
used in the re-simulation to determine on which voxels the simulation
should be conditioned.

The domain structure is Dblock. Like for the neighbourhood mask the
user does not need to specify most of its parameters. In fact, one should only
decide on the dimensions of the block, Dblock%n, Dblock%m, Dblock%p, and
the FMM procedure then constructs the remaining. For the distance array is
used the L1-norm.

2.8 Optimization Options

Simulated annealing is used as the solution method to the optimization
problem defining the mFM, and to hold the parameters used by the algorithm

15

we have the type option. It holds the following parameters:
t0: real number, the initial temperature.

tmin: real number, the final temperature.

maxIter: integer, maximum number of iterations allowed to be used per
voxel parameter.

runs: integer, number of times to run the simulated annealing algorithm.

multigrid: integer, number of multigrids to use.

condopt: logical, in case of multiple grids used, it determines if the solution
on a fine grid should be conditioned on the optimal solution from the
coarser grid (condopt = .true.) or not (condopt = .false.).

The simulated annealing uses an exponential cooling rate that is calcu-
lated such that the maximum number of iterations allowed is exactly the
number of iterations used. The implementation of the FM method has been
prepared for multiple grid simulation but these are not yet implemented.
This can be done by implementing a loop in the FMM procedure such that
CompOptimalImage will be called with different grids. Also in some cases it
can be beneficiary to restart the simulated annealing algorithm and although
this option has not yet been implemented the code has been prepared. A
loop can be inserted in the CompOptimalImage procedure so that the simu-
lated annealing scheme is run multiple times.

3 Example: Crosshole Travel Time Tomog-

raphy

As an example of how to use the Frequency Matching method we will
show how to solve a synthetic crosshole travel time tomography problem
similar to the one described in Lange et al. (2012). Crosshole travel time
tomography involves the measurement of seismic travel times between two
or more boreholes in order to determine an image of seismic velocities in the
intervening subsurface. Seismic energy is released from sources located in
one borehole and recorded at multiple receiver locations in another borehole.

16

Figure 5: Training image (size: 250 by 250 pixels).

In this way a dense tomographic data set that covers the interborehole region
is obtained.

We create a synthetic test case based on a setup with two vertical bore-
holes. The horizontal distance between them is 500 meters and they each
have a depth of 500 meters. The two-dimensional vertical domain between
the boreholes is divided into 120 times 50 quadratic cells. The seismic velocity
is assumed constant within each cell. The model parameters of the problem
are these propagation speeds, meaning the problem has 6000 unknown model
parameters. The observed data is the recorded first arrival times from the
seismic signals. In each borehole are placed 12 equally distributed sources
and 48 equally distributed receivers. We assume a linear relation between
the data observations and the model parameters. The sensitivity of a seismic
signal is simulated as straight rays.

It is assumed that the inter-borehole region consists of a background with
slow propagation speed and a horizontal channel structure of zones of high
propagation speed. The speeds are chosen as 1600 meters per second and
2000 meters per second, respectively. The a priori knowledge of the channel
structure is assumed described by the training image in Figure 5. We have
chosen to let the neighbourhood of a pixel consist of its 36 closest neighbours

17

(a) Reference model. (b) FM model.

Figure 6: Reference model for the synthetic crosshole travel time tomography
example and its computed FM model. The size of the models ares 120 by 50
pixels.

specified by:

Nmask%mat =

0 0 1 1 1 0 0
0 1 1 1 1 1 0
1 1 1 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 1 1 1
0 1 1 1 1 1 0
0 0 1 1 1 0 0

.

A reference model is generated based on the training image using the
SNESIM (Strebelle, 2002) algorithm. The first arrival times of the reference
model is simulated. These are then added 5% relative Gaussian noise and
assumed to be the observed data. Figure 6a shows the reference model.

The forward problem Voxels belonging to the background are assigned
to the category 0 and voxels belonging to the zones of high propagation speed
are assigned the category 1. The forward problem is linear in the inverse of

18

the propagation speeds, i.e., the physical values of the voxel values of the two
categories are specified as cat = [1/1600, 1/2000].

The observed data and the coefficent matrix from the forward problem
is generated using Matlab. They have then been stored in a text file that
can be read into Fortran using the standard read routine and then saved in
the parameters dobs and Gmat, respectively. The problem has 1152 data
observations and 6000 model parameters so it is severely under-determined.

The % noise added to the reference model is independent and has esti-
mated standard deviation σ̂ = 1.9 · 10−2. This yields the data covariance
matrix Cd = σ̂2I, where I is the identity matrix. The inverse data covari-
ance matrix invCov is then defined as the inverse of this.

The prior term The weighting constant multiplied to the prior term in
Equation (3) is chosen as α = 10−1, which means alpha = 10−2.

Perturbation of images The domain of voxels to be re-simulated when
creating a perturbed image is chosen as nD = 13, mD = 13 and pD = 1.

Optimisation parameters The cooling rate is defined by the starting
temperature t0 = 102 and the minimum temperature tmin = 10−5. The sim-
ulated annealing algorithm is allowed to use iter = 0.5 for each of the 6000
pixels in the image.

Computing the optimal model using the allowed 3000 iterations took ap-
proximately 16 minutes on a Macbook Pro 2.66 GHz equipped with an Intel
Core 2 Duo processor and 4 GB of RAM.

The computed optimal model is shown next to the reference model in
Figure 6. It is seen how it correctly locates the channels. The width and
curvature of the channels also clearly resembles those of the reference model.
We therefore conclude that the choice of weighting constant alpha and the
optimisation parameters were suitable for the problem at hand. The example
successfully illustrates how the Fortran implementation of the Frequency
Matching method can be applied.

19

4 Bibliography

Guardiano, F., Srivastava, R. M., 1993. Multivariate geostatistics: Beyond
bivariate moments. Geostat-Troia 1, 133–144.

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., 1983. Optimization by simulated
annealing. Science 220 (4598), 671–680.

Lange, K., Frydendall, J., Cordua, K. S., Hansen, T. M., Melnikova, Y.,
Mosegaard, K., 2012. A frequency matching method: Solving inverse prob-
lems by use of geologically realistic prior information. Mathematical Geo-
sciences, 1–2110.1007/s11004-012-9417-2.
URL http://dx.doi.org/10.1007/s11004-012-9417-2

Sheskin, D., 2004. Handbook of Parametric and Nonparametric Statistical
Procedures. Chapman & Hal/CRC, pp. 493–500.

Strebelle, S., 2002. Conditional simulation of complex geological structures
using multiple-point statistics. Mathematical Geology 34, 1–21.

Tarantola, A., 2005. Inverse Problem Theory and Methods for Model Param-
eter Estimation. SIAM.

20

List of Appendices

A Primary Procedures 22
A.1 FMM . 22
A.2 InferTrainTree . 23
A.3 Tree2Hist . 24
A.4 CompOptimalImage . 25
A.5 InferTree . 26
A.6 CompObjFun . 27
A.7 CompChiDist . 28
A.8 CompDataFit . 28
A.9 SimNewImage . 29
A.10 SimVoxel . 31
A.11 UpdateSA . 32

B Auxiliary Procedures 33
B.1 getNewIt . 33
B.2 getNeighborhood . 35
B.3 getCPDF . 35
B.4 ExtendTree . 36
B.5 ShapeTree . 36
B.6 CopyTree . 37
B.7 DeallocateTree . 38
B.8 UpdateTrainTree . 38
B.9 wrapUpdateTree . 39
B.10 UpdateTree . 40
B.11 wrapUpdateTreeBoundary . 40
B.12 UpdateTreeBoundary . 41
B.13 GrowTree . 41
B.14 CenterCount . 43
B.15 AddCount . 43
B.16 SubtractCount . 44

21

A Primary Procedures

The following is a list of the primary Fortran procedures in the FM im-
plementation. The purpose of each procedure is briefly explained, and any
non-trivial or otherwise interesting details in the implementation are dis-
cussed. Also a list of input and/or output variables is provided. The lists
hold the variable name, a short description of its use and its type.

To see which procedures call others we refer to Figure 1 and the discussing
of it in the text. The procedures are listed in the order they are called which
also appears from the figure. Auxiliary procedures are listed in B.

A.1 FMM

This procedure acts as an intermediary between the user specified input
parameters and the implemented FM method. It reads the multiple-points
statistics from the training image and sets up all the necessary inputs for the
simulated annealing scheme based on the user inputs.

The procedure calls the CompOptimalImage procedure to compute the FM
model (3). This model along with its frequency distribution, the frequency
distribution of the training image and other parameters of special interest
are written to files. These can later to loaded into for instance Matlab to
visualize the results.

In case the code is modified to handle multiple grids this would be a
suitable procedure in which to loop over the grid levels, and for each level set
up the corresponding tree of the training image and do the conversion from
coarse to fine grid before calling the CompOptimalImage.

Variable Description Type

Z0 Initial image used as starting image for the iter-
ative solution method. This image should sat-
isfy hard data constraints, if any.

3D integer array

Ztrain Training image. 3D integer array

22

Zcond This array has the same dimensions as the image
Z0, and it is used to state if any of the voxels
should satisfy hard data constraints. If there are
no hard data constraints the array should be all
false. If some voxels are only allowed to take
on a specific value the corresponding element of
Zcond should be true.

3D logical array

Nmask Contains the parameters that define neighbour-
hoods.

structure

sV Parameter, the images contain the sV + 1 cate-
gories 0, 1, . . . , sV of voxel values.

integer

InvProb Parameters specifying the linear inverse prob-
lem.

structure

alpha Weighting parameter α2 of the prior term in the
objective function.

real

Dblock Contains the parameters controlling the pertur-
bation of an image.

structure

options Parameters for the simulated annealing
scheme.

structure

solutions Structure holding the results from the simulated
annealing. These are written to files.

structure

Ps Holds the values of each of the two terms in
the objective function for each iteration of the
simulated annealing algorithm.

2D real array

A.2 InferTrainTree

This procedure generates the tree, Ttrain, describing the multiple-point statis-
tics of a training image, Ztrain. Patterns are extracted one by one from the
training image and added to the tree.

Variable Description Type

Ztrain Training image. 3D integer array

nodes Array from the Nmask structure. 2D integer array

23

sV Parameter, the images contain the sV + 1 cate-
gories 0, 1, . . . , sV of voxel values.

integer

sN Parameter, number of neighbours for an inner
voxel resulting in patterns consisting of sN + 1
voxels.

integer

Ttrain Tree of patterns extracted from the training im-
age.

tree

A.3 Tree2Hist

This procedure constructs the frequency distribution (or the histogram), H,
of an image given its tree, T. The frequency distribution is a two dimensional
array with sV+1 rows and a column for each combination of voxel values in a
neighbourhood. The ith row has the count of the appearances of the different
neighbourhoods with center voxel having the value i−1.

This format has the advantage that each column of the frequency dis-
tribution is the unscaled conditional probability distribution of the value of
center voxel given the values of its neighbouring voxels. This makes the
conditional distributions easily assessable; they are used, for instance, for
re-simulating voxel values. The disadvantage is that we might store more
zero elements than necessary although no more than sV times too many.

Variable Description Type

sV Parameter, the images contain the sV + 1 cate-
gories 0, 1, . . . , sV of voxel values.

integer

sN Parameter, number of neighbours for an inner
voxel resulting in patterns consisting of sN + 1
voxels.

integer

T Tree of patterns extracted from an image Z. tree

H Frequency distribution of the image Z. 2D real array

24

A.4 CompOptimalImage

This procedure is the most central in the implementation of the FM method
as it is the one that solves the inverse problem by use of the simulated an-
nealing algorithm. It takes multiple inputs from the starting image and
the multiple-point statistics learned from the training image to the FM pa-
rameters specifying the neighbourhoods and the parameters associated with
simulating perturbed images. It returns the computed optimal image, mFM,
as well as its frequency distribution. To check the convergence of the simu-
lated annealing algorithm it also returns the objective function values for all
iterations.

Variable Description Type

Z0 Initial image used as starting image for the iter-
ative solution method. This image should sat-
isfy hard data constraints, if any.

3D integer array

Zcond This array has the same dimensions as the image
Z0, and it is used to state if any of the voxels
should satisfy hard data constraints. If there are
no hard data constraints the array should be all
false. If some voxels are only allowed to take
on a specific value the corresponding element of
Zcond should be true.

3D logical array

Ttrain Tree of patterns extracted from the training im-
age.

tree

Htrain Frequency distribution of the training image. 2D real array

nodes Array from the Nmask structure. 2D integer array

sV Parameter, the images contain the sV + 1 cate-
gories 0, 1, . . . , sV of voxel values.

integer

sN Parameter, number of neighbours for an inner
voxel resulting in patterns consisting of sN + 1
voxels.

integer

InvProb Parameters specifying the linear inverse prob-
lem.

structure

alpha Weighting parameter α2 of the prior term in the
objective function.

real

25

Dblock Contains the parameters controlling the pertur-
bation of an image.

structure

options Parameters for the simulated annealing
scheme.

structure

Zopt The optimal image, the mFM, computed by the
simulated annealing algorithm.

3D integer array

Hopt Frequency distribution of the optimal image
Zopt.

2D real array

Ps Holds the values of each of the two terms in
the objective function for each iteration of the
simulated annealing algorithm.

2D real array

A.5 InferTree

This procedure infers the tree of an image so that its multiple-point statistics
can be compared to those of a training image. It takes as input the tree of the
training image that the image should be compared to. This is necessary as
the tree should only contain patters also found in the training image. Once
the image has been scanned and all patterns that should be stored has been
added to the tree, the procedure shapeTree is called, to ensure that the tree
of the image has the same shape as the tree of the training image, which is
needed in order to easily compare their frequency distributions.

Variable Description Type

Z Image. 3D integer array

nodes Array from the Nmask structure. 2D integer array

Ttrain Tree of patterns extracted from the training im-
age.

tree

sV Parameter, the images contain the sV + 1 cate-
gories 0, 1, . . . , sV of voxel values.

integer

sN Parameter, number of neighbours for an inner
voxel resulting in patterns consisting of sN + 1
voxels.

integer

26

T Tree of patterns extracted from the image Z. tree

Zex This array is the same size as the image Z and
it is used to indicate which voxels of the image
are center of patterns found also in the training
image. It is used by the procedure getNewIt to
propose where an image should be perturbed.

3D logical array

A.6 CompObjFun

This procedure computes the values of each of the terms in the objective
function from Equation (3). To be able to track convergence of the simu-
lated annealing algorithm the terms are not added but instead the procedure
returns a two-element array P such that:

P(1) =
1

2
‖dobs −Gm‖2Cd

,

P(2) = α2c(m,mTI).

The dissimilarity function c is evaluated by the CompChiDist procedure and
the data misfit is computed by the CompDataFit procedure.

In case the inverse problem is not linear the CompDataFit procedure needs
to be replaced by an implementation of the non-linear forward mapping.

Variable Description Type

H Frequency distribution of the image Z. 2D real array

Htrain Frequency distribution of the training image. 2D real array

N Number of voxels in the image Z. integer

Z Image. 3D integer array

InvProb Parameters specifying the linear inverse prob-
lem.

structure

alpha Weighting parameter α2 of the prior term in the
objective function.

real

P Two-element array that holds the values of each
of the terms in the objective function.

1D real array

27

A.7 CompChiDist

This procedure is called by CompObjFun and computes the dissimilarity of
an image compared to a training image by computing the distance between
their frequency distributions.

Variable Description Type

H Frequency distribution of the image Z. 2D real array

Htrain Frequency distribution of the training image. 2D real array

N Number of voxels in the image Z. integer

X Value of the dissimilarity function of the two
frequency distributions.

real

A.8 CompDataFit

This procedure is called by CompObjFun and computes the data misfit of a
model.

Variable Description Type

Z Image. 3D integer array

InvProb Parameters specifying the linear inverse prob-
lem.

structure

L Value of the data misfit of for the image real

28

A.9 SimNewImage

This procedure is used to perturb images. Provided with the current image
from the simulated annealing iteration, Ztest, it will return a new, perturbed
image, Znew. Znew is generated by erasing the values of a subset of the
voxels and then re-simulating them using sequential simulation conditioned
on the voxel values of the remaining part of the image.

This procedure takes as input the row, column and layer index of a voxel.
The voxel is the center of a domain where voxel values are erased. The values
of the voxels in the domain are then re-simulated one by one conditioned on
the values of all voxels outside the domain and the already re-simulated
values inside the domain. Of course voxels that should satisfy hard data
constraints are not allowed to be changed and these are therefore not erased
and re-simulated. Their values are kept and instead used to condition the
re-simulation on.

The re-simulated values voxels are stored separately. The perturbed im-
age is initially set identical to the original image. Its voxel values are then
changed one at a time until all the voxels in the re-simulated domain has
been updated. This allows the tree of the original image to be updated to
the tree of the new, perturbed image. Tnew is initially set to be an exact
copy of Ttest, and it is then updated iteratively for every voxel that has
been assigned a new value. This way of iteratively updating the tree is much
cheaper than generating the tree of the perturbed image from scratch.

Once the perturbation of the image and the updating of its tree is com-
pleted the frequency distribution can be computed from the tree. SimNewIm-
age of course only updates the tree and recomputes the frequency distribution
if the perturbed image is in fact different from the original image.

Variable Description Type

Ztest Current image. 3D integer array

29

Zcond Array used to specify which voxels are subject
to hard data constraints. The values of such
voxels are known and the voxels are used to con-
ditioned upon in the simulation of other voxel
values. The simulation algorithm is not allowed
to erase and re-simulate the values of voxels that
are conditioned upon. Instead these values are
considered known and should be used when re-
simulating other voxel values.

3D logical array

Zex This array is the same size as the image Ztest
and it is used to keep track of if the pattern
that a voxel is the center of exists anywhere in
the training image or not. It is used by the
procedure getNewIt.

3D logical array

Ttest Tree of patterns in the image Ztest. tree

Ttrain Tree of patterns extracted from the training im-
age.

tree

i, j, k Indices in the image of the voxel that is cho-
sen such that the image is perturbed by erasing
and the re-simulating the values of voxels in a
domain around it.

integers

nodes Array from the Nmask structure. 2D integer array

sV Parameter, the images contain the sV + 1 cate-
gories 0, 1, . . . , sV of voxel values.

integer

sN Parameter, number of neighbours for an inner
voxel resulting in patterns consisting of sN + 1
voxels.

integer

Dblock Contains the parameters controlling the pertur-
bation of an image.

structure

Znew Perturbed image based on the current image
Ztest.

3D integer array

Zexnew Similar to Zex, this array denotes which voxels
in the image Znew are centres of patterns also
found in the training image.

3D logical array

Tnew Tree of patterns in the image Znew. tree

Hnew Frequency distribution of the perturbed image
Znew.

2D real array

30

newImage Indicates whether the perturbed image Znew
is different from the original image Ztest
(newImage = .true.) or not (newImage = .false.).

logical

A.10 SimVoxel

This procedure is needed to simulate the value of a voxel. It extracts from
Ttrain the (unscaled) conditional probability distribution of the value of a
center voxel given the values of the neighbouring voxels. It returns this
conditional probability distribution and the voxel can then be assigned a
value drawn from it.

In case the multiple-point statistics of Ttrain does not allow for this oc-
currence of the values of the neighbourhood voxels, i.e., no patterns of the
training image matches the partial pattern, the voxels will be dropped one
by one from the conditioning until a conditional probability distribution can
be extracted. It is always the voxel furthest away from the center voxel that
will be dropped. Dropped voxels are assigned the value −1 and they then
appear as unknown.

If all neighbouring voxels are dropped the unconditioned distribution of
voxel values in the training image will be used as the unscaled probability
distribution of voxels also in the image.

Variable Description Type

Zvec Holds the values of voxels in a neighbourhood.
Unknown voxel values are assigned a value of
-1.

1D integer array

Ttrain Tree of patterns extracted from the training im-
age.

tree

sV Parameter, the images contain the sV + 1 cate-
gories 0, 1, . . . , sV of voxel values.

integer

sN Parameter, number of neighbours for an inner
voxel resulting in patterns consisting of sN + 1
voxels.

integer

D Part of the Dblock structure. Holds the dis-
tances from each of the neighbouring voxel to
the center voxel.

1D integer array

31

hc Holds the unscaled probability distribution of
the value of the center voxel conditioned on its
neighbouring voxels.

1D real array

A.11 UpdateSA

The point of this procedure is solely to simplify the code. It copies an image
and its associated variables into another set of variables. This is for instance
used in the simulated annealing scheme when a new image is accepted. Then
the procedure is used to copy the new image Znew into the variable of the
current image Ztest and to update its associated variables such that they
contain the variables Tnew, Hnew etc. The updating of the variables is
trivial except for the tree. The updating of the tree is done by the CopyTree
procedure.

Variable Description Type

sV Parameter, the images contain the sV + 1 cate-
gories 0, 1, . . . , sV of voxel values.

integer

sN Parameter, number of neighbours for an inner
voxel resulting in patterns consisting of sN + 1
voxels.

integer

Zin The image that should be copied. 3D integer array

Zinex Array to determine which patterns in Zin exist
in the training image.

3D logical array

Tin Tree of the image Zin. tree

Hin Frequency distribution of the image Zin. 2D real array

Pin Array with the value of each term of the objec-
tive function of the image Zin.

1D real array

Zout The image variable into which Zin should be
copied.

3D integer array

Zexout Array to determine which patterns in Zout exist
in the training image.

3D logical array

Tout Variable that holds the tree of the image Zout.
This variable should be updated to hold Tin.

tree

32

Hout Variable that holds the frequency distribution
associated with the image Zout, this variable
should be updated to hold Hin.

2D real array

Pout Array with the values of the terms of the ob-
jective function associated with the image Zout,
this variable should be updated to hold Pin.

1D real array

B Auxiliary Procedures

The following list describes the auxiliary procedures of the FM implementa-
tion. These are not of great importance to understand the code but necessary
building blocks.

B.1 getNewIt

The procedure determines which part of an image should be re-simulated
in order to compute a perturbed image. It returns the row, column and
layer index of the voxel that is the center of the domain, which should be
re-simulated.. To reduce the number of iterations needed for the simulated
annealing algorithm to converge, we wish to choose a voxel that will result
in maximal change to the perturbed image.

Consider two different voxels in the image. Assume that in an area around
the first voxel the image looks very similar to the training image. Erasing the
voxel values in a domain around in this area and re-simulating them based
on the multiple-point statistics of the training image will then likely result
in a perturbed image that is very similar to the original image. There is no
reason to expect the perturbed image to be a significantly better solution to
the inverse problem, than the image was before perturbing it.

Now assume that the original image in an area around the second voxel
looks very different from anything seen in the training image. Erasing and
re-simulating the voxel values in a domain centred in the second voxel will
then create a very different perturbed image. This perturbed image is much
more likely to be a better solution to the inverse problem as it will fit the
multiple-points statistics of the training image better. In case is not a better
data fit, it could potentially belong to a different, unexplored part of the

33

model space. While the image has areas that are dissimilar to any area of the
training image, we would like these areas to have a high relative probability
to be re-simulated.

The procedure goes through randomly proposed voxels and picks them
with a probability that is proportional to the number of undesirable patterns
in their neighbourhood (a pattern is deemed undesirable if it does not exist
in the training image).

The procedure suggest a random voxel and then scans the neighbourhood
voxels, say it has y neighbouring voxels. It counts how many of these, in-
cluding the voxel itself, are centrers of undesirable patterns, let us denote
that number x. The suggestd voxel is then accepted as a center for the
perturbation domain with probability:

Prob(voxel) =
x

y + 2

The denominator y + 1 comes from the number of patterns in the neigh-
bourhood plus the pattern from the voxel itself. The extra +1 is added
such that areas with no undesirable patterns, i.e., x = y, have a small yet
non-zero probability to be chosen. Otherwise the iterative algorithm might
be stuck and prevented to converge, as an image can have no undesirable
patterns without matching the frequency distribution of the training image
and without matching the data fit.

Variable Description Type

Zex Denotes which voxels in the image are centres
of patterns found also in the training image. An
element of Zex is true if the pattern centred in
the corresponding voxel exists in the training
image. And contrary, an element of Zex is false
if the corresponding voxel of the image is center
of a pattern not found in the training image.

3D logical array

nodes Array from the Nmask structure. 2D integer array

sN Parameter, number of neighbours for an inner
voxel resulting in patterns consisting of sN + 1
voxels.

integer

i, j, k Indices of the three dimensions of the image for
the voxel that is chosen as the center of the do-
main to be re-simulated.

integers

34

B.2 getNeighborhood

Given an image Z and a row, column and layer index of a voxel in the image,
this procedure extracts the voxel values of the neighbouring voxels. The
extracted voxel values will be flattened into a 1D array.

Variable Description Type

Z Image. 3D integer array

i, j, k Indices in the image of the center voxel of the
neighborhood.

integers

nodes Array from the Nmask structure. 2D integer array

sN Parameter, number of neighbours for an inner
voxel resulting in patterns consisting of sN + 1
voxels.

integer

Zvec Holds the values of voxels in a neighbourhood.
Unknown voxel values are assigned a value of
-1.

1D integer array

innervoxel Denotes if the voxel with the specified indices
was an inner voxel (innervoxel = true) or not
(innervoxel = false)

logical

B.3 getCPDF

This is a recursive procedure used by SimVoxel to compute the conditional
probability density function of the value of a voxel given the values of its
neighbouring voxels.

The procedure searches through the tree (depth first) for patterns that
matches the neighbourhood values in Zvec and adds up the counts of patterns
depending on the value of their center voxel. cpdf is then a sV+1 element
array with the counts of patterns matching the values of the neighbourhood
voxels for each of the sV+1 possible value of the center voxel.

35

Variable Description Type

Ttrain Tree of patterns extracted from the training im-
age.

tree

Zvec Holds the values of voxels in a neighbourhood.
Unknown voxel values are assigned a value of
-1.

1D integer array

sV Parameter, the images contain the sV + 1 cate-
gories 0, 1, . . . , sV of voxel values.

integer

sN Parameter, number of neighbours for an inner
voxel resulting in patterns consisting of sN + 1
voxels.

integer

cpdf Current counts of patterns matching the values
in Zvec.

1D real array

B.4 ExtendTree

This procedure adds another node to a tree. It takes as input a tree node
where the pointers in the next array are not yet associated. The procedure
initialises them by allocating their repl arrays and setting the counts to 0. It
also sets their depth values to be one deeper than the current T%depth, and
it nullifies their next arrays.

Variable Description Type

sV Parameter, the images contain the sV + 1 cate-
gories 0, 1, . . . , sV of voxel values.

integer

T Tree to be extended tree

B.5 ShapeTree

The procedure shapes a tree T such that it has the same shape as the Ttrain,
based on which it was constructed. By construction the tree cannot be

36

any bigger than Ttrain, as it holds only patterns that are also found in the
training image. However, it can be smaller, as some patterns may appear
in the training image but not in the image from which T is constructed.
The nodes representing such patterns need to be added with the appearance
count of zero.

Ensuring the trees have the same shape simplifies future operations such
as updating of trees and comparison of frequency distributions.

Variable Description Type

T Tree of patterns extracted from an image Z. tree

Ttrain Tree of patterns extracted from the training im-
age.

tree

sV Parameter, the images contain the sV + 1 cate-
gories 0, 1, . . . , sV of voxel values.

integer

sN Parameter, number of neighbours for an inner
voxel resulting in patterns consisting of sN + 1
voxels.

integer

B.6 CopyTree

As trees are complex structures we cannot just copy the content of one tree,
Told, into another tree, Tnew, in the way we usually do with arrays. Simply
saying Tnew = Told is not defined and therefore has no meaning. The pro-
cedure is therefore needed whenever we need to make a copy of a tree. It is
used, for instance, by the UpdateSA procedure to copy the tree of the per-
turbed image Tnew into the variable holding the tree for the current image
Ttest.

The procedure initialises a new tree from scratch and then copies the
content from the old tree into it node by node, without overwriting Told.

Variable Description Type

Told Tree of patterns extracted from an image. 3D integer array

37

sV Parameter, the images contain the sV + 1 cate-
gories 0, 1, . . . , sV of voxel values.

integer

sN Parameter, number of neighbours for an inner
voxel resulting in patterns consisting of sN + 1
voxels.

integer

Tnew Tree, which is a copy of Told. 3D integer array

B.7 DeallocateTree

Recursive procedure that deallocates a tree. This is done by deallocating the
repl array and the next array associated with each node for all nodes, one
node at a time.

Variable Description Type

sV Parameter, the images contain the sV + 1 cate-
gories 0, 1, . . . , sV of voxel values.

integer

T Tree node to be deallocated. tree

B.8 UpdateTrainTree

This recursive procedure is used to add a pattern to the tree of the training
image. For each pattern, InferTrainTree calls the procedure that then recur-
sively calls itself while going deeper and deeper into the tree. This causes
the count of the pattern to be added all the way to the bottom of the tree.
If a type of pattern has not already been added to the tree the procedure
ExtendTree is used to extend the tree with extra nodes before the pattern
can be added.

Variable Description Type

Ttrain Current tree node tree

38

Zvec Holds the values of the voxels in a neighbour-
hood.

1D integer array

cv Voxel value of the center voxel of the pattern. integer

sV Parameter, the images contain the sV + 1 cate-
gories 0, 1, . . . , sV of voxel values.

integer

sN Parameter, number of neighbours for an inner
voxel resulting in patterns consisting of sN + 1
voxels.

integer

B.9 wrapUpdateTree

This procedure is called by InferTree to add a pattern to the tree when the
center of the pattern is an inner voxel. It works as a wrapper for the recursive
UpdateTree.

Variable Description Type

T Tree of patterns so far extracted from the image
Z.

tree

Ttrain Tree of patterns extracted from the training im-
age.

tree

Zvec Holds the values of voxels in a neighbourhood. 1D integer array

cv Voxel value of the center voxel of the pattern. integer

sV Parameter, the images contain the sV + 1 cate-
gories 0, 1, . . . , sV of voxel values.

integer

sN Parameter, number of neighbours for an inner
voxel resulting in patterns consisting of sN + 1
voxels.

integer

exist Indicate whether the pattern is found in the
training image (exist = true) or not (exist
=false).

logical

39

B.10 UpdateTree

Recursive procedure that adds the contribution from a pattern which center
voxel is an inner voxel. It goes through the pattern voxel by voxel, and adds
it contribution node by node as deep into the tree as allowed. Recall that
the shape of the tree must not be changed as it shall remain the same as the
shape of the tree of the training image. Therefore patterns from the image
that are not found in the training image will not contribute to any counts
after a certain level of depth as the nodes representing them do not exist.
This also means they do not appear in the frequency distribution.

The inputs of the procedure is the same as of wrapUpdateTree.

B.11 wrapUpdateTreeBoundary

Like wrapUpdateTree this procedure is called by InferTree and it works as a
wrapper for UpdateTreeBounday. The procedure is used to add a pattern
which center is not an inner voxel.

Variable Description Type

T Tree of patterns so far extracted from the image
Z.

tree

Ttrain Tree of patterns extracted from the training im-
age.

tree

cpdfold Marginal conditional probability distribution of
the value of a center voxels conditioned on the
values of the neighbouring voxels in Zvec.

1D real array

Zvec Holds the values of the neighbouring voxels in
the pattern. Imaginary voxels have been as-
signed the value −1.

1D integer array

cv Voxel value of the center voxel of the pattern. integer

sV Parameter, the images contain the sV + 1 cate-
gories 0, 1, . . . , sV of voxel values.

integer

sN Parameter, number of neighbours for an inner
voxel resulting in patterns consisting of sN + 1
voxels.

integer

40

exist Indicate whether the pattern is found in the
training image (exist = true) or not (exist
=false).

logical

B.12 UpdateTreeBoundary

Recursive procedure that adds the contribution from a pattern which center
voxel is not an inner voxel. The contribution of the pattern is set to be pro-
portional to the marginal conditional probability of the center value given
the voxel values of the neighbouring voxels. This distinction between inner
voxels (handled by UpdateTree) and non-inner voxels (handled by Update-
TreeBoundary) is necessary as they contribute differently to the tree.

UpdateTreeBoundary goes through the tree. For each level it assigns the
contribution computed based on the counts of patterns in the tree of the
training image. It uses the procedure getCPDF to compute the marginal
conditional distributions. Like UpdateTree it never changes the shape of the
tree as it only add contributions from patterns that can also be found in the
training image.

The inputs of the procedure is the same as of wrapUpdateTreeBoundary.

B.13 GrowTree

This procedure is called by SimNewImage. It is used to iteratively update
the tree of an image when the latter is being perturbed. For each changed
voxel value up to sN + 1 patterns may have changed and the tree needs to
be updated for each of these changes.

GrowTree is called each time a voxel value has been changed, and it uses of
the procedures CenterCount, AddCount, SubtractCount and wrapUpdateTree-
Boundary to update the tree. Out of the possibly sN+1 changed patterns,
updating the tree with respect to the pattern of the changed voxel is rela-
tively simple. However, it is done differently depending on whether the voxel
is an inner voxel or not, as this makes it contribute differently to the tree.

The changed voxel might be a neighbour of up to sN voxels, and it there-
fore might be a part of equally many other patterns. By changing the voxel
value these patterns have changed too. The updating of these patterns is
a bit tricky and depends on whether or not the changed voxel, as well as

41

the voxels of which it is a neighbour, are inner voxels or not. Patterns not
centred in inner voxels are handled by the same procedure as when the tree
was first constructed, namely wrapUpdateTreeBounday.

When pattern change it might happen that they go from not being a part
of the tree to being part of the tree. The way the perturbation of images is
done this will often be the case. It might also happen the opposite, namely
that patterns used to be in the tree but are not any more. The number
of counts in the frequency distribution of the image is for the same reason
varying in the different iterations of the simulated annealing algorithm.

Variable Description Type

Z The image after the voxel value has been
changed.

3D integer array

zold Old value of the changed voxel. integer

Zex Array used by getNewIt, should be updated ac-
cording to the new patterns created by changing
the voxel values.

3D logical array

i,j,k Indices of the changed voxel. integers

nodes Array from the Nmask structure. 2D integer array

sV Parameter, the images contain the sV + 1 cate-
gories 0, 1, . . . , sV of voxel values.

integer

sN Parameter, number of neighbours for an inner
voxel resulting in patterns consisting of sN + 1
voxels.

integer

Ttrain Tree of patterns extracted from the training im-
age.

tree

T Tree of the image before the voxel was changed.
The procedures updates it according to the new
image Z.

tree

42

B.14 CenterCount

This is a recursive procedure called by GrowTree. The procedure is used
to update the tree with respect to the pattern centred in the changed voxel
when it is an inner voxel. Due to the structure of the tree, the tree is updated
by following the (unchanged) voxel values of the neighbourhood voxels and
updating the counts of the repl arrays of the corresponding nodes. Say the
value of the voxel was changed from i to j then the repl arrays are updated
by subtracting 1 count from the i+1th element and adding one count to the
j+1th element.

This accounts for the updating for 1 out of the sN+1 patterns possibly
affected as explained in the description of GrowTree.

Variable Description Type

T Tree node to be updated tree

sN Parameter, number of neighbours for an inner
voxel resulting in patterns consisting of sN + 1
voxels.

integer

znew New value of the changed voxel integer

zold Old value of the changed voxel integer

Zvec Holds the values of the voxels that are in the
neighbourhood of the changed voxel.

1D integer array

exist Indicate whether the pattern is found in the
training image (exist = true) or not (exist
=false).

logical

B.15 AddCount

This is a recursive procedure called by GrowTree. The procedure is used to
add a count representing new patterns appearing when the image is per-
turbed. It is used when the voxel, which value was changed, was an inner
voxel. This procedure performs the updating of the patterns for those of the
sN neighbouring voxels, that are inner voxels.

43

It loops through those inner voxels, determines which patterns they are
now centres of, and adds the count in the tree. Only one value has changed,
namely the one belonging to the changed voxel, and the remaining sN−1
values are unchanged. Therefore, if the changed voxel is the ith neighbour
in the pattern, then the i− !1th first values of the pattern are unchanged and
the tree should only be altered from level i and deeper.

Variable Description Type

T Tree node to be updated tree

sN Parameter, number of neighbours for an inner
voxel resulting in patterns consisting of sN + 1
voxels.

integer

level Depth level of the tree where the changed voxel
will first have effect.

integer

Zvec Holds the values of the neighbouring voxels in
the changed pattern.

1D integer array

zcen Value of the neighbouring voxel that is center
in the changed pattern

integer

exist Indicate whether the pattern is found in the
training image (exist = true) or not (exist
=false).

logical

B.16 SubtractCount

Like AddCount this is a recursive procedure called by GrowTree. Also this
procedure is used to update the tree when the image is perturbed. It is used
to subtract the count of the old pattern. It starts from the depth of change
in voxel values and goes all the way to the bottom of the tree.

Variable Description Type

T Tree node to be updated tree

44

sN Parameter, number of neighbours for an inner
voxel resulting in patterns consisting of sN + 1
voxels.

integer

level Depth level of the tree where the changed voxel
will first have effect.

integer

Zvec Holds the values of the neighbouring voxels in
the changed pattern.

1D integer array

zcen Value of the neighbouring voxel that is center
in the changed pattern.

integer

45

