Downloaded from orbit.dtu.dk on: Apr 28, 2024

DTU DTU Library

i

Automatic Loop Parallelization via Compiler Guided Refactoring

Larsen, Per; Ladelsky, Razya; Lidman, Jacob; McKee, Sally A.; Karlsson, Sven; Zaks, Ayal

Publication date:
2011

Link back to DTU Orbit

Citation (APA):

Larsen, P., Ladelsky, R., Lidman, J., McKee, S. A., Karlsson, S., & Zaks, A. (2011). Automatic Loop
Parallelization via Compiler Guided Refactoring. Technical University of Denmark. IMM-Technical Report-2011
No. 12

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://orbit.dtu.dk/en/publications/e16218a7-f54b-462d-9d0d-bb6ea95d4d0d

Automatic Loop Parallelization via
Compiler Guided Refactoring

Per Larsen*, Razya Ladelsky?, Jacob Lidman', Sally A. McKee', Sven Karlsson* and Ayal Zaks!
*DTU Informatics
Technical U. Denmark, 2800 Kgs. Lyngby, Denmark
Email: {pl,ska} @imm.dtu.dk

 Computer Science Engineering

Chalmers U. Technology, 412 96 Gothenburg, Sweden

Email: lidman @student.chalmers.se, mckee @chalmers.se
{IBM Haifa Research Labs Mount Carmel, Haifa, 31905, Israel

Email: {razya,zaks}@il.ibm.com

Abstract—For many parallel applications, performance relies
not on instruction-level parallelism, but on loop-level parallelism.
Unfortunately, many modern applications are written in ways
that obstruct automatic loop parallelization. Since we cannot
identify sufficient parallelization opportunities for these codes in
a static, off-line compiler, we developed an interactive compilation
feedback system that guides the programmer in iteratively
modifying application source, thereby improving the compiler’s
ability to generate loop-parallel code. We use this compilation
system to modify two sequential benchmarks, finding that the
code parallelized in this way runs up to 8.3 times faster on an
octo-core Intel Xeon 5570 system and up to 12.5 times faster on
a quad-core IBM POWERG6 system.

Benchmark performance varies significantly between the sys-
tems. This suggests that semi-automatic parallelization should be
combined with target-specific optimizations. Furthermore, com-
paring the first benchmark to hand-parallelized, hand-optimized
pthreads and OpenMP versions, we find that code generated
using our approach typically outperforms the pthreads code
(within 93-339%). It also performs competitively against the
OpenMP code (within 75-111%). The second benchmark out-
performs hand-parallelized and optimized OpenMP code (within
109-242%).

I. INTRODUCTION

Parallel programming is the biggest challenge faced by the
computing industry today. Yet, applications are often written
in ways that prevent automatic parallelization by compilers.
Opportunities for optimization are therefore overlooked. A
recent study of the production compilers from Intel and IBM
found that 51 out of 134 loops were vectorized by one
compiler but not the other [10].

However, most optimizing compilers can generate reports
designed to give a general idea of the issues encountered
during compilation. The task to determine the particular source
code construct that prevents optimization is left to the pro-
grammer.

We extended a production compiler to produce an interactive
compilation system. Feedback is generated during compila-
tion. It guides the programmer to refactor the source code. This
process leads to code that is amenable to auto-parallelization.

This paper, evaluates the speedups after applying our com-
pilation system on two benchmarks. We compare the speedups

with hand-parallelized and optimized versions using an octo-
core Intel Xeon 5570 system and a quad-core IBM POWERG6
SCM system.

Our contributions are as follows.

« First, we present our interactive compilation system.

« Second, we perform an extensive performance evaluation.
We use two benchmark kernels, two parallel architectures
and also study the behavior of the benchmarks.

After modification with our compilation system, we find
that the two benchmarks runs up to 6.0 and 8.3 times faster
on the Intel Xeon 5570 system. On the IBM POWERG6 system
they run up to 3.1 and 12.5 times faster respectively.

We compared the benchmarks to hand-parallelized, hand-
optimized POSIX threads [5], pthreads, and OpenMP [7] ver-
sions. For the first benchmark, we found that code generated
using our approach delivers up to 339% of the performance of
the pthreads version. It also performs competitively against the
OpenMP code (up to 111%). The second benchmark delivered
up to 242% of the performance of the OpenMP version.

The following section introduces two benchmarks which
exemplify the problems faced by production compilers. The
problems observed via the benchmarks are then related to the
steps in the auto-parallelization process in Section III. Section
IV describes the interactive compilation system which guides
code refactoring to facilitate auto-parallelization. The refactor-
ing which enabled auto-parallelization of the two benchmarks
are discussed in Sections V and VI respectively. Experimental
results are presented in Sections VII and Section VIII surveys
related work. Section IX concludes.

II. EXPOSING COMPILER PROBLEMS

Programs can be written in many ways. Some ways ob-
struct automatic loop parallelization. Throughout the paper,
two benchmark kernels will exemplify the major problems
production compilers face. We will start by briefly outlining
the kernels.

The first kernel is a realistic image processing benchmark.
It was kindly provided by STMicroelectronics Ottawa and
Polytechnique Montreal [4]. The kernel interpolates sensor

TABLE I
LOOP NESTS IN THE EDGE DETECTION KERNEL THAT WERE
AUTO-PARALLELIZED BY FIVE DIFFERENT COMPILERS. THE COMPILERS
ARE UNLIKELY TO PARALLELIZE THE SECOND OR THIRD LOOP NEST.

Origin ~ Compiler Loop nests

loopl loop2 loop3
FOSS gcc v v
Intel icc v W) v
FOSS opencc v v
PGI pgcc v
Oracle suncc v v

data from a color filter mosaic [17] in a process called
demosaicing. Its execution time is concentrated in twelve loop
nests whose iterations are independent. In addition to the
sequential code, we received a hand-parallelized and optimized
pthreads version.

We also studied the edge detection kernel in the UTDSP
benchmarks [16]. This program detects edges in a grayscale
image and contains three loop nests that may be parallelized.
A single loop nest accounts for the majority of the execution
time.

Both kernels are difficult to parallelize automatically. We
tested with the gcc [9] and opencc [6] open-source com-
pilers and icc from Intel [12], pgcc [22] from Portland
Group and suncc [19] from Oracle. The highest available
optimization levels and inter-procedural optimization were
selected to produce the best results. Level —02 were tried
in addition to —O3 with gcc since that may produce better
results.

None of the loop nests in the demosaicing code were
parallelized by any of the compilers. The results for the edge
detection code are shown in Table I. Only icc managed to
parallelize the second loop nest where parameter-aliasing is an
issue. Interestingly, icc succeeds because it makes an inlining
decision which rules out aliasing among function parameters.
If the function is not inlined, aliasing also prevents icc from
parallelizing the loop.

The obstacles which prevents auto-parallelization of the
benchmark kernels are:

o Function parameters that may point to the same memory
locations.

o Function calls in loop bodies. These may have side
effects.

o Loop counters that may overflow or lead to out-of-bound
array accesses.

e Loop bounds that can not be analyzed by the compiler.

o Array access patterns that are too complex for the com-
piler to analyze.

o Loops that may contain insufficient work for paralleliza-
tion to be profitable.

To understand why a compiler may refrain from auto-
parallelizing the benchmarks, a single production compiler was
studied. We based our work on the widely used, open-source
gcc compiler which is being rigorously tested and enhanced
by a vibrant and pragmatic developer community.

III. AUTOMATIC PARALLELIZATION WITH GCC

Automatic parallelization [24] involves numerous analysis
steps. Every optimizing compiler must perform similar steps.
The concrete implementations may vary and this leads to
different strengths and weaknesses among compilers. This
section explains where and why the analysis steps in gcc
release 4.5.1 had problems parallelizing the benchmarks.

A. Alias Analysis

Alias analysis determines which storage locations may be
accessible in more than one way [11]. Aliasing of pointers and
function parameters may create dependencies among loop it-
erations so this analysis is instrumental to auto-parallelization.

The alias analysis implemented in gcc is a fast variant.
It does not account for the context in which function calls
are made nor does it take the flow-control in functions into
account. Hence, function parameters of array and pointer types
are conservatively assumed to alias. Also, if a statement aliases
two pointers at some point in a function, the pointers are
assumed to alias not just in the following statements but at
all statements in the function. Both types of alias-analysis
inaccuracies prevented auto-parallelization of the benchmark
kernels studied. Our interactive compilation system can point
to array accesses which are assumed to alias and suggest how
to remove this assumption.

B. Number of Iterations Analysis

Loop iterations must be countable for auto-parallelization
to proceed. The compiler must therefore analyze the upper
and lower bounds and loop increments. If these values are not
constant, it must discover which variables hold the values at
runtime.

The demosaicing kernel contained several loops where the
loop counter is incremented by two in each iteration. This
prevented gcc from computing the number of iterations and
was reported by our interactive compilation system. The loop
increment can be normalized — or changed to one — by
multiplying all uses of the loop counter with the original
increment. Gee id not normalize the loops in the demosaicing
benchmark so manual refactoring was required.

C. Induction Variable Analysis

Induction variables are the loop counters and scalars which
are affine functions of the loop counter variables. Auto-
parallelization works by distributing loop iterations among
threads. To do so, each thread must be have private copies of
the induction variables. Threads must also have private copies
of reduction variables.

In the demosaicing benchmark, gccwas either unable to
determine the variables that serve as induction variables or how
the values of induction variables change in successive loop
iterations. This prevented auto-parallelization. The problems
were mostly due to the use of a one dimensional array to
represent two dimensional data. This programming pattern is
known as de-linearization and is common to C programs.

int i, sum

(.
Terminal

z[i]

fn(int *x,

for (i = 0;
x[i] * y[il;

int
0;
i < N; i++) {

Eclipse

\

> gcc -02 -fcode-comment main.c

Problem: pointers 'z' and 'y' may
alias. Loop can not be parallelized.

= Fix: add 'restrict' quantifier to /c
pointers 'z' and 'y’

z[i] = x[i] * y[i];
sum += z[i];

}

return sum;

}

void fn(int *x, int *y,
int i, sum = 0;

int *z) {

produces

uses

i for (i = 0; i < N; i++) {
z[1] = x[i] * y[i];

Problem: pointers 'z' and 'y' may alias.
Loop can not be parallelized.

= Fix: add 'restrict' quantifier to

consumes used by

main.c.parloops
main.c.tree-vect

libcodecomments.a

Fig. 1.

main.c.matrix-reorg

code comments
Eclipse plug-in

Ilustration of our compilation feedback system. A library extends gcc to generate code comments in its diagnostic dump files. A plug-in for the

Eclipse CDT environment provides Eclipse with the functionality to i) read the code comments containing feedback ii) display them at appropriate places in
the source code and iii) provide refactoring support for the changes suggested by the compiler feedback.

It effectively complicates indexing expressions. Using two-
dimensional arrays or pointers to pointers to represent two
dimensional data simplifies the indexing expressions.

D. Data Dependence Analysis

Currently, gcc contains two different frameworks to ana-
lyze data dependencies. The lambda framework is the oldest
and most mature of the two. It represents data dependences as
distance vectors and implements the classical data dependence
tests [2]. Much functionality, including the lambda framework
is shared between the loop parallelization and vectorization
optimizations. Hence, code transformations which enable gcc
to parallelize a loop using the lambda framework will also help
making it vectorizable.

Gecc is transitioning to GRAPHITE which is a newer and
more capable data dependence framework [20]. The transition
is advancing at slow but steady pace and much work remains.
Even in the 4.6 release of gcc, auto-parallelization with
GRAPHITE is only be able to handle innermost loops. Hence,
the lambda framework was used in our experiments.

The goal of data dependence analysis is to determine if a
loop iteration may depend on on data written in a previous loop
iteration. In such cases auto-parallelization is usually prohib-
ited. Often, data is read and written from arrays or pointers
and this may lead to dependencies between loop iterations.
Each iteration is identified by a vector in the loop iteration
space. Subtracting the iteration vectors of two dependent
iterations yields a distance vector. The lambda dependence
analysis framework requires that all possibly dependent loop
iterations have the same distance vector. If is not the case, auto-
parallelization fails. The failure happens because the structure

data accesses through subscripted variables is too complex to
be modeled, even if the iterations of the loop nest are in fact
independent. Some loop nests in the demosaicing benchmark
was not auto-parallelized for this reason.

IV. INTERACTIVE COMPILATION FEEDBACK SYSTEM

The benchmark kernels exposed several coding patterns
which obstructs auto-parallelization in production compilers.
The previous section then used gcc to exemplify why a
compiler may be prevented from auto-parallelizing a loop nest.
We can now explain how we provide feedback and suggestions
on how the programmer can make code amenable to auto-
parallelization.

Our interactive compilation feedback system is illustrated
in Fig. 1. It has two parts. The first part is a library,
libcodecomments, and a set of patches to gcc’s auto-
parallelization subsystems. This extension of gcc generates
code comments containing compiler feedback. In contrast to
stand-alone tools, the code comments leverage the production-
quality program analysis and optimization functionality al-
ready present in the compiler.

The code comments are generated when one of the steps
in the auto-parallelization optimization encounters an is-
sue which prevents further analysis. The functionality in
libcodecomments is then used to produce a human under-
standable problem description. This is important because pro-
gram analysis often fail while processing compiler generated,
temporary variables that are meaningless to the programmer.
Most importantly, 1ibcodecomment s is used to reconstruct
source level expressions (after preprocessing) and their file
locations from compiler generated temporaries.

The generation of diagnostic dump files are controlled via
existing compiler flags — our code comments are simply added
to these dump files.

The second part of our system is a plug-in for the Eclipse
C Development Tools, CDT [21]. The code comments plug-
in enables CDT to parse the compiler feedback from dump
files. The dump files are read by a custom step in the Eclipse
build process and requires no programmer intervention besides
adding the appropriate compiler flags. The raw code comments
are subsequently converted into markers, which are shown as
icons in the left margin of the code in the Eclipse source editor.
The markers automatically track the source code construct,
say a loop or variable associated with the code comment.
The comment may include a quick fix — i.e. a refactoring that
automates the suggested transformation. For example, lines
may be added or deleted around the construct. The comment in
the marker is shown in the Problems view in Eclipse, and pops
up when the cursor hovers over the marked code as shown in
the call-out in Fig. 1. Similar to compiler warnings and errors,
the code comments are automatically updated after each full
or incremental build.

Not all the code comments which can be generated by our
modified compiler contain concrete advice on how to resolve
a given issue. The types of feedback currently available to
a non-compiler expert are the following: aliasing comments,
comments on function calls which prevent parallelization due
to possible side-effects and comments on data-dependences
among memory accesses. We consider these comments suffi-
cient to address the most important compilation issues — those
which are the least likely to be resolved in future releases of
the gcc compiler.

V. CASE STUDY: DEMOSAICING

Recall, gcc and the other compilers tested failed to par-
allelize any of the 12 original loop nests in the demo-
saicing kernel. Our compilation feedback system, however,
succeeded in removing the issues preventing parallelization.
It was accomplished by iteratively modifying and compiling
the code until all relevant loop nests were auto-parallelized.
The following sections describe how we refactored the code
to accomplished this.

A. Loop Iteration Counts

Most of the loops in the demosaicing code have a stride
of two. This caused gcc’s iteration count analysis to fail
according to the compiler feedback. As a workaround, the
loops were normalized to use unit strides and array indexing
expressions were updated accordingly. For instance
int x, vy, 1idx;
for (x=2+offset_red; x<H-2;x+=2) {

for (y=2+offset_blue; y<W-2;y+=2) {

idx=x+«W+y; ... }}
was rewritten as:

unsigned int x, y, idx;
for (x=1;x<(H-2)/2;x++) {
for(y=1;y<(W-2)/2;y++) {

idx=(2xx+offset_red) «W+2xry+offset_blue;
}}

Additionally, the type of the loop counters, x and y were
changed from signed to unsigned integers. Finally, we ob-
served that writing the loop upper bound as H/2-1 rather
than (H-2) /2 also caused number of iterations analysis to
fail. A more powerful analysis can surely digest both variants

properly.
B. Aliasing

As mentioned in section III-A, gcc employs a fast but
imprecise alias analysis. Most importantly, the analysis does
not analyze how function arguments are passed from callers
to callees, which means that if a function contains several ar-
guments having pointer or array types, gcc must assume they
may alias. This assumption is made even for parameters of
incompatible types, due to the weak type discipline employed
in C. Its possible to change the assumption that pointers to ob-
jects of different types alias with the —~-fstrict-aliasing
flag. In our experiments it eliminated potential aliasing in two
out of the twelve loop nests.

When potential aliasing prevents parallelization, a code
comment contains feedback on the data references that are
potential aliases. The code comment as it appears in the
IDE is shown in figure 2. The comment suggests that the
problem can be resolved by annotating the relevant pointers
with the restrict keyword. This type qualifier was added
in the latest revision of the language standard [14]. It also
includes an option to automatically transform the code such
that the restrict type qualifier is added to the relevant
pointers declarations. Semantically, if memory addressed by
a restrict qualified pointer is modified, no other pointer
provides access to that memory. It is left to the programmer
to determine if the restrict qualifier can be added. Based
on the suggestions provided by the code comments, we added
restrict qualifiers to 6 pointer typed formal parameters in
two function signatures.

A more precise, inter-procedural alias analysis is also avail-
able in gcc. It is enabled by the —fipa-pta flag. Contrary
to our expectations, the inter-procedural alias analysis did not
diminish the need to restrict-qualify function parameters.

C. Induction Variables

Normalizing loop strides to one and simplifying the
expressions governing loop bounds as described in sec-
tion V-A in effect complicated the expressions for the
induction variables. For instance, an induction variable
that was previously computed as idx=xxW+y became
idx = (2+x+offset_red)*W+ 2xyt+toffset_blue.
However, the compilation feedback helped us understand
how to refactor the loops so that induction variable analy-
sis did not prevent auto-parallelization. The original demo-
saicing kernel uses linearized arrays to represent variable
size, two-dimensional image data. The arrays are passed
into the three kernels as function parameters. Changing the
types of these function parameters allowed us to cast the

linearized arrays as two-dimensional arrays. This in turn
allowed a simplification of the indexing expressions. By
changing a parameter int xrestrict red_array to
int (*restrict red_array) [W] where W is scalar
holding the image width, we changed the indexing expressions
from

idx = (2xxtoffset_red) «xW+2xy+offset_blue;
red_array[idx]= RBK_3x3_1 (
red_array[idx-W-1], red_array[idx-W+1],...);

to

red_array[2+«xt+toffset_red] [2xy+toffset_blue] =
RBK_3x3_1(

red_array[2+«xt+toffset_red-1][2xytoffset_blue-1],
red_array[2+«x+offset_red-1][2xytoffset_blue+l],

<)

De-linearizing the array accesses arguably increased the
readability of the code.

It was also necessary to move the loop-invariant vari-
ables offset_red and offset_blue out of the
loop. This was accomplished by introducing a temporary,
restrict-qualified pointer defined as tmp_red_array=
red_array+Wxoffset_redt+toffset_blue

Finally, due to an analysis limitation when computing the
scalar evolution of expressions containing integers of different
sizes we had to suffix the integer literals with L’s since we
used a 64-bit build environment. Continuing the code example,
we arrived at:

int (xrestrict tmp_red_array) [W]=
red_array + Wxoffset_red + offset_blue;
for (x=1;x<(H-2)/2;x++) {
for (y=1;y<(W-2)/2;y++) {
tmp_red_array[2Lxx] [2Lxy] =
RBK_3x3_1(
tmp_red_array[2L*x-1L] [2Lxy-1L],
tmp_red_array[2Lxx—-1L] [2Lxy+1L],

D. Data Dependences

After transforming the code to allow all preceding analysis
steps to succeed, gcc was able to perform data dependence
analysis on the loop nests. Although iterations of all loop
nests in the benchmark are independent, eight of these loop
nests update elements in place to reduce memory requirements.
The in-place updates are possible when a loop nest writes
only “odd” elements and reads only “even” elements or vice
versa. From the code comments, however, we could determine
that the data dependence analysis failed to discover this. For
instance, a possible data dependence was reported between the
references

tmp_blue_array[x*2+1] [y*x2-1]
and

tmp_blue_array[x*2-1] [y*x2+1]

Data dependence analysis fails for this pair of references,
because the lambda framework can not compute a distance
vector which represents their dependence relation. A possible

dependence between these two references must therefore be
assumed in lieu of a more precise data dependence analysis.

To avoid reading and writing to the same array — the
memory addressed by tmp_blue_array in the example
— a new temporary array was allocated to hold the writes.
This effectively sidesteps a compilers inability to analyze non-
overlapping accesses to the same array. However, it also means
that updates are no longer done in-place which decreases
the spatial locality of the kernel and increases the memory
consumption by approximately 8%. Finally, for each of the
eight loop nest with in-place updates, a simple “copy” loop
was added to write data from the new temporary array back
to its original destination. These loops were fairly easy to add
and were readily parallelized due to their simplicity.

An alternative solution exists: the programmer could have
introduced additional restrict-qualified pointers until all
potential data dependencies are ruled out. This solution does
affects neither the data access pattern nor the memory con-
sumption so performance would be unaffected. This shows
that the programmer may need to chose among several alter-
native ways to refactor — each having a different performance
impact. For our experiments, we pessimistically assume that
the programmer choose refactoring that is most costly in terms
of performance.

E. PoSIX Threads Version

We optimized the pthreads code received from STMicro-
electronics to execute all relevant loops in parallel and to
minimize synchronization and management overhead. The
parallelization strategy of the pthreads version differs from
the auto-parallelized version. Two of the twelve loop nests in
the sequential code were fused.

The distribution of iterations among threads also differ.
The auto-parallelized version only distributes iterations of the
outer loops among threads. The pthreads version, however,
divides the two-dimensional picture into a number of tiles and
assigns each tile to a single thread thereby increasing cache
affinity.

Finally the pthreads version exploits the task-level par-
allelism that exists among the eight computationally intensive
loop nests. It does so by executing them in pairs of two.
The auto-parallelized version executes all loop nests one after
another so it only exploits data-level parallelism.

F. OpenMP Version

Temporary arrays and extra loop nests were introduced
in the auto-parallelized version to work around limitations
in gcc’s data dependence analysis. Auto-parallelization also
uses the combined work-sharing construct omp parallel
for in OpenMP whereas an expert performance-programmer
may enclose several loop nests with omp for directives in
a single omp parallel region to reduce synchronization
among threads.

To measure the resulting performance if the above men-
tioned deficiencies were removed, we hand-parallelized the

demosaicing code with OpenMP pragmas. Like the auto-
parallelized version, the OpenMP version only exploits data-
parallelism but performs updates of the arrays in-place instead
of using temporary arrays.

Furthermore, we minimized the entries and exists to and
from parallel regions. It was done by using separate omp
parallel and omp for directives in place of the omp
parallel for directive. This reduced the number of times
a parallel section was entered from twelve to five. Using the
nowait clause on the omp for directives finally allowed us
to remove three implicit barriers in total.

VI. CASE STUDY: EDGE DETECTION

The program consists of a main function which calls the
function convolve2d repeatedly with 3x3 Gaussian and
Sobel kernels to do edge detection. The main method contains
two loop nests but the bulk of the computation takes place in
convolve2d’s second loop nest. During compilation, gcc
can parallelize the loop nests in the main method but not
the work intensive loop in convolve2d. The problem is
aliasing between three arrays which are passed as parameters
to the convolve2d function. Feedback from the compilation
system reported an aliasing problem between pairs of data
references and is illustrated in Figure 2.

A programmer who understands the roles of the pointers in
the edge detection code knows that these will never point to
the same memory. As with the demosaicing code, the lack
of aliasing between the function parameters must be com-
municated using the restrict keyword and again gcc’s
inter-procedural alias analysis did not help. The fact that only
pointers can be qualified with restrict complicates the
situation. Before the restrict-qualifier can be used, the
parameters to the convolve2d function, must be changed
as shown below:

void convolve2d(
int input_image[N] [N],
int kernel [K] [K],
int output_image[N] [N])

to

void convolve2d(
int (xrestrict
int (xrestrict
int (xrestrict

input_image) [N],
kernel) [K],
output_image) [N])

The edge detection benchmark was subsequently paral-
lelized by gcc without further problems.

A. OpenMP Version

To compare the auto-parallelized edge-detection code with a
hand-parallelized and optimized version, we inserted OpenMP
directives in the sequential code. Similar to demosaicing,
separate omp parallel and omp for directives were used
to increase the performance.

VII. EXPERIMENTAL RESULTS

We ran measurements on the two benchmarks. The dif-
ferences in sequential performance between the original and

TABLE I
CHARACTERISTICS OF THE BENCHMARK INPUTS.

Benchmark
Demosaicing
Edge Detection

Large input Small input
5616x3744, 24-bit color 768x512, 24-bit color
4096x4096, 8-bit grayscale -

TABLE III
CHARACTERISTICS OF THE PROCESSING ELEMENTS AND MEMORY
HIERARCHIES IN THE SYSTEMS USED FOR BENCHMARKING.

Sys. #Procs. #Cores #Threads Freq.
Intel 2 8 16 2.93 GHz
IBM 2 4 8 4.0 GHz
Sys. LID L2/Core L3/Core DRAM
Intel 32 KB 256 KB 2MB 12 GB DDR3
IBM 64 KB 4 MB 8 GB DDR2

modified versions were measured and found to be negligible
in both cases. The reference input for the edge detect bench-
mark is an image with 128x128 pixels which we scaled to
4096x4096 to increase running times well above the timing
resolution. A large and a small color image was used as input
to the demosaicing kernel. The large image had 5616x3744,
24-bit pixels while the small image consisted of 768x512, 24-
bit pixels. The inputs are summarized in Table II.

Two different systems were used to evaluate the impact
of our modifications to the benchmarks. The Intel system
was a dual-socket server equipped with two quad-core 2.93
GHz Xeon 5570 CPUs and a total of 12 GB DDR3 RAM.
It contains eight cores each of which supports two hardware
threads. It had 32 KB L1 instruction cache, 32 KB L1 data
cache, 256 KB L2 cache per core and 8 MB shared L3 cache
per CPU. The operating system was Linux using the 2.6.36
kernel. The IBM system was a JS22 (7998-61X) blade with
two dual-core 4.0 GHz POWERG6 SCM processors. Like the
Intel Xeon system, each core supports two hardware threads.
The system had 8 GB DDR2 RAM, 64 KB L1 instruction
cache, 64 KB L1 data cache and 4 MB L2 cache per core. The
operating system kernel was Linux 2.6.27. The characteristics
of the processing units are summarized in Table III

Version 4.5.1 of gcc with our modifications to generate
compiler feedback was used for all experiments. The -02
compilation flag was used for optimization since the auto-
parallelization does not always succeed at —03. Measurements
were made for 2-16 threads on the x86 platform and 2-8 on the
POWER platform. Numbers were calculated as averages over
three consecutive program executions on an unloaded system.
The time spent on IO was excluded from the measurements.

A. Demosaicing Speedups for Intel Xeon

We measured the speedups of parallelizing the modified
demosaicing code relative to the original, sequential code. We
also measured the speedups of the hand written pthreads
and OpenMP versions with respect to the sequential version.
Two images were used as input for the demosaicing bench-
mark: a high resolution 21 mega-pixel image and a small
image with 768x512 pixels. The speedups on the x86-64
platform are summarized in Fig. 3a and Fig. 3b.

® MO C/C++ - codecomments-tests/src/parloops/demosaicing.c - Eclipse SDK —
[edge cerecre [0\ emamaioneuiin,)
=
ff mmm— Interpolate the Red color planeg ====== .
o=
_ // Compute the differences between red and green @]
) for (x = @; x < H/2; x4+) El
{
Wl for (y = @; y < W/2Z; y++) —
1]
idx = 21%*x*W +21%y + W * offset_red + offset_red; =
) red_array[idx] = (int)(img[idx].red) - {int)({img[idx].green);
a e
ui, Memory references 'img[idx].green’ and 'red_array[idx]' may alias and thus prohibit parallelization. For =
pointer which is used in the above memory references, consider if its declaration can be restrict gualified. =] |
|
The restrict type gualifier claims that, if the memory addressed by the restrict-qualified pointer is modified, =Ml
no other pointer provides access to that memaory location. |
= I Example - qualifying an integer pointar: int *x —> int *restrict x | = :
& | 2 quick fixes available: | L—[\:‘ |
& Qualify pointers with 'restrict’ keyword (C99 only). a |
& Hide message for this location. !
= gt |
J U . , . Press 'F2' for focus Y

Fig. 2. A code comment generated by our compilation feedback system and shown in the Eclipse editor. Lines with comments are highlighted with an orange
background color and with small lightbulbs in the gutter area. Placing the cursor on a source line with a comment will show an overlay with an explanatory
message and a list of available refactoring suggestions (if any). The problem view in the bottom shows code comments in addition to regular warnings and

€rrors.

When auto-parallelizing the unmodified code no loops are
parallelized, and therefore no speedups are shown. When auto-
parallelizing the modified code, the observed speedups range
from 1.9 to 6 for 2-16 threads for the low resolution image.
The highest speedup of 6.0 was obtained using 16 threads.
A speedup of 5.6 is already obtained using 8 threads and the
using 12 threads did not produce more than a 5.3 speedup over
the sequential code. The meager increases after 8 threads are
most likely explained by the fact that we are not adding more
cache capacity past 8 threads since the system uses two-thread
simultaneous multi-threading and has SMT-aware scheduling.

The high resolution image shows speedups ranging from 1.9
to 5.3 for 2-16 threads. The speedup using 8 threads, which
is 5.1, is once again close to the maximal speedup of 5.3 on
16 threads. The weaker scaling when using a high resolution
image may be explained by the fact that the effect of the
temporary arrays become more pronounced once the working
set sizes exceed the capacity of the last level caches.

Speedups for the OpenMP version range from 1.8 to 7.2 for
2-16 threads for the low resolution image and from 1.9 to 7.0
for the high resolution image. Performance increases steadily
for 2,4,8 and 16 threads whereas there is little difference
between 8 and 12 threads. Interestingly, the auto-parallelized
version outperforms the OpenMP version by 8% on 2 threads
and performs similarly with 4 threads. It is outperformed by
4% and 17% on 8 and 16 threads respectively.

The speedups obtained by the pthreads version were:
1.8-5.7 for the high resolution image and 1.3-3.2 for the low
resolution image, executed by 2-16 threads. On the big image,
the auto-parallelized code performed within 93-108% of the
pthreads code — outperforming it on all but 16 threads. On

the small image the auto-parallelized version outperformed the
pthreads code by 44%-239%.

B. Demosaicing Speedups for IBM POWER

An anomaly was encountered when compiling the demo-
saicing code on POWER. Four of the 20 loop nests in the
modified benchmark were not parallelized by gcc. All loops
are successfully parallelized with Linux or Mac OS X on
Intel platforms. It was also ensured that gcc were configured
and built identically on the two platforms. This leads us to
believe that the differences are caused by target dependent
optimization decisions.

As a work-around, we inserted parallel for pragmas
manually where the auto parallelization step in gcc would
have done the same. It was verified that the workaround where
16 loops are auto-parallelized and 4 hand parallelized performs
identical to the version where all loops were auto-parallelized
on the Intel platform.

The experimental runs of the demosaicing benchmark were
repeated on the POWER platform using the same high and
low resolution images and the same compiler version. The
speedups on this platform are summarized in Fig. 3d and Fig.
3e. The demosaicing code generally scaled significantly worse
on the POWER platform which suggest that the benchmark
needs additional tuning — e.g. improving the use of the memory
hierarchy though loop tiling — to make the best use of this
platform.

For the version we modified to allow auto-parallelization,
the speedups on the low resolution image range from 1.7 to
2.5 for 2-8 threads with the best performance observed for
4 threads. The speedups for the high resolution image the

7 7
6 6
5 5
s)
° T
] &
& 4 g 4
3 3
2 2
1 1 B Pthreads speedup
O Modified speedup
0 0 B OpenMP speedup
2 4 8 12 16 2 4 8 12 16
number of threads number of threads
(a) Demosaicing of low resolution image on x86-64 (b) Demosaicing of high resolution image on x86-64 (c) Legend

4.5

3

4

2.5
35

2 3

2.5

speedup
speedup

15 7

0.5 -

2 4 8
number of threads

(d) Demosaicing of low resolution image on POWER

2 4 8
number of threads

(e) Demosaicing of high resolution image on POWER

Fig. 3. Demosaicing speedups on x86 and POWER platforms. Three parallelized versions are compared to the original, sequential program version: a version
modified and auto-parallelized by gcc, a hand written version using pthreads, and a hand written OpenMP version. The pthreads version does not take
advantage of all parallelism inherent in the benchmark. Also, it does not support 12 threads, so this data point is unavailable. Figures 3a and 3d speedups
results for a image with a resolution of 768x512 and 3b and 3e show speedups for an image with a resolution of 5616x3744 pixels.

speedups were 1.7-3.1 and here the best result used all 8
threads.

The OpenMP code showed slightly better scaling with
speedups ranging from 1.9-2.8 on 2-8 threads for the low
resolution image and produced the best speedup using 4
threads. For the high resolution image, speedups were from 1.5
to 3.8 and the best result was obtained using 8 threads similar
to the auto-parallelized version. Comparing the performance
of the OpenMP and auto-parallelized versions shows that the
latter delivers 79-89% of the performance of the former with
the low resolution image and 80-111% for the high resolution
image. Again the auto-parallelized version compares most
favorably to the OpenMP version with 2-4 threads.

The pthreads version showed more modest speedups
on the POWER platform. With the low resolution image,
speedups were 1.7 on 2 threads but only 1.5 and 1.4 on 4 and 8
threads respectively. With the high resolution image, speedups
were: 1.3 on 2 threads, 2.1 on 4 and 3.2 on 8 threads. With
the small image, the auto-parallelized code delivered the same
performance on 2 threads and 111-167% on 4 and 8 threads.
With the big image, auto-parallelization delivers 130-135% on
2 and 4 threads and the same performance on 8 threads.

C. Edge Detection Speedups for Intel Xeon

We measured the speedups when gcc parallelized the
original edge detection code and the modified code relative
to sequential execution and relative the performance of the
unmodified, auto-parallelized code. Finally, the results of auto-
parallelization are compared with hand-parallelized OpenMP
code. The speedups on the Intel Xeon system are summarized
in Fig. 4a.

When auto-parallelizing the unmodified edge detection code
with gcc, speedups are within 5%-10% since the most work
intensive loop is not parallelized.

When auto-parallelizing the modified code, all three loop
nests are transformed. The highest speedup of 8.32 used 16
threads, but a speedup of 7.8 is already obtained at 8 threads
and 12 threads only resulted in a speedup of 7.0. Speedups on
2 and 4 threads are 2.44 and 4.62 which is super-linear.

The speedups of the OpenMP version ranged from 1.92 on
2 threads to 7.67 on 16 threads. Super-linear scaling was not
observed. In effect, the auto-parallelized code outperformed
the OpenMP code by 9-27% and the difference was greatest on
2 threads. The reason, we discovered, was that gcc was able
to unroll the most frequently executed inner loop in the auto-

9.00

14.00

8.00

12.00

7.00

10.00
6.00

5.00 8.00

speedup
speedup

4.00

6.00

3.00

4.00
2.00 -

O Unmodified speedup

1.00 - 2.00

0.00 - 0.00 -
2 4 8 12 16

number of threads

(a) Speedups on Intel Platform.

H OpenMP speedup
B Modified Speedup
2 4 8

number of threads

(b) Speedups on POWER Platform. (c) Legend

Fig. 4. Edge detection speedups on x86 and POWER platforms. Speedups for modified and auto parallelized code is shown with respect to the sequential
performance and with respect to the unmodified, auto-parallelized code. In the version modified on the basis of comments, all three loop nests in the program
are parallelized by gcc, in the unmodified version, only the two loop nests in main are parallelized.

parallelized version. The use of manually inserted OpenMP
pragmas on the other hand seems to prevent such unrolling.

D. Edge Detection Speedups for IBM POWER

The speedups that were observed on the POWER6 machine
are summarized in Fig. 4b. When running the unmodified,
auto-parallelized edge detection code, we observed a perfor-
mance improvement of 2% on 2-8 threads.

When auto-parallelizing the code with modification based
on the code comments, however, we observe speedups ranging
from 4.9 on two threads and up to 12.5 on 8 threads. In
contrast, the OpenMP version saw speedups of 2.0 on 2
threads, 3.9 on 4 and 6.0 on 8 threads. Hence, the performance
of the auto-parallelized version was 210-242% relative to the
OpenMP version. Again, we attribute the difference to gcc’s
unrolling of the inner loop in the auto-parallelized version.

VIII. RELATED WORK

Early work which pioneered user interaction in an auto-
parallelization process include the ParaScope Editor, SUIF
Explorer and PAT [1], [15], [18]. They parallelize sequential
FORTRAN codes based on stand-alone analysis and user-
interaction. Our work leverages the extensive analysis capa-
bilities of a production compiler. This means that compiler
feedback will adjust in response to improvements in the
compiler analysis and in response to the use of different
compiler flags. Our integration with a production compiler
is also important since the analysis of loop nests benefits
from scalar optimizations such as if-conversion and function
inlining and from optimizing at link time.

The mechanisms used to rule out potential data depen-
dencies also differ. ParaScope and PAT store information
on potential data dependencies which the programmer has
suppressed outside the source code so this information can
be obsoleted by changes to the source code. Our compiler
feedback, on the other hand, suggest that the restrict

keyword is used to eliminate sets of dependencies. This is
a standardized mechanism understood by most compilers. It
also works when the code is changed.

Sean Rul et al. proposed the Paralax infrastructure which
also exploits programmer knowledge for optimization [23].
Paralax is comprised of tree parts i) a compiler for automatic
parallelization of outer loops containing coarse-grain pipeline-
style parallelism, ii) a set of annotations which annotate data-
dependencies which can not be eliminated via static analysis
and which are verified dynamically and iii) a tool which
suggests how the programmer may add annotations to the
program.

Paralax is complimentary to our work. It parallelizes ir-
regular, pointer-intensive codes whereas we focus on codes
amenable to automatic parallelization after some modification.
The suggestions generated by the Paralax tool rely on both
static analysis and profiling information whereas our sugges-
tions, so far, do not require program profiling.

Suggestions for locality optimizations, SLO, provides refac-
toring suggestions at the source level aiming to reduce reuse
distances and thus the number of cache misses [3]. The sugges-
tions are based on cache profiling runs and are complimentary
to the types of refactoring suggested by our tool. For instance,
SLO does not help the programmer expose parallelism in the
source code.

The latest releases of IBM XL C/C++ and Intel icc can
generate compilation reports and may suggest changes in re-
sponse to code which cannot be analyzed by the compiler. [8],
[13]. This work is complimentary to ours and relies on vendor
specific pragmas. We used icc’s Guided Auto-Parallelism
feature on the demosaicing kernel by inserting icc-specific
pragmas as suggested by the compiler. This allowed icc to
parallelize a minority of the loops. The resulting performance
varied from a marginal speedup to a sizable slowdown.

IX. CONCLUSIONS

For many parallel applications, performance relies on loop-
level parallelism. Regrettably, many source codes are written in
ways that prevent auto-parallelization of loops. To address this
problem, we developed an interactive compilation feedback
system that guides the programmer in iteratively modifying
the source code.

We evaluate our infrastructure via two sequential kernel
benchmarks that pose problems for current production com-
pilers. By refactoring application source code, we enable
greater auto-parallelization of relevant loop nests. We compare
auto-parallelization with manual-parallelization across differ-
ent program inputs, systems and benchmark programs. Auto-
parallelization delivers the best result in 12 cases, while hand-
parallelization remains better in 11 remaining situations. At
low and medium thread counts auto-parallelization generally
performs similar to or better than hand-parallelized and opti-
mized codes.

We enable the programmer to chose among refactoring
alternatives and show that these affect performance differently.
We deliver speedups of up to 6.0 for a demosaicing kernel on
the Intel Xeon system (and up to 3.1 on the IBM POWERG6
system). We speed up an edge-detection kernel by factors of
up to 8.3 the Intel Xeon system and up to 12.5 on the IBM
POWERG6 system.

Our results demonstrate the opportunities to extract more
parallelism from many source codes. Based on the differ-
ent improvements on our two platforms, we conclude that
auto-parallelization should be combined with platform-specific
tuning to extract additional performance. Prioritization of
compiler feedback remains important: information from our
compilation feedback system as well as other compilers are
likely to consist of hundreds of individual comments, even
when the code contains only a handful of missed opportuni-
ties for optimization. Discarding superfluous comments thus
represents an important direction for ongoing research.

ACKNOWLEDGMENT

Parts of this work was done while the first author was on
a HiPEAC? internship at IBM Haifa and was supported by
the SMECY project. The authors thank Gad Haber at IBM
Haifa whose efforts have greatly contributed to this work.

The research made use of the University of Toronto DSP
Benchmark Suite, UTDSP.

REFERENCES

[1] B. Appelbe, K. Smith, and C. McDowell. Start/Pat: A parallel-
programming toolkit. /EEE Softw., 6:29-38, July 1989.

[2]
[3]
[4]
[5]
[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

U. K. Banerjee. Dependence Analysis for Supercomputing. Kluwer
Academic Publishers, Norwell, MA, USA, 1988.

K. Beyls and E. D‘Hollander. Refactoring for data locality. [EEE
Computer, 42(2):62-71, 2 2009.

Y. Bouchebaba et al. MPSoC memory optimization for digital camera
applications. In Proceedings of DSD ’07, 2007.

D. R. Butenhof. Programming with POSIX threads. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1997.

Computer Architecture and Parallel Systems Laboratory. Open64.
http://www.open64.net/. Date accessed: March 13, 2011.

L. Dagum and R. Menon. OpenMP: An industry-standard API for
shared-memory programming. Computing in Science and Engineering,
5:46-55, 1998.

Y. Du et al Explore optimization opportunities with xml
transformation reports in ibm x1 c/c++ and fortran compilers for aix.
http://public.dhe.ibm.com/software/dw/rational/emi/Explore_XL_CCplus
_and_Fortran_Compilers_for_AIX_XML_Transformation_Reports_
Options.pdf, 2010. Date accessed: January 13, 2011.
Free Software Foundation. GNU Compiler
http://gnu.gcc.org.

M. J. Garzaran et al. Program optimization through loop vectorization.
http://sc10.supercomputing.org/schedule/ event_detail.php?evid=tut140,
2010. Date accessed: December 19, 2010.

M. Hind. Pointer analysis: Haven’t we solved this problem yet. In Proc.
of PASTE ’01, 2001.

Intel Corp. Intel C++ Composer XE. http://software.intel.com/en-
us/articles/intel-compilers/. Date accessed: March 13, 2011.

Intel Corp. Guided auto-parallelism (GAP). http://software.intel.com/en-
us/articles/guided-auto-parallel-gap/, 2010. Date accessed: March 16,
2011.

International Organization for Standardization.
December 1999.

K. Kennedy, K. S. McKinley, and C. W. Tseng. Interactive parallel
programming using the parascope editor. IEEE Trans. Parallel Distrib.
Syst., 2:329-341, July 1991.

C. Lee et al. UTDSP benchmark suite. http://www.eecg.toronto.edu/
corinna/DSP/infrastructure/UTDSP.html, 1998. Date accessed: July 4,
20009.

X. Li, B. Gunturk, and L. Zhang.
survey. volume 6822. SPIE, 2008.
S.-W. Liao et al. Suif explorer: an interactive and interprocedural
parallelizer. In Proceedings of the seventh ACM SIGPLAN symposium
on Principles and practice of parallel programming, PPoPP 99, pages
37-48, New York, NY, USA, 1999. ACM.

Collection.

ISO/IEC 9899:1999,

Image demosaicing: a systematic

Oracle Corp. Oracle Solaris Studio.
http://www.oracle.com/technetwork/server-storage/solarisstudio. ~ Date
accessed: March 13, 2011.

S. Pop et al. In Proc. of GCC Developer’s Summit.

The Eclipse Foundation. Eclipse C Development Tools.
http://eclipse.org/cdt/. Date accessed: March 13, 2011.

The Portland Group. PGI C/C++ Workstation.

http://www.pgroup.com/products/pgiworkstation.htm. ~ Date accessed:
March 13, 2011.

H. Vandierendonck, S. Rul, and K. D. Bosschere. The paralax infrastruc-
ture: Automatic parallelization with a helping hand. In Proc. of PACT,
2010.

M. J. Wolfe. High Performance Compilers for Parallel Computing.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995.

