

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 21, 2024

GPULab Library - a High-Performance Library for PDE Solvers

Glimberg, Stefan Lemvig

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Glimberg, S. L. (Author). (2011). GPULab Library - a High-Performance Library for PDE Solvers. Sound/Visual
production (digital)

https://orbit.dtu.dk/en/publications/54da19a5-24bc-4a0b-b2d0-87904158bbb7

Introduction Programmable GPUs GPULab Library

GPULab Library - a High-Performance Library for PDE Solvers

Stefan L. Glimberg

Section of Scientific Computing
Department of Informatics and Mathematical Modelling

Technical University of Denmark

CFD and Free-Surface Motion Workshop
June 9th

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Introduction Programmable GPUs GPULab Library

Outline

1 Introduction

2 Programmable GPUs

3 GPULab Library

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Introduction Programmable GPUs GPULab Library

Who am I?

Stefan L. Glimberg

Master degree in Computer Science 2009 - University of Copenhagen

Thesis: Smoke Simulation for Fire Engineering using CUDA

Started as a PhD student in 2010, DTU - Section of Scientific Computing

Research Project: Desktop Scientific Computing on Consumer Graphics
Card

Subproject: Scientific GPU Computing for PDE Solvers

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Appetizer04.avi
Media File (video/avi)

Introduction Programmable GPUs GPULab Library

GPULab - http://gpulab.imm.dtu.dk/

The GPUlab is a competence center and laboratory for the use of Graphics
Processing Units (GPUs) for visualization, scientific computations, and
high-performance computing. The purpose is to attract focal interests in the
use of GPUs by both engineering students and researchers in projects.

Projects

Auto-tuning of Dense Linear Algebra on GPUs

Accelerating Economic Model Predictive Control using GPUs

Fast simulation of unsteady Nonlinear water waves

and more ...

Your project?

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Introduction Programmable GPUs GPULab Library

GPULab Hardware

New gear! Two powerful machines, each less than $3,000. The price for one
GPU and one CPU is comparable, from $100 - $1,000.

(a) Our new workstation (b) One Tesla C1060 GPU

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Introduction Programmable GPUs GPULab Library

Graphical Processing Units

GPUs are

massively parallel processors, capable of executing thousands of threads in
parallel

available for the average consumer, with prices ranging from ∼ $100 -
$1,000

highly programmable, and not only for graphical purposes (CUDA /
OpenCL)

(c) A Fermi GPU (d) The GPU chip (e) Transistors on CPU/GPU

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Introduction Programmable GPUs GPULab Library

Why Even Bother?

Figure: Floating point operations per second. http://www.nvidia.com

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Introduction Programmable GPUs GPULab Library

Why Even Bother?

Figure: Memory bandwidth for the CPU and GPU. http://www.nvidia.com

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Introduction Programmable GPUs GPULab Library

Why Even Bother?

The future looks promising. However, notice the unit change on the y-axis.

Figure: Road map for the next years. http://www.nvidia.com

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Introduction Programmable GPUs GPULab Library

CUDA Implementation

Implementing a simple CUDA program is not very difficult.

Read the CUDA Programming Guide

Localize parts in the code that can be parallelized (for-loops usually)

Execute lots of threads, each processing one element

However, converting an entire solver is difficult, and it is even more difficult to
get the highest possible performance.

Bottle Necks

Memory bound - The bandwidth (GB/s) between memory and chip is the
bottle neck, e.g. BLAS 1 operations.

Compute bound - The clock frequency (GFLOPS) is the bottle neck, e.g.
BLAS 3 operations.

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Introduction Programmable GPUs GPULab Library

A Simple Example - square a vector of size N

Host (CPU):

1 void

2 square_host(float* in , float* out , int N)

3 {

4 for(int i=0; i<N; ++i)

5 {

6 float val = in[i];

7 out[i] = val*val;

8 }

9 }

Device (GPU):

1 void __global__

2 square_device(float* in , float* out , int N)

3 {

4 int i = blockDim.x*blockIdx.x+threadIdx.x;

5 float val = in[i];

6 out[i] = val*val;

7 }

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Introduction Programmable GPUs GPULab Library

A Finite Difference Example

Based on Taylor series expansion we can derive a set of coefficients for
calculating the derivative of u:

∂u(xi)

∂x
≈

β∑
n=−α

cnu(xi+n)

If we set up a matrix based on finite difference coefficients we get

c00 c01 c02 0 0 0 0 0
c10 c11 c12 0 0 0 0 0
0 c10 c11 c12 0 0 0 0
0 0 c10 c11 c12 0 0 0
0 0 0 c10 c11 c12 0 0
0 0 0 0 c10 c11 c12 0
0 0 0 0 0 c10 c11 c12

0 0 0 0 0 c20 c21 c22





u0

u1

u2

u3

u4

u5

u6

u7


≈



u′0
u′1
u′2
u′3
u′4
u′5
u′6
u′7


but there is a lot of repetitions in the matrix and it is very sparse.

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Introduction Programmable GPUs GPULab Library

A Finite Difference Example (II)

So in compact form we only need

c =

 c11 c12 c13

c21 c22 c23

c31 c32 c33

 . (1)

We call this the stencil.

It looks parallelizable !

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Introduction Programmable GPUs GPULab Library

A Finite Difference Example (III)

Host version:

1 void finite_difference(float* out , float* in, float* stencil , int alpha , int N){

2 for(int n=alpha; n<N-alpha; ++i){

3 float sum = 0.f;

4 for(int i=-alpha; i<=alpha; ++i)

5 sum += stencil[alpha+i] * in[n+i];

6 out[n] = sum;

7 }

8 }

Device version:

1 __global__

2 void finite_difference(float* out , float* in, float* stencil , int alpha , int N){

3 unsigned int idx = blockDim.x * blockIdx.x + threadIdx.x;

4 float sum = 0.f;

5 for(unsigned int i = -alpha; i<=alpha; ++i)

6 sum += stencil[alpha+i] * in[idx+i];

7 out[idx] = sum;

8 }

There are still some tweaking to do.

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Introduction Programmable GPUs GPULab Library

A Finite Difference Example (IV)

Performance results for CPU and GPU implementations.

1 2 3 4
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Alpha

T
im

e
(s

)

Stencil size vs time

Shared memory

Constant stencil

Naive GPU

CPU

1 2 3 4
0

5

10

15

20

25

30

35

40

45

Alpha
G

F
lo

ps

Stencil size vs GFlops

Shared memory
Constant stencil
Naive GPU
CPU

Figure: Timings for a vector with 1,000,000 elements. Using a Tesla C1070 GPU and
an Intel Core i7 @ 1.73GHz CPU.

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Introduction Programmable GPUs GPULab Library

A GPU-based Framework for PDE Solvers

So now I finally arrived at what I
really want to talk about:
- The GPULab library

Objective

Remove all nonsense for the non-expert GPU programmers - put it into a
highly generic framework.
There has been a tendency to wrap GPU techniques onto an existing CPU
solver, instead of using an existing GPU framework to solve the same problem.

Key components for High-Performance PDE solvers

Stencil based flexible order FD operations

Iterative methods for solving large systems of eqs. (mixed precision)

Domain decomposition techniques

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Introduction Programmable GPUs GPULab Library

Component-based Framework

We have decided to invest time now to develop a generic framework, in order
to easily solve a broad range of PDE problems in the future. (Inspired by the
PETSc framework).

Generic vector and matrix classes will be the backbone for all algorithms.

1 const int I = 100;

2 // Create and allocate some host vectors

3 gpulab ::vector <float ,host_memory > x_h(I,3.f);

4 gpulab ::vector <float ,host_memory > y_h(I,2.f);

5 // Do y = a*x+y on the host

6 y_h.axpy (4.f,x_h);

7
8 // Create and allocate some device vectors

9 gpulab ::vector <float ,device_memory > x_d(I,3.f);

10 gpulab ::vector <float ,device_memory > y_d(I,2.f);

11 // Do y = a*x+y on the device

12 y_d.axpy (4.f,x_d);

Ideas are based on the Thrust and CUSP libraries, in fact we inherit from the
Thrust vector classes.

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Introduction Programmable GPUs GPULab Library

Component-based Framework (II)

An example: The Defect Correction method with a multigrid preconditioner is
the backbone of our nonlinear water wave solver.

Defect Correction algorithm

Algorithm: Defect Correction Method for approximate solution of Ax = b

1 Choose x [0] /* initial guess */

2 k = 0
3 Repeat

4 r [k] = b − Ax [k] /* high order defect */

5 Solve Mδ[k] = r [k] /* preconditioner */

6 x [k+1] = x [k] + δ[k] /* defect correction */

7 k = k + 1
8 Until convergence or k > kmax

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Introduction Programmable GPUs GPULab Library

Component-based Framework (III)

The implementation is generic and simple!

1 template <typename V, typename M, typename P>

2 void defect_correction(M const& A, V& x, V const& b, P& precond , monitor <typename V:: value_type >

& m)

3 {

4 m.reset_iteration_count ();

5 // Allocate space for residual and delta x

6 V r(x.size());

7 V d(x.size());

8 while (1)

9 {

10 A.mult(x,r);

11 r.axpby(1, -1, b);

12 // Close enough to stop

13 if(m.finished(r))

14 break;

15 // Solve using pre -conditioner

16 precond(A,d,r);

17 // Update solution

18 x.axpy(1,d);

19 // Next iteration

20 ++m;

21 }

22 }

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Introduction Programmable GPUs GPULab Library

Component-based Framework (IV)

Defect correction results for 100 iterations with a dense Jacobi preconditioner.

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Vector size

T
im

e
(s

)

CPU
GPU

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Introduction Programmable GPUs GPULab Library

Ideas for the Future

In time we want to assemble our PDE solvers from building blocks
(components), such that it is easy to change parts.

1 typedef gpulab ::vector <float ,device_memory > vector_type;

2 typedef gpulab ::FD::stencil <float > matrix_type;

3
4 typedef gpulab :: solvers :: multigrid_types <

5 , vector_type // Vector type

6 , matrix_type // Matrix type

7 , gpulab :: solvers :: jacobi // Preconditioner

8 , gpulab :: solvers :: grid_handler_3d // Grid handler

9 > mg_types;

10
11 typedef gpulab :: solvers ::dc_types <

12 , vector_type // Vector type

13 , matrix_type // Matrix type

14 , gpulab :: solvers ::multigrid <mg_types > // Preconditioner

15 > dc_types;

16
17 typedef gpulab :: solvers :: my_solver_types <

18 , vector_type // Vector type

19 , matrix_type // Matrix type

20 , gpulab :: solvers ::dc<dc_types > // Solver

21 , gpulab :: integration ::ERK4 <vector_type > // Time integrator

22 > my_solver_types;

23
24 // In our program we write

25 gpulab :: solvers ::my_solver <my_solver_types > s(...); // Init solver

26 s.take_step(dt); // Take time step

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Introduction Programmable GPUs GPULab Library

Future Work

We are working with the OceanWave3D model for coastal and offshore
engineering.

We want to solve large problems - fast!

Currently we are limited by the GPU memory ∼ 6GB → 75M dof.

We want to be limited by the total number of GPUs

Solving on multiple GPUs on multiple workstations

Linear scaling of time vs GPUs

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

Introduction Programmable GPUs GPULab Library

That’s it ...

Thank you !

GPULab Library - a High-Performance Library for PDE Solvers Technical University of Denmark

	Introduction
	Programmable GPUs
	GPULab Library

