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Abstract 

The far-infrared properties of all five described polymorphic forms of the drug 

sulfathiazole have been studied by terahertz pulsed spectroscopy and low frequency 

Raman spectroscopy. The spectra of the different polymorphs are distinctly different. 

Terahertz pulsed spectroscopy proves to be a rapid complementary alternative to other 

physical characterisation techniques reported in the literature for distinguishing 
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between the five forms. Variable temperature measurements (293 K to 473 K) of all 

polymorphic forms have been performed. The phase transitions observed have been 

related to thermal analysis data. Form I is the stable high temperature form of 

sulfathiazole with a melting point of about 475 K. Form II melts at around 470 K and 

recrystallizes at higher temperatures to form I. Forms III to V all convert to form I via a 

solid-solid phase transition at temperatures below 450 K. The phase transitions can be 

monitored by terahertz pulsed spectroscopy. Common polymorphic impurities of the 

samples can be detected in the room temperature spectra and their effect on the phase 

transition behaviour can be studied.  

Key words:  Terahertz spectroscopy; low frequency Raman spectroscopy; far-

infrared; sulfathiazole; polymorphism; phase transitions; DSC; high speed DSC; 

physical characterization; lattice vibrations 

1 Introduction 

The antibiotic drug sulfathiazole and its crystalline properties have been 

extensively described and studied since the 1940s.
1
 Even though marked as the classic 

polymorphic system by Burger and Dialer over twenty years ago,
2
 the structure of a 

fifth polymorph was only determined quite recently.
3-5

 A number of different 

techniques have been used for the physical characterisation of the polymorphic forms 

including thermal analysis, vibrational spectroscopy, solid-state NMR, and X-ray 

methods.
1,2,6,7

 Despite the thorough research into this system some properties of 

sulfathiazole remain a challenge to understand.8-10 The nomenclature of the polymorphs 

is not consistent in the literature and may lead to confusion as different systems in use 
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today all use Roman numerals. In this paper we use the convention clarified by 

Apperley et al.
1
 

Low frequency radiation in the far-infrared region of the electromagnetic 

spectrum, 2 cm
-1

-133 cm
-1

 (60 GHz - 4 THz), is generally referred to as terahertz 

radiation. The spectral range covered overlaps the millimetre and microwave part of the 

spectrum to the low frequency end and the mid-infrared region to the higher frequency 

region.  Terahertz radiation excites low energy vibrations associated with coherent, 

delocalized movements of molecules or molecular fragments rather than the individual 

atoms within the molecules.11 Recent advances in ultra-fast laser systems and the 

development of GaAs optical switches allowed the emission and detection of coherent 

broadband pulsed terahertz radiation at room temperature.
12

 Spectroscopy in the far-

infrared has thus become much more attractive and more widely deployed. 

Consequently terahertz pulsed spectroscopy (TPS)
 
has been demonstrated to be a 

powerful tool for the measurement of low-frequency vibrational modes.
13-15

 Optical 

gating techniques are used for detection of the pulsed radiation, recording the transient 

electric field rather than just the intensity of the terahertz radiation. This allows the 

direct determination of amplitude and phase in TPS measurements. Using this 

information absorption coefficients and spectral refractive indices can be calculated 

without the need to invoke the Kramers-Kronig dispersion relationship.
13

 Taking 

account of these advantages, TPS is being increasingly used to study low-frequency 

vibrational modes for a wide variety of samples including chemical, biological, 

pharmaceutical, and security-related materials such as explosives.
16-24
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Since sulfathiazole is reported in the literature as a classic example of a drug with 

five polymorphs and the differentiation between the forms is far from trivial, we have 

chosen it as a suitable system to test the capabilities of TPS. 

2 Experimental 

2.1 Materials –   The polymorphic forms of sulfathiazole studied in this paper 

were prepared as described by Apperley et al.
1
 Poly(tetrafluoroethylene) (PTFE) and 

polyethylene (PE) were obtained from Sigma-Aldrich (Poole, UK). 

2.2 Sample preparation – For the qualitative comparison of the different 

polymorphic forms at room temperature, 20 mg of the sample was gently ground and 

mixed with 400 mg PE. For the reference 400 mg PE was used. The variable 

temperature measurements were performed with a sample containing 15-20 mg of each 

sulfathiazole polymorph physically mixed with 550 mg PTFE. Using a die press 

(Specac, Orpington, UK) all mixtures and references were compressed with 1 ton load 

for 3 min into a pellet of 13 mm diameter.  

2.3 Qualitative terahertz pulsed spectroscopy – Using a 13 mm sample holder 

spectra of the sample and reference pellets were recorded on a TPS spectra1000 

spectrometer (TeraView, Cambridge, UK) at an instrument resolution of 1 cm
-1

 over 

the range of 2 cm
-1

 to 95 cm
-1

. Throughout the measurements, the sample chamber was 

purged with dry nitrogen. Sample and reference spectra (1800 scans co-added) were 

recorded, resulting in an acquisition time of one minute per spectrum. 

2.4 Temperature dependent terahertz pulsed spectroscopy – The sample 

pellets were held in a brass ring with a circular aperture of 8 mm and inserted into a 



TERAHERTZ PULSED SPECTROSCOPY OF SULFATHIAZOLE FINAL VERSION FOR SUBMISSION 23.01.2206 

 
    

 

 - 5 - 

heatable transmission cell (Specac, Orpington, UK) without windows. The sample 

temperature was controlled by a 3000 series high stability temperature controller 

(Specac, Orpington, UK). Temperature was calibrated using compounds of known 

melting point. The sample pellet temperature was increased at a rate of approximately 

2 K min
-1

. Terahertz spectra were recorded with a TPS spectra1000 spectrometer 

(TeraView, Cambridge, UK) using an instrument resolution of 1.5 cm
-1

 over the range 

of 2 cm
-1

 to 95 cm
-1

 as previously described.
23

 To reduce the contribution of 

atmospheric water vapour the sample chamber was purged with dry nitrogen 

throughout the experiment. Spectra were recorded by co-adding 1800 scans (one 

minute total). Each sample spectrum was referenced against a spectrum of a pellet of 

550 mg PTFE, with nitrogen purging.  

2.5 Spectral processing – Sample and reference spectra were calculated by a fast 

Fourier transformation of the time-domain waveform. Spectra were zerofilled at a 

factor of 2 and apodized using the 3-term Blackman-Harris procedure. Absorbance 

spectra were calculated from the sample and reference spectra. To compensate for 

scattering effects at higher frequencies the spectra of the qualitative measurements were 

baseline corrected using a simple power function. For better comparability the spectra 

were normalised. The spectra of the temperature dependent measurements were used as 

recorded and no processing was performed. Measurements and spectrum processing 

were carried out using TPI Spectra 1.9.8 (TeraView, Cambridge, UK).  

2.7 Low frequency Raman spectroscopy – Raman spectra were measured with a 

DILOR-XY 800 mm focal length multichannel spectrometer with microscope entrance, 

horizontal Ar-ion laser excitation (514.5 nm, 300 mW, vertically polarized), and liquid 

N2-cooled CCD light detection. Rayleigh scattered light was filtered off with a double 
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pre-monochromator (slits 200 µm). The Raman spectral resolution was about 4 cm
-1

 

and the precision about 1 cm
-1

, obtained by calibration with Raman lines from 

crystalline S8.
25

 Samples were measured without further sample preparation. 

2.7 Heat flux differential scanning calorimetry (DSC) – DSC was performed 

using a TA Q1000 (TA Instruments, New Castle, USA) differential scanning 

calorimeter based on the Boersma design (heat flux). The instrument was calibrated 

using indium standards. Between 1 mg and 2 mg per sample of the respective 

sulfathiazole form was weighed into aluminium pans and sealed. Under helium gas 

purge the samples were equilibrated at 293 K and then heated up to 483 K at ramp rates 

of 2 K min
-1

, 10 K min
-1

 and 150 K min
-1

. 

2.8 Power compensation high speed DSC – A Diamond DSC (PerkinElmer, 

UK) was used for recording the DSC traces of the different polymorphs at fast heating 

rates. The instrument was cooled by an Intracooler II (PerkinElmer, UK). Calibration 

was performed using indium standards at the respective heating rate. For each sample 

0.2 mg to 1.4 mg of the sample material was weighed into aluminium pans. Helium was 

used as purge gas. The samples were equilibrated at 233 K and then heated to 523 K at 

ramp rates of 300 K min
-1

 and 500 K min
-1

. A baseline of an empty pan was recorded 

for each heating rate and subtracted from the sample DSC trace. 

2.9 Hot stage polarising light microscopy – A Nikon Optiphot phase contrast 

light microscope equipped with polarizer and analyser and a hot stage FP82HT with a 

central processor FP90 (Mettler Toledo, USA) were used. The heating range was 298 -

483 K and the heating rate was 10 K min
-1

. 
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3 Results and Discussion 

 3.1 Far infrared spectra of sulfathiazole polymorphic forms – The terahertz 

absorption spectra of the five different polymorphic forms described are shown in 

Figure 2A. Table 1 lists the positions of the peaks of all polymorphic forms in the 

terahertz region. All forms show distinct spectral features in the range between 2 cm
-1

 

and 95 cm
-1

. They can be easily distinguished from one another by their terahertz 

absorption spectra. In contrast to mid-IR that is lacking specificity in the analysis of this 

system, this makes TPS a very valuable tool to study this polymorphic system in 

addition to established techniques like X-ray powder diffraction (XRPD) and solid-state 

NMR.
1
 The corresponding low-frequency Raman spectra are shown in Figure 2B. 

Figure 3 shows that above 150 cm-1 the spectral features become less pronounced, less 

frequent and more isolated. The majority of the phonon modes are expected below 

150 cm
-1

.
11

 Using the Raman technique all five polymorphic forms can also be 

distinguished from one another definitively. However, the effort to acquire the spectra 

is more significant using the Raman setup as the maintenance and alignment of these 

systems is more demanding and the acquisition times are much longer. The recording 

of Raman spectra so close to the laser line also requires a triple monochromator Raman 

system. Choosing the optimal laser excitation wavelength and the right balance 

between acquisition time and laser excitation power requires much expertise. For more 

complex samples, that may include excipients, the problem of fluorescence emission 

furthermore can swamp the Raman signal. An advantage of the Raman method is 

however the possibility for in-situ measurements on virgin samples under the 

microscope. 
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Compared to the spectra of the other four forms, the spectrum of polymorph I is 

relatively featureless at room temperature. The IR active modes show one major peak at 

65 cm
-1

 with all the other spectral features appearing very weak. The dominance of this 

peak may be due to the fact that form I is composed of two interlocked lattices known 

to exhibit a very high anisotropic lattice expansion.
1
 This might lead to a very strong 

phonon mode. The spectrum of the Raman active modes is also the most featureless for 

form I compared to the other forms. The peak positions for polymorph III lie between 

those of polymorphs IV and V. The terahertz spectral features of form III are more 

similar to those of form IV than form V. The crystal structures of all of the five 

polymorphs investigated have been determined.
1
 Polymorph IV consists of dimers 

joined to form chains in one dimension linked to identical chains orthogonally building 

a layer which will be referred to here as an A layer. So polymorph IV consists of stacks 

of layers AAAAAA. Polymorph V has identical chains but joined differently to give B 

layers, so the structure is BBBBBB. Polymorph III contains alternate A and B layers 

and has a structure ABABAB. The consequence of this is that in all properties IV and V 

are very similar whilst III is either the sum of IV and V or intermediate. In near 

infrared, mid infrared, Raman and NMR regimes the spectrum of form III is virtually 

the sum of that of IV and V. In X-ray powder diffraction (XRPD) and far-Raman 

spectra, the peaks of III lie between those of IV and V so specimen of III can be 

distinguished from a 50/50 mixture of IV and V. However, due to the closeness of the 

peaks and overlap from the peaks of I or II if present, definite distinction relies on the 

use of more than one technique. Furthermore there are other polymorphs, presumably 

of structures such as AABBAA or AABAAB, which occasionally produce further 

interference. A NMR spectrum of one of these is described and depicted by Apperley et 

al.
1
 By terahertz spectroscopy, the peaks of III lie between these of IV and V and are 
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well separated, thus allowing in principle distinction between these polymorphs and 

quantification of mixtures. As form I and II can also be distinguished very well from 

the forms III, IV and V all forms can be discriminated from one another by examination 

of their terahertz spectra. 

In XRPD preferred orientation effects have a very strong impact on the nature of 

the diffraction pattern. The crystals of sulfathiazole form III, IV and V can have distinct 

plate-like morphology. In this case it is very difficult to ensure random orientation of 

the particles which is a prerequisite to record powder patterns representing the true 

lattice structure of the sample. As a result, the diffractogram is distorted with intensities 

of certain lines greatly emphasised against the other XRPD lines. Furthermore, the 

positions of the most intense and characteristic bands are very close together for the 

different forms of sulfathiazole and care must be taken to avoid misinterpretations. 

Misinterpretations of the diffraction patterns can, and frequently do, occur. Particularly, 

the conclusion is often drawn that a sample is polymorphically pure by XRPD when it 

is a gross mixture. 

Solid-state NMR spectra of the different forms of sulfathiazole are recorded using 

cross polarized magic angle spinning. All polymorphs can be distinguished from one 

another and a high degree of chemical information relating to the molecule in the 

crystal lattice can be obtained.1 However, it takes several hours and a substantial 

amount of sample to record a good quality spectrum of a single sample with sufficient 

signal to noise ratio. Using DSC it is not possible to distinguish between these forms as 

their melting endotherms are all in the same temperature range as discussed below.  
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Even though TPS is a good tool for the fast and reliable differentiation of 

polymorphic forms more understanding of the interpretive assignment of the spectral 

features in the terahertz spectra would be beneficial. An understanding of the spectra 

may facilitate studies of solid state reaction mechanisms. The assignment of specific 

features in this region of the electromagnetic spectrum is still in its infancy. So far few 

studies have been published in which density functional theory (DFT) calculations have 

been used to interpret terahertz spectra. We have studied the intramolecular low 

frequency predictions of DFT calculations of carbamazepine in its single molecule as 

well as in the dimer structure.
24

 Even though it is possible that most modes in the 

terahertz spectra are caused or influenced by low energy intramolecular vibrations it is 

apparent that it is not sufficient to focus on single molecule structures to explain all the 

features observed. Using a more advanced computational approach we were able to 

calculate the lattice dynamics for the different polymorphs of carbamazepine rather 

than the isolated dimer structure in order to understand the low frequency phonon 

modes in more depth.11 Tentative assignments of the measured spectral features to 

certain lattice vibrations of two polymorphs were made leading to a better 

understanding of the terahertz spectra. These calculations can be regarded as a first 

important step towards a rational and full understanding of terahertz spectra. However, 

further work is necessary to see whether the results obtained in the case of a rigid 

molecular structure translate to less rigid molecular crystals, and at which part of the 

spectrum the effects of intramolecular vibration begin to dominate. 

The spectra presented for polymorph II and IV in Figure 2 and Figure 3 are 

unlikely to be of 100% polymorphic purity (see discussion below). However the 
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samples analysed are of the highest polymorphic purity that could be obtained and it 

was possible to unambiguously identify impurities in them. 

3.2 Thermal analysis – By DSC, the different polymorphic forms III to V are 

found to convert to form I at varying temperatures between 420 K and 450 K via a 

solid-solid transformation.
6,7

 Further heating leads to melting of form I at around 474 K 

(Figure 4A-E). The conversion temperature of forms III to V depends on the heating 

rate. The endotherms of the conversion process are recorded in about the same 

temperature range for all the different forms (Table 2). Form II melts at 469 K. For 

slower heating rates this melting endotherm is followed by an immediate 

recrystallization exotherm as the sample crystallizes to form I.  

Samples of form II are quite unstable and if not dried in the appropriate conditions 

straight after their crystallization, they can be easily contaminated with form III, IV or 

V by immediate conversion. In this case a solid-solid conversion to form I between 

420 K and 450 K of the contaminant can be observed in addition to the melt of form II 

at 469 K. Even though great care was taken in order to analyse pure polymorphs of all 

forms it was not possible to record a pure specimen of form II due to its instability. The 

polymorphic purity of form II was confirmed by FT-IR straight after crystallization but 

partial transformation occurred during transport to the DSC measurements. As it was 

intended to compare the DSC measurements with the terahertz spectra, the DSC traces 

were recorded prior to the terahertz measurements at the same site. To demonstrate the 

instability of form II the DSC trace of one sample was recorded immediately after 

crystallization at a heating rate of 300 K min
-1

 (Figure 4D compared to E) 
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It is difficult, if not impossible, to distinguish the different polymorphic forms by 

thermal analysis alone. In DSC, measurements of polycrystalline samples represent the 

melting behaviour of the sample bulk. The conversion to form I is a defect driven 

process,
1,26

 so the conversion endotherm to form I is more sample dependent than 

characteristic for its polymorphic form. Even though the thermodynamic transition 

point for this process is theoretically at 368 K, no conversion is reported in the 

literature for temperatures below 400 K.
27

 It was demonstrated by DSC measurements 

of sulfathiazole form III single crystals at low heating rates that the conversion 

temperature for this specific form is distributed over the range between 421 K and 

433 K depending on the individual sample crystal.
28

 In general the endotherms have 

lower onset temperatures at slower heating rates. This is due to the slow kinetics of 

transformation. The true transition temperature for the conversion to form I is known to 

be about 368 K to 389 K. Using high heating rates in DSC reveals additional 

information. At slow heating rates annealing processes can occur and some of the 

defect structures can be eliminated. This effect is not observed at high heating rates as 

the annealing processes are slow. As a result, the conversion endotherms recorded at 

slow heating rates have a lower onset temperature compared with the onset temperature 

recorded at high heating rates. 

Increasing the heating rate also leads to a partial inhibition of the recrystallization 

of the lower melting polymorph revealing the true melting point of the polymorphic 

form. This effect has been recently demonstrated by heating carbamazepine at rates of 

up to 250 K min
-1

.
29

 The kinetics of solid-solid transformations is often slow and so the 

transition can be delayed or prevented. This also explains the shift in transition 

temperatures towards higher temperatures for the forms II to IV recorded at faster 
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heating rates. A heating rate of 150 K min
-1

 is the upper limit for the heat flux 

instrument setup used for this experiment and the melting enthalpies should not be 

considered accurate for these measurements. This is due to the fact that in this setup 

both reference and sample are heated by the same oven and the temperature difference 

between the two is recorded during heating. As the temperature of a rather big 

compartment is controlled the lag time of the system is significant and restricts the 

heating rate. However, the values are reproducible and the aim of the experiment at 

150 K min
-1

 is to investigate the qualitative effects of the heating rate on the conversion 

endotherm observed at lower temperatures rather than giving accurate enthalpies for the 

melting events (Figure 4C). To examine the effects at even higher heating rates 

experiments were performed using a power compensation setup DSC (Figure 4D-E). 

This setup allows accurate measurements of the thermal properties at heating rates up to 

500 K min
-1 

as sample and reference are heated by two separate smaller ovens. Rather 

than measuring the temperature difference between sample and reference during 

heating the temperature of both is kept equal throughout the experiment by adjusting 

the heating power of the individual heating elements. These experiments were very 

helpful to confirm the findings form the heat flux setup and to make accurate 

measurements of the melting enthalpy. As Table 2 confirms using the heat flux DSC 

setup it was not possible to obtain accurate enthalpies at heating rates of 150 K min
-1

. 

Depending on the particle size distribution in the sample more than one 

endotherm may be observed in the DSC trace of form III, IV or V at temperatures 

below 450 K. Under a polarizing light microscope it can be observed that some 

fractions of the sample tend to convert to form I via melt and recrystallization whereas 

bigger particles convert via a solid-solid transformation process (Figure 5). This type of 
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mixed behaviour is confirmed by DSC of a different sample of form IV. A broad 

endotherm of the solid-solid conversion is recorded. The onset temperature is heating 

rate dependent between 425 K and 433 K. A clearly separated, sharp melting 

endotherm can be observed independent of the heating rate at 447 K in this sample 

indicating a melt of a fraction of the particles (Figure 6). In other samples no melting 

and recrystallization is observed but the conversion takes place solely by solid-solid 

conversion (Figure 7, Figure 4).  

3.3 Temperature dependent terahertz spectroscopy of sulfathiazole – During 

the TPS measurements the temperature in the centre of the sample cannot be 

determined with the same accuracy as for the DSC measurements. The spectra are 

recorded in transmission thus the thermocouple of the temperature controller needs to 

be placed very near to the sample rather than on the sample directly to measure the 

temperature of the heating element. This may lead to an underestimation of the 

temperature at the centre of the sample. However, this is a systematic error as sample 

weight and size as well as heating or cooling rate all remain constant for the different 

sample pellets. Consistent with this the measurements are reproducible.  

PTFE used for diluting the sample material during the temperature dependent 

terahertz measurements exhibit spectral features that increase in intensity at higher 

temperatures. This is due to an annealing process and crystallization of PTFE upon 

heating the material below its melting temperature of about 594 K.
30,31

 The amount of 

PTFE in the sample and reference pellets were the same so no effects of the PTFE 

spectrum on the terahertz spectra of the sulfathiazole samples should be observed. 

However, the spectral range for the heating experiments of sulfathiazole I to IV (Figure 

8A-D) was restricted to frequencies below 90 cm
-1

 as subtle spectral signatures 
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originating from the PTFE could not be avoided in all samples. Sample and reference 

were not measured at the same time but in two consecutive runs as the heating jacket 

only allowed the accommodation of only one sample at a time. In form V all the 

spectral features of PTFE could be compensated by the reference and for this sample 

the spectral range up to 120 cm
-1

 is shown (Figure 8E). 

As anticipated from the small number of spectral features in form I no dramatic 

changes are observed in the terahertz spectrum during heating (Figure 8A). However, 

the effect of the elevated temperature on the position and intensity of the principal peak 

is quite distinct. At room temperature the major peak in the terahertz spectrum of form I 

exhibits a maximum at 65 cm
-1

. This peak red-shifts to 58 cm
-1

 at 463 K. Its intensity 

decreases by 40 % and a general broadening of the peak shape can be observed. These 

effects are rather pronounced compared to the spectral response of the other forms upon 

heating. Again, the very high anisotropic lattice expansion is probably responsible for 

these findings.
1
 None of the features at 37 cm

-1
, 43 cm

-1
, 53 cm

-1
, and 80 cm

-1
 can be 

distinguished from the main spectral feature at 463 K. Upon cooling the sample back to 

room temperature, all peaks re-emerge and shift to their initial position (Figure 8A). 

The DSC analysis of the sample of sulfathiazole form II revealed that the 

polymorphic form was not pure (Figure 4). Even though form II could be crystallised in 

its pure form (confirmed by FT-IR) the samples were extremely unstable and partially 

recrystallized to form III, IV or V between manufacture and the TPS analysis. Several 

unsuccessful attempts were made in order to obtain a stable pure specimen. As it was 

not possible to crystallise form II at the site of TPS analysis, the sample with the 

highest polymorphic purity, as determined by DSC, was chosen for the discussion of 

the phase transition of form II. All spectral features red-shift and decrease in intensity 
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upon heating (Figure 8B). The strongest decrease in intensity can be observed for the 

peak at 38 cm
-1

. At 403 K an additional peak at 21 cm
-1

 starts to build up whereas the 

peak at 38 cm
-1

 can no longer be fully resolved. It is only a shoulder on the 33 cm
-1

 

peak and further heating leads to the disappearance of this feature. In contrast the 

shoulder at 28 cm
-1

 is increasing in intensity and from 423 K onwards starts to 

dominate the three spectral features at low wave numbers. The effects that can be 

observed at 403 K are due to the conversion of the recrystallized impurity of form III, 

IV or V to form I in the sample of form II. At temperatures above 423 K the conversion 

is complete and the spectra represent a mixture of form II and I. The peak at 61 cm
-1

 at 

room temperature in the sample of form II shifts to lower frequencies and is broadened 

upon heating. At 463 K two local maxima can be distinguished on this feature at 

53 cm
-1

 and 61 cm
-1

. From 473 K onwards all remaining spectral features diminish, 

indicating the melt of form II and only diffuse absorption can be observed at 483 K. 

Cooling of the sample results in spectra as recorded for form I (Figure 8A). 

In order to study the conversion process in samples of polymorphic mixtures in 

more detail a sample of sulfathiazole form II with a higher content of recrystallized 

form III, IV or V was heated to 463 K, just below the melting point of form II. In 

agreement with the DSC data (Figure 9), two changes in the spectra of heated form II 

can be observed by TPS. Initially the spectral features red-shift and decrease in 

intensity. At temperatures above 413 K an additional peak emerges at 20 cm
-1

. The 

peaks at 26 cm
-1

 and 31 cm
-1

 change their relative intensities at 443 K and the features 

at 43 cm
-1

 and 48 cm
-1

 disappear. This indicates the solid-solid conversion of the form 

III/IV/V contamination to form I. Upon further heating to 463 K the spectrum changes 

again with the features at 26 cm
-1

 and 31 cm
-1

 changing intensities (Figure 10A). At 
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463 K the spectrum of form II is superimposed by the spectrum of form I. Cooling this 

sample leads to a blue-shift and sharpening of the features observed at 463 K (Figure 

10B). The mixture of form I and II does not show any phase transitions upon cooling to 

room temperature.  

The energy barrier to conversion of the three higher melting polymorphs (III, IV 

and V, all of which melt at 447 K to 450 K) to polymorph I is extremely high. 

Transition occurs via defect structures, as can be readily seen during hot stage 

microscopy. Consequently, the detailed temperature behaviour varies from crystal to 

crystal and sample to sample, although the overall pattern is similar. 

Heating form III from room temperature results in red-shift and decreasing 

intensity of the spectral features as in the case of forms I and II (Figure 8C). For this 

sample the beginning of the polymorphic transition to form I is observed above 433 K. 

Starting with a decrease in intensity of the peak at 45 cm
-1

 and 50 cm
-1

 as well as the 

shoulder at 56 cm
-1

 the peaks of form III disappear. At 463 K a complete conversion 

can be observed and only form I features can be recorded. As the sample is cooled to 

room temperature a blue-shift of the form I spectral features similar to that in Figure 8A 

takes place. 

In this sample of form IV the spectral changes that indicate a change in 

polymorphic form during the heating process start at lower temperatures than in 

form III (Figure 8D). This behaviour corresponds very well to the DSC trace. At 403 K 

the intensity of the peak located at 82 cm
-1

 at room temperature decreases by 15 % 

compared to the intensity at 393 K. In parallel between 25 cm
-1

 and 70 cm
-1

 a very 

broad spectral feature, characteristic of form I, increases in absorption. Its intensity is 
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1.36 times higher at 403 K compared to 393 K and 1.58 times increased at 413 K 

compared to 393 K. In the spectrum at 423 K no form IV features are detectable.  

Lower wavenumber features of form IV can no longer be discerned. Further heating to 

473 K of the converted form I leads to a spectrum similar to Figure 8A only showing 

bands of sulfathiazole form I.  It is interesting to note that, prior to the conversion from 

form IV to I, the peaks of form IV show substantial red-shift with heating. The peak 

positions shift between 2 cm
-1

 and 6 cm
-1

 with the peak at 82 cm
-1

 showing the largest 

shift to 76 cm
-1

. 

As for forms III and IV, conversion to form I can be followed upon heating the 

sample of form V. Initially, the intensity ratio of the peaks at 33 cm
-1

 and 38 cm
-1

 

reverses. At room temperature the peak at 38 cm
-1

 has a slightly higher intensity than 

the peak at 33 cm
-1

. An increase in temperature leads to a decrease in intensity of the 

38 cm
-1

 peak and a red-shift of its position. In contrast the peak at 33 cm
-1

 also red-

shifts but the decrease in intensity is much smaller. The temperature where the intensity 

of both peaks is the same varies for samples of different crystallisation batches. In one 

sample it was found to be at 363 K whereas in another sample it was at 423 K. The 

peaks at 62 cm
-1

 and 113 cm
-1

 both steadily decrease in intensity. From 433 K onwards 

the form I spectrum starts to dominate (Figure 8E) and at 463 K only features of form I 

can be detected in the spectrum of the sample. Again this corresponds well to the 

observations recorded by DSC. 

4 Conclusion 

We have demonstrated that by using TPS the five known polymorphic forms of 

sulfathiazole can be unequivocally discriminated from one another. Even though the 
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spectral features cannot yet be assigned to structural properties, the potential of 

spectroscopy in the terahertz region for the characterisation of polymorphic forms is 

evident. Furthermore the information that can be extracted from temperature dependent 

measurements was highlighted and utilised for additional characterisation of this 

polymorphic system. The temperature induced phase transitions in all the different 

forms of sulfathiazole were studied in detail and compared with the data from thermal 

analysis. 
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6 Figure legends 

Figure 1: Chemical structure of sulfathiazole. 

 

Figure 2: A) Terahertz absorption spectra and B) Low frequency Raman spectra 

for the different polymorphic forms of sulfathiazole. For clarity spectra are offset in 

absorbance and normalized. 

 

Figure 3: Raman spectra between 100 cm
-1

 and 600 cm
-1

 for the different 

polymorphic forms of sulfathiazole. For clarity spectra are offset in absorbance and 

normalized. 
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Figure 4: DSC traces for the different forms of sulfathiazole at different heating 

rates. A) 2 K min
-1

 B) 10 K min
-1

 C) 150 K min
-1

 D) 300 K min
-1

 E) 500 K min
-1

. A-C 

heat flux DSC; D-E power compensation DSC. 

 

Figure 5: Conversion of sulfathiazole form IV to form I studied by polarizing 

light microscopy. In this sample batch part of the sample convert to form I by melt and 

recrystallization whereas the bigger particles convert via a solid-solid transition.  

 

Figure 6: Sulfathiazole form IV. DSC traces for a sample of form IV recorded at 

different heating rates. The sample contains a fraction of particles converting to form I 

via solid-solid transition and the rest of the particles melting at the melting point of 

form IV. A) 2 K min
-1

 B) 10 K min
-1

 C) 150 K min
-1

. 

 

Figure 7: Conversion of sulfathiazole form IV to form I studied by polarizing 

light microscopy. Here all particles convert to form I via a solid-solid transition. 

 

Figure 8:  Sulfathiazole forms I, II, III, IV and V. A) Form I heating from 293 K 

to 463 K and subsequent cooling back to room temperature. Heating from room 

temperature to 473 K: B) form II. C) form III; D) form IV, and E) form V.  

 

Figure 9: Impure sulfathiazole form II. DSC trace for a sample of form II that has 

partly recrystallized to form III, IV or V recorded at different heating rates. A) 

2 K min
-1

 B) 10 K min
-1

 C) 150 K min
-1

.  

 



TERAHERTZ PULSED SPECTROSCOPY OF SULFATHIAZOLE FINAL VERSION FOR SUBMISSION 23.01.2206 

 
    

 

 - 21 - 

Figure 10:  Sulfathiazole form II that has partly recrystallized to form III, IV 

or V. A) Heating from room temperature to 463 K. B) Cooling back to room 

temperature. 
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8 Table captions 

Table 1: Positions of the far-infrared spectral features of sulfathiazole 

polymorphic forms. (w) Weak spectral feature; (s) shoulder. Brackets indicate 

unresolved peaks. 

 

Table 2: Melting point and heat of fusion data from the DSC experiments at 

different heating rates. 2 K min
-1

, 10 K min
-1

 and 150 K min
-1

 recorded on a heat flux 

setup; 300 K min
-1

 and 500 K min
-1

 recorded on a power compensation setup. 
a)

 The 

two peaks are not fully resolved. 
b)

 The heat of fusion represents form II and the 

impurity of form I together. Peaks were not resolved. 

 

 

9 Tables 

Polymorphic form IR active modes Raman active modes 

Form I 37w, 43w, 53w, 65, 80w (20, 27, 39w), (54, 60), (80, 98w) 

Form II (28s, 33, 38), (44s, 48), 61, 82 (39, 42), 54w, 62, 67, 83 

Form III (30, 33w), (38, 41w), 45, 50, 56s, 

(62, 68), 83, 92  

37, 48, 55, 66, (81w, 87w)  

Form IV 28, 36, 44, (60, 68), (82, 90w) 28, 36, 44, 51, 56w, 63w, (80w, 90w) 

Form V (28w, 33, 38), (45w, 48w), 63, 84 26, (38, 42), 55, 61w, 67w, 82w 
Table 1 

 

 Melting point (onset K) / Heat of fusion (J g
-1

) at different heating rates 

Polymorphic 

form 

2 K min
-1

 10 K min
-1

 150 K min
-1

 300 K min
-1

 500 K min
-1

 

Form I 474.1  /  108.1 474.7  /  81.8 474.4  /  205.5 472.4 / 106.2 471.6 / 99.6 

Form II 423.2  /  26.2 

469.9  /  1.2 

474.1  /  115.1 

428.8 /  24.9 

469.6  /  1.0 

474.2  /  115.5 

440.8 /  38.4 

469.6  /  34.2
a) 

474.8  / 168.2
a) 

442.8 / 17.2 

468.3 / 82.4
 

442.9 / 32.9 

466.2 / 75.4
b) 

Form III 426.9  /  30.1 

474.1  /  110.8 

432.4 / 27.3 

474.1  /  114.2 

445.8  /  49.34 

474.4  /  193.2 

446.0 / 45.1 

473.4 / 142.0 

443.7 / 34.5 

470.9 / 95.7 

Form IV 419.6  /  31.8 

473.5  /  117.3 

411.0  /  32.4 

473.6  /  116.4 

415.8  /  45.91 

473.7  /  201.7 

410.9 / 29.7 

472.4 / 89.81 

415.0 / 22.6 

470.6 / 97.34 

Form V 427.3 /  27.6 

471.7  /  112.6 

432.5  /  29.5 

472.9  /  114.7 

442.1  /  43.92 

473.5  /  202.3 

446.3 / 29.8 

473.7 / 80.6 

443.5 / 34.3 

470.5 / 79.3 
Table 2 

 

 

Comment [AZ1]: We need to 
update this value before 

submission. I have mailed Paul 

Gabbot in order to get it. 
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