Developing a Next Generation Biophotonics Workstation

Bañas, Andrew Rafael; Palima, Darwin; Tauro, Sandeep; Glückstad, Jesper

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Developing a Next Generation BioPhotonics Workstation

Andrew Bañas, Darwin Palima, Sandeep Tauro, Jesper Glückstad*

Abstract

Optical trapping has established a track record for cell handling in small volumes. However, methods like fluorescent labeling are often utilized to measure single-cell properties in the trapping experiments. These methods require extra steps in the cell preparation process, and might influence the experimental outcome. To circumvent these issues, we are pursuing a novel idea: applying microscopic tools in the sample volume, which enable direct probing of specific cell properties. Here we present the initial experiments, simplifying introduction of microtools to the sample and precision positioning of several microtools simultaneously near one single cell. The experiments are performed in our BioPhotonics Workstation with a counterpropagating beam geometry. This geometry provides a large manipulation area and allows real-time manipulation of a plurality of traps (currently 100 independently reconfigurable traps), facilitating precise control and a rapid response of the optically manipulated microtools. The microtools are prefabricated by two-photon polymerization. The tools consist of a tip with sub-micron features, connected to three spheres functioning as trapping handles. The separation of handles provides leverage enabling sub-micron positioning accuracy of the tip. The tip can be joystick positioned in 3D with full rotational freedom, as close to the cell as desired. Using microtools allows experiments on cells without requiring extensive sample preparation. Furthermore, each tip of the microtools can be chemically activated; this provides an abundance of new opportunities, e.g. by applying enzymes that allows the tip to penetrate the cell walls or utilizing a pH-sensitive fluorochrome to measure intracellular pH at specific sites in or around biological cells.

Schematics of workstation

The BioPhotonics Workstation is capable of handling both cells and tools at once. A free-floating cell is trapped while a joystick-controlled tripod shaped microtool is moved into position to “probe” the cell. The tool can be moved and rotated freely around the cell. Many cells will attach themselves to surfaces. The tools maintain their maneuverability near the surface. Frames 1–6: Two tools are brought into position for probing along the border of the cell. Only the two upper handles of the left tool are trapped, the glass surface, combined with a beam downwards on the tip is used to tilt it towards the cell. Frames 7–12: One tool is released from the surface and brought into position above the cell. Frame 12: The focus plane is shifted to focus on the tool.

Probing cells with light driven microtools

The long working distance allows an extra microscope to be mounted perpendicular for side view or for an independent optical setup. The laser source is modulated and shaped by a single spatial light modulator, the upper and lower parts of the beam are separated and projected into the sample from opposite directions. A perisopic design, with two mirrors in each arm, simplifies the necessary optical alignment.

Rotated grouped particles

Particles having different sizes are trapped simultaneously and rotated about an axis. Top row: Looking at the particles from above as they are simultaneously rotated. Bottom row: Viewing the particles orthogonally to the top view.

Forces in a counter-propagating trap

The counterpropagating based workstation geometry achieves particle trapping in the x-y (translational) plane due to gradient forces and z (axial) trapping due to equilibrium between the scattering forces caused by a set of counterpropagating beams. Changing the top and bottom beams’ relative intensities causes axial translation. Axial positions can be stabilized via feedback control based on machine vision.

Probing with multiple microtools

The BioPhotonics Workstation can handle both cells and tools in a medium required for viable cells. Microtools can be positioned freely in 3D along the border of a cell, with the tip as close as to as desired. Future functionalized microtools might even penetrate cell walls, allowing handling of organelles etc.

Conclusion

The BioPhotonics Workstation can handle both cells and microtools in a medium required for viable cells. Microtools can be positioned freely in 3D along the border of a cell, with the tip as close as to as desired. Future functionalized microtools might even penetrate cell walls, allowing handling of organelles etc.

References


Acknowledgements

We thank Indumathi Vedarethinam from DTU Nanotech, Denmark for providing and assistance with the cells and Lorand Kollonin from Institute of Biophysics, Hungary for design and fabrication of the microtools. Finally we would like to thank the support from the Danish Technical Scientific Research Council (FTP).

Appendix

Design and fabrication of the microtools. Finally we would like to thank the support from the Danish Technical Scientific Research Council (FTP).