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1.	Introduction	
The project “Solar/electric heating systems in the future energy system” was carried out in the period 

2008‐2013. The project partners were DTU Byg, DTU Informatics (now DTU Compute), DMI, ENFOR A/S and 

COWI A/S. The companies Ajva ApS, Ohmatex ApS and Innogie ApS worked together with the project 

partners in two connected projects in order to develop solar/electric heating systems for laboratory tests. 

The project was financed by the Danish Agency for Science, Technology and Innovation under the Danish 

Council for Strategic Research in the program Sustainable Energy and Environment. The DSF number of the 

project is 2104‐07‐0021/09‐063201/DSF. This report is the final report of the project. 

The aim of the project is to elucidate how individual heating units for single family houses are best designed 

in order to fit into the future energy system. The units are based on solar energy, electrical heating 

elements/heat pump, advanced heat storage tanks and advanced control systems.  

Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The 

electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be 

covered by solar energy. The aim is to use the auxiliary heating units when the electricity price is low, e.g. 

due to large electricity production by wind turbines.  

The unit is equipped with an advanced control system where the control of the auxiliary heating is based on 

forecasts of the electricity price, the heat demand and the solar energy production. Consequently, the 

control is based on weather forecasts.  

Three differently designed heating units are tested in a laboratory test facility. The systems are compared 

on the basis of:  

 energy consumption for the auxiliary heating  

 energy cost for the auxiliary heating 

 net utilized solar energy 

1.1	Background	

Advanced designs and controls of heating units that utilize excess electricity production, e.g. from wind 

turbines in windy periods and at night when the load on the electricity grid is off peak, can help to even out 

the load of the power grid. Smarter utilization of the electricity on the grid can lead to reduced CO2 

emissions and possible reductions of cost for the individual household as well as for the society. 

DTU Informatics and ENFOR A/S developed prognoses for heat demands for houses and for solar heat 

production of solar collectors. The prognoses are based on weather forecasts developed by DMI. The 

weather forecasts include hourly forecast for the ambient air temperature, for diffuse and direct solar 

radiation for areas down to 3 x 3 km for Denmark.  

Hourly electricity prices for electricity on the Nordic marked are listed at the Nord Pool Spot website. 

http://www.nordpoolspot.com/. The hourly price variations are quite large and the price is low, especially 

in windy periods where a lot of electricity is generated by wind energy. The low price is typically 10% of the 

price when it is at the highest.  
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Appliances that are not required to run at a specific time of the day can therefore be programmed to be in 

operation where the cost is the lowest. Short term thermal energy storage is a possible application for this 

strategy. The strategy can benefit the consumer in terms of lower operation cost and it will possibly also 

help to reduce the daily peaks of electricity production by smoothing out the demand throughout the day 

hence reducing GHG‐emissions from electricity production by fossil fuels. Taxes and other costs do 

however reduce the relative benefit.  

2.	Prognoses	

2.1	Introduction	

The activities on prognoses were carried out at DTU Compute by a PhD project financed by the project: 
Models for Efficient Integration of Solar Energy, but also a major contribution was given by a DTU financed 
Ph.D. project: Model Predictive Control for Smart Energy Systems (not completed at the time of writing). 
The main outcome of the Ph.D. project financed by the project is disseminated in four articles in 
international scientific journals: [1], [2], [3] and [4], which forms the basis of the Ph.D. dissertation [5]. In 
addition work was disseminated in several conference papers and co‐authoring on reports and journal 
papers: [6], [7], [8], [9], [10], [11], [12] and [13]. 
The main results related to the Solar/Electric project achieved in the DTU financed PhD project is 
documented in the journal papers [14] and [15]. 
The developed methods can be applied for modeling, forecasting and control of building heating systems 
based on solar and electric power, especially for optimizing the integration of large amounts of solar and 
wind energy production. The methods can be used to deal with important aspects for optimized energy use 
in buildings, especially for enabling buildings as a key player in smart grids and for energy performance 
improvement of the building stock. The key is to enable a flexible demand, which can adapt to the 
fluctuating power generation, by using passive thermal storage in buildings. The methods can just as well 
be applied for enabling a flexible load by cooling of buildings. This can be both in the building structures, 
i.e. the thermal mass of the interior walls etc., and in a thermal storage device, e.g. a hot water tank for 
heating or an ice tank for cooling. If the energy is stored in the building structure the important modeling is 
of the heat dynamics of the building, as described in [2], and the model predictive control (MPC) described 
in [15] is suited for exactly this task. If the energy is stored in a thermal storage device the control is based 
on the forecasts described in [3] of the heat load of the building and the MPC described in [14] provides the 
method for optimal control. Both types of control is based on electricity price control, where a price signal 
provides the information from the surrounding electricity market, such that the price is low when there is a 
surplus of electricity and the price is high when there is a shortage of electricity. In the studies the 
electricity price of Nord Pool Spot is used, reflecting the current price of electricity in the Denmark. Price 
forecasting as described in [16] is also used. Furthermore, if the heating system includes a solar collector 
(i.e. fluid based system for space heating and hot water consumption), the method for solar heat 
forecasting in [6] can be applied and if photovoltaics (PV) is included in the system the methods for solar 
power forecasting in [1] or [9] can be applied. 
The following section outlines the content and results of the studies. In the next section, the methods for 
solar power forecasting are described. Then follow a section on modeling and control for flexible heating in 
buildings based on thermal storage in building structures. Thereafter follows a section on forecasting and 
control for flexible heating in buildings based on energy storage in thermal storage devices. Finally, in the 
last section the remaining methods and results related to project are presented. 
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2.2	Solar	power	forecasting	

The developed solar power forecasting methods are based on modelling the power output past data 
consisting of past measurements and numerical weather predictions (NWPs). The forecast horizons are as 
long as provided by the NWPs, in the presented applications they are complete up to 42 hours ahead at any 
time of day. 
Two basic approaches have been developed: A two‐stage method based on the statistical clear‐sky model 
combined with a linear model, and a one‐stage method based on a conditional parametric model. The two‐
stage approach is applied to forecasting of the total output of 21 PV‐systems located in a small village in 
Denmark, it is described in [1]. The one‐stage approach is applied to forecasting of the output of both: a PV‐
system, as described in [9], and to forecast the output of a solar thermal collector, as described in [6]. 
Finally, an approach to probabilistic solar power forecasting is outlined in the dissertation [5]. 
The obtained results from application of the forecasting methods are based on the data described in the 
papers, together with NWPs from [17], which are provided by the Danish Meteorological Institute. 

2.3	Flexible	heating	with	thermal	storage	devices	in	buildings	and	solar	
collectors	

In a system based on electrical heating a simple hot water tank can be used for storage of thermal energy 
and enable a flexible electrical load. Such a tank is a prerequisite for solar collector systems, as the system 
developed in the Solar/Electric project. Based on a price signal an MPC is developed based on forecasts of 
the heat load of the building as outlined in this section. 
 
2.3.1 Heat load forecasting for single family houses 
A method for forecasting the load for space heating in a single‐family house is presented in [3]. The 
forecasting model is built using data from sixteen houses located in Sønderborg, Denmark, combined with 
local climate measurements and weather forecasts. Every hour, the hourly heat load for each house the 
following two days is forecasted. The forecast models are adaptive linear time‐series models and the 
climate inputs used are: ambient temperature, global radiation and wind speed. A computationally efficient 
recursive least squares scheme is used. The models are optimized to fit the individual characteristics for 
each house, such as the level of adaptivity and the thermal dynamical response of the building, which is 
modeled with simple transfer functions. Identification of a model, which is suitable for all the houses, is 
carried out. A thorough analysis of results shows that practically all available information available in the 
climate variables and the heat load is modeled in the forecasts leading to the conclusion that the forecast 
model cannot be further improved in the current setting. Furthermore, the results show that the 
forecasting errors mainly are related to: unpredictable high frequency variations in the heat load signal 
(predominant only for some houses), shifts in resident behavior patterns and uncertainty of the weather 
forecasts for longer horizons, especially for solar radiation. 
 
2.3.2 Economic model predictive control for heating systems with hot water tanks 
In Halvgaard et al. (2012a) model predictive control (MPC) for optimized operation of an electrical heating 
system with thermal storage in a hot water tank is presented. Further, the heat dynamics of a storage tank 
is modelled on the basis of data and maximum likelihood methods. The resulting grey‐box model is used for 
Economic Model Predictive Control (MPC) of the energy in the tank. The control objective is to balance the 
energy from a solar collector and the heat demand in a single family house. The storage tank provides heat 
in periods where there is low solar radiation and stores heat when there is surplus solar heat. The forecasts 
of heat load were based on data obtained from meters in a group of single‐family houses in Denmark. 
The tank is also heated by electric heating and the electricity costs of operating these electric heating 
elements are minimized. Consequently, the electric heating elements are to the largest possible extend 
only used in periods with cheap electricity. It is proposed to integrate a price‐sensitive control to enable the 
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storage tank to serve a smart energy system in which flexible demand is expected to help balance 
fluctuating renewable energy 
sources like wind and solar. Through simulations, the impact of applying Economic MPC shows annual 
electricity cost savings up to 25‐30. 

2.4	Flexible	heating	with	thermal	storage	in	building	structures	

For enabling flexible heating using thermal storage in building structures an MPC scheme based on models 
for the heat dynamics of buildings has been developed and is described in this section. 
 
2.4.1 Models for the heat dynamics of buildings 
In [2] models are presented, which can provide detailed knowledge of the heat dynamics of a building from 
measurements of: heat load, indoor temperature, ambient temperature, and global radiation. The focus of 
the paper is a procedure for selection of the most suitable model. The models are grey‐box models, which 
are based on a combination of physical and data‐driven modelling. 
They are based on stochastic differential equations, which allows for extensive modelling of dynamical 
systems and estimation of parameters which are directly physically interpretable, for example the heat 
capacity of the building and the UA‐value of the building envelope. 
 
2.4.2 Economic model predictive control for building climate control in a smart grid 

Model predictive control (MPC) can be used for optimizing the operation of units in energy systems 
based on fluctuating and climate dependent energy production from renewables. For example in 
[15] an MPC controller for providing flexible load by optimizing the cost of running heat pumps in 
residential buildings with a floor heating system is presented. The thermal capacity of the building is 
used to shift the energy consumption to periods with low electricity prices. In this way the heating system 
of the house becomes a flexible power consumer in the Smart Grid. A model for a house with a ground 
source based heat pump used for supplying thermal energy to a water based floor heating system is 
presented. The model is a linear state space model and the resulting controller is an Economic MPC 
formulated as a linear program. The model includes forecasts 
of both weather and electricity price. Simulation studies demonstrate the capabilities of the proposed 
model and algorithm. Compared to traditional operation of heat pumps with constant electricity prices, the 
optimized operating strategy saves 25‐35% of the electricity cost excluding taxes and tariffs. 

2.5	Modeling	for	solar	energy	applications	

In this section several studies carried during the project are outlined. 
 
2.5.1 A non‐parametric method for correction of global radiation observations 
In [4] a method for correction and alignment of global radiation observations based on information 
obtained from calculated global radiation is presented. The one‐hour forecast of global radiation from a 
numerical weather prediction (NWP) model is used. Systematical errors detected in the observations are 
corrected. These are errors such as: tilt in the leveling of the sensor, shadowing from surrounding objects, 
clipping and saturation in the signal processing, and errors from dirt and wear. The method is based on a 
statistical non‐parametric clearsky model which is applied to both the observed and the calculated 
radiation in order to find systematic deviations between them. The method is applied to correct global 
radiation observations from a climate station located at a district heating plant in Denmark. The results are 
compared to observations recorded at the Danish Technical University. The method can be useful for 
optimized use of solar radiation observations for forecasting, monitoring, and modeling of energy 
production and load which are affected by solar radiation. 
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2.5.2 Grey‐box models for solar collectors 
The need for fast and accurate performance testing of solar collectors is increasing. In [7] a new technique 
for performance testing which is based on non‐linear continuous time models of the heat dynamics of the 
collector is presented. 
It is shown that all important performance parameters can be accurately estimated with measurements 
from a single day. Modelling the dynamics of the collector is carried out using stochastic differential 
equations, which is a well proven efficient method to obtain accurate estimates of parameters in physical 
models. The applied method is described by [18] and implemented in the software CTSM‐R 1. 
Measurements obtained at a test site in Denmark during the spring 2010 are used for the modelling. The 
tested collector is a single glazed large area flat plate collector with selective absorber and Teflon anti 
convection layer. The modelling technique provides uncertainty estimates such as confidence intervals for 
the parameters, and furthermore enables statistical validation of the results. Such tests 
can also facilitate procedures for selecting the best model to use, which is a very non‐trivial task. 
 
2.5.3 Open source software for MLR modelling of solar collectors 
In [8] a software package for multiple linear regression modelling (MLR) of solar collectors implemented in 
the free and open source program R2 is presented. Applications of the software package includes: visual 
validation, resampling and conversion of data, collector performance testing according to the European 
Standard EN 12975 [19], statistical validation of results, and estimation of collector incidence angle 
modifier function [20]. The paper gives a demonstration with examples of the applications, based on 
measurements obtained at a test site in Denmark [21]. The tested collector is a single glased large area flat 
plate collector with selective absorber and teflon anti convection layer. 
The package enable fast and reliable validation of data, and provide a unified implementation for MLR 
testing of solar collectors. This will furthermore make it simple to replicate the calculations by a third party 
in order to validate the results. Finally more advanced methods can be implemented and easily shared as 
extensions to the package, for example methods for estimation of the incidence angle modifier by smooth 
functions. 

3.	Weather	forecast	
This project is the first project in which the DMI numerical weather prediction (NWP) model HIRLAM has 
been used for forecasting the potentially available solar irradiance at the surface, which is also called global 
radiation. Within the weather model HIRLAM, this is always calculated, but it has not previously been used 
for energy forecasting. As it from the start of the project was seen as essential to calculate both the direct 
and the diffuse component of the global radiation, HIRLAM was modified to output these hourly in the 
forecast. Here direct global radiation is defined as the downward solar irradiance at the surface coming 
from the direction of the sun, while diffuse global radiation is defined as the downward solar irradiance at 
the surface coming from all other directions. The diffuse global radiation is global radiation diffusely 
transmitted through a cloud, global radiation reflected from a cloud, global radiation scattered from 
atmospheric molecules (the blue sky), and global radiation scattered from atmospheric aerosols. In 
HIRLAM, the direct and diffuse global radiation is calculated with respect to a horizontal plane at the 
surface. If the direction to the sun and the surface albedo are known, it is possible to estimate the global 
radiation on tilted surfaces given the direct and diffuse components of global radiation. This is relevant, for 
instance, for solar heating units on tilted roofs. 

Besides the components of the global radiation the 2‐meter temperature, the 10‐meter wind speed and 

direction, and the downward longwave radiation at the surface were also output from HIRLAM during the 

project. The DMI HIRLAM version with the highest resolution was used. This covers North‐Western Europe 
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as shown in figure 1. It is run for 54 hours forecasts. All data from model grid‐points within the Danish 

mainland were used. 

During the course of the project HIRLAM has been updated five times at DMI. In table 1 the periods during 

which these were run can be seen. As the partners from DTU IMM preferred that one model version was 

run throughout the project, the model S05 was run until the end of the project in April 2013 even though 

this has not otherwise been used operationally since January 2010. 

In addition to running regular NWP models, DMI has since 2011 run an ensemble model, which consists of 
25 individual HIRLAM models covering the S05 domain (figure 1). These 25 models are run with slight 
differences in the initial state and in the model physics. The purpose is to estimate both the most likely 
weather forecast and the uncertainty of this. 

 

Figure 1. The domains covered by the S05 and T15 HIRLAM models run by DMI. 

Start month  Stopped  Model version  Domain name  Model levels 

2008‐04  2013‐04  HIRLAM 6.1  S05  40 

2010‐02  2010‐10  HIRLAM 7.1  S03  40 

2010‐11  2011‐12  HIRLAM 7.2  S03  65 
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2011‐08    HIRLAM 7.3 – 25x ensemble  S05  40 

2012‐01    HIRLAM 7.3  SKA  65 

Table 1. Operational models run at DMI during the course of the project. 

The main focus of DMI in the project has been to estimate the quality of the global radiation forecasts, and 
the make improvements of the forecasts of direct and diffuse global radiation. This work has primarily been 
done in a Ph.D.‐project described in a Ph.D. Thesis [22]. In this, the ensemble model, as described above, 
has been verified against measured data. The main result of this investigation is that the ensemble mean, 
i.e. the average of the 25 ensemble members, has approximately 20% less root mean square error (RMSE) 
for global radiation forecasts as compared to the regular NWP model. This result is shown in figure 2. It has 
also been investigated to which degree the spread of the ensemble members reflects the variations in the 
observed global radiation. In that regard it is optimal that the ensemble spread is large when the 
measurements are very variable, and vice versa, that the ensemble spread is small when the measurements 
do not vary much. In general, it was found that the ensemble was under‐dispersive, i.e. that the ensemble 
spread was too low. 

 

Figure 2. The root mean square error (RMSE) of global radiation forecast as a function of the forecast length. The blue curve 
shows the results for the control run, the green curve shows the result for the ensemble median, and the red curve shows the 
result for the ensemble mean. 

As a part of the Ph.D. project the parameterizations of the direct and diffuse components of global 

radiation in HIRLAM were also tested. This was done by comparing the model results with measurements 

of the global radiation components performed at DTU Civil Engineering. The analysis of the results from this 

comparison led to two corrections in the parameterization. Firstly, a bug that in some cases caused 

unrealistic high values of the diffuse global radiation was fixed. Secondly, an error that made all global 
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radiation transmitted through a cloud into diffuse global radiation was corrected by using the Beer‐Lambert 

law to calculate the cloud transmittance of the direct global radiation component. 

Besides the Ph.D. project, work at DMI has been focused on improving the cloud forecasts in HIRLAM. 

Clouds are clearly the most important meteorological variable affecting the quality of global radiation 

forecasts. In particularly, forecasting the correct position of the clouds is challenging. Utilizing cloud data 

derived from images made with the SEVIRI instrument on the Meteosat satellite (MSG), DMI have 

performed regular verifications of cloud cover, cloud optical thickness and cloud water path throughout the 

project [23], [24], [25].  

 

 

Figure 3. Integrated cloud water path on April 26th 2009 as derived from SEVIRI data (left) and HIRLAM S05 (right). 

In figure 1 a comparison of MSG SEVIRI measurements and HIRLAM modeling results for the integrated 

cloud water path is shown. The colours give the amount of cloud water: In the blue areas there are no 

clouds or less than 0.01 kg/m² integrated cloud water; in the grey areas there is between 0.01 kg/m² and 

0.1 kg/m² integrated cloud water; in the green areas there is between 0.1 kg/m² and 1 kg/m² integrated 

cloud water. The HIRLAM forecast length in this case is 10 hours. It can be seen that HIRLAM has captured 

the main features of the cloud cover, but that there are considerable deviations locally, for instance in the 

southern parts of Denmark and in Germany, where the model has no clouds, while the satellite observes a 

thin cloud cover. 

In addition to real time verification of cloud data as shown in figure 2, verifications of the monthly averages 

of HIRLAM cloud cover have been performed. These made it clear that HIRLAM during the first years of the 

project overall underestimated the cloud cover. An example of this from January 2010 is shown in figure 4. 

In this figure, it can also be seen that HIRLAM at the time had a significant spin up during the first 12 hours 

of forecast. Spin up occurs when the initial state of a NWP model is out of balance. In such a case the model 

must use time to reach a balanced state. Here the problem was that the model had too few clouds in the 

initial state. 

After having made successive improvements of the HIRLAM cloud physics at each model update (table 1), 

the spin up effect for the cloud cover has been almost completely removed in the newer HIRLAM versions. 

An example from January 2012 is shown in figure 5. Additionally, it can be seen that the monthly average of 
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HIRLAM cloud cover now is much closer to the monthly average cloud cover observed from the MSG 

satellite.

 

Figure 4: Monthly cloud cover verification of HIRLAM S03 against MSG cloud cover for the month of January 2010. 1 here refers 

to a cloud cover of 100%. Upper left: Average HIRLAM S03 24 hour forecasts. Upper right: Averages measured with MSG SEVIRI. 

Lower left: The average difference between HIRLAM and MSG cloud covers. Lower right: Cloud cover as function of forecast 

length for HIRLAM S03 (red curve) and MSG (green curve). 

DMI has also developed a new way of calculating the direct global radiation within NWP models. Until now, 

global radiation has been calculated in vertical columns in NWP models, as illustrated with the green 

column in figure 6. As the models are run with higher and higher horizontal resolution, this is increasingly 

incorrect in cases when the Sun is not directly overhead. The actual column through which the direct global 

radiation transverses is shown with the purple colour in figure 6. In the modified version of HIRLAM, it is 

possible to calculate the global radiation in tilted columns. The method and the results have been described 

in [26]. 
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Figure 5: Monthly cloud cover verification of HIRLAM SKA against MSG cloud cover for the month of January 2012. 1 here refers 
to a cloud cover of 100%. Upper left: Average HIRLAM SKA 24 hour forecasts. Upper right: Averages measured with MSG SEVIRI. 
Lower left: The average difference between HIRLAM and MSG cloud covers. Lower right: Cloud cover as function of forecast 
length for HIRLAM SKA (red curve) and MSG (green curve). 
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Figure 6. Schematic illustration of modeling direct global radiation in tilted air columns. 

4.	Smart	heat	storages	
The charging behaviour of smart solar tanks for solar combisystems for one-family houses is investigated 
with detailed Computational Fluid Dynamics (CFD) modelling and Particle Image Velocimetry (PIV) 
measurements. The smart solar tank can be charged with a variable auxiliary volume fitted to the 
expected future energy demand. Therefore the heat loss from the tank is decreased and the thermal 
performance of the solar heating system is increased compared to a traditional system with a fixed 
auxiliary volume. The solar tank can be charged either by an electric heating element situated in the tank 
or by an electric heating element in a side-arm mounted on the side of the tank. Detailed CFD models of 
the smart tanks are built with different mesh densities in the tank and in the side-arm. The thermal 
conditions of the tank during charging are calculated with the CFD models. The fluid flow and 
temperature calculations are compared to PIV (Particle Image Velocimetry) measurements of fluid flows 
and temperature measurements. The aim is to elucidate the temperature distribution and thermal 
stratification of the tank during charging. It is elucidated how the calculated temperatures in the tank are 
influenced by the mesh densities, the distribution of computational cells, the physical model and time 
steps used in the simulations. The findings of the investigations were used for the design of smart solar 
tanks. 

4.1.	Introduction	

The two most powerful renewable energy sources are solar and wind energy. It is expected that an 

increasing part of the electricity consumption in the future will be covered by wind farms. This will result in 

an increased number of windy periods with a surplus of electricity and thereby a low electricity price. A 
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concept where individual solar heating systems are optimised for making use of electricity produced by 

wind turbines in these periods can facilitate the introduction of wind energy on a large scale into the 

energy system and thereby contribute to increasing the part of the energy consumption covered by 

renewable energy sources. 

The heat of the energy system will be produced by a solar heating system and by electrical heating 

element(s). The electrical heating element(s) will, if possible, only be in operation in periods where the 

solar heating system cannot cover the heat demand of the house 100% and where the electricity price is 

low, for instance due to high electricity generation from wind farms or due to a low electricity 

consumption. The energy system will need a smart heat storage with a variable water volume heated by 

low cost electricity and an advanced control system for the electric heating element(s)/heat pump based on 

prognosis for electricity costs, heat demand and solar heat production and a control system based on 

weather forecasts. The tank can be charged with a variable volume by internal heating elements installed at 

different levels in the tank or by a side‐arm with a heating element.  

Detailed modelling of the auxiliary charging, by means of electric heating element(s), of such a smart solar 

tank for solar combi systems for a one‐family house, will be presented in the following. The focus of the 

study on the tank with a heating element in the tank is the flow field around the heating element during 

charging and how the fluid flow influences thermal stratification at the top of the tank. For the tank with a 

side‐arm, the tank is charged by thermosyphon induced circulation through the side‐arm. The charging of 

the tank is influenced by the power of the electric heating element, the position of the electric heating 

element and the design of the side‐arm, for example, diameter of the side‐arm pipe and position of the 

side‐arm connection to the tank, etc. The focus of the study on the tank with a side‐arm is to investigate 

how the design of the side‐arm and the operating conditions influence charging behaviour of the tank.  

4.2.	Experimental	and	Theoretical	Investigations	

The auxiliary charging behaviour of a tank is investigated theoretically by CFD calculations and 

experimentally by PIV measurements. To facilitate the PIV measurements, a square glass tank is built with a 

cross section of 400 mm x 400 mm and a height of 900 mm, see figure 7. The uninsulated tank is made of 

12 mm glass with a thermal conductivity of 0.81 W/mK.  
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Figure 7. The PIV test facility of the smart solar tank with one heating element and a side‐arm. 

The tank is designed in such a way that it can be charged either by an electric heating element situated in 

the tank or by an electric heat element in a side‐arm mounted on the side of the tank. The internal electric 

heating element is situated in the tank at a height of 450 mm from the bottom of the tank. One end of the 

side‐arm is mounted on the side of the tank with a distance of 800 mm from the tank bottom while the 

other end of the side‐arm is mounted on the centre of the tank bottom. The side‐arm has a built in electric 

heating element which gives a variable charging power from 1 kW to 3 kW. PIV equipment from Dantec 

Dynamics is used to determine the fluid flow in the tank, especially in the upper part of the tank where 

water is heated either by the internal heating element or by the side‐arm. Thermal stratification in the tank 

is measured at different levels by temperature sensors located in one corner of the tank. The accuracy of 

the temperature measurement is estimated to be 0.5 K. The measured temperatures are compared to 

temperatures calculated by the CFD models.  

The CFD model of the tank with an internal electric heating element is shown in figure 8. The mesh on the 

vertical cut‐plane of the tank is shown in figure 8 (a). A. In order to better resolve the heat transfer and 

fluid flow in the region adjacent to the electric heating element and in the region adjacent to the tank wall, 

a boundary layer mesh is applied so that there is a fine and dense mesh in these regions, see figure 8(a) and 

8(b). The 3D tank model includes the glass tank wall as a solid region and the hot water volume of the tank 

as a fluid region. The charging of the electric heating element is modelled as heat flux from the surface of 

the heating element. The power of the heating element is 500 W which corresponds to a heat flux of 30041 

W/m2. A size function is used to assign denser mesh around the electric heating element where a high 

temperature gradient is expected. A non‐slip wall condition is used for all wall surfaces except the top of 

the tank where there is free water surface. A zero shear stress wall condition is used for the top inner 

surface of the tank. The heat loss from the tank is calculated by surface heat transfer coefficients of the 

tank wall and the temperature differences between the glass tank and the ambient air. The surface heat 

transfer coefficients of the top, the side and the bottom of the tank are 10 W/m2K, 7.69 W/m2K and 5.88 

W/m2K respectively. The Ambient air temperature is constantly 20°C.  

 

 

View A 

(a). Vertical middle plane of the model  (b). Cross section of the model 

Figure 8. CFD model of the tank with an internal electric heating element 

 

The CFD model of the tank charged with a side‐arm is shown in figure 9. The vertical cut‐plane through the 

middle of the tank is given in figure 9(a). A boundary layer mesh is applied to the surface of the heating 
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element, the inner surface of the side‐arm and the inner surface of the tank where high temperatures 

and/or velocity gradients are expected, see figure 9(b). The tank is charged by thermosyphon induced 

circulation through the side‐arm. Modelling of fluid flow and heat transfer in the side‐arm is therefore 

critical. A denser mesh is applied to the side‐arm while a coarse mesh is applied to the tank body, see figure 

3(c). An interface is used to combine the non‐conformal mesh of the upper half and the bottom half of the 

tank. The side‐arm consists of two sections of copper pipes of 28 mm outer diameter and one section steel 

pipe with an outer diameter of 66 mm with a built in electric heating element. The 3D tank model includes 

the glass wall of the tank and the copper/steel pipe walls of the side‐arm as solid regions, and the hot water 

volume in the tank and in the side‐arm as fluid regions. The charging of the electric heating element is 

modelled as a heat flux from the surface of the heating element. The power of the heating element is 3 kW 

which corresponds to a heat flux of 97607 W/m2. A non‐slip wall condition is used for all wall surfaces 

except the top surface of the tank where a zero shear stress wall condition is applied. Heat loss from the 

tank is modelled the same way as for the tank with an internal heating element. The side‐arm is insulated 

with a heat transfer coefficient of 2.4 W/m2K between the pipe outer surface and the ambient air.  

 

 

(b) A magnified view of A & B 

 

View C 

(a) Middle plane of the model  (c) Cross section of the model 

Figure 9. CFD model of the tank with electric heating element built in a side‐arm 

 

Water is used as the heat storage media. Properties of water and their dependences on temperature are 

shown as follows: 

where  T  is  fluid  temperature, 

[K]. 

 

The  tank wall material,  glass,  has  a  thermal  conductivity  of  0.81 W/mK, while  copper  and  steel  has  a 

thermal conductivity of 388 and 60 W/mK, respectively.  

Dynamic viscosity, [kg/(ms)]  5.5)
315

(*0007.0 
T                    (1) 

Thermal conductivity, [W/(mK)]  T*1084.8375.0 4   (2) 
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The Reynold number of the flow  in the side‐arm  is estimated to be between 3000‐4000 which  indicates a 

flow in the transitional region. The flow around the heating element is most likely turbulent due to the high 

power of the electric heating element. A RNG k‐ε turbulence model is therefore used to model the flow.  

Transient  CFD  calculations  are  carried  out  with  buoyancy  driven  force  modelled  by  Boussinesq 

approximation  [27].  The PRESTO  and  second order upwind method  is used  for  the discretization of  the 

pressure and the momentum/energy equations respectively [27]. The SIMPLE algorithm is used to treat the 

pressure‐velocity  coupling.  The  transient  simulations  start  with  a  tank  with  a  uniform  temperature  of 

20.3˚C and a zero velocity field  in the tank. The calculation  is considered convergent  if the scaled residual 

for the continuity equation, the momentum equations and the energy equation are less than 10‐3, 10‐3 and 

10‐6,  respectively.  The  simulation  runs with  a  time  step between  1‐10  s  and  a duration  of  1 hour. One 

simulation with a time step size of 3 s takes approx. 12‐52 hours for a duo core processor computer with 2 

X 3 GHz CPU frequency and 4G memory.  

4.3.	Results	and	Discussion	

4.3.1. Influence of grid density and time step size 

Investigations are carried out to determine the optimal time step and grid density. Time intervals in the 

range of 1‐10 s are investigated. The mesh scheme of the tank with an internal electric heating element is 

listed in table 1. The minimum mesh interval size is applied to the region adjacent to the surface of the 

electric heating element. The mesh interval size increases with a ratio of 1.1 further away from the heating 

element until it reaches the maximum mesh interval size. In the rest of the tank, the maximum mesh 

interval size is used. A 4‐row boundary layer mesh is assigned to the surface of the tank wall and the 

surface of the heating element. The height of the first row of mesh is listed in table 2 for different mesh 

schemes. The height of the boundary layer mesh increases with a ratio of 1.2 away from the wall surface. 

Four mesh schemes are investigated with mesh interval sizes between 0.001 and 0.03 m.  

The mesh scheme of the tank with a side‐arm is listed in table 3. The mesh size varies between 0.004 m and 

0.008 m in the side‐arm, while it varies between 0.012 m and 0.03 m in the tank body. Four‐row boundary 

layer mesh is attached to all wall surfaces of the tank and of the side‐arm. The first row height of the 

boundary layer mesh is 0.001 m for the tank wall surfaces while it is either 0.0002 m or 0.0005 m for the 

wall surfaces of the side‐arm.  

   
Number 
of cells 

Mesh interval size, 
[m] 
Min./Max. 

Boundary layer mesh, the first row height, 
[m] 

Grid 1  37,525  0.002/0.03  0.001 

Grid 2  193,522  0.002/0.012  0.001 

Grid 3  495,936  0.001/0.008  0.001 

Grid 4  1,192,380 0.001/0.006  0.0005 
Table 2. Mesh schemes of the tank with an internal electric heating element.  

   
Number of 
cells 

Mesh interval size, 
[m] 

Boundary layer mesh, the first row height, 
[m] 

Tank  Side‐arm  Tank  Side‐arm 

Grid 1  189,698  0.03  0.008  0.001  0.0005 

Grid 2  263,768  0.03  0.006  0.001  0.0005 
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Grid 3  407,314  0.012  0.006  0.001  0.0005 

Grid 4  761,465  0.012  0.004  0.001  0.0002 

Table 3. Mesh schemes of the tank with a side‐arm with built in electric heating elements.  

CFD predicted thermal stratification in the tank with a side‐arm is shown in figures 10 and 11. The influence 

of mesh density on prediction of temperatures in the tank is shown in figure 10. At 10 min after the start of 

the charge, the difference between the temperatures predicted by Grid 2, Grid 3 and Grid 4 is maximum 0.7 

K, while the difference between Grid 1 and Grid 4 is up to 2.7 K. The influence of mesh density on predicted 

temperature becomes less dominant as the test goes on. The difference of temperature predictions 

between Grid 1 and Grid 4 is decreased to maximum 2.0 K at 60 min after the start. It can be concluded 

that the mesh scheme Grid 2 is appropriate for modelling the tank with a side‐arm. The influence of mesh 

density and time step size on prediction of temperature distribution in the tank with an internal heating 

element is investigated as well. The results show that the mesh scheme Grid 2 is appropriate for modelling 

the tank with an internal heating element. Figure 11 shows the influence of a time step size on temperature 

predictions in the tank. If a time step size between 1 s and 3 s is used, the difference of temperature 

prediction is within 0.5 K. With an increase of the time step size to 5 s and 10 s, the variation of 

temperature calculation increases up to 1.7 K and 5 K. It can be concluded that a model with a time step 

size between 1 s and 3 s can predict temperatures for most of the tank within an uncertainty of 0.5 K. Due 

to the dramatic increase of computation time with a decrease of the time step size, a time step of 3 s is 

used for later calculations.  
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Figure 10. Influence of mesh density on prediction of thermal 

stratification in the tank with a side‐arm 

Figure 11. Influence of time step size on prediction of thermal 

stratification in the tank with a side‐arm 

4.3.2. Thermal stratification in the tanks 

The CFD model with Grid 2 is used with a time step size of 3 s for the calculation of heat transfer and fluid 

flow in the tanks. The convective heat loss and thermal radiation heat loss from tank surfaces are now 

considered. The surface convective heat transfer coefficient for the side, the top and the bottom of the 

tank are respectively  ,   and 
 
where T is the surface 

temperature of the tank; Ta is the ambient air temperature of the room; l is the dimension of the tank in m. 

The thermal radiation heat transfer coefficient is defined as: 
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where σ is Stefan–Boltzmann constant, 5.67E10‐8 W/m2K4. εT is the emittance of the tank surface, 0.8; εa is 

the effective emittance of the surrounding surfaces which is assumed to be 0.8. The ambient air 

temperature increases as the room is gradually heated up by the heat loss from the tank. A temperature of 

20.3°C is used from the start till 30 min after the start, while 22.3°C is used for the rest of the test.  

CFD calculated temperatures are compared to the measured temperatures. Figure 12 shows CFD calculated 

and measured temperatures at different levels in one corner of the tank. The electric heating element with 

a power of 460 W is installed at a height of 0.45 m. It can be seen in Fig. 12 that after the start of the 

charging, the water above the level of the element is gradually heated up to almost uniform temperature. 

There is almost no thermal stratification at the upper part of the tank, which means that the uprising flow 

from the heating element induced by buoyancy driven force creates mixing in the upper part of the tank. 

The water at the bottom part of the tank is not heated, indicating that the uprising flow from the element is 

not large enough to disturb water in the bottom part of the tank. At 58 min after the start, the water 

temperature in the upper part of the tank increases to 25.0°C, while the water temperature at the bottom 

part is only slightly higher than 20°C due to heat conduction of water and the glass tank wall. The CFD 

model predicts well temperatures in the tank with a difference of maximum 0.3 K, especially in the upper 

part of the tank. The difference is most likely due to the incorrect input of surface heat transfer coefficients 

and ambient air temperature in the CFD model.  

Figure 13 shows thermal stratification in the tank charged by a side‐arm with a power of 3 kW. One end of 

the side‐arm is mounted on the side of the tank at a height of 0.8 m, while the other end of the side‐arm is 

mounted on the centre of the tank bottom. The water in the side‐arm is heated to a higher temperature 

than the water in the tank, which generates buoyancy driven flow in the side‐arm. The uprising flow in the 

side‐arm creates circulation of water between the side‐arm and the tank. Temperatures at different heights 

in one corner of the tank is measured and compared to CFD calculations in Figure 13. The CFD model 

predicts well thermal stratification in the tank at 10 min and 30 min after the start of the charging. But it 

underestimates temperatures in the tank at 60 min after the start, especially at the height of 0.4 m to 0.7 

m. The reason could be an overestimated heat loss from the tank. 
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Figure 12. Thermal stratification in the tank with an internal 

heating element 

Figure 13. Thermal stratification in the tank with a side‐arm 

The heat transfer and fluid flow in the side‐arm has a significant influence on the charging behaviour of the 

tank. Figure 14 shows the temperature of the fluid entering into the side‐arm. There is a good agreement 

between measured and calculated temperatures. Figure 15 shows the temperature of the fluid entering 

into the tank. CFD predicts a flux of hot water entering into the tank 48 s after the electric heating element 
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is turned on, while it is undetected during the measurement. That could be explained by the fact that the 

temperature sensor is installed on the outer surface of the copper pipe which makes it difficult to respond 

to the fast temperature changes of the water in the pipe. There is a difference of maximum 3 K between 

the measurements and the CFD predictions, which is probably due to a slight underestimation of circulation 

flow in the side‐arm. The calculations show that the volume flow rate through the side‐arm varies between 

2.6‐3.4 l/min during the test. 

4.3.3. Fluid flow in the tank with a side‐arm 

Figure 16 shows PIV measured fluid flow on the middle plane of the upper part of the tank 5 min after the 

start. The fluid entering into the tank from the side‐arm forms a jet flow. The jet flow reaches the other side 

of the tank and turns back, forming a circulation. Because of the jet flow and the induced circulation, the 

tank above the side‐arm inlet is mixed. That can be verified by the uniform temperature in the tank above 

0.78 m, see Figure 13.  Figure 17 shows CFD predicted flow field on the middle plane of the upper part of 

the tank 5 min after the start. The CFD model predicts successfully the flow pattern, although the velocity 

magnitude of the flow is overestimated. Another reason for the lower fluid flow in the PIV measurement 

could be the uncertainty of PIV measurement which is influenced by the specification of duration between 

pulses and the method used for analysis of the particle image. These factors should be further investigated 

in future work. 
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Figure 14. Temperature of the fluid entering into the side‐arm.  Figure 15. Temperature of the fluid entering into the tank. 

vel

0.15
0.1
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.001

0.04 m/s

 

velocity-magnitude

0.15
0.1
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.001

0.04 m/s

 

Figure 16. PIV measured flow field on the middle plane of the tank 

5 min after the start.  

Figure 17. CFD predicted flow field on the middle plane of the 

tank 5 min after the start. 
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4.4.	Conclusions	

The charging behaviour of two smart solar tanks is investigated with detailed CFD modelling and PIV 

measurements. The solar tank can be charged either by an electric heating element situated in the tank or 

by an electric heating element in a side‐arm mounted on the side of the tank. Thermal stratification can be 

established in a good way in the tank by both charge methods. The results show that a mesh interval size of 

0.03 m and 0.006 m is sufficient for the tank and the side‐arm, respectively. The most appropriate time step 

size is 3 s. The fluid flow and temperature calculations are compared to PIV measurements and 

temperature measurements. The CFD model predicts well thermal stratifications in the tank, but gives 

underestimated temperatures due to incorrect heat loss of the tank which should be further investigated. 

The CFD model predicts successfully the flow pattern in the tank, although the velocity magnitude of the 

flow is higher than the PIV measurements.  

5.	Experimental	investigations	of	solar/electric	heating	systems	
Three differently designed heating units including solar collectors, heat storages and auxiliary heat supply 

were installed at a test facility for solar heating systems at the Technical University of Denmark. The 

systems were exposed to the actual weather conditions related solar radiation and outdoor climate. The 

heat storages were installed in a test building. The energy use from the system is applied by an automated 

discharge system where hot water is taken from the systems and replaced with colder water to imitate 

actual use. The energy balance for the systems were monitored to evaluate the energy flows and to 

compare the thermal performance.   

5.1	Design	of	three	laboratory	test	systems	

Three systems with differently designed storage tanks and auxiliary heating supply were investigated experimentally.  

 

Each system has a solar collector area of 9 m² and a tank in tank heat storage from Ajva ApS. The inner tank 

for domestic hot water has a volume of 185 l and the outer tanks for space heating and short term heat 

storage has a volume of 550 l. The auxiliary heating devices for the three systems are: A large external 

electrical heating element of 9 kW, three smaller internal electrical heating elements of 3 kW each and a 10 

kW heat pump respectively. The three tanks all have a variable auxiliary heated volume.  

Solar energy is transferred from the solar collectors to an external heat exchanger by a solar collector loop 

with a propylene glycol water mixture. The solar heat is transferred from the heat exchanger to the tank by 

a secondary loop. The water for the secondary loop can be drawn off from the bottom or the middle of the 

storage tank and is led into the tank through a fabric inlet pipe, which is a stratification device. In this way 

beneficial thermal stratification is built up during solar collector operation.  

Water for space heating is taken from the upper part of the outer tank and the return inlet to the tank is 

through another fabric inlet pipe. Domestic hot water is drawn from the top of the inner tank and the cold 

water in led into the bottom of the inner tank. 

 

The tanks are designed as shown in figure 18 and figure 19. In figure 18 the tank is shown with the solar 

energy supply system, the space heating system and the domestic hot water system. 
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Figure 18. Principal drawing of the heat storage with the solar energy supply system, the space heating system and the domestic 
hot water system. The auxiliary heating system with the variable auxiliary heated volume is not shown. 

In periods where the solar energy cannot cover the heating demand, the tanks are heated by an auxiliary 

heating device. In figure 19 principle drawings for the auxiliary heating systems are shown. PEX pipes 

inserted in the tanks to different levels allow for varying the auxiliary volume in system 1 and 2. The three 

individual 3 kW heating elements in system 3 also allow for controlling how much of the tank that is heated 

up by the electricity.  

 

 
Figure 19. Principal drawings of the auxiliary heating systems for the three heat storages. The solar energy supply system, the 
space heating system and the domestic hot water system are not shown. 

Figure 20 shows the storage tanks installed at the test facility. 
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Figure 20. The heat storages of the three solar heating systems which are being tested. 

The dimensions of the tanks are listed in table 4. 

 

Dimension of the inner tank 
(upper part/lower part) 

Dimension of the outer tank 
 

Diameter [mm]  450/168.3  Diameter [mm]  800 

Height [mm]  1102/466  Height [mm]  1568 

Volume [l]  175/10  Volume excl. inner tank [l]  550 
Table 4. Dimensions of the tanks. 

The solar collectors and the solar collector loops 

All three systems have the same size and type of solar collectors.  The collectors are orientated to the south 

and the collector tilt is 45°. 

The solar collector field is composed of three parallel coupled flat plate solar collectors, type BA 30 from 

the company Batec Solvarme A/S. Each system has a total solar collector area of 9 m2. The collector 

efficiency sheet is available from www.batec.dk. Figure 21 shows a photo of the 3 x 9 m2 solar collectors 

mounted in the test facility. 
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Figure 21. The 3 x 9 m2 solar collectors from Batec Solvarme A/S and to the right, the pyranometers measuring the total and 
diffuse irradiance. 

The absorber is made of copper with a selective surface and is a so called cu‐strip absorber. The liquid flows 

through the collector via two manifolds, one in the top and one in bottom of the collector and eight parallel 

cu‐strips connect the upper and the lower manifold. In this way, the absorber has four in/out lets and is 

very well suited for parallel coupling. The flow distribution is usually very good with this absorber design if 

no more than six collectors are connected in parallel. If the inlet is at the bottom of the parallel coupled 

collectors and the outlet is at the top, it is important that air escape valves are mounted in such a way that 

air will not be trapped in the collector preventing the flow from flowing through the area occupied by the 

air and resulting in a poor thermal performance of the whole solar heating system.  

The solar collectors are connected to the three storage tanks via pipes and the lengths of the pipes are 

listed in table 5. Indoor, the outer diameter of the pipes is 22 mm and the outer diameter of the insulation 

is 60 mm. Outdoor, the outer diameter of the pipes is 12 mm and the outer diameter of the insulation is 30 

mm. The pipes are insulated with armaflex with a thermal conductivity of 0.036 W/(m*K). 

  Outdoor:  
system #1/system #2/system #3 

Indoor:  
system #1/system #2/system #3 

Solar collector – Heat exchanger  6.4 m/6.4 m/6.4 m  5.1 m/3.7 m/3.7 m 

Heat exchanger – Tank     1.5 m/1.8 m/1.6 m 

Tank – Heat exchanger    1.7 m/1.3 m/1.5 m 

Heat exchanger – Solar collector  12.6 m/12.6 m/12.6 m  5.9 m/4.1 m/ 4.4 m 
Table 5. Pipe lengths in the solar collector loop. 

The energy from the solar collector is transferred to the tank via a plate heat exchanger. The solar collector 

loop between the solar collector and the heat exchanger is referred to as the primary solar collector loop 

and between the heat exchanger and the tank as the secondary solar collector loop. The inlet to the outer 

tank from the secondary solar collector loop is through a fabric stratifier with two fabric layers with the 

diameters of 30 mm and 50 mm. The outlet from the outer tank to the secondary solar collector loop is 

either from the middle or the bottom of the outer tank, depending on the operation conditions. The outlet 

to the secondary solar collector loop takes place through pipes made of POM with thick walls in order to 

reduce the horizontal heat transfer. 

A schematic sketch of the solar collector loop inclusive two motor valves is shown in figure 22. 
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Figure 22. Principle drawing of solar collector loop. 

Auxiliary heating system 1 

For system 1 the auxiliary volume is heated by an electrical heating element of 9 kW built into a thermo 

syphoning side arm. The piping in the tank is designed in such a way that the upper 30% or the upper half 

or the whole tank can be heated by controlling the level of which the water for the thermo syphoning loop 

is drawn from. The inlet from the side arm to the outer tank is through a rigid POM pipe with a thick wall 

and the outlet is at the top of the tank. In this way, the tank is heated from the top. The heater has an inner 

thermostat that allows for operation temperatures up to 85°C. A schematic sketch of the auxiliary heating 

system is shown in figure 23. 

 

Figure  23. Auxiliary heating for system 1. 

Auxiliary heating system 2 

The auxiliary volume in system 2 is heated by an air/water heat pump. The tank is designed in such a way 

that the water for the heat pump loop can be taken from the upper 30% or the upper half or from the 
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bottom of the tank. The inlet from the heat pump to the outer tank is through a fabric stratifier with two 

fabric layers with inner/outer diameter of 50/70 mm. The air/water heat pump is type2025 from the 

company NIBE on 10 kW, see figure 24. 

 

Figure 24. Nibe F2025 – 10 air/water heat pump. 

The heat pump is located outside the building of the test systems. The diagrams below show the specified 

output of the heat pump at different outdoor temperatures. Also the temperature increase of the 

circulated water at the optimal flow is shown in figure 25 as a function of the outdoor temperature.  

 

Figure 25. Temperature increase of water and power output as a function of the outdoor temperature for the het pump. 

This heat pump has a stop temperature of 50°C for the return flow to the heat pump and of 58°C for the 

supply from the heat pump as indicated in figure 26. For this type of heat pump the maximum deliverable 

temperature is therefore 58°C. 
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Figure 26. Water temperatures as function of outdoor temperature for the heat pump. 

An antifreeze function is initiated at temperatures below +2°C and will run periodically or continuously 

depending of the outdoor temperature. A principle sketch of the auxiliary heating system for system 2 is 

shown in figure 27. 

 

Figure 27. Auxiliary heating for system 2. 

Auxiliary heating system 3 

The auxiliary volume in system 3 is heated by three internal electrical heating elements. The heating 

elements are located 30 % down from the top, half way and at the bottom of the tank to allow for the 

upper 30% or the upper half or the whole tank can be heated. The heating elements are each 3 kW and 

have a thermostat that allows it to operate up to 85 ⁰C. The three elements can be in use separately or 

simultaneously. A schematic sketch of the auxiliary hating system for system 3 is shown in figure 28. 
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Figure 28. Auxiliary heating for system 3. 

Space heating and domestic hot water  

The tank is a tank in tank construction with domestic hot water in the inner tank and water for storage and 

space heating in the outer tank. Domestic hot water is taken from the top of the inner tank and led out 

through the bottom of the tank via a PEX pipe and cold water is let in at the bottom of the inner tank.  

The outlet from the outer tank to the space heating loop is located on the side of the tank in the upper 

auxiliary volume and the return inlet is through a fabric stratifier with two fabric layers with inner/outer 

diameter of 50/70 mm. The required power drawn for the space heating loop is set by adjusting the flow 

and the temperature difference across the inlet and outlet. A thermostatic 3 way valve is used to keep the 

power steady. 

Figure 29 gives an overview of the pipe connections in the tank. The yellow arrows are used for the solar 

collector loop, the blue arrows for the domestic hot water loop, the red arrows in the auxiliary heating loop 

and the green arrows in the space heating loop. Only the auxiliary systems differ for the three systems. 
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Figure 29. The three different storage tanks and the pipe connections. 
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5.2	Control	system	

The control strategy applies to when and how to operate the solar heating system and the auxiliary energy 

supply system. The aim is to enhance the use of solar energy as much as possible and limit the use and 

costs of auxiliary energy as much as possible. That is: The control system for the units is developed to 

reduce the cost of auxiliary energy required to meet the heat demand.  The control is based on forecasted 

heat demands, electricity prices and hourly solar irradiation and outdoor temperature levels. The heat 

demand is based on a fixed daily demand for domestic hot water and a variable demand for space heating 

based on the outdoor temperature. The forecasted outdoor temperatures are fed into the control systems 

from DMI’s weather forecasts via an online connection. The forecasted irradiation levels are fed into the 

control system to estimate the amount of solar heat that will be produced by the collectors and 

accumulated in the units in the following period. Also the forecasted electricity prices for the following 

period are supplied to the control system. All this is done to calculate when and how much the auxiliary 

heating have to be used each hour to meet the coming demand at the lowest cost possible. The strategies 

for the solar collector loop and for the auxiliary energy system run in parallel to allow for situations where 

the solar collector loop is running and still additional auxiliary heating is required to meet the demand and 

maintain the comfort level in the house. The temperatures in the tanks are registered by the control system 

to determine the energy content of the tank and the operation strategies. Magnetic valves are used to 

choose from which level of the tank water is drawn from to the external auxiliary heating unit in system 1 

and 2 and for the secondary solar loop. Circulation pumps are used to circulate the water and solar 

collector fluid when required. 

Solar collector loop 

Figure 30 shows the control system overview. The temperature in the solar collector is measured by a PT 

1000 sensor (T1) attached in good thermal contact with the back of the absorber in the solar collector. The 

temperature stratification in the tank is measured by seven PT 1000 sensors (T2‐T8) attached in good 

thermal contact with the tank wall or in pipes that are inserted into the tank water through the outer tank 

wall. The reading of temperature sensors T1 – T8 are used to run the control system and the operation of 

the pumps P1 and P2 and the magnetic valves M1 and M2 in the solar collector loop. 

Figure 30 shows the overview screen from the control program at a state where the solar collector loop is 

running at a “HeatFromBottom” state while the auxiliary is on idle. 
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Figure 30. Overview of control system at ”heat from bottom” state. 

The overall idea for the solar collector loop is to transfer solar heat from the collector to the tank. 

Therefore the loops start to run when the temperature in the collector is higher than the bottom of the 

tank. The control strategy in the solar collector loop is operated by the following algorithm: 

Start of collector loop, heat from bottom: 

 If T1>T8+10 K and T2 < 95°C ‐> P1 and P2 ON, M2 open, M1 closed 

Start of collector loop, heat from middle: 

 If T1>T3+5 K and T3 < 50°C ‐> P1 and P2 ON, M2 closed, M1 open 

Return to collector loop, heat from middle: 

 If T1<T3+2 K or T2 > 95°C ‐> P1 and P2 ON, M2, open M1 closed 

Stop of pumps: 

 If T1<T8+2 K or T8 > 95°C: P1 and P2 OFF, M1 closed, M2 closed  

The solar collector control is graphically displayed on the figure 31 which is a screen shot from the control 

system.  
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Figure 31. Control strategy. 

It is easily possible to change the temperature set points to vary the operating principle for better 

performance. 

Auxiliary energy supply system 

Every hour the control system generates a forecast file including the forecasted electricity prices from 

NORDPOOLSPOT, solar irradiation levels and outdoor temperatures forecasted by DMI for the following 36 

hours. The forecast file includes the current temperatures in the tank and the current energy content of the 

storage is determined. Based on the outdoor temperatures a space heating demand is calculated. A 

constant demand for domestic hot water is added to this demand. The heating demand of the system is 

aiming at covering:  

 For outdoor temperatures above 15°C: 0.21 [kWh/hour] (only domestic hot water) 

 For outdoor temperatures below 15°C: ‐0.31*OutdoorTemp + 4.84 [kWh/hour] (space heating and 

domestic hot water) 

The forecasted power to the storage from the solar collector array is calculated from the forecasted direct 

and diffuse radiation level as well as the collector properties. Based on the forecasted heating demand, the 

forecasted incoming solar heat, the required auxiliary energy demand is calculated. The demand for the 

auxiliary heating unit is sought to be covered at the lowest cost. The control system therefore chooses the 

hours with the lowest electricity cost to cover the forecasted heat demand the following period.  

As the three auxiliary heating units are different, they require different control strategies to run most 

efficiently. The temperature level of the systems with electric heating elements can be up to 85°C. This is 

the limitation for the heating elements. System 2 can due to the limitations of the heat pump loop, operate 

at temperatures up to 58°C. (Different heat pumps can operate at higher temperatures, by change of 
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refrigerant to for example CO2, higher temperatures can be possible in the future). For system 1 and 3 the 

temperature setting for the control of the auxiliary heaters are set to keep similar thermal stratification for 

better comparison.  

A summary of the auxiliary control strategy is listed in table 6, for states where there is a demand for 

auxiliary heating. The magnetic valves M3, M4 and M5 are used to control the draw off level for the 

external auxiliary heating elements. ELP1, ELP2 and ELP3 are the three internal electric heating elements in 

unit 3. 

  System 1,  
External electric heater 

System 2, 
External heat pump 

System 3 
Internal electric heaters 

Supply power  9 kW  up to 10 kW  3 x 3 kW 

Mode: 
AUX high 
 
Applies for 
heating loads 
of 0 to 9 kW 
for system 1 
and 2.  
Applies for 
heating loads 
of 6 to 9 kW 
for system 3 

(T2<85.0)  
     HEATER=ON 
     M3= Open 
     M4 = Closed  
     M5 = Closed 
(T2>=85.0 AND T4<76.0)  
     HEATER=ON      
     M3= Closed 
     M4 = Open 
     M5 = Closed 
(T2>=85.0 AND T4>=76.0 
AND T7<75.0)  
    HEATER=ON;  
    M3= Closed 
    M4 = Closed 
    M5 = Open 
 

(T7>=49.0) 
   HEATER=OFF 
     M3= Closed 
     M4 = Closed  
     M5 = Closed 
(T3<49.0)  
HEATER=ON 
     M3= Open 
     M4 = Closed  
     M5 = Closed 
(T3>=49.0 AND T5<49.0)  
HEATER=ON      
     M3= Closed 
     M4 = Open 
     M5 = Closed 
(T3>=49.0 AND T5>=49.0 
AND T7<49.0)  
    HEATER=ON;  
    M3= Closed 
    M4 = Closed 
    M5 = Open 

(T2<85.0)  
     ELP1= ON 
     ELP2 = ON 
     ELP3 = ON 
(T2>=85.0 AND T4<80.0)  
     ELP1 = OFF 
     ELP2 = ON 
     ELP3 = ON 
(T2>=85.0 AND T4>=80.0 
AND T7<75.0)  
    ELP1= OFF 
    ELP2= OFF 
    ELP3= ON 
 

Mode: 
AUX medium 
 
Applies for 
heating loads 
of 3 to 6 kW 
for system 3 

N/A  N/A  (T2<85.0)  
     ELP1= ON 
     ELP2 = ON 
     ELP3 = OFF 
(T2>=85.0 AND T4<80.0)  
     ELP1 = OFF 
     ELP2 = ON 
     ELP3 = ON 
(T2>=85.0 AND T4>=80.0 
AND T7<75.0)  
    ELP1= OFF 
    ELP2= OFF 
    ELP3= ON 

Mode: 
AUX Low 
 

N/A  N/A  if (T2<85.0)  
     ELP1= ON 
     ELP2 = OFF 

30



 
 

Applies for 
heating loads 
of 0 to 3 kW 
for system 3 

     ELP3 = OFF 
(T2>=85.0 AND T4<80.0)  
     ELP1 = OFF 
     ELP2 = ON 
     ELP3 = OFF 
(T2>=85.0 AND T4>=80.0 
AND T7<75.0)  
    ELP1= OFF 
    ELP2= OFF 
    ELP3= ON 

Table 6. Summary of auxiliary heating control strategy. 

Log files 

A log file is generated by the control system. The log file includes values for every minute of the eight 

measured temperatures, the states of the valves and pumps as well as the active control strategies. Also 

the points of where the change of running state is recorded. A separate log file is generated for every 

system every day and is saved with the hourly forecast files on a ftp server. A sample of the log file is shown 

in figure 32 and explanation of the file is given in table 7. 

 

 

Figure 32. Sample of log file. 

Column   

A  Date 

B  Time 

C  Algorithm version

D  General state: Strategy/manuel

E  Solar heat state: idle/heat from middle/heat from Bottom 

F  Aux heat state: Auxidle/AuxHigh/AuxMid/AuxLow 

G  ONTID: remaining minutes Aux in on this clock hour 
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H  T1: temperature in solar collector

I‐O  T2‐T8: temperatures is tank

P,Q  P1,P2: 0/1 (pump on/off)

R  Heater: 0/1 (Aux heater on/off)

S‐W  M1‐M5: 0/1 (Motor valve open/closed)

X  State Shift: 0/1 (1=shift of state)

Table 7. Log file explanation.   

5.3	Monitoring	system	for	the	test	systems	

The systems are monitored in terms of solar radiation, temperatures and flow rates at key points. Also the 

energy used by the auxiliary units is recorded. The temperatures are measured by thermo couples and PT 

1000 sensors. Temperature differences are measured by thermopiles. The flows are measured by Brunata 

HGQ energy meters and Clorius Combi meters. The energy consumption for the auxiliary energy units are 

measured by energy meters. Temperatures, flows and energy uses are recorded every minute by data 

loggers.    

In order to measure the temperatures inside the tanks, two glass tubes with temperature sensors are 

inserted through the top of the tank: One in the inner tank and one in the outer tank. The positions are 

indicated in figure 33 and tables 8, 9 and 10.  

 
Tsh5

Tsh1

Tsh3

Tsh4

Tsh2

Tdhw1

Tdhw2

Tdhw3

 

Figure 33. Positions of temperature sensors. 

Height of temperature sensor in 
the inner tank from bottom of 
tank 

Height of temperature sensor in 
the outer tank from bottom of 
tank 

Tdhw1 [mm]  146  Tsh1 [mm]  238 

Tdhw2 [mm]  810  Tsh2 [mm]  not used 

Tdhw3 [mm]  1490  Tsh3 [mm]  893 

    Tsh4 [mm]  not used 
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    Tsh5 [mm]  1453 
Table 8. Position of temperature sensors in the tank in system #1. 

Height of temperature sensor in 
the inner tank from bottom of 
tank 

Height of temperature sensor in 
the outer tank from bottom of 
tank 

Tdhw1 [mm]  231  Tsh1 [mm]  258 

Tdhw2 [mm]  873  Tsh2 [mm]  577 

Tdhw3 [mm]  1528  Tsh3 [mm]  898 

    Tsh4 [mm]  1233 

    Tsh5 [mm]  1554 
Table 9. Position of temperature sensors in the tank in system #2. 

Height of temperature sensor in 
the inner tank from bottom of 
tank 

Height of temperature sensor in 
the outer tank from bottom of 
tank 

Tdhw1 [mm]  156  Tsh1 [mm]  180 

Tdhw2 [mm]  790  Tsh2 [mm]  496 

Tdhw3 [mm]  1463  Tsh3 [mm]  828 

    Tsh4 [mm]  1158 

    Tsh5 [mm]  1478 
Table 10. Position of temperature sensors in the tank and dimension of the tank in system #3. 

The energy flows for the systems are recorded by logging data at specific points of interest. For the piping 

the flow rates and temperatures are logged at the locations indicated in figure 34. Also the energy use for 

the auxiliary heating units is logged. 

 

Figure 34. Flow meters and temperature logging for system 1. 

As the three systems design vary slightly so does the measuring points of interest. The measured points for 

system 2 are indicated on figure 35. 
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Figure 35. Flow meters and temperature logging for system 2. 

The measured points for system 3 are indicated on figure 36. 

 

Figure 36. Flow meters and temperature logging for system 3. 

5.4	Operation	conditions	

The measurements of the three systems are carried out over a period from February 20 to April 30, 2013. 

The indoor temperature at the test facility where the tanks are located varies around 15°C to 22°C for the 

period of measurements. 
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The space heating draw offs are set to a temperature of 30‐35 ⁰C with a return temperature of 20 ⁰C which 

is controlled by a cooling system in the test facility. The flow for the space heating loop resulting in the 

power drawn from the system is set to balance the demand. For the test period similar loads for space 

heating for the three systems are applied. The space heating load is set as a stable load throughout the day 

based on an average outdoor temperature. The load is determined based on the similar relation as for the 

auxiliary heating requirements of:  ‐0.31*OutdoorTemp + 4.84 kW. The energy requirement for the 

domestic hot water use is integrated in the draw off for the space heating.  As the temperature in the tanks 

varies throughout the day also the power varies. 

5.5	Weather	data	

The measured weather data are:  

‐ Total irradiance on the collector plane 

‐ Diffuse irradiance on the collector plane measured with a shadow ring (diameter = 0.225 m, width = 

0.07 m) 

The solar irradiance is measured with pyranometers CM 11 from Kipp & Zonen. The pyranometers are 

mounted on the roof next to the solar collectors in the same tilted plane and can be seen in figure 21. The 

diffuse irradiance is measured with a shadow ring screening of the beam and part of the diffuse irradiance 

and hence corrected by an isotropic correction factor. 

5.5.1	Test	results	
The systems are compared on the basis of:  

 energy consumption for the auxiliary heating  

 energy cost for the auxiliary heating 

 net utilized solar energy of the systems  

The energy balances for the systems are shown in table 11.  

  System 1 (9 kW 
elec.) 

System 2 (HP)  System 3 (3x3 kW) 

Input to the storage 

Auxiliary heating, electricity  5321 kWh  2443 kWh  5722 kWh 

Auxiliary heat to storage, heat  5321 kWh  5381 kWh  5722 kWh 

Solar heat to storage  809 kWh  790 kWh  668 kWh 

Total input  6130 kWh  6171 kWh  6390 kWh 

Discharge from the system 

Space heating draw off incl. DHW 
from storage  5743 kWh  5856 kWh  5947 kWh 

Heat losses from storage tanks 

Heat loss (calculated)  387 kWh  315 kWh  443 kWh 

Utilized solar energy 

Net utilized solar energy (calculated)  422 kWh  476 kWh  226 kWh 
Table 11. Measured energies for period February 20 ‐ April 30, 2013. 
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The effective COP for the heat pump under these actual operating conditions are from the data above 

calculated to: COP = 2.2. This value includes the losses in the piping from the heat pump to the storage and 

the antifreeze function. The heat pump COP could possibly be improved by adjusting the flow in the output 

pipe for the heat pump to its optimal operating condition.  

The heat loss coefficients for the three storages are calculated based on an average storage and ambient 

temperature and the calculated losses, see table 12.  

  System 1 (9 kW elec.)  System 2 (HP)  System 3 (3x3 kW) 

Heat loss coefficient UA   9.1 W/K  7.0 W/K  7.8 W/K 
Table 12. Heat loss coefficients. 

The losses are higher for system 1 and 3 compared to system 2. This is due to the external heating element 

and the piping in system 1 being included in the calculations for the storage. For system 3 the three electric 

heating elements inserted in the tank result in thermal bridges. The losses for the piping to and from the 

heat pump in system 2 are reflected in the calculated COP for the heat pump above. 

The way the thermal stratification is built up is highly dependent on the auxiliary heating. The thermal 

stratification has shown to work best for the system 1 heated by the external electric heating element. The 

temperatures in the bottom of the tanks in system 2 and system 3 have generally been higher than for 

system 1. Averaged temperatures for the whole operating period are listed for the top and bottom layer of 

the tanks as well as for the entire tank in table 13.  

Average temperatures  System 1 (9 kW elec.)  System 2 (HP)  System 3 (3x3 kW) 

Top layer   69.0°C   52.0°C  71.3°C  

All layers  44.8°C   46.5°C  54.6°C  

Bottom layer  27.5°C  40.2°C  35.3°C  
Table 13 . Average temperatures in storage tank. 

This result in a lower operation time for the solar collectors due to a higher required temperature in the 

solar collector before the solar collector loop starts, see table 14. 

  System 1 (9 kW elec.)  System 2 (HP)  System 3 (3x3 kW) 

Total system operating 
time 

1495 hours  1495 hours  1495 hours 

Operating hours for 
solar collector loop 

375 hours  319 hours  319 hours 

Auxiliary operating 
hours 

719 hours  827 hours 

184 hours (3 kW) 
162 hours (6 kW) 
515 hours (9 kW) 
861 hours (all) 

Standby/defrost time  ‐  607 hours  ‐ 
Table 14. Measured data for solar collector loops. 

The cost of the energy for the auxiliary heating is summarized in table 15. The cost in this calculation is 

based on the hourly prices provided by the Nordpoolspot website without the extra cost of taxes and other 

additional costs. The costs are compared to an average cost of the electricity for the data. 

  System 1 (9 kW elec.)  System 2 (HP)  System 3 (3x3 kW) 
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Cost for auxiliary heating 
as operated  1548 DKK 751 DKK 1637 DKK

Cost for auxiliary heating 
based on an average 
electricity price  1661 DKK 764 DKK 1783 DKK

Savings due to electricity 
price variations, DKK  113 DKK 13 DKK 146 DKK

Savings due to electricity 
price variations, %  6.8 % 1.8 % 8.2 %
Table 15. Costs of auxiliary energy. 

The operation costs for system 1 and 3 are almost the same, and the operation costs are lower for system 2 

than for system 1 and 3 due to the COP of 2.2 of the heat pump. Under these operating conditions the 

savings for utilizing the forecasted electricity prices and heat storage for the electric heated system are 7‐8 

%. For the system with the heat pump the savings are only around 2 %. This is due to the lower heat 

storage capacity of the system due to the limited maximum temperature in the tank caused by the limited 

output temperatures of the heat pump. 

5.6	Conclusions	and	discussion	

The systems have been tested during a cold winter and spring period of 2013 of about 2 months. The 

operation costs for the systems based on electric heating element(s) are at the same level and about twice 

as high as the operation costs for the system based on the heat pump.  

System 1 with the external heating element has shown to be marginally cheaper to operate compared to 

system 3 with the internal heating elements. This is due to better thermal stratification in the tank and 

therefore more operating hours for the solar collector loop. The heat loss coefficient is on the other hand 

higher with the external auxiliary heating element.  

The tank in system 3 have generally been operating at a higher average temperature which also have 

caused I higher overall heat loss from that system compared to the two other systems. This is causing a 

lower net utilized solar energy from that system. The higher average tank temperature in system 3 also 

indicates that it has worked better as storage therefore also giving a slightly higher cost saving compared to 

system 1 when the smart control uses forecasted electricity prices. 

The COP of 2.2 for the heat pump system gives an operating cost of system 2 of less than half the cost of 

the other systems. 

The cost reduction due to variable electricity prices is about 2‐8%. 

Most likely the results will be different for other periods. 

It must be mentioned that the energy used by the system with the heat pump is relatively high due to the 

cold outdoor temperature in the test period, since antifreeze operation starts for outdoor temperatures 

below +2°C. Further, the heat pump has 20 minutes start up periods with low efficiency, the heat pump can 

only heat the heat storage to 58°C, the volume flow rate in the heat pump loop is not optimal and the 

output power of the heat pump is relatively low in periods with low outdoor temperatures. 
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6.	Theoretical	investigations	

6.1	Simplified	simulations	

In  the  deregulated  electricity market  situation  in  the  Nordic  countries,  the  electricity  prices  can  vary 

dramatically  from  hour  to  hour.  Therefore  a  smart  control  system  that  can  use  and  adapt  to  these 

variations  is very desirable,  [28],  [29]. When a storage  tank  is available  in  the system,  it can be used  for 

storage of both solar thermal and auxiliary energy.  

As more and more renewable energy sources are feeding  into the electricity grid, the price variations will 

most probably be  larger during the day. This happens now  in Denmark where the wind power fraction  in 

the grid is higher than 20%.  

Typically  the electricity prices are higher during  the day  than  in  the night. This  is good  for  solar heating 

systems that can reduce the use of backup electricity during peak hours of the day. Especially  if the solar 

heating  system  inclusive  the  heat  storage  is  well  designed  and  properly  sized.  This  happens  partly 

automatically  in  existing  solar  combi  systems  with  normal  thermostatically  controlled  backup  electric 

heating elements or a heat pump. Also the thermal load of a house has a daily variation matching the price 

variations quite well, especially if the house has significant passive solar gains during the day. The problem 

today is that the customer is not given credit to this as variable electricity prices are very uncommon yet on 

the market. But most  likely  this will come  soon  for most customers as  this  is an  important possibility  to 

make it easier to introduce more renewable energy in the electric grid. 

A normal control system in a solar combi system does not have information about the weather and prices 

for  the  next  day.  Therefore  the  auxiliary  charge  can  not  be  optimized  for  high  solar  production  by 

minimizing  the auxiliary charge and optimizing  the power and  timepoint,  in  the night before.  If  this was 

possible it would allow more solar input to the store and less use of backup energy at high electricity prices. 

In a normal combi system a secure charging level in the store has to be maintained as if the next day will be 

rainy. Otherwise a lot of high cost electricity will be used during the peak hours of the next day to meet the 

load. 

There  are  several  control  options  for  varying  and  thereby  adapting  the  auxiliary  charge  of  the  storage. 

Figure  37  shows  sketches  of  the main  options.  They  can  be  divided  into  two main  principles:  Variable 

temperature  and  variable  volume  auxiliary  charge.  Both  ways  will  open  for  advanced  control  of  the 

auxiliary energy charge and thereby adaptation to the conditions of the electricity price variations, load and 

potential  solar  energy production  the next day.  To  the  left  in  figure 37,  the  standard  auxiliary  charging 

method with a  fixed volume and  thermostat control and to the right  the most advanced charging option 

with variable temperature and variable volume simultaneously. 

These two extremes, traditional and advanced control, are compared to give a potential for  improvement 

by smart tanks and smart control in a combi system.  

In this case a simplified calculation model has been chosen that can be implemented in Excel.  
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Figure 37. Auxiliary charge control options for the storage in a combisystem. The standard solution to the left with fixed volume 
and thermostat control and the most advanced to the right with variable volume and temperature and forecast control. 

The forecast control is here utilizing the real weather data for the next day in the simulation. This is done to 

separate and eliminate uncertainties  in system modeling and control  from  inevitable uncertainties  in  the 

weather forecasts.  

The simplified energy balance model, used here is shown in figure 38.  

All relevant energy flows in and out of the tank in the system are present, so no energy is neglected. In the 

figure also the very simple equation  for the auxiliary energy need  is shown. To be complete and realistic 

one  also  have  to  check  the  minimum  and  maximum  charge  level  Q(t)  so  that  the  minimum  load 

temperatures can be delivered and that the tank is not overheated or boiling of course. 

The component models are also very much simplified to first order options, to make it easy to implement in 

Excel without the need for iterative procedures. Still also here the main effects are present. In a next step it 

can be possible to refine both the system model and component models in Excel, but the accuracy gain  is 

limited for the aim of this study to find out the potential improvement level.  

For  future design optimization of  the  components  together with manufacturers  though,  continued work 

with a TRNSYS model  is very  interesting and the  idea  is to validate the TRNSYS model against the tests  in 

the laboratory. 
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Figure 38. The energy flows considered in the simplified model of the combisystem. The very simple equation for the required 

auxiliary charge is also given, together with limits for the energy content Q(t) of the store. 

Detailed and carefully monitored climate data from the DTU Byg weather station for year 2008 together 

with hourly electricity price data from Nordpool for year 2008 are used. The forecast calculations are based 

on known climate data the next day in the climate file. 

The system model is extremely simple as shown in figure 33. The aim here is to make a potential study how 

much ideal forecast control and ideal tank behavior (working as a capacitor for heat) can reduce the annual 

auxiliary costs in combination with addition of energy from a solar collector.  

The component models for solar collector and building are simplified to stationary first order models to 

avoid iterations in Excel. The storage tank is modeled according to the energy balance given in figure 38.  

The collector is tilted 45° and oriented due south. The collector model is an extremely simple first order 

model with an effective zero loss efficiency of 0.75 and a total heat loss factor of 3.5 W/m²K including pipe 

losses. The mean operating temperature of the collector is assumed to be constant 50°C. In a real system 

this temperature is of course varying with many other variables and parameters, in the system but here this 

is second order parameter and only affects the collector and pipe heat losses. 

The tank is modeled as an ideal “themal capacitor” and only the energy flows are studied, with no mixing 

between the energy flows as solar and auxiliary. The load and heat losses are also just extracted as a 

change in energy content of the store. The heat losses are assumed to be constant: 100 W total for the tank 

plus system outside the collector loop. In reality of course the losses are very dependent on the tank design 

and control. But as the charging and discharging powers are of a magnitude 10‐100 times larger, this heat 

loss variation was neglected in these calculations.  
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The auxiliary volume and auxiliary temperature of the tank are variable (but not calculated explicitly). The 

tank size is automatically adapted and set to the worst winter day, when the store has to be able to store 

the forecasted auxiliary need for one day, with the whole tank used as auxiliary volume. At this time of the 

year the solar charge is small and this volume need is neglected at this stage. 

In the normal reference system the auxiliary part for the store is kept at a constant minimum temperature 

of 60°C, but occasionally when there is a lot of solar radiation available the tank temperature will increase 

above this level. If the tank is heated above a max temperature of 95°C the solar and auxiliary charge is 

stopped.   

In the advanced forecast control alternative the auxiliary energy charge is done in the night and in an 

amount that will exactly meet the total load during the next day including house heating, hot water 

consumption and heat losses, but minus the predicted solar charge during the next day. 

The control timing of the auxiliary charge is simplified to a fixed time period each morning when the prices 

are at minimum around 3 o’clock very regularly in the Danish grid. This is due to the low load in the grid at 

the end of the night, when very little activities occur in the society. In the full forecast control also the time 

for charge should be optimized but this turned out to be too complicated in this simplified potential study. 

An estimate is therefore given for this case in the results, using the lowest price every day to calculate the 

annual auxiliary cost. 

Figure 39 shows an example of the hourly energy flows and energy content in the store in two control 

options 1) normal control and 2) forecast control. In the normal control case the auxiliary energy is added 

all the day instantaneously when needed. In the case of forecast control the auxiliary supply is done in the 

night to use the lowest possible electricity prices. The absolute level of the energy content curves 

Qstore=Q(t) (two upper ones) are not representative for the future system design. They are just shown 

relative to 0 °C here. In a real system the advanced auxiliary control can allow the store to go below the 

energy content of the normal storage control option, as the forecast information warrants the comfort the 

next hours. Also extreme stratification measures will work in this direction. 
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Figure 39. Hourly energy flows  in the system  in kW, Pload, Pcoll and Paux (four  lower curves) and energy content Qstore=Q(t) 

(the two upper curves) for the two control options. 100W/K house and 10 m² of collectors. The absolute level of the two upper 

energy content curves are not relevant for the auxiliary cost results, only the variations that reflects smart auxiliary charge at 

low prices. 

The  results  of  the  calculations  for  annual  auxiliary  costs  in  DKK  (Nordpool  cost  level),  have  been 

summarized in figure 40, 41 and 42.  

In figure 40 the costs are given for two different building insulation standards 200 W/K and 100 W/K, five 

different storage sizes and  four different solar collector areas 5‐20 m². The hot water  load has been  the 

same for all cases 100 l/day. 

The cost level is at the NORDPOOL electric stock exchange level http://www.nordpoolspot.com/. 

This is much lower than the final customer price level, so the potential savings in absolute numbers, in DKK 

per year, are much larger than shown in the diagrams.  

The  tank volume has been adapted  to a minimum  size needed  to  store enough energy  for  the different 

options. (The leftmost points on all curves represent a traditional tank design and a volume of 750 and 500 l 

has been set to be appropriate for the two house insulation standards).  
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Figure  40. Calculation  results  for  ideal  forecast  control  (the next days weather  is  known),  compared  to  a  standard  auxiliary 

control where  the  thermostat decides when  to use electricity  instantaneously. Note  in all  cases a  variable electricity  cost  is 

assumed for the system owner. The case of fixed price at the annual average level is only shown in figure 26. 

In Figure 41 and 42 the same calculations are shown as a function of collector area. Only the 200W/K house 

is shown in figure 41 to limit the number of curves. But here also the reference case is shown with constant 

electricity price all year  (uppermost curve) and  the extreme case of using  the  lowest price every day  (24 

hours)  is shown too, as the  lower curve giving the extreme  improvement potential. In figure 40 all curves 

are  for  the  same variable electricity price  conditions and only  the auxiliary charging  strategy/principle  is 

changed.  

 

Figure 41. Annual auxiliary cost variation for a 200 W/K house with different collector area and control option/pricing. Series 1 is 

the reference case with constant electricity price and normal thermostat aux control. Series 2 is the same thermostat control as 

series 1, but variable electricity price. Series 3 to 6 are shorter and shorter charging period and higher charging power around 

the minimum price time each day. Series 7 is the extreme case when the lowest electricity price each 24 hours is used. 
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In figure 42 the same calculations and curves are given for a well insulated house 100 W/K. It can be seen 

that the optimum collector area is smaller as expected closer to what is needed for the 100 l/day hot water 

demand.  Still  the  relative  cost  savings  between  a  traditional  system  without  solar  collectors  and  an 

advanced system with solar is in the range of 50%. 

 

Figure 42. Annual auxiliary cost variation for a 100W/K house. Otherwise the same curves as in Figure 26. 

The extra  cost of  receiving  the maximum electric power  level  (max kW) needed  to  charge  the  tank  in a 

short time span, is not included here, but this pricing may be adapted on the market in the future, as there 

is  plenty  of  power  available  in  the  grid when  the  load  is  low  and  the  electricity  kWh  cost  is  close  to 

minimum. The  curve  series 3  in  figure 36 with power needs of maximum 17 kW  can be met by normal 

domestic electric connections of  three phase 400V 25 A  for  the 200 W/K house. For  the 100 W/K house 

series 3‐5 can be covered with 16‐ 25 A  three phase  fuses at  the  final customer. The very  lowest curves 

need special arrangements to meet the maximum  load and are more shown as  limiting curves with just 1 

hour or  less charging time per day. In case of a heat pump the electric power need,  is at  least halved, for 

normal conditions and the electric power need is no problem. 

The combination of smart auxiliary control and addition of 10 m² of solar collectors in a solar combi system 

can reduce the auxiliary cost for a house by around 50% in an example for Danish conditions and a normal 

house.  

The annual auxiliary cost savings is around 3000‐5000 DKK on the Nordpool electricity cost level. The cost 

savings at the final customer price level is hard to predict, but can be estimated to two to three times larger 

depending on how the variable price structure will be and how energy and CO2 tax will change in this case. 

For the same collector area  in the system a smart forecast auxiliary control has the potential of reducing 

the auxiliary electricity cost by 30‐40% more alone. 

From  the  results  one  can  estimate  that  for  a  200 W/K  house with  100  l/day  hot water  load,  10 m²  of 

collectors is reasonable and for a well insulated 100 W/K house around 5 m² can be recommended. 
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The very simple system model and forecast control shown here seems to give reasonable results and the 

principle was used for the controller programming for the three laboratory test systems. Of course, a lot of 

refinements are possible. 

6.2	TRNSYS	simulations	

Investigations on simplified control strategy. 

A simplified control strategy is investigated for three smart (solar) heating systems with storage volumes of 

750 litres and solar collector areas of 0 m2, 9 m2 and 18 m2. The auxiliary volume can be 240 litres or 390 

litres or 750 litres. Auxiliary heating is restricted to the night time from 2 am until 5 am where the 

electricity price is low. The size of the auxiliary volume and the set point temperature of the auxiliary 

volume are determined month by month in such a way that the energy demand is fully covered at the 

lowest electricity price. The smart (solar) heating systems are referred to as S‐0m2, S‐9m2 and S‐18m2. 

Further calculations are made for a semi smart solar heating system with a storage volume of 750 litres and 

9 m2 solar collector area and a fixed auxiliary volume of 750 litres and a fixed set point temperature of 90 °C 

in such a way that the energy demand is fully covered when the auxiliary heating is restricted to the night 

time from 2 am until 5 am. The semi smart solar heating system is referred to as SS‐9m2. 

Finally, calculations are made for three traditional (solar) heating systems with storage volumes of 750 

litres and solar collector areas of 0 m2, 9 m2 and 18 m2. The auxiliary volumes and the set point 

temperatures are fixed to 240 litres and 50 °C, respectively and auxiliary heating can take place during all 

hours whenever it is needed in order to fully cover the energy demand. The traditional (solar) heating 

systems are referred to as T‐0m2, T‐9m2 and T‐18m2. 

All the calculations are made with a real highly variable electricity price hour by hour and with a fixed 

electricity price of 1.8 DKK/kWh.  

The control strategy is investigated with a TRNSYS model of a solar heating system. The TRNSYS model used 

is worked out in the solar heating and cooling program Task 32 within the International Energy Agency [30]. 

Figure 43 shows a schematically illustration of the solar heating system used in the calculation. The variable 

auxiliary volume is facilitated by varying the position of the outlet for the auxiliary loop. 

The weather data used in the calculations are measured at the solar radiation measurement station at the 

Technical University of Denmark in 2009 [31]. Figure 44 shows the ambient temperature, the beam 

irradiance on horizontal and the diffuse irradiance on horizontal.  

The electricity price used in the calculations is also from 2009. The electricity price is shown in Figure 45 as 

the variable electricity price hour by hour. It can be seen that there are large variations in the electricity 

price during the year. Detailed study of the electricity price shows that the price most often is lowest in the 

night in the hours from 2 am to 5 am.  
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 Figure 43. Schematically illustration the solar heating system used in the calculations. Picture from [30]. 

 

Figure 44. Left: The ambient temperature. Middle: The beam irradiance on horizontal. Right: The diffuse irradiance on 

horizontal. 

 

Figure 45. The hourly electricity price during 2009. The two graphs show the same with different resolution on the y‐axis. 
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The calculations are made for a single family house with a yearly energy consumption of about 4700 kWh 

and a daily hot water consumption of 100 litres heated from a varying cold water temperature to 45 °C, 

corresponding to a yearly energy consumption of about 1500 kWh. The cold water temperature varies 

between 3.4 °C and 16.0 °C throughout the year. Hot water for domestic hot water is taken from the top of 

the tank and lead through an external plate heat exchanger and back to the bottom of the tank. The 

domestic hot water is heated in the plate heat exchanger. Domestic hot water is tapped three times per 

day at 7 am, noon and 7 pm in three equal portions with a low volume flow rate.  

Figure 46 shows the monthly space heating consumption and domestic hot water consumption, 

respectively. The data of the solar heating system used in the calculations are listed in Table 16. 

 

 Figure 46.  Left: Energy from the storage used for space heating. Right: Energy from the storage used for domestic hot water. 

Table 16 shows data of the solar heating system used in the calculations. The heat loss coefficient of the 

sidearm and the external heat exchanger for domestic hot water preparation are not taken into calculation. 

Solar collector area  9 m2 / 18 m2  

Optical efficiency of incident radiation, 0  0.756 

Heat loss coefficients, a1 / a2  4.37 W/m2/K / 0.01 W/m2/K2  

Efficiency for all incidence angles,   η0∙k – a1∙(Tm ‐ Ta)/E – a2∙(Tm ‐ Ta)
2/E 

Incidence angle modifier for beam radiation, k  1‐tan4.2 (/2) 

Collector tilt / Orientation  45° / South 

Solar collector fluid  40% (weight) propylene glycol/water 

mixture 

Volume flow rate in solar collector loop  0.20 l/min/m2  

Storage volume / auxiliary volume  750 l / 240 l, 390 l, 750 l 

Height/diameter  1.89 m/ 0.71 m 
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Tank insulation top / side / bottom   200 mm / 200 mm / 20 mm 

Heat transfer coefficient of external heat 

exchanger in solar collector loop 

125 W/K per m2 collector 

Relative inlet/outlet height of domestic hot 

water loop 

0 / 1 

Relative outlet height of space heating system   0.84 

Relative inlet/outlet height in solar collector loop  Stratifier / 0.06 

Auxiliary power   30 kW 

Control system – Differential thermostat control with one sensor in the solar collector and one 

in the tank 

Relative height of temperature sensor in solar 

collector loop 

0.1 

Maximum/Minimum temperature differential  7 K / 0.5 K 

Table 16. Data used in the calculations. 

In figure 47 the solar energy and the auxiliary energy transferred to the storage tanks in the different 

calculated solar heating systems are shown. It can be seen that the smart solar heating systems and the 

semi smart solar heating system get less solar energy and more auxiliary energy to the storage tank than 

the traditional solar heating systems. The reason is that the auxiliary volume in the smart systems often is 

higher than the auxiliary volume in the traditional systems. As expected, the figure also shows that the 

difference between the auxiliary energy for solar heating systems with 9 m2 and 18 m2 solar collector areas 

is not very large, because the used storage volume is too small for a solar collector area of 18 m2. 

In figure 48 the electricity price for operating the smart, semi smart and traditional solar heating systems 

can be seen. The figure shows that the yearly electricity price is lower for the traditional solar heating 

systems than for the smart solar heating systems when a fixed electricity price is used. If the variable 

electricity price is used, the yearly electricity price is lowest for the smart solar heating systems and there is 

no difference in the yearly electricity price between the traditional and the semi smart solar heating 

system. Consequently, the use of cheap electricity plays a large role for the yearly auxiliary energy price.  

The most attractive system for the home owner is a system resulting in the lowest energy costs. Therefore 

the cost of the system as well as the yearly electricity costs must be considered. In order to elucidate which 

collector areas and tank volumes will result in the most attractive systems, more calculations are needed. 

Most likely, the optimal system size will depend on the heat demand of the house. 

In figure 49 the needed size of the auxiliary volume and the needed set point temperature of the auxiliary 

volume in the smart solar heating system with 9 m2 solar collector area are shown. Also the sensitivity of 

the monthly electricity price as function of the needed size of the auxiliary volume and the needed set 

point temperature of the auxiliary volume that can fully cover the energy demand in October is shown. It 
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can be seen that the electricity price can be reduced further by 5 % by using a stepless auxiliary volume 

instead of the three auxiliary volume sizes used in this investigation.  

 

   

Figure 47.  Left: Solar energy to the storage. Right: Auxiliary energy to the storage. 

 

Figure 48.  Left: Electricity price based on fixed electricity price of 1.8 DKK/kWh. Right: Electricity price based on variable 

electricity price. 

 

Figure 49. Left: Needed auxiliary heated volume and set point temperature of auxiliary heated volume if auxiliary heating takes 

place from 2 am to 5 am. Right: Electricity price in October as function of the auxiliary heated volume and the set point 

temperature of the auxiliary heated volume with variable electricity price. 
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Discussion and conclusions on the simplified control strategy.  

The investigation shows that it is possible to reduce the yearly energy price by 25 % by using a simple 

control strategy, a smart solar heating system and cheap electricity even if the thermal performance in 

terms of solar and auxiliary energy transferred to the tank is worse for the smart solar heating system than 

for the similar traditional solar heating system.  

For each month the energy demand is covered by the smart solar heating with one auxiliary volume with a 

fixed set point temperature resulting in the lowest monthly electricity price. The auxiliary volume and the 

set point temperature can be different from month to month. 

Therefore it is expected that the yearly energy price can be reduced even further by only using the exact 

needed auxiliary volume size and set point temperature for all periods. This can be achieved by a smart 

control system that makes use of weather forecast. 

The concept can be further improved by making use of a control system which is also based on forecasts of 

the solar heat production and on prognoses for electricity costs and a larger tank volume. 

The power used in the calculations, 30 kW is unrealistic high for a normal electricity installation in a single 

family house. It is used in order to be able to supply the needed energy during the allowed heating period 

of 3 hours during the night time with known cheap electricity. The electricity will be cheap in other periods 

during the day and a real smart control system will be able to utilize all periods with cheap electricity and 

consequently, lower power consumption is needed. If large power consumption is needed, this can be 

achieved by a heat pump. 

Investigations on advanced control strategy.  

The TRNSYS model T‐9m2 is used to calculate energy flows for three single family houses with different 

space heating consumption. The TRNSYS model is described in figure 43 and table 16. The energy flows are: 

heat loss from the storage tank, domestic hot water consumption, space heating consumption, solar energy 

transferred to the tank and auxiliary energy transferred to the tank. 

The houses have space heating consumption of 30 kWh/m2/year, 60 kWh/m2/year and 100 kWh/m2/year 

corresponding to 4660 kWh/year, 8940 kWh/year and 14670 kWh/year respectively. The houses are 

referred to as SH30, SH60 and SH100 corresponding to the respective space heating consumption. The 

weather data is measured during 2009, see figure 44 and electricity prices are also from 2009, see figure 

45.  

The energy flows and the auxiliary energy cost for the traditional solar heating systems are shown in table 

17. The electricity costs are the raw electricity cost multiplied by 3 in order to include the taxes and 

distribution costs the consumer also must pay. 
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  SH30   SH60  SH100 

Heat loss from storage tank [kWh/year]  510  485  464 

Domestic hot water consumption [kWh/year]  1503  1502  1503 

Space heating consumption [kWh/year]  4657  8941  14670 

Solar energy to storage tank [kWh/year]  1907  2092  2397 

Auxiliary energy to storage tank [kWh/year]  4747  8839  14240 

Cost for auxiliary energy for the traditional heating 

system based on variable electricity prices  [DKK/year] 

6375  11748  18633 

Cost for auxiliary energy for the traditional heating 

system based on a fixed electricity price of 1.8 

DKK/kWh  [DKK/year] 

8545  15910  25631 

Table 17. Energy flows and energy costs.  

From table 17 it is seen that the cost for auxiliary energy can be reduced by 25%, 26% and 27% for the 

houses with space heating consumptions of 30 kWh/m2/year, 60 kWh/m2/year and 100 kWh/m2/year 

respectively by using variable electricity prices instead of a fixed electricity price.  

Now, the costs for electricity in the three single family houses are calculated hour by hour in such a way 

that the needed energy is always covered with the cheapest electricity price possible. Three forecast 

periods of 12 hours, 24 hours and 36 hours are used for the calculations. The hour by hour energy flows 

from the TRNSYS calculations are used, except the calculated auxiliary consumption. Based on an energy 

balance, the hourly auxiliary energy need is calculated: 

Solar energy to tank – tank heat loss – domestic hot water – space heating = auxiliary energy need 

If the energy balance shows a surplus of energy, this energy is distributed to the following hours if the 

energy balance shows an energy demand in the following hours and the storage tank is not fully charged. In 

the calculations, the storage tank can be charged with maximum 30 kWh.   

Based on the length of forecast period, the auxiliary energy need is covered at the cheapest electricity 

price. Table 18 shows the cost for electricity based on the variable electricity price and how much the price 

is reduced compared to a traditional control system based on variable electricity prices and a fixed 

electricity price of 1.8 DKK/kWh. 
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  SH30  Reduction 

compared to 

traditional 

system with 

variable / fixed 

electricity price 

[%] 

 SH60  Reduction 

compared to 

traditional 

system with 

variable / fixed 

electricity price 

[%] 

SH100  Reduction 

compared to 

traditional 

system with 

variable / fixed 

electricity price 

[%] 

Cost for auxiliary 

energy based on 

variable electricity 

prices, 12 hour forecast 

[DKK/year] 

5160  19.1  / 39.6  9564  18.6 / 39.9  15597  16.3 / 39.2 

Cost for auxiliary 

energy based on 

variable electricity 

prices, 24 hour forecast 

[DKK/year] 

4929  22.7 / 42.3  9252  21.3 / 41.9  15128  18.8 / 41.0 

Cost for auxiliary 

energy based on 

variable electricity 

prices, 36 hour forecast 

[DKK/year] 

4902  23.1 / 42.6  9226  21.5 / 42.0  15075  19.1 / 41.2 

Table 18. Costs for auxiliary energy. 

6.3	Summary	and	conclusions	

The investigation shows that it is possible to reduce the yearly energy price by around 40% if a smart 

control system that makes use of the highly variable electricity prices based on weather forecast and 

electricity price forecast is used. 

The investigation also shows that a forecast of 24 hours is sufficient for a solar heating system with a tank 

of 750 litres and a solar collector area of 9 m2. In order to utilize longer weather and electricity forecast 

periods, larger solar heating systems are needed. 

7.	Socio‐economic	benefits	by	implementation	of	the	energy	unit	in	large	
numbers	

7.1	Methodology	for	analysing	socio‐economic	benefit	

The substitution of individual oil and natural gas boilers with the solar/electric heating units will reduce the use of oil 

and natural gas, but on the other hand, it will increase the demand of electricity. When the solar/electric heating units 

are operated in an optimal way they will, however, mainly use electricity in hours with low electricity prices. This may 
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for instance be in hours with large contributions from wind power, and thereby the solar/electric heating units can 

help on utilising excess generation from wind turbines and contribute to integrating more wind power in the system. 

The socio‐economic benefit is analysed by use of the Balmorel model, www.balmoral.com, which is a detailed model 

of the overall electricity and heat system. The model takes into consideration variations in electricity demand, 

technical and economic data for production units (e.g. power plants), fuel prices, share of wind power in the system 

etc. The analysis estimates ‐ under given assumptions ‐ the interplay between the solar/electric heating units and the 

overall system, and based on this it also estimates changes in total fuel consumption, emissions, costs etc. as a 

consequence of the solar/electric heating units. 

The model essentially finds a least‐cost solution for electricity and heat taking into account: 

› Electricity and heat demand (including time variations) 

› Technical and economic characteristics for each kind of production unit, e.g., capacities, fuel efficiencies, 

operation and maintenance costs, and fuel prices 

› Environmental taxes, CO2‐price and regulations 

› Transmission capacities between regions and countries 

As output, the model derives among others electricity and heat generation at different units, electricity exchange 

between regions and countries, electricity prices and total costs in the system. 

By comparing one model run including the solar/electric heating units with one model run without the solar/electric 

heating units, it is possible to estimate how the solar/electric heating units influence on the total system in terms of: 

› Difference in production at generation units in the system 

› Difference in fuel consumption 

› Difference in emissions 

› Difference in total costs 

7.2	General	assumptions	

The analyses have been carried out for the year 2020. In this section, some of the main general assumptions are listed. 

Wind power 

The electricity generation in Denmark will be covered by 50 % wind power in 2020. 

Geographical scope 

The specific model version used contains the electricity and CHP system in the Nordic countries (Denmark, Finland, 

Norway and Sweden) and Germany. 
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Fuel prices 

The development in prices of fuel is based on the latest forecast from the Danish Energy Agency from September 

2012. Fuel prices used for the gas and oil boilers are "an consumer" which means that they include distribution costs. 

In order to analyse the solar/electric heating units in a consistent way, distribution costs (according to the DEA 

assumption) are also added to the spot price regarding electricity use in the solar/electric heating units. 

CO2‐costs 

Similar to the fuel prices, the CO2‐costs are based on the latest forecast from the Danish Energy Agency (from 

September 2012). The CO2‐price in 2020 is approximately 162 DKK/ton. 

Time resolution 

The analyses have been carried out by use of an hourly time division, i.e. 8.760 time segments per year. 

7.3	Approach	to	scenario	analyses	

The analyses are carried out for the following four scenarios (EH means electric heater and HP mean heat pump): 

› S/E heating units (HP) replaces gas and oil boilers 

› S/E heating units (EH) replaces gas and oil boilers 

› S/E heating units (HP) replaces gas and oil boilers ‐ lower heat demand 

› S/E heating units (EH) replaces gas and oil boilers ‐ lower heat demand 

The scenarios with lower heat demand are relevant because future buildings are expected to have a much lower heat 

demand than today. 

In addition to these scenarios, scenarios with double heat storage capacity were carried out. The calculations showed 

no change in the results compared to the reference scenarios which means that the capacity of the heat storage in the 

reference scenario is larger than needed at any time during the year. 

7.4	Specific	assumptions	in	the	scenario	analyses	

Heat demand and capacities 

According to the Danish Energy Agency there were 2.7 million heat installations in Denmark in 2011. The allocation on 

natural gas and oil installations are shown in table 19. 

Natural gas 
boilers 

Oil boilers  District 
heating 

Others  Total 

418  365  1,694  269  2,745 

Table 19. Number of heat installations in Denmark in 2011 

The distribution of the installations and heat demand between Eastern and Western Denmark is unknown. An 

assumption is made that the distribution is 45 % and 55 %, respectively. 
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The heat demand for the households supplied by individual oil and gas boilers is 18 PJ and 27 PJ, respectively, see 

table 20. 

Number of heating units in thousands  Heat demand, GWh 

East  West  East  West 

NG  Oil  NG  Oil  NG  Oil  NG  Oil 

188  165  230  201  3,366  2,255  4,113  2,756 

Source: "Energistatistik 2011", Danish Energy Agency, September 2012 

Table 20. Heat installations and demand in individual oil and gas supplied areas distributed by geographical areas and fuel type 

In the analysis, 10 % of the heat installations are considered. The reason for limiting the number of gas and oil 

installations converted to the solar heating systems is that 100 % is probably not realistic and because the more solar 

heating systems established the more energy system in Denmark (and the neighbouring countries) will be affected. 

The necessary heat capacities in the areas are determined by the respective heat demands. In the reference scenario 

with only oil and gas boilers, there is not heat storage. This means that the boilers must be able to cover the peak 

demands. 

Figure 50 shows the heat demand for a typical winter week on an hourly basis. 
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Figure 50. Heat demand for households in Eastern Denmark (week 15, 2020) 

Existing oil and gas boilers 

The capacity of the individual gas and oil units is assumed to be large enough to cover the total heat demand if the 

micro CHP unit should be out of operation. Both the oil boiler and the gas boiler have an assumed heat efficiency of 85 

%. 

Solar/electric heating units 
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Data for the solar/electric heating units are listed in table 21. 

  Per unit  Total 

Solar heating 

‐ area, m2 

‐ capacity, kW 

 

9 

6.3 

 

705,000 

494,000 

COP for heat pump  3.3  ‐ 

Efficiency for electric 
heater 

100 %  ‐ 

Heat storage 

‐ volume, m2 

‐ energy content, kWh 

‐ load and unload, kW 

 

0.750 

33.75 

28 

 

59,000 

2,645,000 

2,204,000 

Table 21. Technology and economic data for the solar heating systems. 

The solar heating units are assumed to produce 500 kWh/m2/year (corresponding to app.714 full load hours). 

7.5	Results	of	scenario	analyses	

S/E heating units (HP) replaces gas and oil boilers 

The heat generation in the areas with oil and natural gas boilers in the reference scenario is shown in figure 51. The 

two left columns show the heat generation from the oil and natural gas boilers in the reference scenario. The two 

right columns show the heat generation in the solar heating scenario with heat pumps. In the solar heating scenario 

with heat pumps the solar collectors generates 287 GWh or 23 % of the total heat demand of 1.249 GWh. The 

potential heat generation from the solar collectors is 353 GWh and it is therefore only about 80 % of the potential 

heat generation from the solar collectors which are generated. 

The content of the heat storage is restricted in the model to begin and end the week at the same level. This means 

that even if the solar collectors generated the potential amount of heat and the heat storage were unlimited then 

heat could not be moved to another week. This indicates that the 9 m2 of solar collectors could be too large compared 

with the demand. This is of course a weighing between costs and CO2 reduction. It also indicates that the size of the 

storage meets the storage demand and perhaps exceeds it. 
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Figure 51. Heat production in areas with oil and natural gas boilers in the reference scenario (left hand side of the figure) and in 

the solar heating scenario with heat pumps (right hand side of the figure). 

Figure 52 illustrates a summer week where the heat demand is covered entirely by the solar collectors ‐ with support 

of the heat storage. The figure shows that the solar collectors generate heat during the daytime and that the 

generation exceeds the heat demand. The surplus heat generation from the solar collectors will therefore be loaded 

into the storage which then will cover the heat demand during the night. 
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Figure 52. Heat generation (unload from the heat storage), heat demand and heat storage content in the natural gas area in 

Eastern Denmark (week 26, day 2). 

Figure 53 illustrates a winter week with no heat generation from the solar collectors. The heat pumps cover all heat 

demand during the day. With use of the heat storage the heat pumps can be used only during night time when 

electricity price is low and surplus heat generation is loaded into the heat storage. 
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Figure 53. Heat generation (unload from the heat storage) and heat demand in the natural gas area in Eastern Denmark along 

with the electricity price in Eastern Denmark (week 1, day 3). 

Figure 54 illustrates a spring week where both the heat pump and the solar collectors provides the heat. The figure 

shows the interaction between the heat pump, solar collectors and heat storage. The solar collectors generate heat 

during nine hours in the middle of the day. The heat demand not met by the solar collectors is supplied by heat from 

the heat pump stored in the heat storage. Without the heat storage the heat would have been supplied directly from 

the heat pump. Because of the heat storage the heat ‐ not supplied by the solar collectors ‐ is generated by the heat 

pumps during the night where the electricity price is low and then stored in the heat storage. 
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Figure 54. Heat generation (unload from heat storage) and heat storage content in the natural gas area in the Eastern Denmark 

(week 15, day 2). 

The conversion from heat only boilers to electric heat pumps will increase the electricity generation. The change in 

electricity generation by fuels is shown in figure 55. 
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Figure 55. Change in electricity generation by fuels (positive equals increase). 

The increase of the electricity generation leads to a large increase in the use of coal and natural gas which is expected. 

What is more interesting is that the combination of heat pumps and heat storage increases the electricity generation 

from both water and wind. In the reference scenario this electricity generation didn't occur because generation and 

demand did not match at the necessary time periods. What would actually happen in the reference scenario was that 

the hydro power plants without storage would let the water run without generating electricity and some of the wind 

turbines would be shut down. The increase in electricity generation from water and wind technologies is CO2 free and 

almost cost free (no fuel costs). 

The increased electricity generation leads to an increase in fuel consumption for electricity generation. But the 

electricity replaces a lot of oil and natural gas used for individual heating. Figure34 shows the change in total fuel 

consumption when replacing individual oil and natural gas heat only boilers with a combination of solar collectors, 

heat pumps and heat storages. 

Figure 56 shows a total decrease of fuel consumption in the system. The decrease of fuel consumption is primarily a 

result of the high COP of the heat pumps and the fuel free heat generation from the solar collectors. In addition to this 

app. 25 % of the increase in electricity generation is supplied by water and wind technologies which consume no fuels. 
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Figure 56. Change in fuel consumption for electricity and heat generation (positive equals increase). 

The large decrease of fuels and especially of fossil fuels causes the CO2 emission to decrease with 200,000 tons per 

year. The CO2 emission in the reference and solar heating scenario along with the CO2 reduction are listed in table 22. 

CO2‐emission 

Reference scenario 
[kTon] 

Solar heating scenario 
[kton] 

Reduction 
[kTon] 

364,447  364,247  200 

Table 22. CO2 emission and reduction. 

S/E heating units (EH) replaces gas and oil boilers 

This solar heating scenario is very similar to the previous described scenario. The only difference is that instead of heat 

pumps with a COP of 3.3 the solar collectors are backed up by electric heater with an efficiency of 100 %. 

The interaction between the electric heater and heat storage is the same as with the heat pump and heat storage. The 

electric heating units will generate heat when the electricity price is low and the heat generation from the electric 

heaters in this scenario is the same as the heat generation in the solar heating scenario with heat pumps. The heat 

generation from the technologies in both the reference and the solar heating scenario with electric heating is 

illustrated in figure 57. 
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Figure 57. Heat production in areas with oil and natural gas boilers in the reference scenario (left hand side of the figure) and in 

the solar heating scenario with electric heaters (right hand side of the figure). 

As with the heat pumps the electric heating units result in an increase of electricity generation. The increase is higher 

due to the lower performance of the electric heating units compared with the heat pumps. The fuel consumption 

increase allocated on fossil and fossil free fuels are app. the same in the two solar heating scenarios. The change in 

electricity generation by fuels is shown in figure 58. 
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Figure 58. Change in electricity generation by fuels (positive equals increase). 

Coal based condensing power plants are often the marginal electricity producer. The electricity efficiency of these 

types of plants is usually in the area of 35‐40 %. Even though the electric heating units have an efficiency of 100 % the 

efficiency from fuel to generated heat will be 35‐40 %. The oil and natural gas boilers had fuel efficiencies of 85 %. 

The change in fuel consumption is shown in figure 59. The total fuel consumption increases when converting oil and 

natural gas boilers to the solar heating systems with electric heater. 
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Figure 59. Change in fuel consumption for electricity and heat generation (positive equals increase). 

The increase in fossil fuel consumption leads to an increase in CO2 emission of 155,000 tons. CO2 emission and 

reduction are listed in table 23. 

CO2‐emission 

Reference scenario 
[kTon] 

Solar heating scenario 
[kton] 

Reduction 
[kTon] 

364,447  364,601  ‐155 

Table 23. CO2 emission and reduction. 

All scenarios 

The economic benefit and the CO2‐reductions in all scenarios including the ones with lower heat demand are shown in 

the table 24. The economic benefit includes the benefit/costs of reduced/increased CO2. 
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  Economic benefit (reduction in 
socio‐economic costs) 

Reduction in CO2 (which is also 
included in the economic benefit) 

 
Million EUR/year 

Euro per 
installation/year 

1,000 ton/year 
Ton per 
installation/year 

S/E heating units 
(HP) replaces gas 
and oil boilers 

64  814  200  2,5 

S/E heating units 
(EH) replaces gas 
and oil boilers  33  426  ‐155  ‐2,0 

S/E heating units 
(HP) replaces gas 
and oil boilers ‐ 
lower heat 
demand  26  329  53  0,7 

S/E heating units 
(EH) replaces gas 
and oil boilers ‐ 
lower heat 
demand  23  292  17  0,2 

Table 24. Socio‐economic benefit and CO2‐reduction by scenarios in 2020 

 

It appears that all scenarios result in a socio‐economic benefit compared with the reference scenario with oil and 

natural gas boilers. The economic results don't take into consideration the investment of neither the solar heating 

systems nor the oil and gas boilers. The fixed O&M costs are excluded as well. 

The CO2 emission is reduced in all scenarios besides the scenario with electric heating and regular heat demand. The 

reason is ‐ as mentioned earlier ‐ that the fuel‐to‐heat efficiency of electric heating units is often below the 

corresponding efficiency of the oil and gas boilers which increases the total fuel consumption. Besides this the fuel 

shifts from oil and gas to primarily coal. 

The CO2 emission is reduced in the scenario with electric heating and lower heat demand. In this scenario the solar 

collectors generates a bit more than 50 % of the yearly heat demand (127 GWh of a total heat demand of 250 GWh). 

The high CO2 free heat generation from the solar collectors compensates for the higher fuel use from the electric 

heating units. 

7.6	Summary	and	conclusions	

As part of the project, a number of quantitative analyses have been carried out focusing on the economic benefit of 

solar heating systems with either electric heating units or heat pumps. This benefit has been estimated by use of the 

system modelling tool Balmorel, which simulates the electricity and heat generation in electricity and CHP systems. 

During the summer where the heat generation from the solar collectors is highest the heat generation from the solar 

collectors exceeds the heat demand and not all solar heating potential is used. Larger heat storages aren't the solution 

except if these are seasonal storages. 

The heat storage is used to store solar heating from the daytime to be used at night time and to store heat generated 

by electric heating units or heat pumps when electricity prices is low to periods when electricity prices are high. 
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Without the heat storages the solar heating generation would be significantly lower than the potential solar heating 

generation and the price of heat generated by the electric heating units/heat pumps would be higher. Both the 

reduced solar heating generation and the non‐flexible heat generation from the electric heating units/heat pumps 

would result in a lower CO2 reduction. 

All scenarios result in a socio‐economic benefit compared with the reference scenario with oil and gas boilers. The 

total benefit of 23‐64 M€ or 292‐813 €, corresponding to 2175 ‐ 6057 DKK per installation per year should be 

compared to the extra annual costs of establishing the solar heating systems instead of re‐establishing the current oil 

and gas boilers. 

The use of electric heating units/heat pumps for heat generation leads to an increase in fuel consumption for 

electricity generation. When using electric heating units the fuel‐to‐heat efficiency is below the fuel‐to heat efficiency 

for the oil and gas boilers. This means that the CO2 emission increases for the part of the heat generated by these 

units. The heat from the solar collectors has the opposite influence. 

In the scenario with electric heating units and regular heat demand the CO2 reduction from the solar collectors is 

lower than the CO2 increase because of the high fuel consumption for electricity for the electric heating units. This 

means that the total CO2 emission increases. In the scenario with electric heating units and low heat demand the CO2 

emission decreases due to the relatively large heat generated by the solar collectors. Both scenarios with heat pumps 

cause the CO2 emission to fall. 

8.	Evaluation	of	different	energy	unit	designs	
The yearly energy costs for space heating and domestic hot water supply for a typical house can be reduced 

by 50‐70% by a solar/electric heating system with a collector area of 10 m² and a smart heat storage with a 

smart control system as long as the auxiliary/existing energy supply system is electric heating elements. 

The experimentally investigated solar/electric heating systems based on one or more electric heating 

elements have almost the same operation costs for the consumer. The operation costs for the investigated 

solar/electric heating system based on a heat pump as auxiliary energy supply system is about half the 

operation costs for the solar/electric heating systems based on electric heating element(s). 

The costs of a solar/electric heating system with a 10 m² solar collector, a 750 l smart heat storage  and a 

smart control system is about 80,000 DKK, while the costs of the system with the investigated heat pump 

instead of electric heating element(s) is  about 130,000 DKK. 

Based on the system costs and the operation costs it seems that the system based on electric heating 

element(s) is most attractive for house owners with houses with low heat demands, while the system 

based on the heat pump is most attractive for house owners with houses with large heat demands. 

Most likely heat pumps with the ground as heat source will be more attractive for houses with high heat 

demands than the investigated air/liquid heat pump.   

9	Conclusions,	recommendations	and	outlook	
Starting from a normal house a solar combi system (for hot water and house heating) can save 20‐30% 

energy cost, alone, depending on sizing of collector area and storage volume. 
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By replacing the heat storage with a smart tank based on electric heating elements and a smart control 

based on weather/load forecast and electricity price information 24 hours ahead, another 30‐40% can be 

saved.  

That is: A solar heating system with a solar collector area of about 10 m², a smart tank based on electric 

heating element and a smart control system, can reduce the energy costs of the house by at least 50%.  

No increase of heat storage volume is needed to utilize the smart control. 

The savings in % are similar for different levels of building insulation. 

As expected a heat pump in the system can further reduce the auxiliary electricity cost by 50% of the 

remaining auxiliary use (COP = 2) but the investment cost for the system will increase significantly. Systems 

based on electric heating elements are most suitable for houses with a low heat demand, while systems 

based on a heat pump are most attractive for houses with a high heat demand. 

The socio economic benefit for the national energy system is in the range 2175 ‐ 6057 DKK per year for a 

system.   

A non adaptive control system based on weather forecasts, prognoses for electricity prices and simple 

prognoses for solar heat production of solar collectors and heat demand for a house has been tested in real 

life in a laboratory test facility for three different solar heating system designs:  Two systems were based on 

electric heating elements and one system was based a heat pump. 

More advanced adaptive models for control based on forecasts have been developed by DTU Informatics. 

Solar contribution from collectors, heat demand of a house and electricity price and weather is treated to 

improve the efficiency and comfort of this concept in a real system with as little input as possible. Also 

double check of the forecast results is built in. It is expected that such an advanced control system will 

further decrease the energy costs somewhat for the consumer.  

Comfort is very important for the normal final user. Therefore the control system should be prepared to 

add energy according to user needs, independently of auxiliary cost for the individual hour. Sometimes the 

forecast control can fail due to special weather conditions or price situations and too little energy would be 

available for space heating and hot water. Adaptive control is also a big advantage in this respect as the use 

behavior can change with time too. 

The project has created an excellent basis for development of optimized solar/electric heating systems for 

the future energy system. Development of a product is the next step. A complete system concept including 

solar collectors, a smart heat storage, electric heating element(s) or a heat pump and a smart adaptive 

forecast control is desirable to avoid installation mistakes. Optimization is needed in order to find the most 

suitable collector area and tank volume for houses with different heat demands.  

Full adaptive control should be implemented in the system, to automatically adjust to the building, 

weather, location and persons living in the house. 

Use of the building thermal capacity could be used in the future, in addition to the storage tank capacity. 
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It is recommended to develop a system which is suitable for a house with a low and for a house with a high 

heat demand, to test the concepts in the laboratory and to demonstrate the suitability of the systems in 

practice. 

In general, it is recommended to investigate if smart tanks and/or smart controllers are attractive for 

normal solar heating systems.  

Finally, it should be mentioned that cooling is a coming comfort need in modern houses and that cooling 

can be supplied from a solar heating/heat pump system based on a ground source heat exchanger. 
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Abstract

This paper presents a method for correction and alignment of global radiation observations based on information obtained from cal-
culated global radiation, in the present study one-hour forecast of global radiation from a numerical weather prediction (NWP) model is
used. Systematical errors detected in the observations are corrected. These are errors such as: tilt in the leveling of the sensor, shadowing
from surrounding objects, clipping and saturation in the signal processing, and errors from dirt and wear. The method is based on a
statistical non-parametric clear-sky model which is applied to both the observed and the calculated radiation in order to find systematic
deviations between them. The method is applied to correct global radiation observations from a climate station located at a district heat-
ing plant in Denmark. The results are compared to observations recorded at the Danish Technical University. The method can be useful
for optimized use of solar radiation observations for forecasting, monitoring, and modeling of energy production and load which are
affected by solar radiation.
� 2012 Elsevier Ltd. All rights reserved.

Keywords: Global solar radiation; Solar energy; Observations; Correction; Quality control; Statistical clear-sky model
1. Introduction

The transition to a reliable and secure energy system
based on weather dependent production technologies, espe-
cially wind and solar, will require new methods for auto-
mated handling of climate data recorded at, in most
cases, unsupervised and uncalibrated stations. Reliable
observations of solar radiation are an important source
of information for operation of the energy system, espe-
cially for the energy production and load which are depen-
dent on the solar radiation, for example production from
0038-092X/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
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photovoltaics and solar collectors, and load from heating
and cooling of buildings.

Observations of solar radiation are exposed to many
sources of errors. Younes et al. (2005) list the most impor-
tant types of errors and divide the errors into two major cat-
egories: equipment errors and operation related errors. The
present solar radiation sensor technology makes it easy and
cheap to install and connect sensors to the Internet, both for
professional and amateur applications. Web sites already
provide on-line data (DMI, 2012), which can become an
important source of information for operation of energy
systems. Such, mostly unsupervised and unvalidated instal-
lations, will be highly exposed to different error sources.

In the present study observations of global radiation
from a station at a district heating plant in Sønderborg,
Denmark, are used. Three types of errors are found in
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Nomenclature

Gt observed global radiation (W/m2)
Gnwp

t numerical weather predictions (NWPs) of global
radiation (W/m2)

Gcs clear-sky global radiation (W/m2)
Bcs direct clear-sky global radiation (W/m2)
Dcs diffuse clear-sky global radiation (W/m2)
G global radiation (W/m2)
Iext extraterrestrial radiation (W/m2)
Gpr

t projection of global radiation to the plane nor-
mal to the direct solar radiation (W/m2)bGpr;cs

t estimated clear-sky radiation on a plane normal
to the direct solarradiation (W/m2)bGcs

t estimated clear-sky global radiation (modeled
based on observations) (W/m2)bGnwp;cs

t t clear-sky global radiation for numerical weather
predictions (NWPs) (W/m2)bGco

t corrected global radiation (W/m2)
hzenith

t solar zenith angle (rad)

sa,B transmittance function of the atmosphere for di-
rect radiation under clear-sky conditions

sc transmittance function of clouds in the atmo-
sphere

bt parameter vector for the local quantile regres-
sion

qq(u) the quantile regression objective function
q sample quantile to be estimated in the local

quantile regression
i counter of days (days)
j counter in samples
t time (h)
tsp sample period (h)
hdoy bandwidth of kernel function in the day of year

dimension (days)
htod bandwidth of kernel function in the time of day

dimension (h)
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the observations: tilt in the leveling of the sensor, shadow-
ing from surrounding objects, and clipping at a maximum
level. A method is presented for correction of the observa-
tions on the basis of information extracted from global
radiation calculated using a model based on physical prin-
ciples. The method is based on a non-parametric statistical
clear-sky model and requires no further information about
the installation and sensor than the observed values and the
location of the station. With the statistical clear-sky model
the sensor output level under clear-sky conditions is mod-
eled directly from the observations. This is compared to
solar radiation calculated with a clear-sky model based
on physical modeling of the optical effects through the
atmosphere, such as the models described by Davies and
McKay (1982), Bird (1984), Rigollier et al. (2000), Mueller
et al. (2004), and Ineichen (2006). In the preset study fore-
casts from a numerical weather prediction (NWP) model is
used. The result after correction of the observations is com-
pared to high quality measurements recorded at the Danish
Technical University.

Studies on quality control of measured solar radiation
data can be found in the literature. The procedures are
semi-automatic and are mostly based on comparison to
physical models for detection of erroneous measurements
(Geiger et al., 2002; Younes et al., 2005; Isaac and Moradi,
2009; Journée and Bertrand, 2011).

The paper is organized as follows: the data used in the
study is presented in the next section. This is followed by
a section in which the statistical clear-sky model is described
and a section where the correction is presented. The paper
ends with a discussion of the method and a conclusion.
13
2. Data: observations and numerical weather predictions of

global radiation

The data used in this study consists of time series of glo-
bal radiation observed at two weather stations: one located
in Sønderborg (54.91�N and 9.80�E) and one located at
DTU Byg in Lyngby (55.79�N and 12.52�E), both in Den-
mark. In addition NWPs of global radiation for the same
locations are used. All values are hourly averages. All times
are in UTC and the time points are set to the end of the
hour.

2.1. Observations

The observations from Sønderborg are recorded with a
weather station, which is located at a district heating plant.
The weather station is mounted on a pole on a single-storey
building as seen on the image in Fig. 1. No information
about the type of the solar radiation sensor was available.
The time series from Sønderborg is

fGt; t ¼ 1; . . . ;Ng ð1Þ
where N = 17520 and Gt is the observed average global
radiation between time t and t � 1. The upper plot in
Fig. 2 shows the series which spans from 2009-01-01 to
2011-01-01. From this plot it is readily seen that the obser-
vations are not without systematic errors, for example it
can be seen that the values are clipped at a maximum level.
This and other types of systematic errors are corrected for
the Sønderborg observations using the method described in
this paper.
7



Fig. 1. The weather station in Sønderborg, which is mounted on a pole on the roof of a single-storey district heating plant building (in the image it is on
the left side of the building).

Fig. 2. The upper plot shows the time series of observed global radiation in Sønderborg. In the lower plot the observations and NWPs of global radiation
in Sønderborg are shown for 5 days in August 2009.

Fig. 3. The upper plot shows the time series of observed global radiation at DTU Byg covering the entire year 2009. In the lower plot the observations and
NWPs of global radiation at DTU Byg are shown for five days in August 2009.
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The second series of observed global radiation is from a
weather station at DTU Byg in Lyngby and is used as a ref-
erence to check the corrected data. The upper plot in Fig. 3
shows the series which spans from 2009-01-01 to 2010-01-
01. It was measured with a Kipp and Zohnen CM10 pyra-
nometer and the weather station was regularly supervised
138
in the measuring period. The measurement error is in the
range of maximum ±3% from the world standard and high
class calibrated sensor inter-comparisons indicate an error
within the range of ±1%. The lower plot in Fig. 3 shows the
observations together with the NWPs of global radiation
(defined in the next section) for five days in August 2009.



Fig. 4. The values of the Sønderborg observations versus the NWPs
covering the entire year 2009. The morning values and the afternoon
values are indicated by different symbols and colors. The two lines show a
locally weighted least squares regression estimate of the relation between
the variables in the morning and the afternoon. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. The values of observed versus NWP global radiation at DTU Byg
in Lyngby, Denmark. The morning values and the afternoon values are
plotted with different symbols and colors. The two lines are indicating the
relation between the variables: one for the morning and one for the
afternoon. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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It is seen that the level of the observed global radiation is
generally lower than the level of the NWPs, but that this
there is no systematic difference between the deviation in
the morning and in the afternoon. The lower level is most
likely due to a bias in the NWPs. Since the accuracy of the
DTU observations is high and no systematic errors, apart
from the generally lower level, is seen, then it is found valid
to assume that the DTU observations can used be as a ref-
erence to verify the NWPs and the results of the correction.

2.2. Numerical weather predictions

The numerical weather predictions (NWPs) used in the
study are provided by the Danish Meteorological Institute
(DMI). The NWP model used is DMI-HIRLAM-S05,
which has a 5 km grid and 40 vertical layers, see (DMI,
2011; Hansen Sass et al., 2002) for more details. The fore-
casts are updated four times per day and have a calculation
delay of 4 h (e.g. the forecast starting at 00:00 is available at
04:00). Two time series, consisting of the latest available
forecast (lead times are 5–11 h) of global radiation, are used:
one for the location in Sønderborg and one for the location
of DTU in Lyngby. The time series of NWPs for the Sønder-
borg location is used for the correction. It is denoted with

Gnwp
t ; t ¼ 1; . . . ;N

� �
ð2Þ

The time series for DTU Byg in Lyngby is shown, together
with the observations, in the lower plot of Fig. 3 for five
days in August.

2.3. Systematic errors in Sønderborg observations

The lower plot in Fig. 2 shows the Sønderborg observa-
tions and the NWPs of global radiation for five days in
August 2009. From the first day, which is a clear-sky
day, at least two types of errors can be seen in the observa-
tions: compared to the NWPs the observed level is too low
in the morning and too high in the afternoon, which is
most likely due to the sensor being tilted. It could also be
due to a shift in time of the sensor, however it was thor-
oughly checked that the night hours, where the radiation
was zero (or very close to zero), are with only a few excep-
tions the same hours for both the observed and the NWPs,
indicating that they are well synchronized. The second type
of error is seen just before noon, where the observations
have a drop, which is repeated at the same time of day

on following clear-sky day. The drop is caused by shading
from the chimney, which is located close to the weather sta-
tion, as seen on the image in Fig. 1.

The scatter plot in Fig. 4 shows the observed values ver-
sus the NWPs, together with two lines indicating the rela-
tion between the variables in the morning and in the
afternoon. The lines are calculated using locally weighted
least squares regression between the observations and the
NWPs, using the function loess () in R (R Development
Core Team, 2011) with a bandwidth: span = 0.9. A similar
plot for the DTU observations is found in Fig. 5. The fol-
13
lowing three distinct systematic errors can be seen from the
scatter plot for the Sønderborg observations:
9
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1. Firstly, the observations are clipped at a maximum level
around 860 W/m2.

2. Secondly, the level of the morning observations is gener-
ally lower than the level of the afternoon observations.
This is confirmed by the fitted regression lines, which
mostly have a difference of at least 50–75 W/m2. This
is clearly a larger difference than seen for the two fitted
lines for the DTU observations in Fig. 5.

3. Finally, the morning values are significantly lower in the
NWP range of 700–900 W/m2. These values are the
observations in the drop before noon, which, as
described earlier, is caused by shadowing from the chim-
ney right next to the weather station.

Considering the scatter plot for the DTU observations
in Fig. 5 it is seen that these systematic errors are not found
in the DTU observations. As noted before the level of the
DTU observations is generally a bit lower than the level of
NWPs, which is most likely due to a bias of the NWPs,
since the accuracy of the DTU observations is verified to
be in the range of ±3%. For correction of the systematical
errors, as the listed above, a statistical clear-sky model fit-
ted to the observations can be used, as outlined in the fol-
lowing sections.

3. Statistical clear-sky model

In this section it is described how the clear-sky global
radiation is modeled using a statistical model. With the sta-
tistical clear-sky model the level under clear-sky conditions
at time t is estimated for the particular series of observa-
tions. It is the output of the sensor under clear-sky condi-
tions which is estimated. This implies that if an
observation is affected by a systematical error, for example
shadowing from an object in the surroundings, the esti-
mated clear-sky output will be lowered. It is this feature
which enables the model to be used for correction. The sta-
tistical clear-sky model is a non-parametric model based on
local polynomial quantile regression (Koenker, 2005) simi-
lar to the clear-sky model presented in (Bacher et al., 2009).

Usually, clear-sky models are models with which the
global radiation in clear (non-overcast) sky at any given
time can be calculated based on physical modeling of the
atmosphere. Usually the clear-sky global radiation Gcs is
separated into a direct (or beam) Bcs and diffuse Dcs

component

Gcs ¼ Bcs þ Dcs ð3Þ

which are then modeled separately. The direct component
by

Bcs ¼ Iext cosðhzenithÞ sa;B ð4Þ

where Iext is the extraterrestrial radiation, hzenith is the solar
zenith angle and sa,B is a transmittance function of the
atmosphere for direct radiation under clear-sky conditions,
which for example can be modeled taking Rayleigh scatter-
ing, aerosol extinction, and ozone, water and uniformly
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mixed gas absorption into account Bird and Riordan
(1984).

The diffuse component can be modeled by adding sev-
eral contributions from reflections and scattering through
the atmosphere.

The global radiation (at the surface of the earth) can be
modeled by

G ¼ Gcs sc ð5Þ

where sc is a transmittance function of clouds in the atmo-
sphere, which can be modeled with “layer models” (Davies
and McKay, 1982) where cloud layer transmittance and
reflections are taken into account.

A clear-sky model, similar to the one proposed by Bach-
er et al. (2009) for observations of solar power, is here pro-
posed for observations of global radiation. The proposed
clear-sky model does not include any prior physical knowl-
edge, it is based solely on the information obtained from
the observations. It is denoted as a statistical clear-sky
model, since it is based on a non-parametric statistical
model of clear-sky radiation. Information embedded in
the observations, which is particular for the sensor and
its location, can be modeled with the statistical clear-sky
model, for example shadowing and non-horizontal leveling
of the sensor. This is a fundamental difference to the clear-
sky models based on prior physical knowledge, which
implies that the statistical clear-sky model can be used
for different applications.

The statistical clear-sky model is based on time series of
global radiation observations (or simulated values) and is
defined by

Gt ¼ bGcs
t st ð6Þ

where the t is used to indicate that the variables the time
series of actual observations, Gt is observed global radia-
tion, bGcs

t is estimated clear-sky global radiation and st is
a factor, which is much to alike sc, but different due to
the fact that it is estimated based on information from
observations and not calculated based on prior physical
knowledge. It is noted here that the clear-sky model could
be defined for the direct component solely, which would be
obvious since nearly all local systematic effects have a much
higher impact on the direct component compared to the
diffuse component. However, since the application of the
clear-sky model in the present study is for observations
of global radiation and since the systematic errors would
propagate into both the direct and diffuse component cal-
culated with a splitting scheme, such as suggested by
Ruiz-Arias et al. (2010), the clear-sky model is applied to
the global radiation directly.

Considering the observed global radiation as samples of
a random variable with a probability distribution function,
which is a function of the day of year xt and the time of day

yt, the observed clear-sky global radiation can be estimated
as a quantilebGcs

t ¼ Qqðxt; ytÞ ð7Þ
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of this distribution function, where the quantile
q 2 [0, . . . ,1] must be close to one

q K 1 ð8Þ

Assuming that the quantile function is a smooth function it
can be approximated with local quantile regression Koen-
ker (2005). The result in the three-dimensional space
formed by global radiation, day of year and time of day,
can be seen as a surface which follows the observed global
radiation under clear-sky conditions and is located “on
top” of the point cloud of observed global radiation.

In order to decrease the gradient and curvature of the
estimated clear-sky radiation surface a projection is carried
out. The projection is from the horizontal plane to the
plane which is normal to the direct solar radiation (i.e.
the plane tracking the sun position)

Gpr
t ¼

Gt

cos hzenith
t

� � ð9Þ

where hzenith
t is the average solar zenith angle in the sample

period between t � 1 and t. Values where cos hzenith
t

� �
<

0:01 are removed: this corresponds to sun elevation below
0.5�. The quantile close to one is then estimated for the
projected values. A general form of the proposed statistical
clear-sky model is formulated in Appendix A, which is
based on a local quantile regression model with second
order polynomials and a two-dimensional kernel in both
the day of year and time of day dimensions.

For correction of hourly values a local quantile regres-
sion model based only on a one-dimensional kernel, where
on the day of year dimension is used, was found most suit-
able. The reason for using only a one-dimensional kernel,
and not including the time of day dimension in the local
weighting, is that the model becomes too biased and the esti-
mated clear-sky global radiation does not follow the drop
before noon caused by shadowing (the systematic error
described on page 7) very well. Hence only values lagged
in steps of 24 h from t are used as input, which is a similar
approach as in classical decomposition of seasonal time ser-
ies (Cleveland and Tiao, 1976). Furthermore, it is noted that
this is equivalent to using a bandwidth in the time of day

dimension below 1 h (i.e. below the sample period) for the
two-dimensional model presented in Appendix A, hence
for time series with a shorter sample period a two-dimen-
sional model should be considered. The applied local quan-
tile regression model based on a third order polynomial is

b̂t¼ argminb2R4

X1
i¼�1

qq Gtr
tþ24i�ðb0;tþb1;tiþb2;ti

2þb3;ti
3Þ

� �
KðiÞ

ð10Þ

where qq(u) = u(q � I(u < 0)) is the quantile regression
objective function (see (Koenker, 2005, 2011)), q 2
[0, . . . ,1] is the sample quantile to be estimated, i 2 N is
a counter of days, and K(i) is a kernel function. The esti-
mated projected clear-sky radiation is then found as the lo-
cal intercept
14
bGpr;cs
t ¼ b̂0;t ð11Þ

The weights are calculated with the Epanechnikov kernel
function

KðiÞ ¼
3
4

1� jij
hdoy

h i2
� �

for jij
hdoy

P 1

0 for jij
hdoy

< 1

8><>: ð12Þ

where hdoy is the bandwidth.
The R package quantreg implementation of quantile

regression was used for the estimation (Koenker, 2011).
Finally, the estimated projected clear-sky radiation on the
projected plane is projected back to the horizontal plane bybGcs

t ¼ bGpr;cs
t cos hzenith

t

� �
ð13Þ

Finally, in order to take the clipping at a maximum level
into account, the estimated clear-sky radiation is limited
to the maximum value of the observations

bGcs
t ¼

bGcs
t for bGcs

t 6 Gmax
t

Gmax
t for bGcs

t > Gmax
t

(
ð14Þ

where Gmax
t is the maximum value of global radiation

observations.
The selection of suitable values for the parameters (here

the quantile and the kernel bandwidth) for the fitting of the
local quantile regression model, would preferably be based
on a measure of performance for estimation clear-sky glo-
bal radiation. Then the parameters could be optimized in
order to achieve the best performance. However thorough
studies are required in order to define such a measure.
Therefore the parameter values are selected based on visual
inspection of the estimated clear-sky global radiation for
days with only clear-sky. These days are chosen such that
they are distributed evenly over the entire period. The
selected values are

q ¼ 0:97; hdoy ¼ 125 ð15Þ

which gives the estimate of the clear-sky global radiation
for the observations bGcs

t shown in Fig. 6 and for the NWPsbGnwp;cs
t shown in Fig. 7. Note, that the estimated surface for

the observations is clipped at the maximum value of the
observations, which gives the “flat” top. Furthermore, no-
tice that the drop due to shadowing is clearly seen in the
estimated clear-sky radiation for the observations.
4. Correction of observations

The correction of the observations is carried out by mul-
tiplying the observations with the ratio between the esti-
mated clear-sky radiation for the NWPs and the
observations

bGco
t ¼

bGnwp;cs
tbGcs

t

Gt ð16Þ
1



Fig. 6. The clear-sky global radiation estimated for the Sønderborg
observations. Shown as a surface parametrized in the two dimensions: day
(days since 2009-01-01) and tod (time of day).

Fig. 7. The clear-sky global radiation estimated for the NWPs for
Sønderborg. Shown as a surface parametrized in the two dimensions: day
(days since 2009-01-01) and tod (time of day).
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The level of the correction applied, i.e. bG nwp;cs
t =bGcs

t , is
shown as function of days since 2009-01-01 and the time

of day in Fig. 8. The systematical error caused by a tilt of
the sensor, resulting in a too low level of the observations
in the morning and too high level in the afternoon, can
be directly seen in the correction, since in the morning
the correction is generally above one and the afternoon le-
vel below one. Also apparent is the drop in the observed le-
vel due to shadowing objects, especially seen between 9 and
10 am.
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The corrected observations are plotted versus the NWPs
in Fig. 9, including the local least squares estimate of the
relation in the morning and in the afternoon. This plot is
similar to the plot in Fig. 4. By comparison of the two plots
it is seen that the difference between the estimated relation
in the morning and the estimated relation in the afternoon
has been decreased significantly. A visual comparison to
the similar plot of the high quality DTU observations in
Fig. 5 verifies that the pattern of the scatter after the cor-
rection is much closer to the pattern found there. It can
also be seen that the clipping at a maximum level has been
corrected. Finally, it is found that the overall scattering has
been reduced. This is confirmed by a comparison of the
errors for an estimated relation similar to the ones in Figs.
4 and 9, but using all data points (except nighttime values),
i.e. no distinction between morning and afternoon. Note
here that the this measure is only used to give a rough indi-
cation of the performance of the correction. The root mean
square error (RMSE) and mean absolute error (MAE)
before the correction are

RMSEbefore ¼ 114 W=m2; MAEbefore ¼ 79 W=m2 ð17Þ

and after the correction

RMSEafter ¼ 101 W=m2; MAEafter ¼ 67 W=m2 ð18Þ

Hence a notably reduction in RMSE and MAE is achieved
by applying the correction.

4.1. On-line operation

For on-line operation the model has to be applied caus-
ally, such that only past values can be used for the correc-
tion. A causal correction was calculated with slightly
different parameter values for the clear-sky model, again
selecting the parameters from visual inspection. The esti-
mated quantile q was decreased and the kernel bandwidth
hdoy increased slightly to

q ¼ 0:95; hdoy ¼ 150 ð19Þ

Using a one-sided kernel will increase the bias of the esti-
mates, which is also reflected by a slightly increased RMSE
and MAE of the loess fit for the corrected observations
to

RMSEafter ¼ 103 W=m2; MAEafter ¼ 67 W=m2 ð20Þ
Considering the similar plots as presented for the causal
correction showed only a small visual difference. Hence it
is found that the method works well for on-line operation.

5. Discussion

In this section the correction method and results are dis-
cussed together with considerations on how to improve the
method.

Considering the fitting of the clear-sky model it is noted
that the model which should be applied, is dependent on
the time resolution of the data. For resolutions higher than



Fig. 8. The applied correction, which is the ratio between the estimated clear-sky radiation of the observations and the NWPs, as a function of days and
time of day.

Fig. 9. The values of the corrected observations versus NWPs of global
radiation. The morning values and the afternoon values are indicated by
different symbols and colors. The two lines show a locally weighted least
squares regression estimate of the relation between the variables in the
morning and the afternoon. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this
article.)
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hourly a two-dimensional kernel, which also includes the
time of day dimension, should be used, as in (Bacher
et al., 2009) where a similar clear-sky model was applied
to 15 min values. Regarding the parameters needed to be
tuned in the clear-sky model – the quantile, kernel band-
width, and order of the polynomial – some manual interac-
14
tion is required. However the method could be based on a
parameter optimization criteria, hence an objective mea-
sure to evaluate the performance of the correction, possibly
based on cross validation (Friedman et al., 2001), and
applied automatically for the general case. Hence it can
also be used for monitoring and data quality classification
for sub-daily solar data. Clearly, an objective measure of
performance of the correction is needed in order to further
develop and improve the correction method.

Improvements of the method could be formed by com-
bining it with a prior step in which a parametric model is
fitted to correct for drift in time and tilt in the leveling of
the sensor. Another possibility for improvement is to treat
the direct and diffuse radiation separately, since most of the
systematic errors, for example tilt and shadowing, will have
a different impact on direct and diffuse radiation. This will
require, if the direct and diffuse are not measured sepa-
rately, a splitting into a diffuse and direct component,
which could be carried out with a scheme such as suggested
by Ruiz-Arias et al. (2010) and Duffie and Beckman (2006,
pp. 75–77). However applying such a scheme will cause the
effect of the systematic errors to propagate into both the
direct and the diffuse components. Another approach
would be to enhance the correction method by using more
than one quantile, in the presented approach only a single
quantile close to one is used. Several quantiles can be esti-
mated for both the observed and calculated radiation,
which, together with an interpolation scheme, will form a
more extensive correction. Clearly this also requires that
the calculated global radiation, i.e. here the NWPs,
describes the distribution well over the entire range of glo-
bal radiation. Finally, it is mentioned that for on-line oper-
ation the method can be implemented computationally
3
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very efficient using time-adaptive quantile regression (Møl-
ler et al., 2008).

6. Conclusion

A correction method based on statistical non-parametric
modeling techniques is presented and applied on hourly
observations of global radiation. Several typical errors in
the observations can be corrected with the method, includ-
ing: tilt in the leveling of the sensor, shadowing from
objects in the surroundings and clipping of the observa-
tions at a maximum level. The method works semi-auto-
matically and no prior information about the sensor and
its surroundings, besides the observations and location, is
required. Furthermore only a few parameters needs to be
tuned. Information embedded in NWPs of global radiation
is used for the correction, but this could be replaced with
any calculated clear-sky global radiation model. The
method is well suited as part of monitoring and operation
applications for which local solar radiation observations
provide valuable information, e.g. for forecasting of cli-
mate dependent renewables such as solar thermal, PV
and heating systems. Finally, it is briefly discussed how
the method can be improved or extended in several ways.
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Appendix A. Two-dimensional local statistical clear-sky

model

The proposed statistical clear-sky model in a general
form is described in this section. It is based on a two-
dimensional second-order polynomial local quantile regres-
sion model. In this form the local weighting is carried out
with a two-dimensional multiplicative kernel function in
the day of year and time of day dimensions.

The model

b̂t ¼ argminb2R5

X1
i¼�1

X1
j¼�1

qq Gtr
tþ 24

tsp
iþj�ðb0;tþb1;t iþb2;t i

2þb3;tjþb4;tj
2Þ

� �
Kði;jÞ

ðA:1Þ

where tsp is the sample period of the time series in hours,
qq(u) = u(q � I(u < 0)) is the quantile regression objective
function (see Koenker, 2005; Koenker, 2011),
q 2 [0, . . . ,1] is the sample quantile to be estimated, i 2 N

is a counter of days, j 2 N is a counter in steps of the sam-
ple period, and K(i, j) is a kernel function. The model could
easily be reduced or expanded to polynomials of different
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orders. The estimated projected clear-sky radiation is then
found as the local intercept

bGpr;cs
t ¼ b̂0;t ðA:2Þ

The weights are calculated with the Epanechnikov kernel
function

Kði;jÞ¼
9

16
1� jij

hdoy

h i2
� �

1� jjjtsp

htod

h i2
� �

for jij
hdoy

<1^ jjjhtod
<1

0 for jij
hdoy

P1_ jjjhtod
P1

8><>:
ðA:3Þ

where hdoy is the bandwidth in the day of year dimension
(in days) and htod is the bandwidth in the time of day

dimension (in hours).
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Economic Model Predictive Control for
Building Climate Control in a Smart Grid

Rasmus Halvgaard, Niels Kjølstad Poulsen, Henrik Madsen and John Bagterp Jørgensen

Abstract—Model Predictive Control (MPC) can be used to
control a system of energy producers and consumers in a Smart
Grid. In this paper, we use heat pumps for heating residential
buildings with a floor heating system. We use the thermal capacity
of the building to shift the energy consumption to periods with
low electricity prices. In this way the heating system of the
house becomes a flexible power consumer in the Smart Grid.
This scenario is relevant for systems with a significant share of
stochastic energy producers, e.g. wind turbines, where the ability
to shift power consumption according to production is crucial.
We present a model for a house with a ground source based
heat pump used for supplying thermal energy to a water based
floor heating system. The model is a linear state space model
and the resulting controller is an Economic MPC formulated as a
linear program. The model includes forecasts of both weather and
electricity price. Simulation studies demonstrate the capabilities
of the proposed model and algorithm. Compared to traditional
operation of heat pumps with constant electricity prices, the
optimized operating strategy saves 25-35% of the electricity cost.

I. INTRODUCTION

The energy policies in the Nordic countries stipulate that

50% of the energy consumed by 2025 should come from

renewable and CO2-free energy sources. By 2050 the aim

is to be independent of fossil fuels. This transformation of

the energy system is needed to reduce CO2 emissions and

global warming as well as to protect the Nordic economies

from the consequences of sharply rising prices of fossil fuels

due to an increasing world population and depletion of fossil

fuel resources. Not only the Nordic countries but the entire

world and industrialized world in particular are facing this

grand challenge. Reducing the fossil fuel consumption from

80% of the energy consumption to 0% in 40 years, requires

introduction of a significant amount of renewable energy

sources and an efficient utilization of energy in buildings, the

process industries, and transportation. In the Nordic countries,

a major part of the renewable energy will be produced by

hydro power and offshore wind turbines. On the consumption

side, residential and commercial buildings will use heat pumps

for heating and electrical vehicles will replace vehicles based

on combustion engines.

Accordingly, electricity will be the main energy carrier in

such an energy system independent of fossil fuels. Depending

on the rate of adoption of electrified vehicles, 40-70% of the

energy consumption will originate from electricity in 2050.

Currently, 20% of the energy consumption is electricity. As

R. Halvgaard, N. K. Poulsen, H. Madsen and J. B. Jørgensen are with DTU
Informatics, Technical University of Denmark, Richard Petersens Plads, Build-
ing 321, DK-2800 Kgs. Lyngby, Denmark {rhal,nkp,hm,jbj}@imm.dtu.dk

it is more difficult to store electricity than fossil fuels, such

a large share of stochastic electricity production requires an

intelligent power system - also referred to as a Smart Grid

- that continuously balances the power consumption and the

power production. This balancing requires control of the power

consumption from heat pumps and electrical vehicles such that

surplus of cheap wind energy is used as it is produced. Heat

tanks in residential homes as well as in district heating plants

must be established such that heat pumps can store electricity

as heat in periods with low electricity prices. The power

consumption by the process industries and retail industry, e.g.

refrigeration in supermarkets and large cooling houses, must

also be made flexible. Such a system is a large-scale complex

system that must be coordinated to balance consumption and

production of electricity.

Buildings account for approximately 40% of the total energy

use in Europe. Therefore, intelligent control of the energy

use in buildings is a necessity for the future smart energy

system. In the Nordic countries, the energy is mainly used

for heating, lighting, and electrical appliances. Heat pumps

combined with water based floor heating systems will be

one of the main sources for heating of buildings [1]–[4]. By

themselves, these heat pumps are very energy efficient as

their coefficient of performance is typically 3 or larger, i.e.

for each kWh electricity supplied, they deliver more than 3

kWh heat. As heat pumps are driven by electricity and can be

connected to floors with large thermal capacity, they have a

large potential to shift the electricity consumption and adapt

to the stochastic electricity production from wind turbines.

The adoption of heat pumps could very well accelerate in the

coming years. Especially for buildings situated outside district

heating areas. They can benefit from heating using electric

heat pumps instead of the current oil and natural gas. Heat

pumps connected to the district heating system can benefit

from a large store of heat and can be used to shift electricity

consumption on a 24-hour or weekly basis. Furthermore, large

electric heat pumps can be installed at a number of district

heating plants. The large heat pumps can better exploit heat

from the sea, lakes or waste heat, while small heat pumps can

exploit geothermal heat.

The use of Model Predictive Control to provide indoor

thermal comfort in heating systems of buildings has been

reported in [5]–[7]. In the future energy systems with a large

share of stochastic power producers such as wind turbines, the

ability to shift the load of electricity is just as important as

providing indoor thermal comfort in a heating system based on

heat pumps. Different control strategies have been suggested

for load balancing and load shifting in electrical grids [8]. For978-1-4577-2159-5/12/$31.00 ©2011 IEEE 
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heat pumps, these strategies can be summarized as

1) Frequency based control. The heat pump senses the

grid frequency, which in Europe has the nominal value

of 50 Hz. When demand exceeds supply, the frequency

falls. When supply exceeds demand, the frequency in-

creases. Depending on a measured difference from the

nominal value of the frequency, the heat pump can

decide to pre-heat by starting the compressor or to

delay the activation of the compressor for a short time.

The advantage of this type of control is the low price

of the controller, because no additional communication

between the utility and the heat pump is necessary.

However, there is no way to integrate the device into

an intended schedule as it responds completely au-

tonomously.

2) Price based control. The heat pump controller com-

putes a schedule for the compressor based on dynamic

price information given by the utility. This enables the

heat pump to shift its load to times with low elec-

tricity price. It requires a communication infrastructure

between utilities and households. The drawback of this

control strategy is that it is relatively complex and the

fact that effects of sent tariff information to affect the

load are not completely sure for the utility.

3) Direct control. Given the communication infrastructure

required for the price based control, utilities can send

control signals to the heat pump to raise or reduce the

demand. This allows the utility a more direct control

of the demand. Furthermore, it allows the controller

in the heat pump to be quite simple as it only sends

information and receives commands from the utility.

The drawback of course is that the utility must solve

large-scale optimization problems to coordinate a large

number of heat pumps.

[9] use Economic Model Predictive Control (MPC) in a

direct control case to shift the electricity load of refrigeration

systems. In this paper, we use Economic MPC based on price

signals to control a heat pump such that certain temperature

limits in a building with a floor heating system are respected.

By using price signals, both current and future prices, the

optimization of the energy consumption of each individual

residential building decouples from the energy consumption

of all other agents in the system. However, we do not specify

how to determine this price but assume that it is given based on

market principles of supply and demand. Consequently, each

individual house is a price taker.

Simple weather conditions such as outdoor temperature and

solar radiation are included in the model. By adding forecasts

of prices and weather conditions to the heat pump control

problem, the energy consumption is made flexible. It is thus

possible to predict where to place the heat pump energy

consumption and minimize the electricity cost of operating

the heat pump to meet a certain indoor thermal comfort, i.e. a

desired temperature interval. The temperature interval can be

time varying. We exploit that the dynamics of the temperatures

in the house floor heating system and indoor air are slow while

the power consumption can be changed rapidly. The thermal

Ta

Tr

Tf

T ′
a

φs

Cp,r

Cp,f

Wc

(UA)ra (UA)fr

Cp,w (UA)wfTw

Condenser tank

Heat Pump

Fig. 1. House and heat pump floor heating system and its thermal properties.
The dashed line represents the floor heating pipes.

capacity of the residential building determines how much of

the electricity consumption that can be shifted to times with

cheap electricity.

MPC is increasingly being considered for building cli-

mate control [10]–[12]. Traditionally, MPC is designed using

objective functions penalizing deviations from a given set-

point. Recently Economic MPC has emerged as a general

methodology with efficient numerical implementations and

provable stability properties [13], [14].

This paper is organized as follows. In Section II, we develop

and discuss a model for a heat pump connected to a floor

heating system of a building. Section III states and discusses

the Economic MPC. Simulation results for the Economic MPC

applied to the model are described in Section IV. Section V

provides conclusions.

II. MODEL

In this section, we develop a model of the heat dynamics

of a house floor heating system connected to a ground source

based heat pump. The system is illustrated in Fig. 1. The model

is a linear third order model. Table I lists the variables and

parameters of the model.

TABLE I
DESCRIPTION OF VARIABLES

Variable Unit Description

Tr
◦C Room air temperature

Tf
◦C Floor temperature

Tw
◦C Water temperature in floor heating pipes

Ta
◦C Ambient temperature

T ′
a

◦C Ground temperature
Wc W Heat pump compressor input power
φs W Solar radiation power

A. Energy Balances and Heat Conduction

In this subsection we develop energy balances for the air in

the room, the floor and the water in the floor heating pipes
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and condenser water tank. In the simple model developed

in this paper, the house is considered to be one big room.

Furthermore, we make the following simplifying assumptions:

1) One uniform air temperature, 2) no ventilation, 3) no

influence from humidity of the air, 4) no influence from the

heat released from people in the room, 5) no influence from

wind.

In [15] a model of the indoor temperature in buildings is

identified and suggests at least two dominating heat accu-

mulating media in order to capture the short-term and long-

term variations of the heat dynamics. In our model two heat

accumulating media are thus included, namely the room air

and the floor. The resulting energy balances are

Cp,rṪr = Qfr −Qra + (1− p)φs (1)

Cp,f Ṫf = Qwf −Qfr + p φs (2)

The disturbances are the ambient temperature and the solar

radiation through a window. These disturbances are also

illustrated in Fig. 1.

The energy balance for the water circulating in the floor

heating pipes can be stated as

Cp,wṪw = Qc −Qwf (3)

in which Qc is the heat transferred to the water from the

condenser in the heat pump. Qwf is the heat transferred from

the water to the floor.

The conductive heat transfer rates are

Qra = (UA)ra(Tr − Ta) (4a)

Qfr = (UA)fr(Tf − Tr) (4b)

Qwf = (UA)wf (Tw − Tf ) (4c)

Qra is the heat transferred from the air in the room to the

surroundings, Qfr is the heat transferred from the floor to

the air in the room, and Qwf is the heat transferred from the

water in the floor heating pipes to the floor. The term U · A
is a product of the heat conductivity and the surface area of

the layer between two heat exchanging media. Its reciprocal

value R = 1/(UA) is often used since it can be interpreted

as a resistance against heat flow [16].

B. Heat Pump

A heat pump is a device that transfers heat from a low tem-

perature zone to a higher temperature zone using mechanical

work. A heat pump can provide both heating or cooling, but

in cooler climates heating is of course more common. Heat

pumps normally draw heat from the air or from the ground

and uses a vapor compression refrigeration cycle. This cycle

requires the four basic components as sketched in Fig. 2. The

components are a compressor, an expansion valve, a condenser

converting the working fluid from its gaseous state to its liquid

state, and an evaporator converting the working fluid from its

liquid state to its gaseous state [17], [18].

As the heat pump dynamics is much faster than the thermo-

dynamics of the building, we can assume a static model for the

heat pump. The amount of heat transferred from the condenser

Qc

TciTco

Tei Teo

T ′a

Evaporator

Condenser

Expansion valve CompressorWc

Fig. 2. Heat pump vapor compression refrigeration cycle. The temperatures
are denoted T with subscript c or e for condenser or evaporator, respectively,
while i or o denotes input or output.

to the water, Qc, is related to the work of the compressor, Wc,

using the coefficient of performance

Qc = ηWc (5)

The coefficient of performance η for heat pumps varies with

type, outdoor ground temperature, and the condenser temper-

ature. As the outdoor ground temperature and the condenser

temperature are approximately constant, we can assume that

the coefficient of performance is constant. For ground source

based heat pumps η is typically around 3 in the specified

operating range.

The model consists of (1)-(5). Consequently, a third order

linear model can be stated as

Cp,rṪr = (UA)fr(Tf − Tr) . . .

− (UA)ra(Tr − Ta) + (1− p)φs

(6a)

Cp,f Ṫf = (UA)wf (Tw − Tf ) . . .

− (UA)fr(Tf − Tr) + pφs

(6b)

Cp,wṪw = ηWc−(UA)wf (Tw − Tf ) (6c)

C. State space model

The model (6) can be expressed as a continuous-time state

space model

ẋ = Ax+Bu+ Ed (7a)

y = Cx (7b)

x is the states, u is the manipulated variables, d is the

disturbances, and y is the controlled variable. In the case

studied, the states are x =
[
Tr Tf Tw

]T
; the manipulate

variable is the power used by the compressor in the heat pump,

u = Wc; the disturbances are the ambient temperature and the

sun radiation such that d =
[
Ta φs

]T
; and the controlled
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Fig. 3. Step responses from inputs and disturbances to indoor temperature
Tr . Step size is noted in the plot legend.

variable is the indoor temperature y = Tr. The matrices in the

state space model (7) are

A =

⎡
⎢⎣

a11 a12 0

a21 a22 a23

0 a32 a33

⎤
⎥⎦ E =

⎡
⎢⎣

(UA)ra
Cp,r

1−p
Cp,r

0 p
Cp,f

0 0

⎤
⎥⎦

C =
[
1 0 0

]
B =

[
0 0 η

Cp,w

]T

with the coefficients

a11 = (−(UA)fr − (UA)ra)/Cp,r

a22 = (−(UA)wf − (UA)fr)/Cp,f a33 = −(UA)wf/Cp,w

a12 = (UA)fr/Cp,r a23 = (UA)wf/Cp,f

a21 = (UA)fr/Cp,f a32 = (UA)wf/Cp,w

[19] provides values for building heat capacities and

thermal conductivities obtained from system identification

methods. The values of these parameters for a representative

building are listed in Table II. The water tank heat capacity

is estimated as Cp,w = mwcw for a 200 liter tank filled with

water having the specific heat capacity cw and mass mw. The

resulting time constants of the third order model are 1, 24,

and 186 hours for the room air, water condenser tank, and

the floor, respectively. This is also observed from the step

responses seen in Fig. 3.

III. ECONOMIC MPC

The state space model (7) is converted to a discrete-time

state space model using zero-order-hold sampling of the input

signals

xk+1 = Adxk +Bduk + Eddk (8a)

yk = Cdxk (8b)

Using this discrete-time linear state space formulation to

predict the future outputs, we may formulate a linear program

that minimizes the electricity cost for operating the heat pump

while keeping the indoor room temperature in prespecified

intervals

min
{x,u,y}

φ =
∑
k∈N

cu,kuk + ρvvk (9a)

s.t. xk+1 = Adxk +Bduk + Eddk k ∈ N (9b)

yk = Cdxk k ∈ N (9c)

umin ≤ uk ≤ umax k ∈ N (9d)

Δumin ≤ Δuk ≤ Δumax k ∈ N (9e)

yk,min ≤ yk + vk k ∈ N (9f)

yk,max ≥ yk − vk k ∈ N (9g)

vk ≥ 0 k ∈ N (9h)

N ∈ {0, 1, . . . , N} and N is the prediction horizon. The

electricity prices enter the optimization problem as the cost

coefficients cu,k. It may not always be possible to meet the

temperature demand. Therefore, the MPC problem is relaxed

by introduction of slack variable vk and the associated penalty

cost ρv . The penalties can be set sufficiently large, such

that the output constraints are met whenever possible. The

Economic MPC also contains bound constraints and rate-of-

movement constraints on the manipulated variables. The rate-

of-movement is defined in discrete time as Δuk = uk+1−uk

and adds to robustness of the numerical optimization routine.

The prediction horizon, N , is normally selected large to

avoid discrepancies between open-loop and closed-loop pro-

files. However, long horizons increases computation speed

rapidly and uncertainties in the forecasts grow larger and larger

with time. At each sampling time, we solve the linear program

(9) to obtain {u∗
k}N−1

k=0 . We implement u∗
0 on the process. As

new information becomes available at the next sampling time,

we redo the process of solving the linear program using a

moving horizon and implementing the first part, u∗
0, of the

solution.

The electricity prices, {cu,k}N−1
k=0 , as well as the ambient

temperature and sun radiation, {dk}N−1
k=0 , must be forecasted.

In this paper we assume that we have perfect forecasts.

IV. RESULTS

The Economic MPC has been implemented in Matlab

calling a primal active set solver. To illustrate the potential of

the Economic MPC for controlling heat pumps, we simulate

scenarios using day-ahead electricity prices from Nordpool,

the Nordic power exchange market. These electricity prices

are available in one hour intervals. We also discretize the

system using a sample time of 30 minutes, i.e. Ts = 0.5
hour. Both the outdoor temperature, Ta, and solar radiation φs

are modeled as diurnal cycles with added noise [10]. We aim

to minimize the total electricity cost in a given period while

keeping the indoor temperature, Tr, in predefined intervals. In

the case studied, we assume that the forecasts are perfect, i.e.

that the forecasts are without uncertainty. We simulate a five

day period using a prediction horizon N = 96 (= 48 hours).

The optimal control signal is calculated at every time step over

the prediction horizon to obtain a closed loop profile.

Fig. 4 illustrates the optimal compressor schedule and the

predicted indoor temperature for a five day horizon. The lower
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TABLE II
ESTIMATED MODEL PARAMETERS

Value Unit Description

Cp,r 810 kJ/◦C Heat capacity of room air
Cp,f 3315 kJ/◦C Heat capacity of floor
Cp,w 836 kJ/◦C Heat capacity of water in floor heating pipes
(UA)ra 28 kJ/(◦C h) Heat transfer coefficient between room air and ambient
(UA)fr 624 kJ/(◦C h) Heat transfer coefficient between floor and room air
(UA)wf 28 kJ/(◦C h) Heat transfer coefficient between water and floor
cw 4.181 kJ/(◦C kg) Specific heat capacity of water
mw 200 kg Mass of water in floor heating system
p 0.1 Fraction of incident solar radiation on floor
η 3 Compressor coefficient of performance (COP)

ρv 104 Slack variable penalty
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Fig. 4. Temperature in a house with time varying soft constraints, time varying electricity prices, and time varying outdoor temperatures. The simulation
time is five days starting 20 JAN 2011 00:00. The upper figure shows the indoor temperature, the middle figure contains the electricity spot price and the
optimal schedule for the heat pump, and the lower figure contains the ambient temperature and solar radiation. The compressor is on when the electricity spot
price is low.

plot shows the outdoor temperature, Ta, and the solar radiation,

φs. The outdoor temperature reflects a cold climate, i.e. the

outdoor temperature is lower than the indoor temperature. The

solar radiation has a peak around noon contributing to heating

the building. The middle plot shows the actual electricity

prices in Western Denmark. The middle plot also contains

the computed optimal heat pump power input, Wc. The upper

plot shows the predicted indoor temperature along with the

predefined time varying constraints. The constraints indicate

that during night time the temperature is allowed to be lower

than at day time. The figure reveals clearly that the power

consumption is moved to periods with cheap electricity and

that the thermal capacity of the house floor is able to store

enough energy such that the heat pump can be left off during

day time. This demonstrates that the slow heat dynamics of the

floor can be used to shift the energy consumption to periods

with low electricity prices and still maintain acceptable indoor

temperatures. Notice that the soft constraints are violated in

the beginning due to the initial conditions. We allow for such

violations by using reasonable moderate penalty costs for

violation of the soft constraints. Consequently, the controller

will find cheaper optimal solutions while the comfort level is

compromized very little.

We also conducted a simulation with constant electricity

prices. In this case, the heat pump now is turned on to just

keep the indoor temperature at its lower limit. This implies that

there is no load shifting from the heat pump in this case. By

comparing the case with varying electricity price, {u∗
k}N−1

k=0 ,

to the case with constant electricity price, {u∗
k,cst}N−1

k=0 , we

observe economic savings around 35%. We obtained this figure
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in the five days closed loop simulation with prediction horizon 48 hours.

by comparing the total electricity expenses using the true time

varying electricity prices {cu,k}N−1
k=0 such that the savings S

are calculated as

S = −cTuu
∗
cst − cTuu

∗

cTuu
∗
cst

(10)

Using a simulation study with hard constraints on the indoor

temperature, the saving by load shifting was 25%.

Figure 5 shows the computation times of solving the open

loop optimization problems for the given simulation using a

PC with Intel Core i7 2.67 GHz. The average computation

time is seen to be around 8 ms. Using hard constraints the

average computation time reduces to 1 ms.

V. CONCLUSIONS

In this paper, we have presented a model for the temperature

in a residential building with a floor heating system and a

heat pump. We used an Economic Model Predictive Controller

(Economic MPC) to manipulate the compressor in the heat

pump such that the total electricity cost is minimized, while

keeping the indoor temperature in a predefined interval. Using

actual electricity prices and weather conditions, we demon-

strated that the Economic MPC is able to shift the power

consumption load to periods with low electricity prices. As the

Nordic Electricity spot prices reflect the amount of wind power

in the system, the large thermal capacity of the house floor can

essentially be used to store cheap electricity from renewable

energy sources such as wind turbines. We also observed that

the load shifting ability of the Economic MPC can exploit

weather forecasts to reduce the total cost of operating a heat

pump.

The Economic MPC concept was proofed using perfect

forecasts. In the future, we will use real forecast to investigate

cases with uncertainty.
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a b s t r a c t

The present paper suggests a procedure for identification of suitable models for the heat dynamics of a
building. Such a procedure for model identification is essential for better usage of readings from smart
meters, which is expected to be installed in almost all buildings in the coming years. The models can be
used for different purposes, e.g. control of the indoor climate, forecasting of energy consumption, and
for accurate description of energy performance of the building. Grey-box models based on prior physical
knowledge and data-driven modelling are applied. This facilitates insight into otherwise hidden infor-
mation about the physical properties of the building. A hierarchy of models of increasing complexity is
formulated based on prior physical knowledge and a forward selection strategy is suggested enabling the
hermal dynamics
uildings
odel selection

umped models
arameter estimation

modeller to iteratively select suitable models of increasing complexity. The performance of the models is
compared using likelihood ratio tests, and they are validated using a combination of appropriate statistics
and physical interpretation of the results. A case study is described in which a suitable model is sought
after for a single storey 120 m2 building. The result is a set of different models of increasing complexity,
with which building characteristics, such as: thermal conductivity, heat capacity of different parts, and
window area, are estimated.
. Introduction

This paper describes a new method for obtaining detailed infor-
ation about the heat dynamics of a building based frequent

eadings of the heat consumption, indoor temperature, ambient
ir temperature, and other climate variables. Such a method is
onsidered to be of uttermost importance as a key procedure for
etter usage of readings from smart meters, which is expected
o be installed in almost all buildings in the coming years. The

ethod is based on a procedure for selecting a suitable model of
he heat dynamics for a building. Rabl [12] gives an overview of
echniques for steady state and for dynamic analysis of energy use
n a building, the latter implicate modelling of the heat dynam-
cs of the building. Such dynamic models can be realized with a
et of differential equations, as carried out by Sonderegger [13] and
oyer et al. [4]. Parameter estimation in dynamical models is known
s system identification and a survey of different approaches for
uildings is found in Ref. [3]. The applied models in the present
ethod are grey-box models, which consist of a set of continuous
ime stochastic differential equations coupled with a set of discrete
ime measurement equations. Grey-box modelling is well proven
s a comprehensive and accurate method to model dynamical sys-

∗ Corresponding author. Tel.: +45 60774725.
E-mail address: pb@imm.dtu.dk (P. Bacher).
URL: http://www.imm.dtu.dk./∼hm (H. Madsen).
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tems and thereby obtain knowledge of the thermal properties of a
building (see [8,1,5]). The problem of identifying a suitable model
is both finding a model that is in agreement with the physical
reality and finding a model, which has a complexity that is in agree-
ment with the level of information embedded in data, which means
that the model should neither be under-fitted nor over-fitted. The
most suitable model is identified from a set of models of increas-
ing complexity. A forward selection strategy is used, in which the
modeller starts out with the simplest feasible model and itera-
tively selects models of increasing complexity. In each iteration the
models are compared using likelihood-ratio tests and the models
performances are evaluated. The selection procedure runs until no
significant improvement of the model is found. See Refs. [11,10] for
an in-depth assessment of likelihood theory and model selection.
The procedure is demonstrated by identifying a suitable model for
a single storey 120 m2 building. The building is part of the experi-
mental distributed energy system, Syslab, at Risø DTU in Denmark.
It is constructed of wood on the outside and plaster boards on the
inside, with a layer of insulation wool in between. The data used
spans 6 days and stems from a set of experiments for building
energy performance, which was carried out in the winter period
of 2009. It is thoroughly described in Ref. [2].

The remaining of the article is organized as follows. The applied

grey-box modelling technique is described in Section 2, and in Sec-
tion 3 the statistical test used for model selection is described. Then
the suggested procedure for identifying a suitable model is out-
lined in Section 4. The following section is devoted to a case-study,

dx.doi.org/10.1016/j.enbuild.2011.02.005
http://www.sciencedirect.com/science/journal/03787788
http://www.elsevier.com/locate/enbuild
mailto:pb@imm.dtu.dk
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likelihood of the larger model is significantly higher than the like-
lihood of the sub-model, and it is concluded that YN is more likely
to be observed with the larger model. Hence the larger model is
ig. 1. RC-network of the model described by Eqs. (1) and (2). The model is divided
nto different parts indicating the corresponding part of the building.

here the procedure is applied. It starts with a description of the
uilding and the data, followed by an outline of the applied mod-
ls and the selection, and ends with a discussion of the results.
inally a perspective of the applications are given in Section 6 and
he conclusions are drawn in Section 7.

. Grey-box models of a dynamic system

A grey-box model is established using a combination of prior
hysical knowledge and statistics, i.e. information embedded in
ata. The prior physical knowledge is formulated by a set of
rst-order stochastic differential equations, also called a stochas-
ic linear state-space model in continuous time. The equations
escribe a lumped model of the heat dynamics of the building. It

s emphasized that the physical interpretation of the parameters is
ependent on how the building is divided into entities in the model.

An example of a feasible model is given here. It has two state
ariables, one describing the interior temperature Ti and one repre-
enting the temperature of the building envelope Te. The first-order
ynamics are represented by the stochastic differential equations

Ti = 1
RieCi

(Te − Ti)dt + 1
Ci

˚hdt + 1
Ci

Aw˚sdt + �idωi (1)

Te = 1
RieCe

(Ti − Te)dt + 1
ReaCe

(Ta − Te)dt + �edωe (2)

here t is the time, Rie is the thermal resistance between the
nterior and the building envelope, Rea is the thermal resistance
etween the building envelope and the ambient air, Ci is the heat
apacity of the interior, Ce is the heat capacity of the building enve-
ope, ˚h is the energy flux from the heating system, Aw is the
ffective window area, ˚s is the energy flux from solar radiation,
a is the ambient air temperature, {ωi,t} and {ωe,t} are standard
iener processes, and �2

i
and �2

e are the incremental variances of
he Wiener processes. The model can be represented with the RC-
etwork depicted in Fig. 1, where the model is divided into different
arts to show the corresponding parts of the building.

The physical model part is coupled with the data-driven model
art with which the information embedded in observed data is used
or parameter estimation. The data-driven part in the considered
xample is represented by the discrete time measurement equation

k = Tik + ek (3)

here k is the point in time tk of a measurement, Yk is the measured
nterior temperature and ek is the measurement error, which is
ssumed to be a Gaussian white noise process with variance �2.

his assumption enables evaluation and tests of the performance
f the model, since if it is met, this indicates that the physical model
s consistent with the observed heat dynamics of the building.
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2.1. Maximum likelihood estimation of parameters

Given a grey-box model, as described above, maximum like-
lihood estimates of the parameters can be obtained. Let the
observations be represented by

YN = [YN, YN−1, . . . , Y1, Y0] (4)

then the likelihood function is the joint probability density

L(�;YN) =
(

N∏
k=1

p(Yk|Yk−1, �)

)
p(Y0|�) (5)

where p(Yk|Yk−1, �) is a conditional density denoting the prob-
ability of observing Yk given the previous observations and the
parameters �, and where p(Y0|�) is a parameterization of the
starting conditions. The maximum likelihood estimates of the
parameters are then found by

�̂ = argmax
�

{L(�; YN)} (6)

Due to the previously mentioned assumptions about the noise
process and the fact that the model is linear, it follows that the
conditional densities in Eq. (6) are Gaussian densities. Since the
conditional densities are Gaussian a Kalman filter can be used to
calculate the likelihood function, and an optimization algorithm
can be applied to maximize it, thereby calculating the maximum
likelihood estimates (see [7] for a detailed discussion). This is imple-
mented in the computer software CTSM, which has been used for
carrying out the parameter estimation (see more about the soft-
ware at1 and in Ref. [6]).

3. A statistical test for model selection

Statistical tests can be utilized in the search for the most suitable
model. If a model is a sub-model of larger model, then a likelihood
ratio test can determine if the larger model performs significantly
better than the sub-model. Using a sequence of such tests a strategy
for selection of the best model can be evolved.

3.1. Likelihood ratio tests

Let a model have parameters � ∈ ˝0 where ˝0 ∈Rr is the param-
eter space and r = dim(˝0) is the number of parameters in the
model. Let a larger model have parameters � ∈ ˝ where ˝ ∈Rm

and dim(˝) = m, and assume that

˝0 ⊂ ˝ (7)

i.e. the first model is a sub-model of the second model and r < m.
The likelihood ratio test

�(YN) = sup� ∈ ˝0
L(�;YN)

sup� ∈ ˝L(�;YN)
(8)

where YN is the observed values, can then be used to test the
hypothesis

H0 : � ∈ ˝0 vs. Ha : � ∈ ˝\˝0 (9)

since under H0 the test statistic −2 log(�(YN)) converges to a �2

distributed random variable with (m − r) degrees of freedom as the
number of samples in YN goes to infinity. If H0 is rejected then the
1 http://www.imm.dtu.dk/ctsm.

http://www.imm.dtu.dk/ctsm
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Fig. 2. Illustration of the model selection procedure.

eeded over the sub-model to describe the information embedded
n data. For more details see Ref. [10].

.2. Forward selection

In a forward selection procedure the modeller starts with the
mallest feasible model and then in each step extends the model
ith the part that gives the lowest p-value, i.e. the most significant

mprovement. The possible candidates for improvement that are
elected in each iteration are the smallest possible extensions to
he current model. The procedure stops when no extensions to the

odel yields a p-value below a pre-specified limit, usually set to
%.

. Model selection procedure

Different strategies for identifying a suitable model is proposed
n the literature and finding an appropriate strategy depends on
he specific modelling setup. An purely algorithmic and exhaustive
election procedure is seldomly feasible, hence iterative methods,
n which the modeller is partly involved in the selection, are com-

only applied. Here, a forward selection procedure is suggested for
dentification of a suitable model for the heat dynamics. It is based
n likelihood ratio testing, which is described in Section 3.1.

.1. Model selection

The procedure starts by a formulation of the simplest feasible
odel having parameter space ˝m and a full model with parameter

pace ˝full, such that

m ⊂ ˝full. (10)

Within this range a set of models can be formed, in which a suit-
ble model is to be identified. A suitable model is a sufficient model,
hich is the smallest model that describes all information embed-
ed in the data [10]. The selection is initiated with the simplest
odel and then extensions of the model are iteratively added. The

election stops when all of the extensions to the selected model,
ives a likelihood-ratio test p-value above the pre-specified limit.
ence the procedure will stop with a model from which no larger
odel can be found, with which it is significantly more likely to

bserve the data. As mentioned above a purely algorithmic pro-
edure is not possible, hence the modeller must be involved to
valuate the models estimated in each iteration. The evaluation is
arried out by analyzing the properties of residuals and parameter

stimates, and if some of the properties are not in line with the
ssumptions and physical reality, then the modeller may have to
nfluence the choice of model. The procedure is illustrated in Fig. 2
nd the steps are
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Model fitting: The models which are extended from the current
model are fitted to the data by maximum likelihood estimation of
the parameters.
Likelihood-ratio tests: Calculate the likelihood-ratio test statistic for
the current model versus each of the extended models. Stop if none
of the tests have a p-value below 5% and use the current model as
the final model, else then select the extended model which yield
the lowest p-value.
Evaluate: The modeller evaluates the selected extended model. If
the result is satisfactory the model is kept and next iteration can
be started; if not, the previous step should be repeated to select
another extension.

If two extensions show an almost identical improvement, i.e. the
p-values of the tests are nearly equal, the selection can be branched
and extensions with different parts examined separately. The pro-
cedure will then end with several models, which cannot be tested
directly against each other, and it is then up to the modeller to
decide which should be preferred. This should be done by com-
paring the likelihoods, where if two models have almost equal
likelihoods the smaller model should be preferred, and further-
more by an evaluation of the residuals and parameter estimates.
It can also happen that several models have only marginal differ-
ence in performance and that each of them can be considered to be
a sufficient model.

4.2. Model evaluation

In each step the selected model must be evaluated. This serves
both to check if the model meet the assumptions and if it gives
reasonable estimates from a physical point of view. Furthermore
the evaluation can reveal model deficiencies from which it can be
learned which parts of the model should be further elaborated. The
evaluation should consist of the following:

• The assumption of white noise residuals should be inferred upon
using the auto-correlation function (ACF) and the cumulated
periodogram (CP), which can also reveal how well dynamics on
different timescales are modelled.

• Plots of the inputs, outputs, and residuals. These plots can be used
to understand which effects are not described properly by the
model.

• Evaluation of the estimated physical parameters. Clearly the
results should be consistent among different models, e.g. esti-
mate of the thermal resistance of the building envelope should
not change significantly among the models. Furthermore the
modeller have to judge if the results are consistent with reality.

5. Case study: model identification for a building

The method is demonstrated by applying it to identify a suitable
model for a building. The building, named FlexHouse, is part of the
experimental energy system Syslab, at Risø DTU in Denmark. It is
well suited for such experiments since it has a controllable electri-
cal heating system. Measurements consisting of five minute values
over a period of six days are used (for further details see Ref. [2]) in
which a thorough description of the experiments and data is given.
This section starts with a description of the building and measure-
ment equipment, then the data is presented, followed by an outline
of the considered models, and finally the model identification and
evaluation is given.
5.1. Description of the building and measurement equipment

The outer walls of the building are constructed of wood on the
outside and plaster boards on the inside, with a layer of insulation
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Fig. 3. (a) The north facade and

ool in between. An image of the north facade and an image of the
outh facade of the building can be seen in Fig. 3. The building rests
n piles, leaving an air gab between the ground and the building.
he roof is flat and covered with roofing felt. The dimensions of the
oor plan are approximately 7.5 times 16 m. In Fig. 4 the floor plan
f the building is shown. A server system is installed in the build-
ng, which can control the electrical heaters located as indicated on
he floor plan. To measure the indoor temperature Hobo U12-012
emp/RH/Light/Ext sensors mounted on a small piece of wood was
anged freely in the middle of each each room. A small climate sta-
ion is located two meters east of the building, the position relative
o the building is indicated in Fig. 4.

.2. Data

The present study is based on data collected during a series of
xperiments carried out in February to April 2009. The following
ime series consisting of five minute average values are used:

y (◦C) A single signal representing the indoor temperature. It is
formed as the first principal component of the measurements of
the indoor temperature from the Hobo sensors.
Ta (◦C) Observed ambient air temperature at the climate station.
˚h (kW) Total heat input from the electrical heaters in the building.
˚s (kW/m2) The global irradiance measured at the climate station.

Plots of the time series can be found in Fig. 5. The controlled
eat input is a pseudo-random binary sequence (PRBS), which has

hite noise properties and no correlation with the other inputs.

t is designed to excite the heat dynamics at several ranges of fre-
uencies in which the time constants of the building is expected
o be, such that the information embedded in data is optimized for

Fig. 4. The floor plan of the building.

157
he south facade of the building.

estimation of the heat dynamic properties of the building (see Ref.
[9]).

5.3. Applied models

The proposed procedure is such, that the modeller starts with
the simplest model and iteratively selects more complex models.
This implies fitting a set of models from the simplest model to
the most feasible complex model, denoted the full model. In this
section the set of applied models and the result of the iterative
selection procedure is described. All the models are grey-box mod-
els, in which the physical part is stochastic linear state-space model
(as presented in Section 2) and where the dynamics of the states
can be written

dT = ATdt + BUdt + dω (11)

where T is the state vector and U is the input vector, and none of the
state variables or input variables are in A or B which only consist of
parameters. All the considered models have an input vector with
three inputs

U = [Ta, ˚s, ˚h]T (12)

All the models are lumped, but with a different structure, which
implies that a given parameter does not necessarily represent the
same physical entity in each model. For example the parameter
Ci is representing the heat capacity of the entire building in the
simplest model, whereas this heat capacity is divided into five heat
capacities in the full model, in which the parameter Ci represents
the heat capacity of the indoor air. This is elaborated further in
Section 5.5.2, where the parameter estimates for the models are
presented. Furthermore it should be kept in mind that these models
are linear approximations to the real system.

In the following sections the full and the simplest model are
described, since they represent the range of applied models. First
the full model is outlined to give a complete overview of all the
individual parts, which is included in the models. Then the sim-
plest model is presented, since it is the first model applied in the
selection procedure and furthermore it illustrates how the mod-
els are lumped. Each model is named from its state vector and
where needed a few parameter names. See Appendix A for a list
of RC-networks corresponding to all applied models.

5.3.1. The full model TiTmTeThTsAeRia
The RC-network of the full model, which is the most complex
model applied, is illustrated in Fig. 6. This model includes all the
individual parts of the building, which it is found feasible to include
in linear models, with the current available data. The individual
model parts are indicated on the figure. The model parts are:
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F ature
i

ig. 5. The data set. From the top, the first plot shows the observed indoor temper
nput ˚h , and finally the lower plot shows the global irradiance ˚s .

Sensor: The temperature sensors are modelled with a heat capacity
and a thermal resistance to the interior.
Interior: In the full model the interior is considered to be the indoor
air (again remember that, since the models are lumped models, the
building part represented by “Interior” is mostly different for each
model) and it is modelled as a heat capacity connected to other
parts by thermal resistances.
Medium: A thermal medium inside the building is the interior
walls and furniture, which is modelled with a heat capacity and
a thermal resistance to the interior.

Heater: The heaters are modelled by a heat capacity and a thermal
resistance to the interior.
Solar: The heat input from solar radiation is modelled by the global
irradiance multiplied with the effective window area.

158
y, the second shows the ambient air temperature Ta , followed by a plot of the heat

Envelope: The building envelope is modelled with a heat capacity
and thermal resistances to both the interior and the ambient. A
thermal resistance directly coupled to the ambient is also included.
Ambient: The ambient is represented by the observed ambient air
temperature.

The full model includes five state variables, that each represents
the temperature in a part of the building, and they are:
Ts: The temperature of the sensor, which for the full model is used
as the model output, i.e. Yk in the measurement equation (Eq.
(19)).

Ti: The temperature of the interior, i.e. the indoor air.
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Yk = Ti,k + ek (21)

Note the differences in representation of the building parts
between the simplest and full model, e.g. Ria represent the thermal
Fig. 6. The full model TiTmTeThTsAeRia with the individual model parts indic

m: The temperature of an interior thermal medium, i.e. interior
walls and furniture.

h: The temperature of the heaters.
e: The temperature of the building envelope.

The parameters of the model represent different thermal prop-
rties of the building. This includes thermal resistances:

Ris: between the interior and the sensor,
im: between the interior and the interior thermal medium,

Rih: between the heaters and the interior,
Ria: between the interior and the ambient,
Rie: between from the interior and the building envelope,
ea: between the building envelope and the ambient.

The heat capacities of different parts of the building are repre-
ented by:

Cs: for the temperature sensor,
Ci: for the interior,
m: for the interior walls and furniture,
h: for the electrical heaters,
e: for the building envelope.

Finally two coefficients are included, each representing an esti-
ate of an effective area in which the energy from solar radiation

nters the building. They are:

w: The effective window area of the building.
e: The effective area in which the solar radiation enters the build-

ing envelope.

The set of stochastic differential equations describing the heat
ows in the full model are

Ts = 1
RisCs

(Ti − Ts)dt + �sdωs (13)

Ti = 1
RisCi

(Ts − Ti)dt + 1
RimCi

(Tm − Ti)dt + 1
RihCi

(Th − Ti) (14)

1 1 1

RieCi

(Te − Ti)dt +
RiaCi

(Ta − Ti)dt +
Ci

Aw˚sdt + �idωi (15)

Tm = 1
RimCm

(Ti − Tm)dt + �mdωm (16)
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This model includes all parts which is included in any of the applied models.

dTh = 1
RihCh

(Ti − Th)dt + 1
Ch

˚hdt + �hdωh (17)

dTe = 1
RieCe

(Ti − Te)dt + 1
ReaCe

(Ta − Te)dt + 1
Ce

Ae˚sdt + �edωe (18)

and the measurement equation is

Yk = Ts,k + ek (19)

since the observed temperature is encumbered with some mea-
surement error.

5.3.2. The simplest model Ti
The simplest model considered is illustrated by the RC-network

in Fig. 7. The model has one state variable Ti and the following
parameters:

Ria: The thermal resistance from the interior to the ambient.
Ci: The heat capacity of the entire building, including the indoor

air, interior walls, furniture etc., and the building envelope.
Aw: The effective window area of the building.

The stochastic differential equation describing the heat flow is

dTi

dt
= 1

RiaCi
(Ta − Ti) + 1

Ci
Aw˚s + 1

Ci
˚h + �i

dωi

dt
(20)

and the measurement equation is
Fig. 7. RC-network of the model Ti, which is the simplest feasible model.
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Table 1
Log-likelihood l(�;YN ) for the fitted models ordered by iterations of the model selec-
tion procedure and in each row by log-likelihood. In each iteration the extended
model with highest log-likelihood is selected, which is the rightmost models in the
table. The number of estimated parameters for each model is indicated by m.

Iteration Models

Start Ti
l(�;YN ) 2482.6
m 6

1 TiTe TiTm TiTs TiTh
3628.0 3639.4 3884.4 3911.1
10 10 10 10

2 TiThTs TiTmTh TiTeTh
4017.0 5513.1 5517.1
14 14 14

3 TiTeThRia TiTeThAe TiTmTeTh TiTeThTs
5517.3 5520.5 5534.5 5612.4
15 15 18 18

4 TiTeThTsRia TiTmTeThTs TiTeThTsAe
5612.5 5612.9 5614.6
19 22 19

5 TiTmTeThTsAe TiTeThTsAeRia

r
t

5

i
l
b
t
a
h
e
i
o
s
m
w
o
l
i
f
i
s
F

5

i

T
T

Fig. 8. The final selected model TiTeThTsAe with the individual model parts indi-
cated.

Table 3
The estimated parameters. The heat capacities, Cx , are in [kWh/◦C]. The thermal
resistances, Rxx , are in [◦C/kW]. The areas, Ax , are in [m2]. The time constants, �x , are
in (h). Note that the physical interpretation for many of the parameters is different
for each model.

Model

Ti TiTh TiTeTh TiTeThTs TiTeThTsWithAe

Ci 2.07 1.36 1.07 0.143 0.0928
Ce – – 2.92 3.24 3.32
Ch – 0.309 0.00139 0.321 0.889
Cs – – – 0.619 0.0549
Ria 5.29 5.31 – – –
Rie – – 0.863 0.909 0.897
Rea – – 4.54 4.47 4.38
Rih – 0.639 93.4 0.383 0.146
Ris – – – 0.115 1.89
Aw 7.89 6.22 5.64 6.03 5.75
Ae – – – – 3.87

�1 10.9 0.16 0.129 0.0102 0.0102
�2 – 8.9 0.668 0.105 0.105
�3 – – 18.4 0.786 0.788
�4 – – – 19.6 19.3
5614.6 5614.7
23 20

esistance of the building envelope in the simplest model, whereas
his is represented by a coupling of Ria, Rie, and Rea in the full model.

.4. Model identification

The identification procedure is applied to find a sufficient model
n the set of models ranging from Ti to TiTmTeThTsAeRia. The log-
ikelihood of each model, which is fitted, is listed in Table 1 ordered
y the iterations of the model selection. The procedure begins with
he simplest model. Then in the first iteration four extended models
re fitted and TiTh is selected since it has the highest log-likelihood,
ence the lowest p-value of the likelihood-ratio tests (the four mod-
ls have the same number of parameters). The selection procedure
s carried out until no significant extension can be found, which
ccurs in iteration number five. During each iteration the current
elected model is evaluated (see Section 5.5). It is found that the
odels selected in each iteration are all satisfying the evaluation
ith respect to improvement of the results, etc. In Table 2 the result

f likelihood-ratio tests for model expansion in each iteration is
isted. Clearly, the expansions carried out in the first three iterations
ndicate very significant improvements of the model. In iteration
our, the improvement is still below 5%, whereas no improvement
s found in iteration five. The procedure thus ends with TiTeThT-
Ae as a sufficient model, which is illustrated by the RC-network in
ig. 8.

.5. Model evaluation
In the following the selected models are evaluated as outlined
n Section 4.2.

able 2
ests carried out in the model selection procedure.

Iteration Sub-model Model m − r −2 log(�) (y) p-Value

1 Ti TiTh 4 4121 <10−16

2 TiTh TiTeTh 4 4634 <10−16

3 TiTeTh TiTeThTs 4 274 <10−16

4 TiTeThTs TiTeThTsAe 1 6.4 0.011
5 TiTeThTsAe TiTeThTsAeRia 1 0.17 0.68
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5.5.1. Residuals
Plots of output, inputs, and residuals for each model can be seen

in Fig. 9. For each model the auto-correlation function (ACF) of the
residuals is plotted in Fig. 10 and the cumulated periodogram (CP)
in Fig. 11. It is seen directly from the plot of the residuals from the
simplest model Ti, that they do not have white noise properties and
that they are not independent of the inputs. The ACF of the residu-
als also clearly show a high lag dependency, and the CP reveals that
the model is not detailed enough to describe the dynamics. Exam-
ining the plot of the residuals for the model selected in the first
iteration, TiTh, it is seen that the level of the residuals is reduced
compared to the residuals for Ti. The ACF and CP indicate that the
assumption of white noise residuals is not fulfilled. From the plot of
the residuals for the model selected in the second iteration, TiTeTh,
it is seen that the level of the residuals is reduced dramatically,
but that some dependency of the inputs is still seen, mostly from
the solar irradiance. The ACF reveals that the characteristics of the
residuals are much closer to white noise, which is also seen from
the CP, indicating that the model now describes the heat dynamics
of the building quite well. The plot of the residuals, ACF, and CP
for the model selected in the third iteration TiTeThTs, reveals only
slight improvements compared to the previous model. Finally the
plots for the final selected model TiTeThTsAe, show that almost no
differences can be observed from the previous model. The highest
level of error can be observed where the solar irradiance is high,
hence it is found that further improvement of the model should be
focused on the part in which the solar radiation enters the building,
or alternatively in letting the incremental variance of the Wiener

process depend on the solar radiation.
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ig. 9. The upper plot is of the output and inputs, and the following plots are of the
s indicated.

.5.2. Parameter estimates
The parameter estimates of the selected models are evaluated in

he following. The estimates are presented in Table 3 together with
he time constants calculated for each of the selected models. The

otal heat capacity and thermal resistance of the building envelope
stimated by the selected models are presented in Table 4. As found
y evaluating the residuals (see previous section) the models Ti and

161
uals for each of the selected models. On each plot of the residuals the model name

TiTh do not describe the dynamics of the system very well, which
implies that the estimates of the heat capacities are not reliable.
Estimates of the heat capacities found by the tree larger models
are more credible, especially it is seen that the time constants are

almost equal, indicating that the models comprise the same dynam-
ics. The exact physical interpretation of the smaller heat capacities
Ci, Ch, and Cs cannot be given, but it is noted that their sum, for
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Fig. 10. The auto-correlation function of the residuals for each of the selected mod-
els. Fig. 11. The cumulated periodogram of the residuals for each of the selected models.
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Table 4
The total heat capacity [kWh/◦C] and thermal resistance [◦C/kW] of the building
envelope estimated by the selected models. The UA-values ˛UA are in [W/◦C m2].

Model

Ti TiTh TiTeTh TiTeThTs TiTeThTsAe

e
1

a
T

6

b
t
b
a

ing. This includes for instance the thermal resistance of the
Ctotal 2.07 1.67 3.99 4.32 4.36
Renvelope 5.29 5.31 5.40 5.38 5.28
˛UA 1.55 1.55 1.52 1.53 1.55

ach of the three larger models, is quite close ranging from 1.03 to
.08 kWh/◦C.

The estimated total thermal resistance of the building envelope
nd thereby the UA-values is quite similar for all models, as seen in
able 4.

. Applications

Identification of a suitable model of the heat dynamics of a
uilding based on frequent readings of heat consumption, indoor
emperature, ambient air temperature, and climate variables, will
e very useful for different purposes. Important fields of application
re:

Accurate description of energy performance of the building: An
energy signature of buildings can provide important information
for energy- and cost effective improvements of the building. The
most effective actions to be taken for an individual building can
be identified. Furthermore the heat consumption due to physical
effects, such as a poor isolated building envelope, can be separated
from behavioral effects, e.g. a high indoor temperature.
Forecasting of energy consumption for heating: Forecasting of

energy consumption for heating can be used for integration
of large amounts of renewable energy, such as wind- and
solar energy. Implementation of electrical heating with hot
water tanks for heat storage in individual houses can be prof-
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itable in the near future. Knowledge of the heat dynamics
of buildings is essential to forecasting and control of such
systems.
Indoor climate control: Control of the indoor temperature, ventila-
tion, etc. to provide a good indoor climate conditions can be carried
out with methods which include models of the heat dynamics.
The models can also be extended to include the effect of wind and
thereby provide information of the air tightness of buildings.

7. Conclusion

A procedure for identification of the most suitable models for
the heat dynamics of a building has been described and applied
on the basis of data from an experiment carried out in February
2009. The procedure is based on likelihood-ratio testing combined
with a forward selection strategy. The proposed models are grey-
box models, where a combination of prior physical knowledge and
data-driven modelling is utilized. The data used for the modelling
consist of: climate data measured at the location, measurements of
the indoor temperature, and a PRBS controlled heat input.

The results of the identification procedure are evaluated and
discussed, both in a statistical and physical context. The eval-
uation reveal that the selected model meet the assumptions of
white noise residuals, hence it can be applied to give reliable
estimates consistent with reality and the results are statistically
validated. Furthermore model deficiencies are pointed out, from
which further advancement of the model should be pursued. For
the considered building this is primarily on the model part where
the solar radiation input enters the building.

It has been shown that the method is able to provide
rather detailed knowledge of the heat dynamics of the build-
envelope and thereby the UA-value, parameters describing the
capabilities for storing heat, and the time constants of the
building.
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Abstract 

In this work the heat dynamics of a storage tank were modelled on the basis of data and maximum likelihood 
methods. The resulting grey-box model was used for Economic Model Predictive Control (MPC) of the energy in the 
tank. The control objective was to balance the energy from a solar collector and the heat consumption in a residential 
house. The storage tank provides heat in periods where there is low solar radiation and stores heat when there is 
surplus solar heat. The forecasts of consumption patterns were based on data obtained from meters in a group of 
single-family houses in Denmark. The tank can also be heated by electric heating elements if necessary, but the 
electricity costs of operating these heating elements should be minimized. Consequently, the heating elements should 
be used in periods with cheap electricity. It is proposed to integrate a price-sensitive control to enable the storage tank 
to serve a smart energy system in which flexible consumers are expected to help balance fluctuating renewable 
energy sources like wind and solar. Through simulations, the impact of applying Economic MPC shows annual 
electricity cost savings up to 25-30%. 
 
© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of PSE AG 
 
Keywords: Model predictive control; solar heating; smart solar tank;  smart energy systems 

1. Introduction 

Economic Model Predictive Control (MPC) has previously been used to reduce the electricity costs of 
heating and cooling in buildings [1,2,3]. For a smart solar tank [4] the same MPC framework can be 
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applied in order to save energy and reduce electricity costs. For the system considered in this paper, the 
electricity consumption of the auxiliary heating elements in a storage tank must be controlled. The 
heating elements can be turned on in periods when the amount of solar energy alone cannot meet the heat 
demand, e.g. hot water and space heating in a residential house. 

The MPC exploits knowledge about the future inputs, so to minimize electricity costs a good tank 
model is required, along with excellent forecasts of both solar radiation and consumption patterns. In this 
paper we estimate the parameters in a storage tank model from measured data with a maximum likelihood 
method. With this model we design an Economic MPC to control the power consumption of the heating 
elements according to a price. By adding a price signal to the objective of the controller, the MPC will 
minimize the electricity costs for the individual tank by shifting power consumption to periods with cheap 
electricity. As the electricity costs are reduced the trade-off of considering prices and not power 
consumption alone is to use more power, but at the right time. 

The performance of the MPC in terms of power consumption and electricity costs is investigated for 
different consumption patterns in a one-year simulation period. The influence of uncertainty in the 
forecasts of both solar radiation and consumption is also examined. We assume that electricity prices are 
known each hour at least 12 hours ahead, which is true for the day-ahead Elspot market in Denmark [5]. 
These prices reflect the power demand of the overall energy system and also indicate the amount of cheap 
renewable energy sources available, such as wind power. 

2. Solar thermal collector and storage tank 

The smart solar tank consists of a solar collector with area of 9 m2, and a storage tank with a total 
volume of 788 l. The tank itself contains an inner tank for domestic hot water and a pressureless outer 
tank for space heating. The tank can be heated by the solar collectors. To help cover the remaining heat 
demand, three smaller electric heating elements of 3 kW each are installed in the tank, as shown in Figure 
1b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. (a) Sketch of the tank with inlets, outlets and eight temperature measurement points. (b) Photo of storage tank in lab 
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Solar energy is transferred to the tank by feeding water into the tank through a stratification device. In 
this way, beneficial thermal stratification is built up during solar collector operation [4,6]. Space heating 
is transferred from the upper part of the tank and the return inlet to the tank goes through another 
stratification device. 

2.1. Tank model 

We model the storage tank separated from the solar collector such that the energy balance is 
 

  lossnconsumptiosolarheater QQQQQtank       (1) 

The contribution from the solar collector Qsolar and heat consumption Qconsumption are forecasted inputs. 
The heating element input power consumption Qheater is controllable. The loss is modelled as proportional 
to the temperature difference between the internal tank temperature and the ambient room temperature. 
The actual energy in the tank Qtank cannot be physically measured, but is assumed to be dependent on the 
measured tank temperatures. Eight temperature measurements from different layers of the tank are 
combined to represent an overall tank temperature (Tt) proportional to the stored energy. Using an 
average from the eight sensors (n = 8) we get the tank temperature 

 
  

n

j
jt T

n
T

1

1         (2) 

 
Based on (1), the heat dynamics of the tank can be described as a simple first order differential equation  
 
  )ˆ(ˆˆ

itcshtt TTUAQQQTC      (3) 
 

Qh is the controllable power consumption for the electric heating elements with efficiency . Ct is the 
specific heat capacity of the tank, while the energy contribution from the solar collector Qs and the house 
consumption Qc are both forecasted inputs. We use the forecasts computed from measurements in 
domestic households in southern Denmark based on [7,8]. The ambient temperature Ti should also be 
forecast, but is assumed to be a constant 20°C in further simulations. 

The model data to be used for model estimation was based on a storage tank that uses stratification 
pipes for optimal injection of the return water. Therefore a layered model with more than one temperature 
state should possibly be considered. However, for the given data set and a time scale of minutes, a first 
order model with only one layer was found sufficient for describing the heat dynamics of the tank. 

The solar thermal power is simulated from measured climate data recorded at the local district heating 
plant in Sønderborg. A standard flat-plate collector is used as the simulation model, as described in [9]. 
The solar thermal power is forecast with the method described in [7], where a conditional parametric 
model is applied for forecasting the hourly solar thermal power up to 36 hours ahead. The forecasting 
model takes numerical weather predictions of global radiation as input. Based on past data, the collector 
thermal performance is modelled and takes local effects into account, such as the orientation of the 
collector and shading from objects in the surroundings. 

2.2. Model parameter estimation 

CTSM was used to estimate the unknown parameters of a continuous discrete stochastic state space 
model. The model consists of a set of stochastic differential equations describing the dynamics of a 
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system in continuous time and a set of algebraic equations describing how measurements are obtained at 
discrete time instants. 
  

exC
dEuBxAx

)(y
dwdt))()()((d             (4) 

The model includes a diffusion term to account for random effects, but otherwise it is structurally 
similar to ordinary differential equations. Therefore conventional modelling principles can be applied to 
set up the model structure. Given the model structure, any unknown model parameters can be estimated 
from data, including the parameters of the diffusion term. The parameter estimation method is a maximum 
likelihood (ML) method and a maximum a posteriori (MAP) method [10,11,12,13]. 

 

 

Fig. 2. Data measurements from real storage tank used for parameter estimation. The estimated  tank temperature has been also been 
plotted 

The model parameters UACt  were estimated in the continuous time stochastic state space 
model (4) with tTyx  and ics TQQd   that contains the forecast disturbances from (3). It is 
assumed that the measurement error is normal-distributed. with a variance of 1°C such that )1,0(Ne . 
The process noise was assumed to have standard deviation 001.0 . 
 
The parameter estimation was based on the data shown in Fig. 2. The estimated parameters of (3) were 
found to be:  

UA = 8.29 (± 0.0278) W/K   Ct = 3881.3 (± 0.00167) kJ/K        (5) 
 

It should be noted that the heating element efficiency was fixed at 1and the tank temperature 
representing the stored energy was assumed to be an average of all eight temperature measurements. The 
fit of the resulting estimated tank temperature tT̂  is also compared to the average tank temperature Tt in 
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Fig. 2, and reveals a nice match. Note that the consumption pattern Qc in this data set is deterministic and 
the same amount of energy is deliberately drawn from the tank at 7 am, 12 pm, and 7 pm. 

3. Economic MPC 

Traditionally the heating elements in a storage tank are controlled by a thermostat that is either on or off 
and keeps the temperature close to a temperature set point in a hysteresis loop. Instead of specifying a 
temperature set point for the tank, a set of constraints on the tank temperature and on power consumption 
is specified. For the MPC strategy, as long as the temperature is within some bounds, there is no need to 
force it to a certain temperature. In this way knowledge about the future weather and heat consumption 
can help to minimize the power consumption of the heating elements. Adding a price signal to the 
objective will then not only try to minimize the power consumption, but also the electricity costs. So the 
finite static MPC optimization problem to be solved at every sampling time t is 
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    (6) 

 
At each sampling time, t, we minimize the electricity costs over the prediction horizon N, given the 

forecasts available at time t. The first control action u0 of the solution is implemented on the process and 
the procedure is repeated at the next sampling instant. This is usually referred to as receding horizon 
control. The model (3) is discretized into a discrete time state space model defined by the matrices 
(A,B,E,C) with the estimated parameters (5). The constraints on temperature and power consumption 
must also be satisfied. 

4.  Simulation 

Fig. 3 shows a simulation of the resulting MPC with the estimated tank model. The scenario is based 
on real measured solar radiation and consumption patterns from residential houses in southern Denmark 
during a whole year from May 17 2010. The simulation is a closed loop simulation with a 24-hour 
prediction horizon based on forecasts subject to uncertainty and actual electricity prices from the Nordic 
Elspot market [5].  

In Fig. 4, one week in March 2011 of the simulation from Fig. 3 has been extracted. During the first 
few days the heating elements mostly use power during night-time when the prices are low. In the 
remaining period a lot of solar radiation heats up the tank and the heating elements are practically not 
used. The temperature stays within the predefined interval that defines the storage capability. 
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Fig. 3. A one-year simulation starting May 17 2010 with 24 h prediction horizon using uncertain forecasts. The upper plot shows the 
tank temperature, the middle plot contains the electricity price and the optimal power consumption for the heating element, and the 
lower plot contains the solar heat input and the house consumption demand. The heating element is turned on when the electricity 
price is low. 

 

 

Fig. 4. Shows the same as Fig. 3. but contains only one week in March 2011 to make it easier to read the details. 
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Fig. 5. (a) Annual savings in percent compared to conventional thermostat control for the six different houses. (b) Annual power 
consumption (upper) and electricity costs (lower) for house #2 as a function of the prediction horizon N for four different control 
strategies. Closed loop Economic MPC with perfect forecasts (EMPCp), with real forecasts subject to uncertainty (EMPC), a 
constant electricity price of 1 (MPC) and a Thermostat control keeping the temperature at 60°C. 

5. Results and discussion 

For a whole year the annual power consumption and electricity costs were found from closed loop 
MPC simulations for four different control strategies. The results can be found in Fig. 5a, while a 
simulation for one of the houses is shown in Fig. 5b. For a prediction horizon N larger than 24 hours, the 
cost savings do not increase by much as the prediction horizon increases further. This is mainly due to the 
maximum input power and the storage capacity of the system. Information about the solar radiation or the 
consumption next week will not change the optimal power consumption due to these system constraints. 
Furthermore, using perfect forecasts, i.e. knowing the future inputs exactly, does not increase the savings 
significantly. The annual savings of considering the price with an Economic MPC are 25-30% for the 
given simulation scenarios for six different houses. 

Note that the power consumption for the Economic MPC grows larger than for the ordinary thermostat 
control as the prediction horizon increases. However the costs go down. Consequently, to save more 
money, more electricity must be used for control. However, the increased power consumption can be 
justified when the electricity price reflects the amount of renewable energy in the power system. 

Another result of the investigations is that in the MPC strategy in which only power consumption is 
minimized and where prices are not considered, the annual power consumption is constant regardless of 
the prediction horizon. Since the sampling period is so high (1 h) compared to the dynamics (< 5 min), 
the amount of power (9 kW) that can be delivered instantaneously in every one-hour sampling period is 
higher than the instantaneous demand at any time. So the control signal matches the consumption at every 
sampling time even for a one-hour prediction horizon. Also the control is only active at the lower 
temperature bound, because it is not possible to actively cool the tank. 

Similar results were obtained for the five other houses, with the same conclusions. 
Any missing data in the forecasts was ignored by setting it to zero. This means that some periods in the 

annual simulation have no solar input or no consumption at all. For the six different houses the total 
missing number of samples in the consumption data sets was around 510 (~21 days) for all houses except 
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house 1, where 1800 samples were missing (~78 days). For the solar data that were used for every house, 
351 samples were missing (~14 days). An example of the missing data in the consumption forecast can 
easily be seen in Fig. 3. 

Computation times for solving the individual open loop MPC problem are in the millisecond range. 
Simulating a whole year takes around 5-10 seconds for a prediction horizon of 24 hours running Matlab 
on an Intel i7 2.67 GHz laptop. 

6. Conclusion 

The heat dynamics of a smart solar storage tank were modelled and its parameters were found from 
maximum likelihood estimation procedures. An Economic MPC was designed to control the power 
consumption of the auxiliary heating elements in the storage tank. The MPC minimizes electricity costs 
given the price and forecasts of the solar radiation and consumption. Electricity cost savings of 25-30% 
compared to current thermostat control strategy were found for six different houses. 
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Summary (English)

E�cient operation of energy systems with substantial amount of renewable en-
ergy production is becoming increasingly important. Most renewables are de-
pendent on the weather conditions and are therefore by nature volatile and
uncontrollable, opposed to traditional energy production based on combustion.
The "smart grid" is a broad term for the technology for addressing the challenge
of operating an energy system, especially the electrical grid, with a large share
of renewables. The "smart" part is formed by technologies, which model the
properties of the systems and e�ciently adapt the load to the volatile energy
production using the available �exibility in the system.

In the present thesis methods related to operation of solar energy systems and
for optimal energy use in buildings are presented. Two approaches to forecasting
of solar power based on numerical weather predictions (NWPs) are presented.
They are applied to forecast the power output from PV and solar thermal col-
lector systems. The �rst approach is based on a developed statistical clear-sky
model, which is used for estimating the clear-sky output solely based on obser-
vations of the output. This enables local e�ects such as shading from trees to
be taken into account. The second approach to solar power forecasting is based
on conditional parametric modelling. It is well suited for forecasting of solar
thermal power, since is it can be made non-linear in the inputs. The approach
is also extended to a probabilistic solar power forecasting model.

The statistical clear-sky model is furthermore used as basis for a method for
correction of global radiation observations. This method can used for correction
of typical errors, for example from shading trees or buildings.
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ii

Two methods for �exible heat use in buildings are presented in the last part of
the thesis. First a method for forecasting of the heat load in single-family houses
based on weather forecasts is presented. A model is identi�ed for forecasting the
heat load for sixteen single-family houses. The model adapts to the individual
houses and needs no speci�c information about the buildings. Finally, a proce-
dure for identi�cation of a suitable model for the heat dynamics of a building
is presented. The applied models are grey-box model based on stochastic dif-
ferential equations and model identi�cation is carried out with likelihood ratio
tests. The models can be used for providing detailed information of the thermal
characteristics of buildings and as basis for optimal control for �exible heating
of buildings.

180



Summary (Danish)

Energiproduktion med vindmøller og solceller kan af naturlige årsager ikke styres
som energiproduktion baseret på forbrænding. Derfor kræves en udvikling af nye
teknologier til styring af energisystemer med en betydelig andel vind- og solen-
ergi. Elnettet skal udbygges med it-teknologi og blive til et "smart grid". Dette
betyder at styringen skal udføres automatisk baseret på computermodeller, der
"lærer"−at tilpasse sig systemets egenskaber udfra data opsamlet af sensorer.
I afhandlingen præsenteres en række af sådanne modeller og metoder relateret
til solenergi og opvarmning i bygninger.

Først præsenteres to metoder til forudsigelse af solenergiproduktionen udfra me-
teorologiske vejrprognoser. De kan bruges til forudsigelse af energiproduktionen
fra både solceller og solfangere, og kræver ikke nogen speci�k information om
anlæggene udover målinger af energiproduktionen. Den ene metode er baseret
på en udviklet statistisk model, der kan estimere solenergiproduktionen ved
klar himmel, udelukkende ud fra målinger af produktionen. Dette gør modellen
i stand til at inkludere lokale e�ekter, som for eksempel solenergi-anlæggets vin-
kling og skygger fra objekter i de lokale omgivelser, f.eks. fra træer. Den anden
metode er baseret på en betinget parametrisk model, hvilket giver en e�ek-
tiv modellering med ikke-lineære funktioner. Denne metode er desuden veleg-
net til solvarme forudsigelser. Endeligt beskrives en metode til probabilistisk
forudsigelse af solenergiproduktion.

En metode til korrektion af fejl i målinger af global stråling præsenteres. Den
statistiske model for klar himmel benyttes her på målinger af global stråling
og systematiske fejl korrigeres, som for eksempel skyldes skygger fra træer eller
bygninger.
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iv

En række modeller af solfangeres varmedynamik præsenteres. Modellerne er
baseret på stokastiske di�erentialligninger og kan benyttes til estimation af
vigtige fysiske parametre udfra målinger fra en enkelt dag. Dette gør dem oplagte
til brug i tests af ydeevne.

To metoder der kan bruges i styringen af �eksibelt varmeforbrug i bygninger
præsenteres i sidste del af afhandlingen. Først identi�ceres en model til forudsigelse
af varmeforbrug baseret på meterologiske forudsigelser, og den afprøves på sek-
sten typiske parcelhuse op til 42 timer frem i tiden. Modellen tilpasser sig au-
tomatisk de enkelte huses varmeforbrug og kræver ingen speci�k information
om de enkelte huse.

Tilsidst præsenteres en metode til identi�cering af en velegnet model af bygningers
varmedynamik. Modellerne er baseret på stokastiske di�erentialligninger og kan
bruges til at estimere vigtige fysiske parametre, for eksempel bygningens UA-
værdi og varmekapacitet. De kan for eksempel benyttes til at bestemme poten-
tialet for energirenovering og som basis for styring af �eksibelt varmeforbrug.
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Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling (Informatics), the Technical University of Denmark (DTU) in partial
ful�lment of the requirements for acquiring the Ph.D. degree in engineering.
The Ph.D. project was carried as part of the project "Solar/electric heating
systems in the future energy system" which is funded by The Danish Council
for Strategic Research.

The thesis deals with modelling for operation of energy systems depending on
solar radiation and for �exible heating of buildings. Methods for forecasting
of solar power and for correction of observations are presented, together with
models for forecasting of heat load in buildings and models for the heat dynamics
of buildings.

The thesis consists of a summary report and seven research papers. Two of the
papers are published in, and two are submitted to, international peer reviewed
scienti�c journals. The last three appear in conference proceedings.
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Peder Bacher
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Chapter 1

Introduction

The foreseen negative impact on human life conditions due to climate changes
caused by the increasing level of greenhouse gases in the atmosphere, is driving
a transformation of the energy system: away from the current system based on
fossil fuels and over to a future system based on sustainable and climate neutral
energy production. Many plans for this transformation have been presented
during the last decades and the visions are manifold. They range from focusing
on yet not operational technologies, such as nuclear fusion energy, and over to
focusing on existing technologies, such as nuclear �ssion energy, and wind and
solar energy. Reality is however, that no single sustainable energy technology,
which can cheaply replace coal and oil, and cover the entire demand for en-
ergy, has been invented. Currently, it seems like a very realistic scenario is a
system composed of wind, solar, bio, and hydro power. See for example the
scenarios suggested by Fthenakis et al. (2009), Jacobson and Delucchi (2011),
and Mathiesen et al. (2011). The transition should be carried out with the
socio-economically most optimal solutions and is highly dependent on the cur-
rent energy infrastructure and locally available resources. Due to the spacial
requirements and intermittent nature of wind and solar energy technologies,
two very important aspects have to be considered: energy storage and energy
mobility. In one end of the renewable energy scenarios, all energy is produced
with large scale plants at locations where the resource is plentiful: solar energy
in the desert and wind energy o�-shore at sea. This requires strong intercon-
nections over very long distances for transportation of energy to where it is
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2 Introduction

needed. In the other end, scenarios are suggested where the energy is produced
on distributed small scale systems as close as possible to where it is needed. For
the Danish energy system several plans for a system based on 100% renewables
in 2050 have been put forward. The currently most established plan is put for-
ward by the Danish Commission on Climate Change Policy (2010), who suggest
a profound change of the structure of energy system. Away from the current
centralized system, which is based on non-volatile power generation technologies
and where the power generation is controlled to match the demand, and over to
a distributed system, which can handle a much more volatile power generation
and where the demand is shifted to match the power generation. The change
involves engineering challenges in many �elds, where especially the "smart grid"
is pointed out as an essential component which must be developed.

The "smart grid" is a term covering a range of technologies for enabling an ef-
�cient and �exible operation of a renewable based energy system, in particular
with the use of information and communication technology for providing the
needs for communication between the units in the system. This forms the basis
for the "smart" part, namely the operation of the energy system with computer
models, which can "learn" the characteristics of the system and enable an op-
timized use of the vast amounts of data from sensors in the system. In the
present thesis such methods based on such data-driven statistical models are
presented. They are centered around the use of real-time energy and climate
data for modelling, with focus on solar energy applications and optimal energy
use in buildings. This type of methods will be vital for operation of energy
systems with a substantial amount of solar energy production, and - especially
for the methods related to buildings - also for e�cient integration of other re-
newables, in particular wind energy. Methods for the following applications are
presented in the thesis:

• Solar power forecasting, both for PV systems and solar thermal systems.

• Processing and correction of solar radiation measurements.

• Dynamical models for solar thermal collectors.

• Forecasting of heat load for buildings.

• Identi�cation of suitable models for the heat dynamics of buildings.

The methods are based on statistical modelling techniques, which, where it is
appropriately, are combined with prior physical knowledge. The models deal
with both non-linear and dynamic relations, and thorough statistical analysis
for evaluation of the results are carried out. An objective is to provide a solid
foundation for operational applications, as well as expanding current state of the
art in the addressed �elds. Data from both experimental setups and systems

196



1.1 Solar energy 3

in operation is used, for example data consisting of measurements from test
buildings, inhabited buildings, weather stations, and meteorological forecasts.

The PhD-study is carried out under the project "Solar/electric heating systems
in the future energy system", in which a heating system scaled for a single-
family house is designed, see (Perers et al., 2011) for a detailed description. The
core of the system is a hot-water tank, which is connected to both an electrical
heater and a solar thermal collector. The system provides both space heating
and hot water heating. By heating in advance with electricity, and storing
thermal energy in the tank, the system can be used for load-shifting, and thus
become valuable also for the integration of wind power (Meibom et al., 2007).
An objective of the PhD-study is to provide the forecasting models needed
for optimal operation of the system in a Danish context, where the electricity
is bought at a variable price on the Nord Pool Spot day-ahead market. The
optimal operation is carried out by shifting the load to hours with cheap energy
in order to minimize the costs of running the system. The presented methods for
forecasting of the hourly solar thermal production and forecasting of heat load,
are used to provide the necessary basis for the economic model predictive control
(MPC) scheme presented by Halvgaard et al. (2012) for optimal operation of
solar-electric combisystems. Furthermore price forecasts are used, which are
provided using the models described by Jónsson et al. (2012).

1.1 Solar energy

Energy from solar radiation drives the processes that makes life on earth possi-
ble. It has the potential to cover all human energy needs: the energy from solar
radiation striking the surface of the earth in 90 minutes (appr. 6.4·1020 J) is well
over the current global energy consumption per year (appr. 5.1 · 1020 J in 2009
(IEA, International Energy Agency, 2011b)). Several plans exist for a renewable
based energy system relying heavily on solar energy. For example: Zweibel et al.
(2008) plan 35% of the total energy to come from solar, Heide et al. (2010) �nds
that an optimal balance is 55% wind and 45% solar energy for Europe, and IEA,
International Energy Agency (2011a) discuss the IEA High-Renewable Scenario
where 25% of global electricity is covered by solar power. A vast palette of
technologies exist for using solar radiation as an direct source of energy: from
agriculture over architecture and over to conversion of solar radiation directly
to electrical power. Many other renewable energy sources are indirectly driven
by solar radiation, for example wind and hydro power. The most used tech-
nologies, which convert solar radiation directly into heat or electricity, can be
divided into following categories:

197



4 Introduction

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

W
o
rl
d
in
st
a
ll
ed

ca
p
a
ci
ty

(G
W

p
)

0
5
0

1
0
0

1
5
0

PV
Solar thermal

Figure 1.1: Total worldwide installed solar PV and thermal capacity

• Heating, cooling and ventilation in buildings, for example there is a long
tradition for buildings to have windows for providing indoor light and
heating.

• Water heaters. Di�erent types of solar thermal collectors exist, the most
widespread type is �at-plate collectors.

• Photovoltaic (PV) panels, which are either distributed on roof-tops or
installed in large power plants, currently the largest is Golmud Solar Park
(200 MWp), which is to be built in China.

• Concentrated solar power. Installed in large plants, where sun beams are
concentrated with mirrors to heat �uid for driving steam turbines. This
technology has a huge potential in sunny regions, currently the largest is
Brightsource's Ivanpah plant in the US, which is planned to reach 392
MWp when completed. The use of a heated �uid in the process has the
advantage that thermal storage can be used to shift the electricity pro-
duction.

The plot in Figure 1.1 shows the total worldwide installed capacity over the last
years of PV (BP, 2011) and solar thermal (appr. 85% from �at-plate and evacu-
ated tube collectors and 15% from unglazed collectors) (IEA - The Solar Heating
and Cooling Programme, 2010). Clearly the installed capacity is rapidly increas-
ing and especially the installed PV capacity has been rapidly increasing the last
few years. Currently Germany has the highest level of solar power penetration
at around 3% of the electricity production, which already has a considerable im-
pact on the power price on sunny days (Nicolosi and Nabe, 2011). The currently
installed capacity in Denmark is around 22.5 MWp, which corresponds to 0.06
% of the electricity production. This is quite little, but in 2011 nearly 8.5 kWp

was installed and the trend seems to be continuing upwards, as seen from the
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Figure 1.2: Total installed solar PV peak power capacity in Denmark (source:
Energinet.dk)

plot in Figure 1.2 of the total installed PV capacity in Denmark. During the
large scale smart grid research project Ecogrid, the Danish island of Bornholm
(population around 42000) will be equipped with 5MWp solar power, which will
be around 9% peak power penetration (Yang et al., 2011). Hence there is a
growing need for methods for an e�cient integration of PV solar power.

As seen in Figure 1.1 the globally installed solar thermal capacity is much higher
than the installed capacity of PV. The by far largest part of solar thermal
is used for water heating and works independently of the surrounding energy
system. However there is an increasing trend in application of solar heating for
other purposes, such as space heating and industrial heating. As an example
is the solar heating system from Innogie1, where the entire roof is turned into
a solar thermal collector. It is coupled to a hot water tank and a geothermal
heat pump. In the summertime an HP/ORC module is used for conversion of
the solar thermal energy to electricity. Apart from e�cient use of solar and
electrical energy for heating, the system can also provide �exible electrical load
and production.

In order to operate systems with solar power optimally, it is essential to have
forecasts of solar power available (Lew et al., 2010). They are required for
periods ranging from days ahead down to hours and ten-of minutes ahead (Sayeef
et al., 2011). Quite a lot of research in solar forecasting has been carried out the
last years and two main approaches, depending on the forecast horizon, have
had most attention: for short horizons within a couple of hours, the forecasts are
based on satellite images and total sky imagery, and for longer horizons up to a
several days, the forecasts are based on numerical weather predictions (NWPs).

The following is a small overview of the recently presented methods for fore-
casting based on NWPs. Ji and Chee (2011) do a detrending of solar power

1www.innogie.dk
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6 Introduction

by �tting a high order polynomial model based on a monthly average of the
diurnal curve to account for non-stationarity of the observed process. Then
the detrended series is forecasted with an ARMA and TDNN hybrid model.
Lorenz et al. (2011) use several steps in a post-processing procedure of NWPs
to derive optimized site-speci�c irradiance forecasts. First a spatial averaging
of the NWPs is carried out and thereafter a bias-removal procedure, which is
based on a physical clear-sky model, is applied. Finally, a physical model is
used to convert the irradiance forecasts to PV power forecasts. An up-scaling
method for regional solar power forecasting is also presented. Schmelter et al.
(2011) presents a continuous weather classi�cation for combining NWPs, which
improves forecasting performance especially for di�cult weather conditions such
as fog and snow. Pelland et al. (2011) do post processing of NWPs for forecast-
ing global radiation and PV output. First a spacial averaging of the NWPs
is applied and a Kalman �lter is used for bias removal. Fonseca Júnior et al.
(2011) compare neural networks and support vector regression for forecasting
24 hours ahead. It is found that RMSE performance is quite equivalent, while
MAE performance is better for support vector regression.

In the present thesis two approaches to solar power forecasting based on NWPs
are presented. The �rst approach is based on a developed statistical clear-sky
model, which is used for normalization of the solar power to a stationary process,
such that classical linear time series models, here ARX models, can be e�ciently
applied. The second approach is to forecast the solar power directly with a
conditional parametric model. This provides a simple and e�cient approach to
solar power forecasting. Furthermore an outline of an approach to probabilistic
solar power forecasting is given.

In addition to the forecasting methods two other solar energy related studies are
presented in the thesis. First a method for correction of global radiation obser-
vations based on the statistical clear-sky model is presented. The method can
especially be useful for correction of observations from partly unsupervised solar
radiation sensors, which will be exposed to many types of errors, for example
shading from surrounding objects. Finally, a study, in which grey-box models
for the heat dynamics of solar thermal collectors are applied, is presented. The
models can be used for obtaining detailed knowledge of the heat dynamics of a
collector, including the physical parameters related to the performance of the
collector.
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1.2 Buildings and energy 7

1.2 Buildings and energy

An essential key to a successful integration of the volatile energy production
from renewables is the development of cheap and operational energy storage.
Today many di�erent energy storage technologies exists. They are di�erent
with regards to several aspects such as: e�ciency, temporal characteristics, and
geographic requirements. For example pumped hydro, which can provide sea-
sonal storage with a round-trip e�ciency up to 85%, has a limited potential due
to the geographic requirements. Another very promising technology is renew-
able power methane (RPM) storage, which is based on conversion of electricity
to methane gas. The gas is stored and can be used later in the existing nat-
ural gas energy infrastructure. The draw-back of RPM is that the round-trip
e�ciency is only in the range of 30% to 37% (Breyer et al., 2011), which makes
it expensive and feasible mostly for seasonal storage. Hence cheap and e�cient
short-term energy storage is really valuable, in Denmark especially for match-
ing the �uctuations in wind power (Meibom et al., 2007), but also for shifting
the load away from peak hours within the day. Due to the generally increasing
electricity load, even very short time �exibility can be very valuable in order to
avoid overload of the transmission system and thereby minimize the needed in-
vestments in the transmission system (Danish Commission on Climate Change
Policy, 2010). The use of electric vehicle (EV) batteries for short-term load-
shifting is possible, but the large scale transition to EVs is yet to come. It is
to cover this need that thermal storage in buildings can prove to be the a key
solution. As heating become more electricity based, a huge potential for energy
bu�ering and �exible load can be released (Palensky and Dietrich, 2011). Ap-
proximately 40% of the total energy consumption is related to buildings, either
used for heating or consumed by electrical appliances. Thermal energy can ei-
ther be stored in the building structures, making it possible to possible to shift
load while keeping the indoor temperature within some limits (e.g. 19 to 21
◦C), or stored in a thermal storage system, for example a hot water tank. This
applies both to heating and cooling, or both at the same time as suggested by
Blarke et al. (2012), who �nds that thermal storage is a very cheap compared
to electro-chemical or mechanical storage.

Apart from the hardware for enabling the use of buildings for energy storage,
the methods for optimal operation are necessary to have. Modelling and fore-
casting of the energy �ows in the building are needed, together with methods
for modelling the energy systems related locally to the building. For example
for forecasting of solar thermal power, if a solar collector is connected to the
heating system. Finally, the operation of the heating system must be coupled
to the operation surrounding energy system. This will most likely be carried
out with energy markets, where a variable energy price will reward a �exible
load. Today smart meters are being installed in many buildings and the high
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resolution readings (10 to 15 minute values) of heat load will - combined with
climate data - form the basis for modelling the building energy characteristics.
Especially a proper modelling of the heat dynamics is crucial for this time res-
olution and provides the key for optimal use of the buildings for load-shifting.
Here it is also emphasized, that another very important use of data from smart
meters is for determination of the energy performance of buildings, as carried
out by ENFOR (2010) and as with the methods presented in below. This will
be very valuable for e�cient energy refurbishment of buildings, which has a very
important feature that must not be overseen: energy savings are far less volatile
and to a large extend cheaper, compared to an equivalently increased renewable
energy production.

In the thesis two methods for modelling related to building energy use are pre-
sented: First a method for forecasting the heat load of single-family houses and
secondly a method for obtaining a detailed description of the heat dynamics of
a building.

The method for forecasting of heat load is very well suited for optimized op-
eration of a heating system, which include thermal storage in some dedicated
medium, for example a hot water tank. As described previously, the objective
of the PhD-project is to make methods to be used for optimal operation of
a solar-electric combisystem for space and hot water heating in single family
houses. The idea is to couple forecasts of: the electricity price, the energy pro-
duction from the solar thermal collector, and the heat load of the building. The
forecasts are then used as input to economic model predictive control scheme
(MPC), which then provides an optimal operation plan for the system, i.e. how
much electricity should be bought for heating at a given time. If the electricity
can be bought at a variable price, then the storage capacity of the hot water
tank can be used for lowering the running costs, by shifting the load to hours
with cheap electricity. Hence the system can provide services to the grid, and
thereby the short-term energy storage for an e�cient integration of the large
amount of wind power planned in Denmark. It is planned to have around 50%
of electricity production in 2020.

The method, which can be used to obtain a detailed and accurate description of
the heat dynamics of a building from data, is based on grey-box modelling. The
models are formed by stochastic di�erential equations, which enables a combi-
nation of physical and data-driven modelling. The physical part for the model is
formed by a description of the heat dynamics with di�erential equations, which
includes the physical thermal properties and a model of how the signi�cant heat
transfers occur in the building. This allows for the estimation of parameters,
which are directly physically interpretable. The identi�ed model can be used for
several purposes. Firstly, thermal properties, such as the UA-value of the build-
ing, provide valuable information, which can be used to identify buildings with
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1.2 Buildings and energy 9

high potentials for energy refurbishment. Secondly, the knowledge of the heat
dynamics can be used to optimize the operation of the heating system, while
keeping the indoor temperature within some limits, as mentioned above, and
for example minimize the operation costs, when the electricity can be bought
at a variable price. Model predictive control can be used for carrying out the
optimization using the model of the dynamics, as described by �iroký et al.
(2011) and Zong et al. (2011). This will enable the thermal mass of buildings
to be used for load-shifting

In the following chapters the methods, which are presented in the included
papers, are outlined and discussed. In Chapter 2 an overview is given of the
methods relating to solar energy applications, which are presented in Paper A
to E. In Chapter 3 an overview is given of the methods related to energy use in
buildings, which are presented in Paper F to G. Chapter 4 �nalizes the thesis
with a general discussion and conclusion.
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Chapter 2

Methods for solar energy
applications

An overview of the presented methods, which can be used for the di�erent pur-
poses related to solar energy, is given in this chapter. First a statistical clear-sky
model, which is used in several di�erent contexts, is presented. For example in
the method for correction of systematic errors in global radiation observations,
which is outlined subsequently. This is followed by a section in which two meth-
ods for point forecasting and an approach for probabilistic forecasting of solar
power are described. The chapter ends with a section on grey-box modelling of
solar thermal collectors and �nally a discussion is given.

2.1 Statistical clear-sky model

Clear-sky models, as described by Bird and Riordan (1984) and Rigollier et al.
(2000), are primarily used for calculation of the global radiation under clear sky
at some point in time and some location on the surface the earth. They are
based on physical modelling of the radiative transfer of solar radiation through
the atmosphere. One application of clear-sky models is for making a normaliza-
tion of observations from sensors, which outputs are directly related to the solar
radiation, for example the output of a pyranometer or a PV system. By normal-
ization of the output it becomes evenly distributed throughout the day and thus
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12 Methods for solar energy applications

becomes a stationary process. The physical based clear-sky models take many
e�ects into account, however they cannot account for e�ects related locally to
the sensor, such as: bias in the sensor, shadows from trees, or re�ections from
a nearby water surface. In this thesis a statistical clear-sky model is presented,
which can account for such e�ects. This is achieved by modelling the clear-sky
output with a statistical model based solely on the data from the sensor. The
models provide an estimate of the sensor output at clear-sky conditions for a
given time. The estimated clear-sky output for the sensor is very well suited
for the normalization and can be used for several purposes - in the thesis it is
used for solar power forecasting and, together with a physical clear-sky model,
for correction of typical errors in global radiation observations. The principles
behind the statistical clear-sky model is the use of a locally weighted quantile
regression model, where a quantile close to one is estimated for the given solar
output. Depending on the application the statistical clear-sky model can be
composed di�erently. The most generel de�nition is with second order polyno-
mial quantile regression

β̂t = argmin
β∈R5

∞∑
i=−∞

∞∑
j=−∞

ρτ
(
Gt+24i+j − (β0,t + β1,ti+ β2,ti

2 + β3,tj + β4,tj
2)
)
K(i, j)

(2.1)

where {Gt, t = 1, . . . , N} is a time series with hourly values (e.g. global radiation
observations), ρτ (u) = u

(
τ − I(u < 0)

)
(see (Koenker, 2005) and (Koenker,

2011)), τ ∈ [0, . . . , 1] is the sample quantile to be estimated (which should be
close to 1), i ∈ N is a counter of days, j ∈ N is a counter of hours, and K(i, j) is
a kernel function. The estimated clear-sky value at time t is then found as the
intercept

Gcs
t = β0,t (2.2)

The weights are calculated with the two dimensional multiplicative Epanech-
nikov kernel function

K(i, j) =





32

42

(
1−

[
|i|
hday

]2)(
1−

[
|j|
htod

]2)
for |i|

hday
≥ 1 ∧ |j|

htod
≥ 1

0 for |i|
hday

< 1 ∨ |j|
htod

< 1

(2.3)

where hday is the bandwidth in the day of year dimension and htod is the
bandwidth in the time of day dimension. The local weighting is thus carried
out in the day of year and time of day dimensions, such that observations which
are close in these two dimensions are given a higher weight in the estimation.
The strong feature of using these dimensions is that they are directly related to
both: the position of the sun and changing conditions over time. In Section A.3
(page 51) and Section B.3 (page 71) more detailed descriptions of the statistical
clear-sky model are found, and in the following it is presented together with its
applications.
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Figure 2.1: The upper plot is of the observed radiation and the estimated
clear-sky radiation. The lower plot is of the normalized global
radiation.

2.1.1 Correction of global radiation observations

Observations of global radiation is an important source of information, especially
for solar energy applications. The observations are typically exposed to several
types of systematic errors, for example: shadows from objects in the surround-
ing, tilt in levelling of the sensor, and processing errors (Younes et al., 2005).
In Paper A a method for correction of such errors is presented. The correction
is carried out using the statistical clear-sky model, for both the observations Gt
and NWPs of global radiation Gnwp

t in order to �nd the systematic deviance
between them. The time series consist of hourly average values. Instead of the
NWPs, a clear-sky model based on atmospheric physics can be used, e.g. (Bird
and Riordan, 1984). The upper plot in Figure 2.1 shows the observed global
radiation together with the estimated clear-sky radiation. It can be seen how
the estimated clear-sky radiation follows the observed radiation on clear-sky
days. Two types of errors are readily seen: there is a drop before noon and the
observations are clipped at a maximum level. It can be seen that the errors are
apparent in the observations and also described by the clear-sky model. The
weather station, at which the observations were recorded, is located at a district
heating plant. It is the plant chimney which shades and cause the drop, see
the image on page 47. The lower plot in Figure 2.1 shows the normalized solar
power, which is obtained by simple division of the observed radiation with the
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Figure 2.2: The values of the observations versus the NWPs before and after
the correction. The morning values and the afternoon values are
indicated by di�erent symbols and colors. The two lines show a
locally weighted least squares regression estimate of the relation
between the variables in the morning and the afternoon.

estimated clear-sky radiation

τt =
Gt
Gcs
t

(2.4)

This process is clearly much less dependent on the time of day, hence it is a more
stationary process, and are much less a�ected by shadow-drop before noon and
saturation. The normalized process is multiplied with the estimated clear-sky
radiation for the NWPs and thereby the corrected observations

Gco
t = Gnwp,cs

t

Gt
Gcs
t

(2.5)

are obtained. It is furthermore noted that a tilt in the levelling of the sensor
cause the observed level to be generally lower in the morning compared to the
afternoon. The result of the correction can be seen by comparing the two scatter
plots in Figure 2.2. The left scatter plot is of observations versus the NWPs
before the correction, where both the shading and the tilt error can be seen.
The right plot is a similar plot after the correction. It can be seen that the
errors are mostly removed.
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2.2 Solar power forecasting 15

2.2 Solar power forecasting

In the following sections an overview of the solar power forecasting methods
presented in the papers is given. The methods are based on modelling the power
output past data consisting of past measurements and NWPs. The forecast
horizons are as long as provided by the NWPs, in presented applications they
are complete up to 42 hours ahead at any time of day. Two basic approaches
are presented: A two-stage method based on the statistical clear-sky model
combined with a linear model, and a one-stage method based on a conditional
parametric model. The two-stage approach is applied to forecasting of the total
output of 21 PV-systems located in a small village in Denmark, it is described
in Paper B. The one-stage approach is applied to forecasting of the output of
both: a PV-system, as described Paper C, and to forecast the output of a solar
thermal collector, as described in Paper D. Finally, an approach to probabilistic
solar power forecasting is outlined in Section 2.2.3.

The obtained results from application of the forecasting methods are based on
the data described in the papers, together with NWPs from the Hirlam-S05
(DMI, 2011), which are provided by the Danish Meteorological Institute.

2.2.1 Two-stage method based on the statistical clear-sky

model

In paper B a forecasting method is described, where �rst the statistical clear-sky
model is used to normalize the solar power

τt =
Pt

P̂cs,t

(2.6)

where Pt is the solar power, P̂cs,t is the estimated clear sky solar power and
tayt is the normalized solar power. The NWPs of global radiation are similarly
normalized to τ̂nwp

t+k|t. This is carried out to obtain more stationary processes,
such that the distribution is much less dependent on the day of year and to the
time of day. The normalized processes is in the range of 0 to 1 and have approx-
imately the same distribution at any time t. This is similar to the normalization
of global radiation described in the previous section and illustrated in Figure
2.1, where the lower plot shows the normalized process. The normalization al-
lows for of classical linear time series models (Box et al., 1976) to be used for
forecasting. The best performing model is identi�ed to the ARX model

τt+k = m+ a1τt + a2τt−s(k) + b1τ̂
nwp
t+k|t + et+k (2.7)
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16 Methods for solar energy applications

where s(k) ensures that the latest diurnal component is used (see page 85).
The same ARX model is �tted for each horizon, using a recursive least squares
with forgetting scheme to achieve time adaptivity. Finally, the forecasts are
transformed back again with the clear-sky model. The results show a root mean
square error (RMSE) improvement of around 35 % over a persistence reference
model.

2.2.2 Solar power forecasting with a conditional paramet-

ric model

An alternative to the statistical clear-sky model for compensating for the non-
stationarity of the solar power is to use conditional parametric models, see
(Nielsen et al., 2000) for more details about conditional parametric models. The
same basic approach, as for the statistical clear-sky model, is taken by using a
model, which is �tted locally in the day of year and time of day dimensions.
Furthermore the conditional parametric models allows for the model to be non-
linear in the inputs, for example as a non-linear function of the NWPs of global
radiation. For improving the forecasting performance for short horizons (up to
three hours) the latest available observation is also added as input and the best
model is obtained as

Pt+k =m+ a
(
tday, ttod, Pt

)
Pt (2.8)

+ b
(
tday, ttod, G

nwp
t+k|t

)
Gnwp
t+k|t + et+k

where the coe�cient function a
(
tday, ttod, Pt

)
and b

(
tday, ttod, G

nwp
t+k|t

)
are non-

linear functions, see Paper C for more details. For illustration of this, the plot
in Figure 2.3 is used. It illustrates the 24 hour ahead forecasts of hourly solar
power as a function of the NWPs of global radiation for �ve days over the year.
From these plots it can be seen how the forecasting function can be non-linear
and how it changes conditional on the day of year. The results for forecasting
of the power output from a PV system, as presented in the paper, shows a
slight RMSE performance improvement compared to the two-stage method. The
approach is also very well suited for forecasting of thermal power output from
a solar collector, as presented in Paper D, where it is found that especially the
possibilities for modelling non-linearity in the inputs are important.

2.2.3 Probabilistic solar power forecasting

Probabilistic forecasting is not presented in any of the papers in this thesis,
however it is found that a natural next step forward is to expand the current
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Figure 2.3: Example of the 24 hour ahead forecasted hourly solar power as
a function of the NWP of global radiation for �ve days over the
year. The data is presented in Paper C. The weighting of a point
(only by day(t, i) and tod(t, i)) is indicated by the size of its circle
in the plot. A nearest neighbor weighting scheme is used.
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18 Methods for solar energy applications

point forecasts to probabilistic forecasts. Probabilistic solar power forecasting -
which will be valuable for energy system operation, as described for wind power
Pinson et al. (2007a) - means that at a given time ahead the probability distri-
bution of solar power is forecasted instead of the single value. Many approaches
to probabilistic forecasting exist, here an approach using quantile regression is
used for illustration of some important aspects. One aspect is the relation be-
tween the normalized solar power - which can be considered equivalent to the
clearness index - and the uncertainty on the forecast becomes apparent by con-
sidering normalized NWPs plotted versus normalized solar power, as described
in Section B.5 (page 82). It is found that the uncertainty of the forecasts is de-
pendent on the cloud cover, which is described with the clearness index, in such
a way that forecasts for overcast or cloudless conditions have lower uncertainty,
than forecasts of partly cloudy conditions. This is consistent with �ndings in
other studies (Lorenz et al., 2007).

Probabilistic forecasting with quantile regression has been successfully applied
for wind power forecasting by Bremnes (2004) and Nielsen et al. (2006). The
suggested approach here for solar power is based on the same basic principles as
the forecasting with a conditional parametric model, as presented in the previous
section and in Paper C. The same data, consisting of observed solar power Pt
and NWPs of global radiation Gnwp

t+k|t, is used, and the forecasting function is
simply replaced with the local quantile regression model

β̂t = argmin
β∈R2

t∑

i=1

ρτ

(
Pi −

(
β0,t + β1,tG

nwp
i|i−k

))
K3d(t, i) (2.9)

where i and t are denoting time, ρτ (u) = u
(
τ−I{u<0}

)
is the quantile regression

objective function (see (Koenker, 2005)), and the 3-dimensional multiplicative
kernel function

K3d(t, i) = K
(
day(t, i)

)
·K
(
tod(t, i)

)
·K
(
Gnwp
t|t−k −G

nwp
i|i−k

)
(2.10)

where day(t, i) is the distance from t to i in days, tod(t, i) is the time of day
distance, and the Epanechnikov kernel function

K(∆) =





3
4

(
1−

[
|∆|
h

]2)
for |∆|h ≥ 1

0 for |∆|h < 1
(2.11)

with bandwidth h is used for calculating the weights in each dimension. The
following bandwidths, which was set from visual inspection of the results, are
used in the three weighting dimensions:

• hday = 150 is bandwidth in days
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2.2 Solar power forecasting 19

• htod = 2 is bandwidth in hours

• hGnwp = nn(t, i, 300) is bandwidth in W/m2 calculated as the smallest
bandwidth where the 300 nearest neighbors are included.

The quantile regression implementation in the R (R Development Core Team,
2011) package 'quantreg' is used for carrying out the calculations.

The plots shown in Figure 2.4 is of the estimated quantiles conditioned on the
NWP of global radiation, for a 24 hour horizon. It is the 5%, 10%, . . . , 90%, 95%
τ quantiles. A clear dependency on the level of the global radiation NWPs is
seen and the same pattern as described above is found: the uncertainty is higher
for values in the middle of the range of forecasted global radiation.

It is evident that more research in probabilistic forecasting of solar power is
needed, for example a proper evaluation should be carried out and an optimiza-
tion of the bandwidths. From the very coarse outline of the presented approach
a few conclusions are drawn:

• Evaluation of probabilistic solar power forecasts is needed for assessment
of the forecast quality. Solar forecasting is highly related to wind power
forecasting and the evaluation can be based on methods for evaluation of
probabilistic wind power forecasts, for example the framework proposed
by Pinson et al. (2007b).

• It is clearly seen that the distribution of solar power conditional on the
NWPs of global radiation is highly skewed for low and high levels of the
NWPs. Hence it can be questioned how a proper evaluation of point
forecasts should be carried out, since the optimality of the least squares
criteria is mostly based on an assumption of normal distributed errors.

• The value of energy forecasts for operation increase as more useful infor-
mation for system operators is available. In that respect probabilistic solar
power forecasting can prove to be very valuable, since the distribution of
the error is highly dependent on the inputs and thus contain quite a lot
non-trivial information.

• Studies have shown that valuable information about the uncertainty on
wind power forecasts can be gained from ensemble forecasting. Ensemble
forecasts calculated by the meteorologists can be used as input to model
the uncertainty in energy forecasts, for example as described by Nielsen
et al. (2006) for probabilistic wind power forecasting. The same approach
can be applied for solar power forecasting.
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Figure 2.4: Example of probabilistic solar power forecasts for a k = 24 hour
horizon at �ve di�erent hours over the day. Local quantile regres-
sion is applied to estimate the 5%, 10%, . . . , 90%, 95% τ quantiles.
The weighting of a point (only by day(t, i) and tod(t, i)) is indi-
cated by the size of its circle in the plot.
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Tf =
Ti+To

2
To Ti

Figure 2.5: Diagram of the single state grey-box model illustrating all the
energy �ows included in the model.

2.3 Modelling the heat dynamics of solar thermal

collectors

In Paper E models for the heat dynamics of solar thermal collectors are pre-
sented. The heat dynamics are described with grey-box models. A grey-box
model is established using a combination of prior physical knowledge and statis-
tics Kristensen et al. (2004). The prior physical knowledge is formulated by a set
of non-linear stochastic di�erential equations (SDEs). The equations describe a
lumped model of the heat dynamics of the system. Models from Perers (1997)
of solar thermal collectors based on prior physical knowledge are used to derive
the SDE which forms the system equation

dTo =
(
F ′U0(Ta − Tf) + cfQf(Ti − To) (2.12)

+ F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd

) 2

(mC)e
dt+ σdω

of the simplest applied grey-box model and it consists of a single state To which
is the outlet temperature of the collector, [◦C]. In the diagram in Figure 2.5 the
energy �ows are illustrated.

The following are parameters in the model
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22 Methods for solar energy applications

F ′U0 Heat loss coe�cient at (Ta − Tf) = 0,
[
W/(m2K)

]
.

F ′(τα)en Zero loss e�ciency for direct radiation at normal incidence

Kταb(θ)
Incidence angle modi�er for direct radiation. It has a single parameter b0
which is estimated

Kταd Incidence angle modi�er for di�use radiation

(mC)e E�ective thermal capacitance including piping for the collector,
[
J/(m2K)

]
.

σ2 is the incremental variance of the Wiener process {ω}

The following are inputs which are measured (or derived directly from measure-
ments)

Ta Ambient temperature , [◦C].

Tf Average temperature of the collector �uid, [◦C].

Qf Flow of the �uid per square meter of collector,
[
l/(sm2)

]
.

Ti Temperature of the inlet to the collector, [◦C].

Gb Direct radiation onto the collector plane,
[
W/m2

]
.

Gd Di�use radiation onto the collector plane,
[
W/m2

]
.

and �nally cf which is the speci�c heat capacity of the �uid, [J/(l K)].

The data-driven part of the grey-box model is formed by the discrete time
observation equation

Yk = Tok + ek (2.13)

where k is the point in time tk of a measurement, Yk is the measured outlet
temperature, and ek is the measurement error, which is assumed to be a Gaus-
sian white noise process with variance σ2. The parameters are estimated with
maximum likelihood techniques as described in Section E.2.1 on page 130.

A suitable model is identi�ed for a �at plate collector using 30 second average
values measured at a test setup at the building department of DTU. It is shown
how the models can provide detailed knowledge about the performance of the
collector with data from a single day. A forward model selection approach is
used, where �rst a simple model is applied and stepwise expanded. The �nal
model includes two lumped parts: one representing the �uid and one represent-
ing the metal and frame of the collector. Each of the two parts are lumped
further into three compartments, resulting in the �nal model having six state
variables, see Section E.5.2 on page 136.
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2.4 Discussion 23

A strong feature of using the applied grey-box modelling, is that accurate phys-
ical knowledge can be obtained with a minimum of testing time. The results
are evaluated and discussed both from a statistical and physical perspective.
As a reference the equivalent parameter estimates found with current ISO-
standardized multiple linear regression models are used. The results show that
parameters can be estimated very accurately with 30 second average values from
a single day. It is an prerequisite that the input, especially the ambient temper-
ature and the global radiation is uncorrelated. For the presented study this was
achieved by using data from a day, where clouds modulated the radiation with
an "on-o�" sequence. This should be replaced with a shading device - simply
a foil that can be automatically rolled up and down - for enabling an "on-o�"
testing sequence for the radiation onto the collector. The models can be used in
several contexts, both for performance testing and for operational applications.

2.4 Discussion

Two methods for solar power forecasting based on NWPs have been presented,
together with a method for correction of measured global radiation, and an out-
line of a probabilistic solar power forecasting method. The recurrent principle,
on which all of the methods is based, is the use of non-parametric local regres-
sion techniques to model measured solar output, by using a kernel weighting
function in dimensions of day of year and time of day. The advantage of using
such models is that all types of systematic e�ects embedded in the solar output
are included in model, especially e�ects which are local to the sensor and there-
fore very complex to model with a physical model, e.g. shadowing from trees.
Regarding the statistical clear-sky model, a local �tting in the dimensions of the
sun azimuth and sun elevation has been considered in (Bacher, 2008), where it
was found that it leads to decreased accuracy for the considered applications.
This is due to the importance of the model being local in time, for example at
the positions of the sun where trees are shading, then it makes a huge di�erence
if there are leaves on the trees or not.

Regarding the solar forecasting methods presented it is clear that further work
should be addressed to enhance the models. For example regime switching for
using di�erent models depending on the weather type and using multiple NWPs
as inputs. This has proved to increase performance both for wind power forecasts
and solar forecasts. For example Schmelter et al. (2011) presents a method for
combining forecasts depending on a weather classi�cation for improving solar
power forecast performance, especially for handling special weather conditions
like fog and snow.
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Chapter 3

Methods for building energy
applications

The methods outlined in this chapter can be used to deal with important aspects
for optimized energy use in buildings, especially for enabling buildings as a key
player in smart grids and for energy performance improvement of the building
stock. The method for forecasting of the heat load presented in Paper F is
outlined, together with the procedure for identi�cation of a suitable model for
the heat dynamics of buildings presented in Paper G. The data used consist of
a combination of: measurements and NWPs of climate variables, heat load, and
indoor temperature.

3.1 Heat load forecasting

A method for forecasting the heat load in single family houses is presented in
Paper F. Adaptive linear time series models are applied to forecast the heat load

Qt+k = Qambient
t+k|t +Qdiurnal

t+k|t +Qsun
t+k|t +Qwind

t+k|t + et+k (3.1)

where the terms on the right side represent heat gains caused by several mech-
anisms together with an error. The inputs to the model are formed from mea-
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26 Methods for building energy applications

surements from a local weather station and numerical weather predictions. The
following three signals are available

• T̂ a
t+k|t the ambient temperature

• Ĝt+k|t the global radiation

• Ŵ s
t+k|t the wind speed

The heat dynamics of the building are described with linear rational transfer
functions from the climate variables to the heat load. The heat gain to the
ambient (i.e. negative in the winter period) is described by

Qambient
t+k|t = αia + αaHa(q)T̂ a

t+k|t (3.2)

where αia is representing a constant indoor temperature (which is not available
and therefore modelled as an intercept) and the �rst order low-pass �lter with
unity DC-gain

Ha(q) =
1− aTa

1− aTa
q−1

(3.3)

is applied and where q−1 is the backward shift operator (q−1xt = xt−1) (see
(Madsen, 2007)) and aTa

∈ [0, 1] is a coe�cient, which is equivalent to the time
constant for the part of the building a�ected by changes in ambient temperature.
This is equivalent to describing the heat dynamics of the building with a lumped
RC-model having a single heat capacity for the interior of the building and a
single thermal resistance through the building envelope. The diurnal curve heat
gain describes diurnal patterns caused by systematic user behavior, for example
a nightly setback. It is modelled as a harmonic function using a Fourier series

µ(ttod, αdiu) =

nhar∑

i=1

αdiu
i,1 sin

( ttodiπ

12

)
+ αdiu

i,2 cos
( ttodiπ

12

)
(3.4)

where ttod is the time of day in hours at time t and nhar is the number of
harmonics included in the Fourier series. The heat gains from solar radiation
and wind are modelled as

Qambient
t+k|t = αgHg(q)Ĝt+k|t (3.5)

and

Qwind
t+k|t = αwHw(q)Ŵ s

t+k|t (3.6)

where the low-pass �lters Hg(q) is similar to the �lter for ambient temperature
(Equation (3.3)), but �tted independently such that the coe�cient describing
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3.1 Heat load forecasting 27

the dynamic response of the building is di�erent for each of the inputs. Several
extensions to this model is also applied as described in the paper. In order to
achieve time adaptivity of the model, it is �tted with a recursive least squares
scheme, where the past data is down-weighted depending on a forgetting factor.
Note that each of the coe�cients could have been denoted with a t to indicate
that they change as a function of time. Finally, in a second stage a simple AR(1)
model is applied to remove the last correlation in the residuals.

To identify a suitable forecasting model measurements of the hourly heat load
for sixteen houses, which are typical Danish single family houses, are used.
The houses are connected to district heating with a heat exchanger and have
radiator heating. In order to lower the signal-to-noise ratio for e�ects related to
the climate conditions, the heat load signals are preprocessed by �ltering out the
peaks from water heating. Thereafter a thorough model identi�cation is carried
out to �nd a forecasting model, which is suitable for all the houses. The following
parameters are tuned for each house separately: transfer function coe�cients
(they are equivalent to time constants in the building and describe how fast the
building respond to changes in the climate variables), harmonics in the diurnal
curve, and the optimal time adaptivity. The �rst step in the model identi�cation
is to �t a simple model consisting only of a constant heat gain and a diurnal curve
- i.e. this model does not include any climate variables, however it can follow the
slow changes in climate due to the adaptive modelling scheme. This model is
then expanded in steps, where inputs are included in di�erent ways in a forward
selection approach. The �nal result is a model, which is suitable for forecasting
the heat load for each house, without requiring any speci�c knowledge about
the building, apart from the heat load measurements. It can be used solely with
NWPs as input, but the addition of local measurements improves forecasting
performance for short horizons. It is shown that the forecasting residuals are
close to white-noise and thereby that the information embedded in the inputs
are very well utilized.

The forecasting performance measured with the mean absolute error as a func-
tion of the forecasting horizon is plotted for each of the sixteen houses in Figure
3.1. Clearly, a quite large di�erence is found between the houses, especially the
forecasting performance is poor for House 8. Analysing the forecasts for House
8 it is found that the heat load signal has some oscillations with a period around
6 hours, which are not possible to forecast and which are most likely caused by
a poorly tuned thermostatic control. A futher thorough analysis of the forecast
for all the houses indicates that the solar radiation part of the model pose a
challenge. Improvements could possibly be achieved by using some information
about the buildings, such as the azimuth angles of the building walls etc., or by
using an o�-line model for learning how the solar energy gain of the building
depends on the position of the sun, possibly as a function of day of year and
time of day. Furthermore is seen how the error in the global radiation NWPs
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Figure 3.1: Mean absolute error for the hourly forecasted average values as a
function of the forecasting horizon for each of the sixteen houses.

for longer horizons, i.e. an error in the input to the model, result in errors
in the heat load forecasts. Furthermore, it is seen how e�ects related to un-
predictable behavior of the residents, for example ventilation from opening of
windows, appear in the heat loads.

3.2 Models for the heat dynamics of buildings

In Paper G models are presented, which can provide detailed knowledge of the
heat dynamics of a building from measurements of: heat load, indoor temper-
ature, ambient temperature, and global radiation. The focus of the paper is a
procedure for selection of the most suitable model. The models are grey-box
models, which are based on a combination of physical and data-driven modelling.
They are based on stochastic di�erential equations, which allows for extensive
modelling of dynamical systems and estimation of parameters which are directly
physically interpretable, for example the heat capacity of the building and the
UA-value of the building envelope. A description of heat transfer mechanisms
which forms the basis for the physical part of the grey-box models can be found
in (Bacher et al., 2010, Chapter 3).

The applied grey-box models are stochastic linear state space models, which are
formed by a continuous time system equation and a discrete time measurement
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equation. The system equation can be formulated in matrix form

dT = ATdt+ BUdt+ σdω(t) (3.7)

where T is a vector of state variables (typically both measured and unmeasured
temperatures), U is a vector of inputs, and ω(t) is a Wiener process, which
is a stochastic process with independent normal distributed increments. The
matrices A de�nes how the current state a�ects the dynamics and B de�nes
how input enters the system, and σ2 is the scaling of the linear in time growing
variance of the increments of the Wiener process. The discrete measurement
equation can be formulated as

Ytk = CTtk + DUtk + etk (3.8)

where tk are the equidistant time points on which the output and inputs are mea-
sured, Ytk is the measured output (typically temperatures and/or heat �ows,
for example the interior temperature), etk is the measurement error. It is as-
sumed that etk is normal distributed white noise with zero mean and variance
Re. Furthermore it is assumed that etk and ω(t) are mutually uncorrelated. C
and D de�nes how the measured states are in�uenced by the state and input
respectively.

A lumped parameter model is used to describe the heat dynamics of the build-
ing as exampli�ed in the following, where a two state model is de�ned. One
state variable is describing the interior temperature Ti and one is represent-
ing the temperature of the building envelope Te. The �rst-order dynamics are
represented by the stochastic di�erential equations

dTi =
1

RieCi
(Te − Ti)dt+

1

Ci
Φhdt+

1

Ci
AwΦsdt+ σidωi (3.9)

dTe =
1

RieCe
(Ti − Te)dt+

1

ReaCe
(Ta − Te)dt+ σedωe (3.10)

where t is the time, Rie is the thermal resistance between the interior and the
building envelope, Rea is the thermal resistance between the building envelope
and the ambient air, Ci is the heat capacity of the interior, Ce is the heat capacity
of the building envelope, Φh is the energy �ux from the heating system, Aw is
the e�ective window area, Φs is the energy �ux from solar radiation, Ta is the
ambient air temperature, {ωi,t} and {ωe,t} are standard Wiener processes, and
σ2

i and σ2
e are the scaling of the linear in time growing incremental variances of

the Wiener processes. Note that the equations can easily be written into the
matrix form de�ned in Equation (3.7). The model can be represented with the
RC-network depicted in Figure 3.2, where the model is divided into di�erent
parts to show the corresponding parts of the building.
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Figure 3.2: RC-network of the model described by Equation (3.9) and (3.10).
The model is divided into di�erent parts indicating the correspond-
ing part of the building.

The interior temperature is measured and the discrete time measurement equa-
tion is

Ytk = Ti,tk + etk (3.11)

where tk is the time point of a measurement, Ytk is the measured interior tem-
perature and etk is the measurement error, which is assumed to be a Gaussian
white noise process with variance σ2.

The presented procedure for identi�cation is based on a forward model selection
approach, where likelihood ratio-tests are used for selection of a grey-box model
with a suitable complexity. This is important since, on the one hand, a too
simple model will be biased and not model the dynamics with the required level
of detail, and on the other hand, a too complex model will be over-parametrized
leading to degraded performance and incorrect parameter estimates. The proce-
dure is based on a forward selection approach, where a simple model is extended
until no signi�cant increase in likelihood is found.

In the paper the procedure is applied to identify a model for the heat dynamics
of a single-storey 120 m2 building. The building is heated with a 6 days test
sequence and �ve minutes average values are used for the modelling. An image
and �oor plan of the building can be seen in the paper (page 184). First the
very simple model illustrated with its RC-diagram in Figure G.7 (page 191) is
�tted. Then an expansion of this is seeked by adding di�erent model parts,
one at a time, and the expanded model with the highest increase in likelihood
is selected. The expansion step is repeated iteratively until likelihood-ratio
tests shows that no more signi�cant increase in likelihood is achieved by any
expansion. The �nal selected model is illustrated by its RC-diagram in Figure
G.8 (page 193). The one-step prediction residuals for the models selected in each
step are analysed with time series plots, the auto-correlation function and the
cumulated periodogram. These can be seen in Figures G.9, G.10 and G.11. The
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identi�ed model can be applied for several purposes. The estimated parameters
gives important information of the thermal performance of the building. The
values can be found in Table G.3. The UA-value of the building envelope, which
can be calculated directly from the parameters, indicates how well the building is
insulated, see Table G.4. Furthermore accurate knowledge of the heat capacity
of the building is obtained and thereby the nessesary knowledge for using the
model as basis for control is provided.

Due to the rather uncomfortable course of the indoor temperature the modelling
method using the used test sequence is not directly applicable in residential
buildings. However it can be applied in periods, where the residents are away
from the house in some days or for example at night time and during the day.
In o�ce buildings it can be run during the weekends. More work is needed for
applying the procedure with other buildings in order to determine the minimum
requirements for a desired level of estimation accuracy. For MPC methods for
optimal load-shifting control of heating systems, in which the models are used,
for example Pedersen et al. (2011) and Zong et al. (2011) both suggest that the
indoor temperature is to be kept within a given range, for example between 19
to 21 ◦C in some periods and within 18 to 22 ◦C in others. Identifying a model
for control allowing a indoor temperature variation in this range is probably a
feasible task.

A strong feature is the capabilities of modelling the uncertainty in SDE models,
which can be important for including residents behavior in the models. For
example it can be modelled such that it depends of the time of day, in order to
describe an increased uncertainty when the residents are home.

Finally, it is mentioned that the presented grey-box modelling procedure is very
well suited for e�ective modelling in relation to e�ective performance testing
of building components, e.g. in a test cell, as described in (Madsen and Holst,
1995).

3.3 Discussion

Considering the variety in the building stock and the highly diversi�ed use
of buildings, it is clear that much more research in modelling of heat use in
buildings, based on data from smart meters, is needed. As seen in the data
used in Paper F even for the sixteen single-family houses the characteristics of
the heat load signals are very di�erent, see for example the plot on page 171.
However, even if the models as presented in the two papers are applied for a
relatively speci�c type of buildings, the underlying principles can be applied for
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modelling dynamic systems in many respects, including many types of buildings.

The need for details and accuracy for e�cient operation of energy systems re-
lated to buildings depends on the application and the availability of data. A
statistical approach, which eventually enables nearly all available information
in data to be modelled, can save costs for hardware, e.g. sensors. The level
of forecast uncertainty will naturally be related to the operational performance
of the energy system, but it is a (economical) trade-o� between the need for
information from sensors (how many sensors etc. that are needed) and the per-
formance gain, which �nally also maps to an economical value of operating the
total energy system, since more expensive energy backup capacity is needed as
the forecasting accuracy decrease. Determining the cost-optimal need for sen-
sors and accuracy is a non-trivial task, but a very valuable question to be able
to answer.

Modelling the uncertainty for probabilistic forecasting presents another chal-
lenge, since the dynamics of the system needs to be included. For example the
errors from the NWP forecasts of solar radiation can have a signi�cant and
one-sided e�ect on the forecast uncertainty, and thus the dynamics needs to be
taken into account for a proper modelling.
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Chapter 4

Discussion and conclusion

The presented methods have been discussed separately, hence in this section a
general discussion of the presented work is given.

4.1 General discussion

The methods are closely related by the data-driven approach using statistical
times analysis techniques for modelling. They form a basis for a range of oper-
ational applications, which are needed as the amount of data acquired from the
energy system is increasing rapidly, for example with the widespread installation
of smart meters in buildings. The data will be used for providing the needed
on-line modelling of the system, where knowledge of the state and the dynamics
in di�erent part of the system is vital for an e�cient operation. It is widely
recognized that the operation of the power grid will be carried with markets,
where a variable electricity price is available on di�erent timescales. This will
reward consumers which can provide a �exible load. Both for the operator of
such markets and the participants, e.g. a consumer o�ering �exible heat load
services in buildings, forecasting and methods for optimal operation are prereq-
uisites for enabling the needed �exible load. Furthermore it is noted that it is
very important to avoid sub-optimization of interdependent energy systems, for
example as for operation of the considered solar/electric heating system, where
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it is very important that the operation of the solar heating and the electrical
heating is jointly optimized. Hence the forecasting and modelling methods, as
the ones presented, should be combined in order to achieve an e�cient operation
of smart grid enabling technologies.

The required accuracy for the methods is a very relevant, but non-trivial ques-
tion, to consider. It is know from statistical modelling theory that performance
of a model is decreased if it is too simple or too complex. Therefore mod-
els should only comprise the needed complexity and here the statistical tech-
niques for optimization of model complexity are vital. They are for example
demonstrated in Paper G with the procedure for model identi�cation based
on likelihood-ratio tests. A forward selection approach for model identi�cation
is used for most of the presented modelling, in order to optimize the model
complexity. Roughly said this simply implies starting with a simple model and
trying di�erent expansions until no performance improvement is found. To some
extend this will require some manual interaction, but most likely the methods
can be applied automatically for the majority of cases, in a combination with an
automatic selection of cases which require further manual interaction. Certainly
the computational resources needed is also an issue when considering operation
of many thousand units. The presented methods are very suited for on-line
operation, especially the recursive schemes for forecasting are very computa-
tional e�cient. Generally it is suggested to run the computations on a central
server. This will allow for easier management and more e�cient computation,
for example some calculations can be carried only once, opposed to stand-alone
implementation.

Modelling of the forecast uncertainties is a really important step for power
grid operation, as the share of renewables in the power mix is increasing, the
forecasting errors will have a greater impact on the operation of the power
system. Hence the value of modelling the uncertainties, and have probabilistic
forecasting for all di�erent types of power generation and load in the system,
will increase. Considering the sources of errors there is a distinction between
modelling errors, e.g. errors in the meteorological forecasts, and errors caused
by for example user behavior. Errors from meteorological forecasts will mostly
be a�ecting forecasts of wind and solar power generation, but also for the load,
as especially the thermal part is included. Errors from user behavior will be
a�ecting the load, but will, when considering the total load be smoothed out
due to averaging over many individuals. However for operation of for example
the heating system for a single house, the user behavior is very important to
take into account.
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4.2 Conclusion

Methods for optimized operation of energy systems with substantial amounts of
renewable and volatile energy production are presented in the thesis. The meth-
ods are very well suited for smart grid applications. The focus is on electrical
and thermal solar energy, and on heating in buildings.

The methods are mainly based on data-driven statistical models, which are
combined with prior-physical knowledge where appropriate. The modelling car-
ried out takes important aspects into account, such as: dynamical e�ects, non-
stationarity, time adaptivity, non-linearity, user behavior, physical relations, and
computationally e�cient implementation. In the presentation of the methods,
focus is on model identi�cation and performance evaluation, which are carried
out with statistical time series analysis techniques. The presented methods are
almost directly applicable for operational use without much further develop-
ment. Many perspectives and ideas for further work on the methods and in the
respective �elds are given.

A statistical clear-sky model is presented. It can be used to estimate the clear-
sky output of a system, where the output is directly dependent on solar radiation
at the surface of the earth. It is based solely on observations of the output and
is very useful for removing non-stationarity in the observations. It also includes
the e�ects occurring in the system and caused by the local surrondings, for
example tilt in the levelling of the sensor (e.g. a pyranometer or a PV panel) or
shading from objects in the surroundings. Two applications, where the statistical
clear-sky model is used, are presented in the thesis: a two-stage method for solar
power forecasting for PV-systems and a method for correction of errors in global
radiation observations.

A second approach to solar power forecasting is presented. It is based on a
conditional parametric model, which is conditional on the day of year and on
the time of day. It is demonstrated how the method is well suited for forecast-
ing solar power both for PV and solar thermal systems, and furthermore it is
outlined how the approach can be used for probabilistic solar power forecasting.

Grey-box models for the heat dynamics of solar thermal collectors are presented.
The models can for example be used to obtain accurate estimates of the energy
performance parameters based on a very short testing period.

A method for forecasting the heat load for single family houses is presented. A
forecasting model is found on the basis of heat load measurements from sixteen
houses and local climate measurements combined with weather forecasts. The
model is tuned to describe the heat dynamics of the building and the resident
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behavior for each individual house. It is shown that practically all information
embedded in the inputs are modelled.

Finally, a procedure for identi�cation of a suitable model of the heat dynamics
of a building is presented. The applied grey-box models are based on stochastic
di�erential equations, which provide a detailed description of the heat dynamics
based on prior physical knowledge combined with data-driven modelling. The
models can be used as basis for model predictive control to enable shifting of
the heat load, and for obtaining detailed knowledge of the energy performance
of buildings.
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Abstract

This paper presents a method for correction and alignment of global radiation
observations based on information obtained from calculated global radiation, in
the present study one-hour forecast of global radiation from a numerical weather
prediction (NWP) model is used. Systematical errors detected in the observa-
tions are corrected. These are errors such as: tilt in the leveling of the sensor,
shadowing from surrounding objects, clipping and saturation in the signal pro-
cessing, and errors from dirt and wear. The method is based on a statistical
non-parametric clear-sky model which is applied to both the observed and the
calculated radiation in order to �nd systematic deviations between them. The
method is applied to correct global radiation observations from a climate station
located at a district heating plant in Denmark. The results are compared to
observations recorded at the Danish Technical University. The method can be
useful for optimized use of solar radiation observations for forecasting, moni-
toring, and modeling of energy production and load which are a�ected by solar
radiation.
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Nomenclature

Gt Observed global radiation
[
W/m2

]
Gnwp
t Numerical weather predictions (NWPs) of global radiation

[
W/m2

]
Gcs Clear-sky global radiation

[
W/m2

]
Bcs Direct clear-sky global radiation

[
W/m2

]
Dcs Di�use clear-sky global radiation

[
W/m2

]
G Global radiation

[
W/m2

]
Iext Extraterrestrial radiation

[
W/m2

]
Gpr
t

Projection of global radiation to the plane normal to the direct
solar radiation

[
W/m2

]
Ĝpr,cs
t

Estimated clear-sky radiation on a plane normal to the direct
solar radiation

[
W/m2

]
Ĝcs
t Estimated clear-sky global radiation (modeled based on observations)

[
W/m2

]
Ĝnwp,cs
t t Clear-sky global radiation for numerical weather predictions (NWPs)

[
W/m2

]
Ĝco
t Corrected global radiation

[
W/m2

]
θzenitht Solar zenith angle [rad]

τa,B
Transmittance function of the atmosphere for direct radiation under clear-sky
conditions

τc Transmittance function of clouds in the atmosphere

βt Parameter vector for the local quantile regression

ρq(u) The quantile regression objective function

q Sample quantile to be estimated in the local quantile regression

i Counter of days [days]

j Counter in samples

t Time [hours]

tsp Sample period [hours]

hdoy Bandwidth of kernel function in the day of year dimension [days]

htod Bandwidth of kernel function in the time of day dimension [hours]

A.1 Introduction

The transition to a reliable and secure energy system based on weather de-
pendent production technologies, especially wind and solar, will require new
methods for automated handling of climate data recorded at, in most cases,
unsupervised and uncalibrated stations. Reliable observations of solar radiation
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are an important source of information for operation of the energy system, es-
pecially for the energy production and load which are dependent on the solar
radiation, for example production from photovoltaics and solar collectors, and
load from heating and cooling of buildings.

Observations of solar radiation are exposed to many sources of errors. Younes
et al. (2005) list the most important types of errors and divide the errors into two
major categories: equipment errors and operation related errors. The present
solar radiation sensor technology makes it easy and cheap to install and connect
sensors to the Internet, both for professional and amateur applications. Web
sites already provide on-line data (DMI, 2012), which can become an important
source of information for operation of energy systems. Such, mostly unsuper-
vised and unvalidated installations, will be highly exposed to di�erent error
sources.

In the present study observations of global radiation from a station at a district
heating plant in Sønderborg, Denmark, are used. Three types of errors are found
in the observations: tilt in the leveling of the sensor, shadowing from surrounding
objects, and clipping at a maximum level. A method is presented for correction
of the observations on the basis of information extracted from global radiation
calculated using a model based on physical principles. The method is based on
a non-parametric statistical clear-sky model and requires no further information
about the installation and sensor than the observed values and the location of
the station. With the statistical clear-sky model the sensor output level under
clear-sky conditions is modeled directly from the observations. This is compared
to solar radiation calculated with a clear-sky model based on physical modeling
of the optical e�ects through the atmosphere, such as the models described by
Davies and McKay (1982), Bird (1984), Rigollier et al. (2000), Mueller et al.
(2004), and Ineichen (2006). In the preset study forecasts from a numerical
weather prediction (NWP) model is used. The result after correction of the
observations is compared to high quality measurements recorded at the Danish
Technical University.

Studies on quality control of measured solar radiation data can be found in
the literature. The procedures are semi-automatic and are mostly based on
comparison to physical models for detection of erroneous measurements (Geiger
et al., 2002), (Younes et al., 2005), (Isaac and Moradi, 2009) and (Journée and
Bertrand, 2011).

The paper is organized as follows: the data used in the study is presented in
the next section. This is followed by a section in which the statistical clear-sky
model is described and a section where the correction is presented. The paper
ends with a discussion of the method and a conclusion.
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Figure A.1: The weather station in Sønderborg, which is mounted on a pole
on the roof of a single-storey district heating plant building (in
the image it is on the left side of the building).

A.2 Data: Observations and numerical weather

predictions of global radiation

The data used in this study consists of time series of global radiation observed
at two weather stations: one located in Sønderborg (54.91◦N and 9.80◦E) and
one located at DTU Byg in Lyngby (55.79◦N and 12.52◦E), both in Denmark.
In addition NWPs of global radiation for the same locations are used. All values
are hourly averages. All times are in UTC and the time points are set to the
end of the hour.

A.2.1 Observations

The observations from Sønderborg are recorded with a weather station, which
is located at a district heating plant. The weather station is mounted on a pole
on a single-storey building as seen on the image in Figure A.1. No information
about the type of the solar radiation sensor was available. The time series from
Sønderborg is

{Gt; t = 1, . . . , N} (A.1)

where N = 17520 and Gt is the observed average global radiation between time
t and t − 1. The upper plot in Figure A.2 shows the series which spans from
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Figure A.2: The upper plot shows the time series of observed global radiation
in Sønderborg. In the lower plot the observations and NWPs of
global radiation in Sønderborg are shown for �ve days in August
2009.

2009-01-01 to 2011-01-01. From this plot it is readily seen that the observations
are not without systematic errors, for example it can be seen that the values
are clipped at a maximum level. This and other types of systematic errors are
corrected for the Sønderborg observations using the method described in this
paper.

The second series of observed global radiation is from a weather station at DTU
Byg in Lyngby and is used as a reference to check the corrected data. The upper
plot in Figure A.3 shows the series which spans from 2009-01-01 to 2010-01-01.
It was measured with a Kipp & Zohnen CM10 pyranometer and the weather
station was regularly supervised in the measuring period. The measurement
error is in the range of maximum ±3% from the world standard and high class
calibrated sensor inter-comparisons indicate an error within the range of ±1%.
The lower plot in Figure A.3 shows the observations together with the NWPs of
global radiation (de�ned in the next section) for �ve days in August 2009. It is
seen that the level of the observed global radiation is generally lower than the
level of the NWPs, but that this there is no systematic di�erence between the
deviation in the morning and in the afternoon. The lower level is most likely
due to a bias in the NWPs. Since the accuracy of the DTU observations is high
and no systematic errors, apart from the generally lower level, is seen, then it is
found valid to assume that the DTU observations can used be as a reference to
verify the NWPs and the results of the correction.
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Figure A.3: The upper plot shows the time series of observed global radiation
at DTU Byg covering the entire year 2009. In the lower plot
the observations and NWPs of global radiation at DTU Byg are
shown for �ve days in August 2009.

A.2.2 Numerical weather predictions

The numerical weather predictions (NWPs) used in the study are provided
by the Danish Meteorological Institute (DMI). The NWP model used is DMI-
HIRLAM-S05, which has a 5 kilometer grid and 40 vertical layers, see (DMI,
2011) and (Hansen Sass et al., 2002) for more details. The forecasts are updated
four times per day and have a calculation delay of 4 hours (e.g. the forecast
starting at 00:00 is available at 04:00). Two time series, consisting of the latest
available forecast (lead times are 5 to 11 hours) of global radiation, are used:
one for the location in Sønderborg and one for the location of DTU in Lyngby.
The time series of NWPs for the Sønderborg location is used for the correction.
It is denoted with

{Gnwp
t ; t = 1, . . . , N} (A.2)

The time series for DTU Byg in Lyngby is shown, together with the observations,
in the lower plot of Figure A.3 for �ve days in August.

A.2.3 Systematic errors in Sønderborg observations

The lower plot in Figure A.2 shows the Sønderborg observations and the NWPs
of global radiation for �ve days in August 2009. From the �rst day, which is
a clear-sky day, at least two types of errors can be seen in the observations:

243



50 A non-parametric method for correction of global radiation observations

compared to the NWPs the observed level is too low in the morning and too
high in the afternoon, which is most likely due to the sensor being tilted. It
could also be due to a shift in time of the sensor, however it was thoroughly
checked that the night hours, where the radiation was zero (or very close to
zero), are with only a few exceptions the same hours for both the observed and
the NWPs, indicating that they are well synchronized. The second type of error
is seen just before noon, where the observations have a drop, which is repeated
at the same time of day on following clear-sky day. The drop is caused by
shading from the chimney, which is located close to the weather station, as seen
on the image in Figure A.1.

The scatter plot in Figure A.4 shows the observed values versus the NWPs,
together with two lines indicating the relation between the variables in the
morning and in the afternoon. The lines are calculated using locally weighted
least squares regression between the observations and the NWPs, using the
function loess() in R (R Development Core Team, 2011) with a bandwidth:
span=0.9. A similar plot for the DTU observations is found in Figure A.5. The
following three distinct systematic errors can be seen from the scatter plot for
the Sønderborg observations:

1. Firstly, the observations are clipped at a maximum level around 860
W/m2.

2. Secondly, the level of the morning observations is generally lower than
the level of the afternoon observations. This is con�rmed by the �tted
regression lines, which mostly have a di�erence of at least 50 to 75 W/m2.
This is clearly a larger di�erence than seen for the two �tted lines for the
DTU observations in Figure A.5.

3. Finally, the morning values are signi�cantly lower in the NWP range of 700
to 900 W/m2. These values are the observations in the drop before noon,
which, as described earlier, is caused by shadowing from the chimney right
next to the weather station.

Considering the scatter plot for the DTU observations in Figure A.5 it is seen
that these systematic errors are not found in the DTU observations. As noted
before the level of the DTU observations is generally a bit lower than the level
of NWPs, which is most likely due to a bias of the NWPs, since the accuracy of
the DTU observations is veri�ed to be in the range of ±3%. For correction of
the systematical errors, as the listed above, a statistical clear-sky model �tted
to the observations can be used, as outlined in the following sections.
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Figure A.4: The values of the Sønderborg observations versus the NWPs cov-
ering the entire year 2009. The morning values and the afternoon
values are indicated by di�erent symbols and colors. The two lines
show a locally weighted least squares regression estimate of the
relation between the variables in the morning and the afternoon.

A.3 Statistical clear-sky model

In this section it is described how the clear-sky global radiation is modeled using
a statistical model. With the statistical clear-sky model the level under clear-
sky conditions at time t is estimated for the particular series of observations. It
is the output of the sensor under clear-sky conditions which is estimated. This
implies that if an observation is a�ected by a systematical error, for example
shadowing from an object in the surroundings, the estimated clear-sky output
will be lowered. It is this feature which enables the model to be used for correc-
tion. The statistical clear-sky model is a non-parametric model based on local
polynomial quantile regression (Koenker, 2005) similar to the clear-sky model
presented in (Bacher et al., 2009).

Usually, clear-sky models are models with which the global radiation in clear
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Figure A.5: The values of observed versus NWP global radiation at DTU
Byg in Lyngby, Denmark. The morning values and the after-
noon values are plotted with di�erent symbols and colors. The
two lines are indicating the relation between the variables: one
for the morning and one for the afternoon.

(non-overcast) sky at any given time can be calculated based on physical mod-
eling of the atmosphere. Usually the clear-sky global radiation Gcs is separated
into a direct (or beam) Bcs and di�use Dcs component

Gcs = Bcs +Dcs (A.3)

which are then modeled separately. The direct component by

Bcs = Iext cos(θzenith) τa,B (A.4)

where Iext is the extraterrestrial radiation, θzenith is the solar zenith angle and
τa,B is a transmittance function of the atmosphere for direct radiation under
clear-sky conditions, which for example can be modeled taking Rayleigh scat-
tering, aerosol extinction, and ozone, water and uniformly mixed gas absorption
into account Bird and Riordan (1984).

The di�use component can be modeled by adding several contributions from
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re�ections and scattering through the atmosphere.

The global radiation (at the surface of the earth) can be modeled by

G = Gcs τc (A.5)

where τc is a transmittance function of clouds in the atmosphere, which can
be modeled with "layer models" (Davies and McKay, 1982) where cloud layer
transmittance and re�ections are taken into account.

A clear-sky model, similar to the one proposed by Bacher et al. (2009) for ob-
servations of solar power, is here proposed for observations of global radiation.
The proposed clear-sky model does not include any prior physical knowledge, it
is based solely on the information obtained from the observations. It is denoted
as a statistical clear-sky model, since it is based on a non-parametric statistical
model of clear-sky radiation. Information embedded in the observations, which
is particular for the sensor and its location, can be modeled with the statisti-
cal clear-sky model, for example shadowing and non-horizontal leveling of the
sensor. This is a fundamental di�erence to the clear-sky models based on prior
physical knowledge, which implies that the statistical clear-sky model can be
used for di�erent applications.

The statistical clear-sky model is based on time series of global radiation obser-
vations (or simulated values) and is de�ned by

Gt = Ĝcs
t τt (A.6)

where the t is used to indicate that the variables the time series of actual ob-
servations, Gt is observed global radiation, Ĝcs

t is estimated clear-sky global
radiation and τt is a factor, which is much to alike τc, but di�erent due to the
fact that it is estimated based on information from observations and not cal-
culated based on prior physical knowledge. It is noted here that the clear-sky
model could be de�ned for the direct component solely, which would be obvious
since nearly all local systematic e�ects have a much higher impact on the direct
component compared to the di�use component. However, since the application
of the clear-sky model in the present study is for observations of global radiation
and since the systematic errors would propagate into both the direct and di�use
component calculated with a splitting scheme, such as suggested by Ruiz-Arias
et al. (2010), the clear-sky model is applied to the global radiation directly.

Considering the observed global radiation as samples of a random variable with
a probability distribution function, which is a function of the day of year xt and
the time of day yt, the observed clear-sky global radiation can be estimated as
a quantile

Ĝcs
t = Qq(xt, yt) (A.7)
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of this distribution function, where the quantile q ∈ [0, . . . , 1] must be close to
one

q . 1 (A.8)

Assuming that the quantile function is a smooth function it can be approxi-
mated with local quantile regression Koenker (2005). The result in the three-
dimensional space formed by global radiation, day of year and time of day, can
be seen as a surface which follows the observed global radiation under clear-
sky conditions and is located "on top" of the point cloud of observed global
radiation.

In order to decrease the gradient and curvature of the estimated clear-sky radi-
ation surface a projection is carried out. The projection is from the horizontal
plane to the plane which is normal to the direct solar radiation (i.e. the plane
tracking the sun position)

Gpr
t =

Gt
cos(θzenith

t )
(A.9)

where θzenith
t is the average solar zenith angle in the sample period between

t − 1 and t. Values where cos(θzenith
t ) < 0.01 are removed: this corresponds to

sun elevation below 0.5◦. The quantile close to one is then estimated for the
projected values. A general form of the proposed statistical clear-sky model
is formulated in A.7, which is based on a local quantile regression model with
second order polynomials and a two-dimensional kernel in both the day of year
and time of day dimensions.

For correction of hourly values a local quantile regression model based only on a
one-dimensional kernel, where on the day of year dimension is used, was found
most suitable. The reason for using only a one-dimensional kernel, and not
including the time of day dimension in the local weighting, is that the model
becomes too biased and the estimated clear-sky global radiation does not follow
the drop before noon caused by shadowing (the systematic error described on
page 50) very well. Hence only values lagged in steps of 24 hours from t are used
as input, which is a similar approach as in classical decomposition of seasonal
time series (Cleveland and Tiao, 1976). Furthermore, it is noted that this is
equivalent to using a bandwidth in the time of day dimension below one hour
(i.e. below the sample period) for the two-dimensional model presented in A.7,
hence for time series with a shorter sample period a two-dimensional model
should be considered. The applied local quantile regression model based on a
third order polynomial is

β̂t = argmin
β∈R4

∞∑

i=−∞
ρq
(
Gtr
t+24i − (β0,t + β1,ti+ β2,ti

2 + β3,ti
3)
)
K(i) (A.10)
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where ρq(u) = u
(
q− I(u < 0)

)
is the quantile regression objective function (see

(Koenker, 2005) and (Koenker, 2011)), q ∈ [0, . . . , 1] is the sample quantile to
be estimated, i ∈ N is a counter of days, and K(i) is a kernel function. The
estimated projected clear-sky radiation is then found as the local intercept

Ĝpr,cs
t = β̂0,t (A.11)

The weights are calculated with the Epanechnikov kernel function

K(i) =





3
4

(
1−

[
|i|
hdoy

]2)
for |i|

hdoy
≥ 1

0 for |i|
hdoy

< 1

(A.12)

where hdoy is the bandwidth.

The R package quantreg implementation of quantile regression was used for the
estimation (Koenker, 2011). Finally, the estimated projected clear-sky radiation
on the projected plane is projected back to the horizontal plane by

Ĝcs
t = Ĝpr,cs

t cos(θzenith
t ) (A.13)

Finally, in order to take the clipping at a maximum level into account, the esti-
mated clear-sky radiation is limited to the maximum value of the observations

Ĝcs
t =

{
Ĝcs
t for Ĝcs

t ≤ Gmax
t

Gmax
t for Ĝcs

t > Gmax
t

(A.14)

where Gmax
t is the maximum value of global radiation observations.

The selection of suitable values for the parameters (here the quantile and the
kernel bandwidth) for the �tting of the local quantile regression model, would
preferably be based on a measure of performance for estimation clear-sky global
radiation. Then the parameters could be optimized in order to achieve the best
performance. However thorough studies are required in order to de�ne such a
measure. Therefore the parameter values are selected based on visual inspection
of the estimated clear-sky global radiation for days with only clear-sky. These
days are chosen such that they are distributed evenly over the entire period.
The selected values are

q = 0.97, hdoy = 125 (A.15)

which gives the estimate of the clear-sky global radiation for the observations
Ĝcs
t shown in Figure A.6 and for the NWPs Ĝnwp,cs

t shown in Figure A.7. Note,
that the estimated surface for the observations is clipped at the maximum value
of the observations, which gives the "�at" top. Furthermore, notice that the
drop due to shadowing is clearly seen in the estimated clear-sky radiation for
the observations.
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Figure A.6: The clear-sky global radiation estimated for the Sønderborg ob-
servations. Shown as a surface parametrized in the two dimen-
sions: day (days since 2009-01-01) and tod (time of day).

A.4 Correction of observations

The correction of the observations is carried out by multiplying the observations
with the ratio between the estimated clear-sky radiation for the NWPs and the
observations

Ĝco
t =

Ĝnwp,cs
t

Ĝcs
t

Gt (A.16)

The level of the correction applied, i.e. Ĝnwp,cs
t /Ĝcs

t , is shown as function of
days since 2009-01-01 and the time of day in Figure A.8. The systematical error
caused by a tilt of the sensor, resulting in a too low level of the observations
in the morning and too high level in the afternoon, can be directly seen in the
correction, since in the morning the correction is generally above one and the
afternoon level below one. Also apparent is the drop in the observed level due
to shadowing objects, especially seen between 9 to 10 am.

The corrected observations are plotted versus the NWPs in Figure A.9, includ-
ing the local least squares estimate of the relation in the morning and in the
afternoon. This plot is similar to the plot in Figure A.4. By comparison of
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Figure A.7: The clear-sky global radiation estimated for the NWPs for Søn-
derborg. Shown as a surface parametrized in the two dimensions:
day (days since 2009-01-01) and tod (time of day).

the two plots it is seen that the di�erence between the estimated relation in
the morning and the estimated relation in the afternoon has been decreased
signi�cantly. A visual comparison to the similar plot of the high quality DTU
observations in Figure A.5 veri�es that the pattern of the scatter after the cor-
rection is much closer to the pattern found there. It can also be seen that
the clipping at a maximum level has been corrected. Finally, it is found that
the overall scattering has been reduced. This is con�rmed by a comparison of
the errors for an estimated relation similar to the ones in Figure A.4 and A.9,
but using all data points (except nighttime values), i.e. no distinction between
morning and afternoon. Note here that the this measure is only used to give a
rough indication of the performance of the correction. The root mean square
error (RMSE) and mean absolute error (MAE) before the correction are

RMSEbefore = 114 W/m2, MAEbefore = 79 W/m2 (A.17)

and after the correction

RMSEafter = 101 W/m2, MAEafter = 67 W/m2 (A.18)

Hence a notably reduction in RMSE and MAE is achieved by applying the
correction.
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Figure A.8: The applied correction, which is the ratio between the estimated
clear-sky radiation of the observations and the NWPs, as a func-
tion of days and time of day.

A.4.1 On-line operation

For on-line operation the model has to be applied causally, such that only past
values can be used for the correction. A causal correction was calculated with
slightly di�erent parameter values for the clear-sky model, again selecting the
parameters from visual inspection. The estimated quantile q was decreased and
the kernel bandwidth hdoy increased slightly to

q = 0.95, hdoy = 150 (A.19)

Using a one-sided kernel will increase the bias of the estimates, which is also re-
�ected by a slightly increased RMSE and MAE of the loess �t for the corrected
observations to

RMSEafter = 103 W/m2, MAEafter = 67 W/m2 (A.20)

Considering the similar plots as presented for the causal correction showed only
a small visual di�erence. Hence it is found that the method works well for
on-line operation.
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Figure A.9: The values of the corrected observations versus NWPs of global
radiation. The morning values and the afternoon values are in-
dicated by di�erent symbols and colors. The two lines show a
locally weighted least squares regression estimate of the relation
between the variables in the morning and the afternoon.

A.5 Discussion

In this section the correction method and results are discussed together with
considerations on how to improve the method.

Considering the �tting of the clear-sky model it is noted that the model which
should be applied, is dependent on the time resolution of the data. For resolu-
tions higher than hourly a two-dimensional kernel, which also includes the time
of day dimension, should be used, as in (Bacher et al., 2009) where a similar
clear-sky model was applied to �fteen minutes values. Regarding the parame-
ters needed to be tuned in the clear-sky model - the quantile, kernel bandwidth,
and order of the polynomial - some manual interaction is required. However
the method could be based on a parameter optimization criteria, hence an ob-
jective measure to evaluate the performance of the correction, possibly based
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on cross validation (Friedman et al., 2001), and applied automatically for the
general case. Hence it can also be used for monitoring and data quality classi�-
cation for sub-daily solar data. Clearly, an objective measure of performance of
the correction is needed in order to further develop and improve the correction
method.

Improvements of the method could be formed by combining it with a prior step
in which a parametric model is �tted to correct for drift in time and tilt in
the leveling of the sensor. Another possibility for improvement is to treat the
direct and di�use radiation separately, since most of the systematic errors, for
example tilt and shadowing, will have a di�erent impact on direct and di�use
radiation. This will require, if the direct and di�use are not measured separately,
a splitting into a di�use and direct component, which could be carried out with
a scheme such as suggested by Ruiz-Arias et al. (2010) and Du�e and Beckman
(2006, p. 75-77). However applying such a scheme will cause the e�ect of the
systematic errors to propagate into both the direct and the di�use components.
Another approach would be to enhance the correction method by using more
than one quantile, in the presented approach only a single quantile close to
one is used. Several quantiles can be estimated for both the observed and
calculated radiation, which, together with an interpolation scheme, will form a
more extensive correction. Clearly this also requires that the calculated global
radiation, i.e. here the NWPs, describes the distribution well over the entire
range of global radiation. Finally, it is mentioned that for on-line operation the
method can be implemented computationally very e�cient using time-adaptive
quantile regression (Møller et al., 2008).

A.6 Conclusion

A correction method based on statistical non-parametric modeling techniques
is presented and applied on hourly observations of global radiation. Several
typical errors in the observations can be corrected with the method, including:
tilt in the leveling of the sensor, shadowing from objects in the surroundings
and clipping of the observations at a maximum level. The method works semi-
automatically and no prior information about the sensor and its surroundings,
besides the observations and location, is required. Furthermore only a few pa-
rameters needs to be tuned. Information embedded in NWPs of global radiation
is used for the correction, but this could be replaced with any calculated clear-
sky global radiation model. The method is well suited as part of monitoring
and operation applications for which local solar radiation observations provide
valuable information, e.g. for forecasting of climate dependent renewables such
as solar thermal, PV and heating systems. Finally, it is brie�y discussed how
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the method can be improved or extended in several ways.
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A.7 Two-dimensional local statistical clear-sky

model

The proposed statistical clear-sky model in a general form is described in this
section. It is based on a two-dimensional second-order polynomial local quantile
regression model. In this form the local weighting is carried out with a two-
dimensional multiplicative kernel function in the day of year and time of day
dimensions.

The model

β̂t = argmin
β∈R5

∞∑
i=−∞

∞∑
j=−∞

ρq
(
Gtr
t+ 24

tsp
i+j
− (β0,t + β1,ti+ β2,ti

2 + β3,tj + β4,tj
2)
)
K(i, j)

(A.21)

where tsp is the sample period of the time series in hours, ρq(u) = u
(
q −

I(u < 0)
)
is the quantile regression objective function (see (Koenker, 2005) and

(Koenker, 2011)), q ∈ [0, . . . , 1] is the sample quantile to be estimated, i ∈ N is a
counter of days, j ∈ N is a counter in steps of the sample period, and K(i, j) is a
kernel function. The model could easily be reduced or expanded to polynomials
of di�erent orders. The estimated projected clear-sky radiation is then found as
the local intercept

Ĝpr,cs
t = β̂0,t (A.22)

The weights are calculated with the Epanechnikov kernel function

K(i, j) =





9
16

(
1−

[
|i|
hdoy

]2)(
1−

[
|j|tsp
htod

]2)
for |i|

hdoy
< 1 ∧ |j|

htod
< 1

0 for |i|
hdoy
≥ 1 ∨ |j|

htod
≥ 1

(A.23)
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where hdoy is the bandwidth in the day of year dimension (in days) and htod is
the bandwidth in the time of day dimension (in hours).
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Abstract

This paper describes a new approach to online forecasting of power production
from PV systems. The method is suited to online forecasting in many appli-
cations and in this paper it is used to predict hourly values of solar power for
horizons of up to 36 hours. The data used is �fteen-minute observations of solar
power from 21 PV systems located on rooftops in a small village in Denmark.
The suggested method is a two-stage method where �rst a statistical normaliza-
tion of the solar power is obtained using a clear sky model. The clear sky model
is found using statistical smoothing techniques. Then forecasts of the normal-
ized solar power are calculated using adaptive linear time series models. Both
autoregressive (AR) and AR with exogenous input (ARX) models are evaluated,
where the latter takes numerical weather predictions (NWPs) as input. The re-
sults indicate that for forecasts up to two hours ahead the most important input
is the available observations of solar power, while for longer horizons NWPs are
the most important input. A root mean square error improvement of around 35
% is achieved by the ARX model compared to a proposed reference model.

B.1 Introduction

E�orts to increase the capacity of solar power production in Denmark are con-
centrating on installing grid connected PV systems on rooftops. The peak power
of the installed PV systems is in the range of 1 to 4 kWp, which means that
the larger systems will approximately cover the electricity consumption (ex-
cept heating) of a typical family household in Denmark. The PV systems are
connected to the main electricity grid and thus the output from other power pro-
duction units has to be adjusted in order to balance the total power production.
The cost of these adjustments increases as the horizon of the adjustments de-
creases and thus improved forecasting of solar power will result in an optimized
total power production, and in future power production systems where energy
storage is implemented, power forecasting is an important factor in optimizing
utilization of storage facilities (Koeppel and Korpas, 2006).

The total electricity power production in Denmark is balanced by the energy
market Nord Pool, where electricity power is traded on two markets: the main
market Elspot and a regulation market Elbas. On Nord Pool the producers
release their bids at 12:00 for production each hour the following day, thus the
relevant solar power forecasts are updated before 12:00 and consist of hourly
values at horizons of 12 to 36 hours. The models in this paper focus on such
forecasts, but with the 1-to-11-hour horizons also included.
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Interest in forecasting solar power has increased and several recent studies deal
with the problem. Many of these consider forecasts of the global irradiance which
is essentially the same problem as forecasting solar power. Two approaches are
dominant:

• a two-stage approach in which the solar power (or global irradiance) is
normalized with a clear sky model in order to form a more stationary time
series and such that the classical linear time series methods for forecasting
can be used.

• another approach in which neural networks (NNs) with di�erent types of
input are used to predict the solar power (or global irradiance) directly.

In a study Chowdhury and Rahman (1987) make sub-hourly forecasts by nor-
malizing with a clear sky model. The solar power is divided into a clear sky com-
ponent, which is modelled with a physical parametrization of the atmosphere,
and a stochastic cloud cover component which is predicted using ARIMA mod-
els. Sfetsos and Coonick (2000) use NNs to make one-step predictions of hourly
values of global irradiance and compare these with linear time series models that
work by predicting clearness indexes. Heinemann et al. (2006) use satellite im-
ages for horizons below 6 hours, and in (Lorenz et al., 2007) numerical weather
predictions (NWPs) for longer horizons, as input to NNs to predict global ir-
radiance. This is transformed into solar power by a simulation model of the
PV system. Hocaoglu et al. (2008) investigate feed-forward NNs for one-step
predictions of hourly values of global irradiance and compare these with sea-
sonal AR models applied on solar power directly. Cao and Lin (2008) use NNs
combined with wavelets to predict next day hourly values of global irradiance.
Di�erent types of meteorological observations are used as input to the models;
among others the daily mean global irradiance and daily mean cloud cover of
the day to be forecasted.

This paper describes a new two-stage method where �rst the clear sky model
approach is used to normalize the solar power and then adaptive linear time
series models are applied for prediction. Such models are linear functions be-
tween values with a constant time di�erence, where the model coe�cients are
estimated by minimizing a weighted residual sum of squares. The coe�cients
are updated regularly, and newer values are weighted higher than old values,
hence the models adapt over time to changing conditions.

Normalization of the solar power is obtained by using a clear sky model which
gives an estimate of the solar power in clear (non-overcast) sky at any given
point in time. The clear sky model is based on statistical smoothing techniques
and quantile regression, and the observed solar power is the only input. The
adaptive linear prediction is obtained using recursive least squares (RLS) with
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forgetting. It is found that the adaptivity is necessary, since the characteristics
of a PV-system are subject to changes due to snow cover, leaves on trees, dirt
on the panel, etc., and this has to be taken into account by an online forecasting
system.

The data used in the modelling is described in Section B.2. The clear sky
model used for normalizing the solar power is de�ned in Section B.3 followed
by Section B.4 where the adaptive time series models used for prediction are
identi�ed. In Section B.5 an approach to modelling of the uncertainty in the
forecasts is outlined. The evaluation of the models and a discussion of the results
are found in Section B.6 and �nally the conclusions of the study are drawn in
Section B.7.
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Nomenclature

p Solar power W

pcs Clear sky solar power W

τ Normalized solar power -

t Time index -

k Forecast horizon index -

i, j Miscellaneous indexes -

pt Observation of average solar power W

p̂t+k|t k-step prediction of solar power W

p̂cs
t Estimated clear sky solar power W

ĝi,k i'th update of NWP of global irradiance W/m2

ĝ00
k,t NWP of global irradiance updated at 00:00 W/m2

ĝ12
k,t NWP of global irradiance updated at 12:00 W/m2

p00
k,t Observation of solar power corresponding to ĝ00

k,t W

p12
k,t Observation of solar power corresponding to ĝ12

k,t W

τt Normalized solar power -

τ̂t+k|t k-step prediction of normalized solar power -

τ̂nwp
t NWPs transformed into normalized solar power -

xt Day of year -

yt Time of day -

et+k k-step prediction error -

q Quantile level -

h Bandwidth of smoothing kernel -

λ Forgetting factor -

B.2 Data

The data used in this study is observations of solar power from 21 PV systems
located in a small village in Jutland, Denmark. The data covers the entire year
2006. Forecasts of global irradiance are provided by the Danish Meteorological
Institute using the HIRLAM mesoscale NWP model.

The PV array in each the 21 PV systems is composed of �BP 595� PV modules
and the inverters are of the type �BP GCI 1200�. The installed peak power of
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Figure B.1: The observations of average solar power used in the study. Upper
plot: The solar power over the entire year 2006. Lower plots: The
solar power in two selected periods.

the PV arrays is between 1020 Watt peak and 4080 Watt peak, and the average
is 2769 Watt peak. Let pi,t denote the average value of solar power (W) over
15 minutes observed for the i'th PV system at time t. These observations are
used to form the time series

{pt; t = 1, . . . , N} (B.1)

where

pt =
1

21

21∑

i=1

pi,t . (B.2)

This time series is used throughout the modelling. The time series covers the
period from 01 January 2006 to 31 December 2006. The observations are �fteen-
minute values, ie. N = 35040. Plots of {pt} are shown in Figure B.1 for the
entire period and for two shorter periods.

The NWPs of global irradiance are given in forecasts of average values for every
third hour, and the forecasts are updated at 00:00 and 12:00 each day. The i'th
update of the forecasts is the time series

{ĝi,k, k = 1, . . . , 12} (B.3)

which then covers the forecast horizons up to 36 hours ahead, and is given in
(W/m2).

Time series are resampled to lower sample frequencies by mean values and when
the resampled values are used this is noted in the text. In order to synchronize
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Figure B.2: All three hour interval values of solar power at time of day 10:30
versus the corresponding NWPs of global irradiance with 24 hour
horizon. Hence the plot shows observations and predictions of
values covering identical time intervals.

data with di�erent sample frequencies, the time point for a given mean value
is assigned to the middle of the period that it covers, e.g. the time point of an
hourly value of solar power from 10:00 to 11:00 is assigned to 10:30.

As an example of the NWPs of global irradiance Figure B.2 shows values at time
of day 10:30 of {pt} resampled to three hour interval values plotted versus the
corresponding {ĝi,k} values with a 24 hour horizon. Clearly the plot indicates a
signi�cant correlation. Hence it is seen that there is information in the NWPs,
which can be utilized to forecast the solar power.

B.3 Clear sky model

A clear sky model is usually a model which estimates the global irradiance in
clear (non-overcast) sky at any given time. Chowdhury and Rahman (1987)
divide the global irradiance into a clear sky component and a cloud cover com-
ponent by

G = Gcs · τc (B.4)

where G is the global irradiance (W/m2), and Gcs is the clear sky global irra-
diance (W/m2). Finally τc is the transmissivity of the clouds which they model
as a stochastic process using ARIMA models. The clear sky global irradiance is
found by

Gcs = I0 · τa (B.5)
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Figure B.3: Modi�ed boxplots of the distribution of the solar power as a func-
tion of time of day. The boxplots are calculated with all the
�fteen-minutes values of solar power, i.e. covering all of 2006.
At each time of the day the box represents the center half of
the distribution, from the �rst to the third quantile. The lower
and upper limiting values of the distribution are marked with the
ends of the vertical dotted lines, and dots beyond these indicate
outliers.

where I0 is the extraterrestrial irradiance (W/m2). τa is the total sky transmis-
sivity in clear sky which is modelled by atmospheric dependent parametrization.

In this study the same approach is used, but instead of applying the factor on
global irradiance it is applied on solar power, i.e.

p = pcs · τ (B.6)

where p is the solar power (W) and pcs is the clear sky solar power (W). The
factors τ and τc are much alike, but since the clear sky model developed in the
present study estimates pcs by statistical smoothing techniques rather than using
physics, the method is mainly viewed as a statistical normalization technique
and τ is referred to as normalized solar power.

The motivation behind the proposed normalization of the solar power with a
clear sky model is that the normalized solar power (the ratio of solar power to
clear sky solar power) is more stationary than the solar power, so that classical
time series models assuming stationarity (Madsen, 2007) can be used for pre-
dicting the normalized values. The non-stationarity is illustrated by Figure B.3
where modi�ed boxplots indicate the distribution of solar power pt as a function
of time of day. Clearly a change in the distributions over the day is seen and
this non-stationarity must be considered. Figure B.4 shows the same type of
plot for the normalized solar power and it is seen that the distributions over the
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Figure B.4: Modi�ed boxplots of the distribution of the normalized solar
power as a function of time of day. The boxplots are calculated
with all �fteen-minutes values available, i.e. covering all of 2006.

day are closer to being identical. Thus the e�ect of the changes over the day is
much lower for the normalized solar power than for the solar power.

The clear sky model is de�ned as

pcs = fmax(x, y) (B.7)

where pcs is the clear sky solar power (W), x is the day of year and y is the time
of day. The function fmax(·, ·) is assumed to be a smooth function and thus
fmax(·, ·) can be estimated as a local maximum (Koenker, 2005). Figure B.5
shows the solar power plotted as a function of x and y, and the estimated clear
sky solar power f̂max(·, ·) is shown as a surface in Figure B.6. Due to outliers
the weighted quantile regression method outlined in Section B.8 is used to �nd
the local maximum. The f̂max(·, ·) is then used to form the output of the clear
sky model as the time series

{p̂cs
t , t = 1, . . . , N}, (B.8)

where p̂cs
t is the estimated clear sky solar power (W) at time t, and N = 35040.

The normalized solar power is now de�ned as

τt =
pt
p̂cs
t

(B.9)

and this is used to form time series of normalized solar power

{τt, t = 1, . . . , 35040}. (B.10)

For each (xt, yt) corresponding to the solar power observation pt, weighted quan-
tile regression estimates the q quantile by a Gaussian two dimensional smooth-
ing kernel, de�ned in Section B.8. The smoothing kernel is used to form the
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Figure B.5: The solar power as a function of the day of year, and the time of
day. Note that only positive values of solar power are plotted.

Figure B.6: The estimated clear sky solar power shown as a surface. The solar
power is shown as points.
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Figure B.7: The one dimensional smoothing kernels used. Left plot is the
kernel in the day of year (x) dimension. Right plot is the kernel
in the time of day (y) dimension. They are multiplied to form the
applied two dimensional smoothing kernel.
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Figure B.8: The result of the normalization for selected clear sky days over
the year. The time-axis ticks refer to midday points, i.e. at 12:00.
The upper plot shows the solar power p and the estimated clear
sky solar power p̂cs. The lower plot shows the normalized solar
power τ .

weights applied in the quantile regression. As seen in Figure B.7, which shows
the smoothing kernel used, the weights in the day of year dimension w(xt, xi, hx),
are decreasing as the absolute time di�erences are increasing. Similarly for the
weights in the time of day dimension w(yt, yi, hy). The applied weights are �-
nally found by multiplying the weigths from the two dimensions. The choice of
the quantile level q to be estimated and the bandwidth in each dimension, hx

and hy, is based on a visual inspection of the results. A level of q = 0.85 was
used since this gives τt ≈ 1 for days with clear sky all day, as seen in Figure B.8.
The plot for days with varying cloud cover in Figure B.9 show that estimates
where τt > 1 occur. These are ascribed to re�ections from clouds and varying
level of water vapour in the atmosphere. Future work should elaborate on the
inclusion of such e�ects in the clear sky model.
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Figure B.9: The result of the normalization for days evenly distributed over
the year. The time-axis ticks refer to midday points, i.e. at 12:00.
The upper plot shows the solar power p and the estimated clear
sky solar power p̂cs. The lower plot shows the normalized solar
power τ .

For small p̂cs
t values the error of τt is naturally increasing and at nighttime the

error is in�nite. Therefore all values of p̂cs
t where

p̂cs
t

max({p̂cs
t })

< 0.2 (B.11)

are removed from {τt}. The function max({p̂cs
t }) gives the maximum value in

{p̂cs
t }.

The estimates of clear sky solar power are best in the summer period. The bad
estimates in winter periods are caused by the sparse number of clear sky obser-
vations. It should also be possible to improve the normalization toward dusk
and dawn, and thus lower the limit where values in {p̂cs} are removed, either by
re�ning the modelling method or by including more explanatory variables such
as e.g. air mass.

Finally it is noted that the deterministic changes of solar power are really caused
by the geometric relation between the earth and the sun, which can be repre-
sented in the current problem by the sun elevation as x and sun azimuth as y.
The clear sky solar power was also modelled in the space spanned by these two
variables, by applying the same statistical methods as for the space spanned by
day of year and time of day. The result was not satisfactory, i.e. the estimated
clear sky solar power was less accurate, probably because neighboring values in
this space are not necessarily close in time and thus changes in the surroundings
to the PV system blurred the estimates.
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B.4 Prediction models

Adaptive linear time series models (Madsen, 2007) are applied to predict future
values of the normalized solar power τt. The inputs are: lagged observations of
τt and transformed NWPs τ̂nwp

t . Three types of models are identi�ed:

• a model which has only lagged observations of τt as input. This is an
autoregressive (AR) model and it is referred to as the AR model.

• a model with only τ̂nwp
t as input. This is referred to as the LMnwp model.

• a model with both types of input. This is an autoregressive with exogenous
input (ARX) model and it is referred to as the ARX model.

The best model of each type is identi�ed by using the autocorrelation function
(ACF).

B.4.1 Transformation of NWPs into predictions of nor-

malized solar power

In order to use the NWPs of global irradiation ĝi,k as input to the prediction
models, these are transformed into τ̂nwp

t which are meteorological based hourly
predictions of τt. This is done by �rst transforming ĝi,k into solar power predic-
tions and then transforming these by the clear sky model. The time series {ĝi,k},
de�ned in (B.3), holds the i'th NWP forecast of three hour interval values, and
was updated at

timei = t0 + (i− 1) · 12h (B.12)

where t0 = 2006-01-01 00:00. Thus the time series with sample period of one
day

{ĝ00
k,t, t = 1, . . . , 364} = {ĝi,k, i = 1, 3, . . . , 727}, (B.13)

consist of all the NWPs updated at time of day 00:00 at horizon k, i.e. the
superscript �00� forms part of the name of the variable. Similarly the time
series

{ĝ12
k,t, t = 1, . . . , 364} = {ĝi,k, i = 2, 4, . . . , 728}, (B.14)

consist of all the NWPs updated at time of day 12:00. The corresponding time
series of solar power covering the identical time intervals are respectively

{p00
k,t, t = 1, . . . , 364} = (B.15)

{pt, t = k, (1 · 8 + k), . . . , (363 · 8 + k)}
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and

{p12
k,t, t = 1, . . . , 364} = (B.16)

{pt, t = k + 4, (1 · 8 + k + 4), . . . , (363 · 8 + k + 4)},

where {pt} has been resampled to three hour interval values. The NWPs are
modelled into solar power predictions by the adaptive linear model

p̂00
k,t = βt + αt ĝ

00
k,t + et , (B.17)

note that the hat above the variable indicates that these values are predictions
(estimates) of the solar power. A similar model is made for the NWP updates at
time of day 12:00 giving p̂12

k,t. The interpretion of the coe�cients βt and αt is not
further elaborated here, but it is noted that they are time dependent in order
to account for the e�ects of changing conditions over time, e.g. the changing
geometric relation between the earth and the sun, dirt on the solar panel. This
adaptivity is obtained by �tting the model with k-step recursive least squares
(RLS) with forgetting, which is described in Section B.9. In order to use the
RLS algorithm, p00

k,t has to be lagged depending on k. Each RLS estimation is
optimized by choosing the value of the forgetting factor λ from 0.9, 0.905, . . . , 1
that minimizes the root mean square error (RMSE ).

The last steps in the transformation of the NWPs is to normalize p̂00
k,t and p̂

12
k,t

with the clear sky model, and resample up to hourly values by linear interpola-
tion. Finally the time series

{τ̂nwp
t , t = 1, . . . , 8760} (B.18)

of the NWPs of global irradiance transformed into predictions of normalized
solar power is formed, and this is used as input to the ARX prediction models
as described in the following. More details can be found in (Bacher, 2008).

B.4.2 AR model identi�cation

To investigate the time dependency in {τt}, i.e. dependency between values with
a constant time di�erence, the ACF is calculated and plotted in Figure B.10.
Clearly an AR(1) component is indicated by the exponential decaying pattern
of the �rst few lags and a seasonal diurnal AR component by the exponential
decaying peaks at lag = 24, 48, ... . By considering only �rst-order terms this
leads to the 1-step AR model

τt+1 = m+ a1τt + a2τt−23 + et+1 . (B.19)
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Figure B.10: ACF of the time series of normalized solar power {τt}.

And a reasonable 2-step AR model is

τt+2 = m+ a1τt + a2τt−22 + et+2 . (B.20)

Note that here the 1-step lag cannot be used, since this is τt+1 i.e. a future
value, and thus the latest observed value τt is included instead. Formulated as
a k-step AR model

τt+k = m+ a1τt + a2τt−s(k) + et+k (B.21)

s(k) = 24 + k mod 24 (B.22)

where the function s(k) ensures that the latest observation of the diurnal com-
ponent is included. This is needed, since for k = 25 the diurnal 24 hour AR
component cannot be used and instead the 48 hour AR component is used. This
model is referred to as the AR model.

Figure B.11 shows the ACF of {et+k}, which is the time series of the errors in
the model for horizon k, for six selected horizons after �tting the AR model
with RLS, which is described in Section B.9. The vertical black lines indicate
which lags are included in the model. For k = 1 the correlation of the AR(1)
component is removed very well and the diurnal AR component has also been
decreased considerably. There is high correlation left at lag = 24, 48, . . .. This
can most likely be ascribed to systematic errors caused by non-stationarity ef-
fects left in {τt}, and it indicates that the clear sky model normalization can be
further optimized. For k = 2 and 3 the grayed points show the lags that cannot
be included in the model and the high correlation of these lags indicate that
information is not exploited. The AR model was extended with higher order
AR and diurnal AR terms without any further improvement in performance,
see (Bacher, 2008).
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Figure B.11: ACF of the time series of errors {et+k} for selected horizons k
of the AR model. The vertical bars indicate the lags included in
each of the models, and the grayed points show the lags which
cannot be included in the model.

B.4.3 LMnwp model identi�cation

The model using only NWPs as input

τt+k = m+ b1τ̂
nwp
t+k|t + et+k (B.23)

is referred to as LMnwp . It is �tted using RLS and the ACF of {et+k} is shown
in Figure B.12 for two horizons. For k = 1 clearly correlation is left from an
AR(1) component, but as seen for both horizons the actual NWP input removes
diurnal correlation very well.

B.4.4 ARX model identi�cation

The model using both lagged observations of τt and NWPs as input is an ARX
model. The LMnwp revealed an exponential decaying ACF for short horizons
and thus an AR(1) term is clearly needed, whereas adding the diurnal AR
component has only a small e�ect. The results show that in fact the diurnal
AR component can be left out, but it is retained since this clari�es that no
improvement is achieved by adding it, this is showed later. The model

τt+k = m+ a1τt + a2τt−s(k) + b1τ̂
nwp
t+k|t + et+k, (B.24)

is referred to as the ARX model. The model is �tted using RLS and the ACF of
{et+k} is plotted in Figure B.13. It is seen that the AR(1) component removes
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Figure B.12: ACF of the time series of errors {et+k} at horizon k = 1 and
k = 24 of the LMnwp model. The grayed points show the lags
which cannot be included in the model.
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Figure B.13: ACF of the time series of errors {et+k} at horizons k = 1 and
k = 24 of the ARX model. The vertical bars indicate the lags
included in each of the models, and the grayed points show the
lags which cannot be included in the model.
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Figure B.14: The online estimates of the coe�cients in the AR model as a
function of time. Two selected horizons are shown. The grayed
period in the beginning marks the burn-in period.

the correlation for the short horizons very well. The ARX was extended with
higher order AR and diurnal AR terms without any further improvements in
performance.

B.4.5 Adaptive coe�cient estimates

The plots in Figure B.14 show the online coe�cient estimates for the AR model,
where a value of λ = 0.995 is used since this is the value that minimizes the
RMSEk best for all horizons in the current setting. Clearly the values of the
coe�cient estimates change over time and this indicates that the adaptivity is
needed to make an optimal model for online forecasting.

B.5 Uncertainty modelling

Extending the solar power forecasts, from predicting a single value (a point
forecast) to predicting a distribution increases their usefulness. This can be
achieved by modelling the uncertainties of the solar power forecasts and a simple
approach is outlined here. The classical way of assuming normal distribution of
the errors will in this case not be appropriate since the distribution of the errors
has �nite limits. Instead, quantile regression is used, inspired by Møller et al.
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Figure B.15: Normalized solar power versus the predicted normalized solar
power at horizons k = 1 and k = 24. The predictions are
made with the ARX model. The lines are estimates of the
0.05, 0.25, 0.50, 0.75 and 0.95 quantiles of fτ (τ̂).

(2008) where it is applied to wind power forecasts. Plots of {τt} versus {τ̂t} for
a given horizon reveal that the uncertainties depend on the level of τ̂ . Figure
B.15 shows such plots for horizons k = 1 and k = 24. The lines in the plot
are estimates of the 0.05, 0.25, 0.50, 0.75 and 0.95 quantiles of the probability
distribution function of τ as a function of τ̂ . The weighted quantile regression
with a one dimensional kernel smoother, described in Section B.8, is used.

Figure B.15 illustrates that the uncertainties are lower for τ̂ close to 0 and
1, than for the mid-range values around 0.5. Thus forecasts of values toward
overcast or clear sky have less uncertainty than forecasts of a partly overcast
sky, which agrees with results by Lorenz et al. (2007). Further work should
extend the uncertainty model to include NWPs as input.

B.6 Evaluation

The methods used for evaluating the prediction models are inspired by Madsen
et al. (2005) where a framework for evaluation of wind power forecasting is
suggested. The RLS �tting of the prediction models does not use any degrees
of freedom and the dataset is therefore not divided into a training set and a test
set. It is, however, noted that the clear sky model and the optimization of λ
does use the entire dataset, and thus the results can be a little optimistic. The
values in the burn-in period are not used in calculating the error measures. In
Figure B.14 the burn-in periods for the AR model are shown.
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B.6.1 Error measures

The k-step prediction error is

et+k = pt+k − p̂t+k|t (B.25)

The Root Mean Square Error for the k'th horizon is

RMSEk =

(
1

N

N∑

t=1

e2
t+k

) 1
2

. (B.26)

The RMSEk is used as the main evaluation criterion (EC) for the performance
of the models. The Normalized Root Mean Square Error is found by

NRMSEk =
RMSEk

pnorm
(B.27)

where either

pnorm = p̄ =
1

N

N∑

t=1

pt. (B.28)

or pnorm is the average peak power of the 21 PV systems.

The mean value of the RMSEk for a range of horizons

RMSEks,ke =
1

ke − ks + 1

ke∑

k=ks

RMSEk (B.29)

is used as a summary error measure. When comparing the performance of two
models the improvement

IEC = 100 · EC ref − EC

EC ref
(%) (B.30)

is used, where EC is the considered evaluation criterion.

B.6.2 Reference model

To compare the performance of prediction models, and especially when making
comparisons between di�erent studies, a common reference model is essential.
A reference model for solar power is here proposed as the best performing naive
predictor for the given horizon. Three naive predictors of solar power are found
to be relevant. Persistence

pt+k = pt + et+k, (B.31)
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Figure B.16: RMSEk for the three naive predictors used in the Reference
model.

diurnal persistence

pt+k = pt−s(k) + et+k (B.32)

s(k) = fspd + k mod fspd (B.33)

where s(k) ensures that the latest diurnal observation is used and fspd is the
sample frequency in number of samples per day, and diurnal mean

pt+k =
1

n

n∑

i=1

pt−s(k,i) + et+k (B.34)

s(k, i) = i · fspd + k mod fspd (B.35)

which is the mean of solar power of the last n observations at the time of day
of t+ k. The value of n is chosen such that all past samples are included.

Figure B.16 shows the RMSEk for each of the three naive predictors. It is seen
that for k ≤ 2 the persistence predictor is the best while the best for k > 2
is the diurnal persistence predictor. This model is referred to as the Reference
model.

B.6.3 Results

Examples of solar power forecasts made with the ARX model are shown in
Figure B.17 for short horizons and in Figure B.18 for next day horizons. It is
found that the forecasted solar power generally follows the main level of the
solar power, but the �uctuations caused by sudden changes in cloud cover are
not fully described by the model.
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Figure B.17: Forecasts of solar power at short horizons k = 1, . . . , 6 made
with the ARX model.
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Figure B.18: Forecasts of solar power at next day horizons k = 19, . . . , 29
made with the ARX model.
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Figure B.19: The NRMSEk for each of the three models and the Reference
model. The left plot show the short horizons and the right the
next day horizons. The left scale show RMSEk normalized by
the mean solar power p̄ = 248 W/h and the right scale show
RMSEk normalized by 2769W, which is the mean peak power
of the 21 PV systems.
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Models IRMSE1,6
IRMSE19,29

AR over Reference 27% 17%
LMnwp over Reference 25% 36%
ARX over Reference 35% 36%

LMnwp over AR -2% 23%
ARX over AR 12% 23%

ARX over LMnwp 13% 1%

Table B.1: Summary error measures of improvements compared to the Refer-
ence model for short horizons k = 1, . . . , 6 and next day horizons
k = 19, . . . , 29 .

The NRMSEk is plotted for each model in Figure B.19. Clearly the performance
is increasing from the Reference model to the AR model and further to the ARX
model. The di�erences from using either the solar power or the NWPs, or both,
as input become apparent from these results.

At k = 1 the AR model that only uses solar power as input is better than
the LMnwp which only uses NWPs as input, but at k = 2, . . . , 6 the LMnwp is
better, though only slightly. This indicates that for making forecasts of horizons
shorter than 2 hours, solar power is the most important input, whereas for 2
to 6 hours horizons, forecasting systems using either solar power or NWPs can
perform almost equally. The ARX model using both types of input does have
an increased performance at all k = 1, . . . , 6 and thus combining the two types
of input is found to be the superior approach.

For k = 19, . . . , 29, which are the next day horizons, very clearly the LMnwp

model and the ARX model perform better than the AR model. Since the
LMnwp model and the ARX model perform almost equally, it is seen that no
improvement is achieved from adding the solar power as input, and thus using
only the NWPs as input is found to be adequate for next day horizons.

A summary of the improvement in performance is calculated using (B.29) and
(B.30). The improvements compared to the Reference model are calculated for
the four models by IRMSE1,6

for short horizons and IRMSE19,29
for next day

horizons. The results are shown in Table B.1. These results naturally show the
same as stated above, though the di�erence at k = 1 from AR to LMnwp cannot
be seen. These results show that a RMSE improvement of around 35 % over
the Reference model can be achieved by using the ARX model.
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B.7 Conclusions

Inspired by previous studies, the present method for solar power forecasting
has been developed from scratch. A new approach to clear sky modelling with
statistical smoothing techniques has been proposed, and an adaptive prediction
model based on RLS makes a solid framework allowing for further re�nements
and model extensions e.g. by including NWPs of temperature as input. The
adaptivity of the method makes it suited to online forecasting and ensures com-
prehension of changing conditions of the PV system and its surroundings. Fur-
thermore the RLS algorithm is not computer intensive, which makes updating
of forecasts fast. The clear sky model used to normalize the solar power delivers
a useful result, but can be improved, especially for the estimates toward dawn
and dusk, by using polynomial-based kernel regression. A procedure based on
quantile regression is suggested for calculating the varying intervals of the un-
certainty of the solar power predictions and the results agree with other studies.
The best performing prediction model is an ARX model where both solar power
observations and NWPs are used as input. The results indicate that for hori-
zons below 2 hours solar power is the most important input, but for next day
horizons no considerable improvement is achieved from using available values of
solar power, so it is adequate just to use NWPs as input. Thus, depending on
the application of the forecasting system using only either of the inputs can be
considered, and a lower limit of the latency, at which solar power observations
are needed for the forecasting system, can be di�erent. Finally it is noted that a
comparison to other online solar power forecasting methods, e.g. (Lorenz et al.,
2007) and (Hocaoglu et al., 2008), has not been carried out, but that such a
study would be informative in order to describe strengths and accuracy of the
di�erent proposed methods.

B.8 Weighted quantile regression

The solar power time series {pt, t = 1, . . . , N} is the realization of a stochastic
process {Pt, t = 1, . . . , N}. The estimated clear sky solar power at time t is p̂cs

t

and it is found as the q quantile of fPt
, the probability distribution function

of Pt. The problem is reduced to estimating p̂cs
t as a local constant for each

(xt, yt), where x is the day of year and y the time of day. This is done by
weighted quantile regression in which the loss function is

ρ(q, εi) =

{
qεi , εi ≥ 0
(1− q)εi , εi < 0

(B.36)
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where εi = pi − p̂cs
t . The �tting of p̂cs

t is then done by

p̂cs
t = arg min

p̂cst

N∑

i=1

k(xt, yt, xi, yi) · ρ(q, εi). (B.37)

where

k(xt, yt, xi, yi) =
w(xt, xi, hx) · w(yt, yi, hy)

∑N
i=1 w(xt, xi, hx) · w(yt, yi, hy)

(B.38)

is the two dimensional multiplicative kernel function which weights the obser-
vations locally to (xt, yt), (Hastie and Tibshirani, 1993). Details of the mini-
mization are found in (Koenker, 2005). In each dimension a Gaussian kernel is
used

w(xt, xi, hx) = fstd

( |xt − xi|
hx

)
(B.39)

where fstd is the standard normal probability density function. A similar kernel
function is used in the y dimension, and the �nal two dimensional kernel is found
by multiplying the two kernels as shown in (B.37).

B.9 Recursive least squares

Fitting of the prediction models is done using k-step recursive least squares
(RLS) with forgetting, which is described in the following using the ARX model

τt+k = m+ a1τt + a2τt−s(k) + b1τ̂
nwp
t+k|t + et+k, (B.40)

as an example. The regressor at time t is

XT
t = (1, τt, τt−s(k), τ̂

nwp
t+k|t), (B.41)

the parameter vector is
θT = (m, a1, a2, b1), (B.42)

and the dependent variable
Yt = τt. (B.43)

Hence the model can be written as

Yt = XT
t θ + et. (B.44)

The estimates of the parameters at t are found such that

θ̂t = arg min
θ
St(θ), (B.45)

283



90 Online Short-term Solar Power Forecasting

where the loss function is

St(θ) =
t∑

s=1

λt−s(Ys −XT
s θ)

2. (B.46)

This provides weighted least squares with exponential forgetting. The solution
at time t leads to

θ̂t = R−1
t ht, (B.47)

see (Madsen, 2007), where

Rt =
∑t
s=1 λ

t−sXsX
T
s , ht =

∑t
s=1 λ

t−sXsYs. (B.48)

The k-step RLS-algorithm with exponential forgetting is then

Rt = λRt−1 + Xt−kX
T
t−k (B.49)

θ̂t = θ̂t−1 + R−1
t Xt−k(Yt −XT

t−kθ̂t−1) (B.50)

and the k-step prediction at t is

Ŷt+k = XT
t θ̂t. (B.51)
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Abstract

This paper describes two methods for online forecasting of power production
from PV systems. The methods are suited for online forecasting in many appli-
cations and in this paper they are used to predict hourly values of solar power
for horizons up to 32 hours. The data used is hourly observations of solar power
from a single PV system located on a rooftop in a small village in Denmark.
One approach is a two-stage method in which a statistical normalization of the
solar power is obtained using a clear sky model. The clear sky model is found
using statistical smoothing techniques, which ensure that local phenomena are
directly modelled from data, as opposed to applying a deterministically derived
clear sky model. In the second stage forecasts of the normalized solar power are
calculated using adaptive linear time series models. A second approach is to
apply conditional parametric models with both autoregressive input and NWPs
exogenous input. The results indicate that for forecasts up to two hours ahead
the most important input is the available observations of solar power, while for
longer horizons NWPs are the most important input. A root mean square error
improvement over a persistence model around 40 % is achieved for 1 and 2 hour
horizons and around 35 % for longer horizons.

C.1 Introduction

The increasing installed solar power capacity rises the challenges of grid inte-
gration. The need for e�cient forecasting methods is evident and the research
activities within the topic is increasing, see for example (Sfetsos and Coonick,
2000), (Hocaoglu et al., 2008), (Lorenz et al., 2009), and (Ji and Chee, 2011). In
this paper methods for online forecasting are presented. The methods are suited
for forecasting of solar power for di�erent systems and here they are applied to
forecast the power production of a single 4 kW-peak PV-system installed on a
rooftop of a single family house. Due to the �uctuating nature of solar power
such forecasts are essential for optimal grid integration and will be essential for
solar power smart grid technology. The applications include energy trading for
large solar power producers, and diurnal peak-shaving and cost optimization
for smaller systems with storage capacity in battery packs (e.g. provided in an
electrical car). Two approaches are considered. One is based on a two-stages ap-
proach: �rst the systematic dependency of the position of the sun relative to the
PV panel are removed with a clear sky model, and secondly the resulting pro-
cess is forecasted with time-adaptive linear time series methods. The clear sky
model is calculated with non-linear statistical techniques, which will also model
the local conditions, such as e.g. shadows from elements in the surrounding
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C.2 Data 95

environment and snow cover. In the second approach numerical weather pre-
dictions (NWPs) are used as input to conditional parametric non-linear models
(Nielsen et al., 2002) to forecast the solar power. Finally, the two approaches
are combined by normalizing the forecast with the clear sky model, and �nally
using this as input to the linear forecasting model, such that an ARX model is
formed.

The paper is organized as follows. First the data and how it is preprocessed is
described. The next section contains an outline of the clear sky model, followed
by a section where all the forecasting models are described. Then an evaluation
is given and the results are presented, followed by a discussion of the results and
ideas for further work. Finally, the paper ends with a conclusion.

C.2 Data

The data used in this study consist of hourly mean values of solar power from a
4 kW-peak PV-system and NWPs of global irradiance. The NWPs are provided
by the Danish Meteorological Institute using the HIRLAM mesoscale NWP
model. The data covers the entire year 2006.

The time series of hourly observed solar power is

{Pt; t = 1, . . . , N} (C.1)

where N = 8760. The NWPs have a calculation time of 4 hours, which is taken
into consideration, such that e.g. the forecast from 2009-01-01 00:00 are only
available from 2009-01-01 04:00. The NWPs are provided in a time resolution
of 3 hours. They are pre-processed into time series of hourly values, such that
the most recent available forecast k hours ahead is selected each hour. The time
series for a given k of the direct radiation is

{
Gnwp
t+k|t; t = 1, . . . , N

}
(C.2)

C.2.1 Pre-processing

The solar power data is plotted for each hour of the day in Figure C.1. The solar
radiation is zero at night, hence the observed solar power is also zero. For the
current data set only periods, for a given hour of the day longer than 40 days in
which the solar power is di�erent from zero, are included for evaluation of the
model performance. This is illustrated in Figure C.1, where the non-included
periods are grayed out.
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Figure C.1: The solar power data. The greyed area are not included in the
evaluation of the model performance.

C.3 Clear sky model

Forecasting e�ectively using linear time series methods calls for stationarity of
the underlying process Madsen (2007). The process that generates the solar
power is not stationary, which is seen by plotting quantiles of the distribution
of solar power conditioned on the time of day, see Figure C.2. Clearly the
distribution of solar power is not independent of the time of day.

Most of this dependency can be removed by a normalization using a clear sky
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model

τt =
Pt
P cs
t

(C.3)

where Pt is the observed solar power, P cs
t is the estimated clear sky solar power,

and τt is the normalized solar power.

C.3.1 Statistically estimated clear sky solar power

The clear sky solar power is estimated using a statistical non-linear and adaptive
model. Quantile regression Koenker (2005) locally weighted in the day of year
and time of day dimension is applied. This is carried out fully causal, i.e. only
past values are used. The clear sky model is

P̂ cs
t = q0.99(P1, P2, . . . , Pt, hy, htod) (C.4)

where q0.99 is the 99% quantile based on the solar power values up to time
t. The bandwidths hday and htod, are in the day of year and time of day
dimension, respectively. The bandwidths control how �locally� the model is
�tted, i.e. a lower bandwidth puts more emphasis on data which is close in the
two dimensions. The local weighting function is an Epanechnikov kernel. The
applied bandwidths are

hday = 100 days, htod = 3 hours (C.5)

which were found by visual inspection of the �tted clear sky curve. Finally, it is
noted that second-order polynomials were applied in the time of day dimension
to include curvature into the model. The estimated clear sky solar power is
shown in Figure C.3.

One advantage of the normalization is that it will automatically adapt to changes
in the system, such as degraded performance or changes in the surroundings e.g.
snow cover and shadowing e�ects. It can as well be used for monitoring of the
solar system, since degraded performance from the same time of year will result
in a lower clear sky solar power curve. Plots of the quantiles of the distribution
of normalized solar power conditional on the time of day are shown in Figure
C.2, from which it is seen that the normalized solar power process is considerably
less dependent on the time of day and therefore a much more stationary process.
It is noted that further work could include physical considerations into the clear
sky model.

[t]
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Figure C.2: The 0, 4%, ..., 100% quantiles of the distribution of the solar power
and the normalized solar power conditioned on the time of day.
Values above 1.5 has been clipped, which was the case for 6 values.

C.4 Forecasting models

In this section a description of the applied forecasting models is given. The
models can be divided into models using linear time series models to forecast
the normalized solar power: autoregressive (AR) and autoregressive with ex-
ogenous inputs (ARX) models - and models which forecast in a single stage:
conditional parametric (CP) models. Each model is �tted separately for each
horizon, such that the same model structure is used, but the parameters are
estimated separately for each horizon.

C.4.1 Reference model

To compare the performance of prediction models, and especially when making
comparisons between di�erent studies, a common reference model is essential.
The reference model for solar power used in this study is the best performing
naive predictor for a given horizon. Two naive predictors of solar power are
found to be relevant. Persistence

pt+k = pt + et+k, (C.6)
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and diurnal persistence

pt+k = pt−s(k) + et+k (C.7)

s(k) = 24 + k mod 24 (C.8)

where s(k) ensures that the latest diurnal observation is used, i.e. the value
which, depending on the horizon, is either 24 or 48 hours before the time point
that is to be forecasted.

C.4.2 Autoregressive models

Autoregressive (AR) models are applied to forecast the normalized solar power.
These models can include either the latest available observation or the latest
available diurnal observation, or both, as input. The models are �tted with
k-step recursive least squares with forgetting factor Bacher et al. (2009). The
model formulated as a k-step AR model

τt+k = m+ a1τt + a24τt−s(k) + et+k (C.9)

s(k) = 24 + k mod 24 (C.10)

where the function s(k) ensures that the latest observation of the diurnal com-
ponent is included. The model without the diurnal component, denoted AR,
performs best on short horizons

τt+k = m+ a1τt + et+k (C.11)

and is included in the evaluation. The AR model with only the diurnal performs
better on longer horizons, but is inferior to the models including the NWPs.

C.4.3 Conditional parametric models

Conditional parametric (CP) models where the coe�cients are conditional on
the time of day and time of year are applied with both past solar power ob-
servations and NWPs as inputs. The CP model with the latest solar power
observation as input is

Pt+k = m+ a
(
tday, ttod, Pt

)
Pt + et+k (C.12)

where the coe�cient function is a non-linear function of the solar power. It is
denoted as CPP . The CP model with NWPs of global radiation as input is

Pt+k = m+ b
(
tday, ttod, G

nwp
t+k|t

)
Gnwp
t+k|t + et+k (C.13)
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Figure C.3: The estimated clear sky solar power.

where Gnwp
t+k|t is the k-hour ahead NWP of global radiation. This model is

denoted CPNWP . Finally, the model with both inputs

Pt+k =m+ a
(
tday, ttod, Pt

)
Pt (C.14)

+ b
(
tday, ttod, G

nwp
t+k|t

)
Gnwp
t+k|t + et+k

is denoted CPNWP,P .

In the following the coe�cients dependency of the time of day for CPNWP is
elaborated on. It is noted that the bandwidths are optimized for each horizon.
Plots of the �tted forecasting function b

(
tday, ttod, G

nwp
t+k|t

)
for k = 24 hours are

shown in Figure C.4. It is seen how the slope of the function is lower in the
morning, than in the middle of the day. This is naturally caused by the higher
angle of incidence in the morning, which cause less horizontal radiation to be
absorbed due to re�ection. Likewise for the afternoon. Finally, non-linearity in
the �tted function is seen.

C.4.4 Autoregressive model with exogenous input

The AR model is be expanded to include the forecast of the CP models, thus
combining information in past observed solar power and NWPs. The solar power
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Figure C.4: Examples of the function �tted for k = 24 hours forecasting with
the NWPs of global radiation at di�erent times of the day on the
15'th of July 2010 with the CPNWP model. For each observation
the size of circle indicates the weighting of the observation in the
CP models. Thus observations with a larger circle have more
in�uence on the �tted function.

forecasts from the CP is normalized with the clear sky model by

τ̂nwp
t+k|t =

P̂ nwp
t+k|t

P cs
t−s(k)

(C.15)

s(k) = fspd + k mod fspd (C.16)

where fspd = 24 is the sample frequency in number of samples per day. The
ARX1 model is

τt+k = m+ a1τt + b1τ
nwp
t+k|t + et+k (C.17)
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C.5 Evaluation

The methods used for evaluating the prediction models are inspired by Madsen
et al. (2005). The clear sky model, RLS, and CP �tting do not use any degrees
of freedom and the data set is therefore not divided into a training set and
a test set. It is only for the optimization of the kernel bandwidths and the
forgetting factor that the entire data set is used. The period before 2006-03-01
is considered as a burn-in period and not used for calculating the error measures.

C.5.1 Error measures

The Root Mean Square Error for the k'th horizon is

RMSEk =

(
1

N

N∑

t=1

e2
t+k

) 1
2

(C.18)

where et+k is the k-hourly prediction error. The RMSEk is used as the main
evaluation criterion (EC) for the performance of the models. The Normalized
Root Mean Square Error is found by

NRMSEk =
RMSEk

pmax
(C.19)

where pmax is the maximum observed solar power output. The mean value of
the RMSEk for a range of horizons

RMSEkstart,kend =
1

kend − kstart + 1

kend∑

k=kstart

RMSEk (C.20)

is used as a summary error measure. When comparing the performance of two
models the improvement

IEC = 100 · EC ref − EC

EC ref
(%) (C.21)

is used, where EC is the considered evaluation criterion. When calculating the
error measures it is important to consider how to handle missing values for the
solar power forecasts. The problem is handled by replacing missing forecast
values with forecast values from the reference model Ref.
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Figure C.5: The upper plot is RMSEk for the forecasting models. On the
right side theNRMSEk is indicated. The lower plot is complete-
ness Ck.

C.5.2 Completeness

In order to evaluate a model for its performance regarding missing forecast
values a measure is de�ned. It is denoted completeness. The completeness of
a forecast for horizon k, is the ratio of the total sum of solar power and the
summed solar power for time points where the forecasts are not missing

Ck =

∑N
t=1 Pt I

(
P̂t|t−k

)
∑N
t=1 Pt

(C.22)

where I(P̂t|t−k) is the indicator function which is 0 if P̂t|t−k is missing, and 1 if
not. Only the included values are used, i.e. not values during nighttime.

C.6 Results

In this section the results are presented and evaluated. The RMSEkstart,kend

improvements for relevant ranges of horizons are listed in Table C.1. For se-
lected models the RMSEk is shown in the upper plot of Figure C.5 and the
completeness in the lower.

Considering the improvements it is seen that most of the models perform very
well on either the short horizons or the longer horizons. Starting with short
horizons (1 to 2 hours) the four models using the latest observed solar power
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have better performance than CPNWP , which only uses the NWPs. Using the
combination of observed solar power and NWPs improves the performance, ex-
cept on longer horizons where using only NWPs are slightly better. Considering
the performance of AR, CPP , and ARX it is seen that the RMSEk increase re-
ally fast as the horizon increases and reach the reference model around a horizon
of 10 hours. This is simply because the models are using night values (which
are missing) to forecast day values. This is also seen in the completeness of the
AR and ARX model.

C.7 Discussion and applications

This section contains a short discussion of the results and ideas for further work,
and ends with an outline of applications.

Considering the improvement achieved over the reference model the forecasting
models are found to perform very well. Clearly the quality of the NWPs of
solar radiation is the most in�uential source of error, hence improved NWPs
will improve the performance. Especially using NWPs of direct and di�use
radiation should be tried. Regarding further improvement of the forecasting
models, it is suggested that the following should be considered:

• Application of regime models and hidden Markov models to handle dif-
ferent aspects of forecasting for e.g. low and high radiation values, and it
might be useful to use di�erent forecasting models for di�erent types of
cloud conditions. This is ideal to apply in the setting of the CP models.

• For the CP models using higher order polynomials in the day of year
and time of day dimensions should improve the models. It was tried but
didn't improve the performance, but as the NWPs are getting better this
will most likely be important.

Table C.1: Improvements in percent for selected ranges of horizons.

Model IRMSE1,2
IRMSE3,17

IRMSE18,32

AR 34.3 7.4 12.6
CPP 36.7 17 11.5
CPNWP 25 38.4 33.1
CPNWP,P 40.8 37.6 31.4
ARX 40.1 15.9 25
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• A thorough evaluation of the forecast errors to �nd ideas for how the
models can be improved.

The applications for solar power forecasting include the integration of PV sys-
tems into the electricity grid, especially for smart grids. The solar power fore-
casts can be used as input to model predictive control to optimize the operation
of the PV system. This will enable diurnal peak-shaving and cost optimization
for smaller systems with storage capacity in battery packs (e.g. provided in
an electrical car). For large solar power producers forecasting is essential for
optimized energy trading.

The method is furthermore well suited for monitoring the performance of PV
systems. Measures of the performance can be derived from the CP models, with
which systems can be compared on an absolute scale. Sudden high deviation
from the CP forecasting model will allow for very fast detection of failures in
the system. For an individual system the change in performance over time can
also be assessed by monitoring the clear sky curve for unusual behavior, and
compare the change from year to year.

C.8 Conclusion

Two approaches for solar power forecasting are presented and applied to forecast
hourly values for horizons up to 32 hours. Both a method based on a two-stage
approach, where �rst the solar power is normalized with a statistical clear-sky
model, and a method in which the solar power is forecasted in a single step.
The normalization with a clear sky model removes most of the non-stationarity
caused by the changing position of the sun relative to the PV panel. This a
pre-requisite for optimal application of linear time series models. Conditional
parametric models are used to include NWPs of global radiation, and a one-
stage approach, solely based on conditional parametric models, is presented.
A root mean square improvement over a persistence reference model on short
horizons (1 to 2 hours) is in average 40%, and in average 35% on the longer
horizons. The method can furthermore be applied to monitor and check the
performance of PV systems.
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Abstract

This paper describes a new approach to online forecasting of power output from
solar thermal collectors. The method is suited for online forecasting in many
applications and in this paper it is applied to predict hourly values of power
from a standard single glazed large area �at plate collector. The method is
applied for horizons of up to 42 hours.

Solar heating systems naturally come with a hot water tank, which can be uti-
lized for energy storage also for other energy sources. Thereby such systems can
become an important part of energy systems with a large share of uncontrollable
energy sources, such as wind power. In such a scenario online forecasting is a
vital tool for optimal control and utilization of solar heating systems.

The method is a two-step scheme, where �rst a non-linear model is applied to
transform the solar power into a stationary process, which then is forecasted
with robust time-adaptive linear models. The approach is similar to the one by
Bacher et al. (2009), but contains additional e�ects due to di�erences between
solar thermal collectors and photovoltaics. Numerical weather predictions pro-
vided by Danish Meteorological Institute are used as input. The applied models
adapt over time enabling tracking of changes in the system and in the sur-
rounding conditions, such as decreasing performance due to wear and dirt, and
seasonal changes such as leaves on trees. This furthermore facilitates remote
monitoring and check of the system.

D.1 Introduction

Forecasting of energy production is vital for optimization of energy systems
which include wind and solar energy production. This paper describes an ap-
proach to online forecasting of power production from solar thermal collectors.
In Denmark the level of wind power penetration already now gives periods with
a surplus of energy and facilities to absorb this energy are needed. Solar heating
systems with a hot water tank and auxiliary electrical heating can provide energy
storage, which can facilitate absorption of wind energy and peak shaving, espe-
cially for levelling out diurnal energy consumption. The method is planned to
be part of the control system for such heating systems (Perers et al., 2011). The
study is carried out with climate data observed at a weather station at Danish
Technical University. From this data, simulated hourly average values of solar
thermal power is generated with a very detailed simulation model. Furthermore
numerical weather predictions (NWPs) provided by Danish Meteorological In-
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D.1 Introduction 109

stitute data is used. The forecasting method is a two-step scheme, where �rst a
statistical clear sky model is applied to transform the solar power into a more
stationary process, which then is forecasted with robust time-adaptive linear
models. The NWPs are used as input to conditional parametric time-adaptive
models to forecast the solar power. These forecasts are then transformed with
the clear sky model, such that they can be applied as inputs to the linear fore-
casting models. Finally, a combined model, which is the most optimal for all
horizons, is formed.

The paper is organized as follows. First the data and how it is preprocessed
is described in a section. The next section contains an outline of the clear sky
model, and this is followed by a section where all the forecasting models are
described. Then an evaluation is given and the results are presented, each in a
section. The second last section contains a discussion of the results and ideas
for further work, and �nally, the paper ends with a conclusion.

Nomenclature

Pt Hourly solar thermal power,
[
W/m2

]
.

P cs
t Estimated clear sky solar power,

[
W/m2

]
.

τt Normalized solar power.

t Time index, [h].

k Forecast horizon index, [h].

ttod Time of day.

F ′(τα)en Zero loss e�ciency of collector for direct radiation at normal incidence

Kταb(θ) Incidence angle modi�er for direct radiation

Kταd Incidence angle modi�er for di�use radiation

F ′U0 Heat loss coe�cient at (Ta − Tf) = 0,
[
W/(m2K)

]
.

Gnwp
t+k|t NWP of global radiation,

[
W/m2

]
.

Gb,nwp
t+k|t NWP of direct solar radiation,

[
W/m2

]
.

Gd,nwp
t+k|t NWP of di�use solar radiation,

[
W/m2

]
.

T a,nwp
t+k|t NWP of ambient temperature, [◦C].

P̂ nwp
t+k|t k-hour prediction of solar power,

[
W/m2

]
.

τ̂t+k|t k-hour prediction of normalized solar power.

et+k k-step prediction error.
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D.2 Data

The forecasting method is applied on simulated solar output power data for a
�at plate collector carefully tested and modelled at DTU. A validated collector
model and longterm climate data from the DTU Byg climate station was used
to create realistic operating data for a solar collector during the year. The
simulation model and weather data was introduced in TRNSYS 16 and the
collector output power was calculated as hourly mean values. The simulation
model is dynamic, such that dynamical e�ects - introduced when the collector
starts and stops and during rapidly varying solar radiation conditions - are
modelled.

In this study all time series are hourly average values and all units are implicitly
per hour. Time points are set to the end of their respective sample period and
all are in UTC. The units for radiation are W

m2 and for temperatures ◦C.

D.2.1 Solar power

The simulated solar power time series is plotted for each hour of the day in
Figure D.1. A few short periods are with missing values.

D.2.2 Numerical weather predictions

The numerical weather predictions (NWPs) used in the study are provided by
Danish Meteorological Institute. The NWP model is DMI-HIRLAM-S05, which
has a 5 kilometer grid and 40 vertical layers (DMI, 2011). NWPs are updated
every 6'th hour and are up to a 48 hours horizon. They consist of hourly
predictions of ambient temperature, and horizontal direct- and di�use solar
radiation. A couple of the considered forecasting models use the global radiation
as input, which is simply the direct and the di�use radiation summed. The
scatter plots in Figure D.2 shows the solar power versus the NWPs for a 24
hour horizon. Clearly, the solar power is highly correlated with both the global
and direct radiation, whereas the e�ect of di�use and ambient temperature are
not as apparent.
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Figure D.1: The observed solar power for each hour of the day. The grayed
area shows the periods not included in the modelling. The curve
following the highest values of solar power is the estimated clear
sky power, which is referred to in later parts of the paper.

D.2.3 Pre-processing

On most locations on earth the solar radiation is zero at night time, hence the
observed solar power is also zero. For the current dataset only periods, for a
given hour of the day longer than 40 days in which the solar power is di�erent
from zero, are included. This is illustrated in Figure D.1, where the non-included
periods are grayed out. Furthermore a few short periods are missing from the
observations. The time series of hourly observed solar power spanning the period
from 2009-01-01 to 2010-07-01 is

{Pt; t = 1, . . . , N} (D.1)

where N = 13104. The NWPs have a calculation time of 4 hours, which is taken
into consideration, such that e.g. the forecast from 2009-01-01 00:00 are only
available from 2009-01-01 04:00. The NWPs are pre-processed into time series

305



112 Short-term solar collector power forecasting

●●●●●● ● ● ● ● ●

●

●

●● ●●●●●●●●●●●●●● ● ● ● ● ●●●

●

●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●● ● ● ● ●● ● ●

●

●

●

●●●●●●●●●●●●●● ● ●

●●

●

● ● ●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ● ● ● ●●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ● ●● ● ● ●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

● ●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

● ●

●

●●●●●●●●●● ●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

●●●●●●●●●●

●

●

●

● ●

●

●

●

●

●
●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●

●
●●●●●●●●●●● ● ●

●

●

●

●

●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

● ●

●

●
●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●● ● ● ● ●● ●

●

●

●

●●

●

●
●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ●●● ●

●

●

●●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

● ●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●● ● ● ●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●● ● ● ● ● ●

●

●

●

●●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

● ●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●
●●

●

●

●
●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●●● ● ● ●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●● ●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●●

●

●

●

●
●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●●

●

●

●

●
●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●● ● ●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●● ●●●●●●●●●●● ● ●●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●● ● ●●

●

● ●●

●

●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ●● ●●● ●● ●●●●●●●●● ● ● ● ●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ● ● ●

●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●● ● ● ● ●

●

●

●

●

●

●

●

●●

●

●

●
●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ●●● ●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ● ● ●

●

●

●

●

●

●

●

●

●
● ●

●●●●●●●●● ● ● ● ●

●

●

●

●
●●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●●●●●●● ● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ●● ●

●

●

●

●
●
●

●

●

●

●

●●

●●●●●●●●● ● ●
●

●

●

●
●

●

●

●

● ●

●

●

●

●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●

●

●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●●

●
●

●

●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ● ●

●

●

●

●

● ●

●●

●

●

●

●

●

●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●●●●●●●●●● ● ●

●
●

●
●

●

●
●

●●

●

●●●●●●●●●● ● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ●
●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

● ●

●

●

●

●

●●●●●●●●●● ● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●● ● ● ● ● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●●
●

●

●●●●●●●●●● ● ● ●

●

●
●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ●

●

●

●●
●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ● ● ●

●

●

●

●

●

●
●

●

●

●
●

●
●●●●●●●●● ● ● ● ● ●

● ●

●

●

●

●●● ●●●●●●●●●●● ● ● ● ● ●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●
●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●
●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

● ●

●

●

●

●

●

●

● ●●●●●●●●●●●● ● ●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●● ● ●

●

●

●

● ●

●

●●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●●
●●●●●●●●●●● ● ●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●● ● ● ● ●●

●

●●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●●●

●

●

●

●

●

●
● ●●●●●●●●●●●●● ● ●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●
●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ● ● ●

●

●

●

●
●

●

●

●●●●●●●●●●●●● ●

●

●

●
●

●

●

●
●

●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ● ● ●

●

●

●

●
●

●●●●●●●●●●●●●●●●● ● ● ●

●

●

●

●●●●●●●●●●●●●●●● ● ● ●
●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●● ● ●● ●● ●●●●●●●●●●●●●●●●● ● ●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●●

●

●

●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ●

●

●

●

●

●●●●●●●●●●●●●●●●●● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ●
●

●

● ●

●

●

●

●●●●●●●●●●●●●●● ●

●

●

●

● ●

●

●

●

●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ●● ●●● ●●●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●● ●

●

●

● ●

●

●

●

●

●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ●● ●●● ●● ●●●●●●●●●●●●●●●● ● ● ●●

●

●
●●●●●●●●●●●●●●●●●●● ● ● ●

●
●●●●●●●●●●●●●●●●●●●●● ● ● ●● ● ●●●●●●●●●●●●●●●●● ● ● ●●●●●● ● ●●●●●●●●●●●●●●●● ● ● ● ●

●
●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●●● ● ●

●

●

● ●

●

●

●

●●●●●●●●●●●●●●●● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ● ●● ●●●●●●●●●●●●●●●●●●● ● ● ●● ● ●

●

●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●● ● ● ●● ●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ●● ●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●

●

●
●●●●●●●●●●●●●●●●●● ● ● ●● ●●●●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ●

●

●

●
●

●

●

●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●● ● ● ● ●●● ●●●●●●●●●●●●●●●●●●● ● ●●● ● ●●●●●●●●●●●●●●●●●● ●

●

●
●

●

●

●●●●●●●●●●●●●●●●●● ● ● ●

●

●●●●●●●●●●●●●●●●●●●● ●

●

●
● ●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ●

●

●

●
●●●●●●●●●●●●●●●●●●● ● ●

●

●

●

●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ●●● ●●●●●●●●●●●●●●●●●●●●●

●

● ●●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ●● ●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ●

●

●

●
●

●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ●

●

●

●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ● ●
●

●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ●● ● ●●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●●●●●●●●●●●●●●●●●● ●

●

●

●

●
●●●●●●●●●●●●●●●●●●● ● ● ● ●●

●

●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ●

●

●●

●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ●● ● ●●●●●●●●●●●●●●●●●●●●● ● ●

●

●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●●●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●●●●●●●●●●●●●●●●●● ● ● ●

●

●●●●●●●●●●●●●●●●●●●● ● ● ●

●

●

●

●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ●

●

●

●
●

●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●

●

●

●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●● ● ●● ● ●●●●●●●●●●●●●●●●●●●● ● ● ●

●

●

●
●

●

●●●●●●●●●●●●●●●● ● ● ● ● ●

●

●●●●●●●●●●●●●●●●●● ● ● ● ● ●

●

●●●●●●●●●●●●●●●●●● ● ● ● ●●

●

●

●

●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ●

●

●

●

●●●●●●●●●●●●●●●●●● ● ● ● ● ●

●

●

●

●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ●
●

●●

●

●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●● ●

●

●

●●

●

●

●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ●

●

●

●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ● ●

●

●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ● ●●● ● ●●●●●●●●●●●●●●●●●● ● ● ● ● ●

●

●●●●●●●●●●●●●●●●● ● ● ● ●

●

●

●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●● ● ● ● ● ●

●

●●●●●●●●●●●●●●●●●● ● ● ● ● ●●

●

●

●●●●●●●●●●●●●●●● ● ● ●●● ● ●●●●●●●●●●●●●●●●●● ● ● ● ●

●

●●
●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●●●●●●●●●●●●●●●●● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●● ● ●

●

●
●

●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

● ●

●

●

●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ● ● ● ● ●●●●●●●●●●●●●●●●●● ● ● ● ● ● ●●● ●●●●●●●●●●●●●●●● ● ● ● ●● ● ● ●●●●●●●●●●●●●●●●●● ● ● ●● ●●●●●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ● ● ● ●●

●●

●

●●●●●●●●●●●●●●● ● ● ●●●● ●●●●●●●●●●●●●●●●● ● ●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●● ● ● ●●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●●

●
●

●

●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●● ● ● ●● ●

●

● ●
●

●●●●●●●●●●●●●●● ● ● ●

●

●●● ●●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●● ● ● ●●●●●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●● ● ●

●

●

● ●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ● ● ● ●●●● ●●●●●●●●●●●●●●●● ● ● ● ●●● ●

●

●

●

●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●
●

●

●

●

●●●●●●●●●●●●●● ● ● ● ● ● ●

●
●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

● ●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

● ●

●
●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

●
●

●

●

●●●●●●●●●●●●●●● ● ● ● ● ● ●●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●●● ● ● ● ●

●

●

●

●

●

●
● ●●●●●●●●●●●●● ● ●

●

●

● ●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ● ● ●

●

●

●

●

●
●

●●●●●●●●●●●●● ● ●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●●● ● ● ● ● ●●●●●●●●●●●●●●●●● ● ● ● ● ●● ● ●

●

●●●●●●●●●●●●●●● ● ● ● ● ●●

●

●

●

●● ●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ● ●

●

●

●

●

●

●

●●

●●●●●●●●●●●● ● ● ● ● ●●● ● ●● ●●●●●●●●●●●●●● ● ● ● ● ●● ●
●

●
●

●●●●●●●●●●●●●● ● ● ● ● ● ●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ● ●● ●● ● ● ●●●●●●●●●●●●●●● ● ● ● ● ●●● ●

●

●

●●●●●●●●●●●●● ● ● ● ●

●

●

●

●

●●

●

●

●

●
●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ● ●
●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●●

●
●

●

●●●●●●●●●● ● ● ●

●

●

●

●

● ●

●

●

●
●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●●●●● ● ● ● ● ● ●●●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●
●

●

●
●

●

●●●●●●●●●●●●● ● ● ● ●

●

●

●

●

●
●

●

●

●

●
●

●●●●●●●●● ● ● ● ● ● ●

●

●

● ●
●

●
●●●●●●●●●●●● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

● ●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●
●●

●

●

●

●

●

●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ●●● ● ● ● ●●●●●● ●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ● ● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●
●

●

●
●

●

●●●●●●●●●●●●●●● ● ● ● ● ● ●●

● ●

●

●

●

●

●
●●●●●●●●●● ●●●

●

●

●

● ●

●

●

●

●

●

●●●●●●●●●●● ● ● ● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●● ● ●
●

●

● ●

●

●

●

●

●
●

●

●

●

●●●●●●●●● ● ● ●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●
●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

● ●

●

●

●
●

●
●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●
●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

0 200 400 600 800 1000

0
20

0
40

0
60

0

NWP of global radiation for k=24

S
ol

ar
 p

ow
er

 (
W

/m
^2

)

●●●●●●●●●●●

●

●

●● ●●●●●●●●●●●●●●● ● ● ● ● ●●

●

●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ●● ● ● ● ●●●●●●●●●●●●●●●●●● ● ● ●●● ● ●

●

●

●

●●●●●●●●●●●●●● ● ●

● ●

●

●●●

●

●

●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

● ●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ● ● ● ●●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●● ●●● ● ●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

● ●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

● ●

●

●●●●●●●●●● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

●●●●●●●●●●

●

●

●

● ●

●

●

●

●

●
●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●

●
●●●●●●●●●●● ● ●

●

●

●

●

●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●●

●

●
●

●

●

●

●●●●●●●●●●● ●●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●● ● ●

●

●

●

●●

●

●
●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ●●● ●

●

●

●●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●●●●●●●●●● ● ● ●

●

●

●

● ●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●● ● ●●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●● ● ●●

●

●

●

●●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

● ●

●

●

●

●

●

●

●

●

● ●●●●●●●●● ● ● ●

●

●

●
● ●

●

●

●
●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

● ●

●

●

●

●

●●●●●●●●●●●●● ●
●

●

●

●

●

●

●

●

●

●●● ●●●●●●●●● ● ●● ●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●●

●

●

●

●
●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ●●●

●

●

●

●

●

●●

●

●

●

●
●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●
●

●

●

●

●

● ●●●●●●●●●● ●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●● ● ●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●●

●

●

●
●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ●●● ●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●
●●

●●●●●●●●●● ● ● ●

●

●

●

●
● ●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●●●●●●●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ●● ●

●

●

●

●
●

●
●

●

●

●

●●

●●●●●●●●● ● ●
●

●

●

●
●

●

●

●

● ●

●

●

●

●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ●●

●

●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●●

●
●

●

● ●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●● ●

●

●

●

●

● ●

●●

●

●

●

●

●

●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●●●●●●●●●●●●

●
●

●
●

●

●
●

●●

●

●●●●●●●●●●● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ●
●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●● ● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●●
●

●

●●●●●●●●●●● ●●

●

●
●

●

●

●

●

●

●

●

●

●
●●●●●●●●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ●

●

●

●●
●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ● ● ●

●

●

●

●

●

●
●

●

●

●
●

●
●●●●●●●●●●●● ● ●

● ●

●

●

●

●●● ●●●●●●●●●●●●● ● ●●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●● ●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●
●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●● ●●

●

●

●

●

●

●

●
●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

● ●

●

●

●

●

●

●

● ●●●●●●●●●●●● ● ●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●● ● ●

●

●

●

●●

●

●●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●●
●●●●●●●●●●● ● ●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●

● ●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●●● ● ●● ●

●

●●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●
● ●●●●●●●●●●●●● ● ●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●
●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ● ● ●

●

●

●

●
●

●

●

●●●●●●●●●●●●● ●

●

●

●
●

●

●

●
●

●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ● ●

●

●

●

●
●

● ●●●●●●●●●●●●●●●●●● ●

●

●

●

●● ●●●●●●●●●●●●●● ● ● ●
●

●

●

●

●

●

●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●● ●● ●● ●● ●●●●●●●●●●●●●●●● ●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●●

●

●

●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ●

●

●

●

●

●●● ●●●●●●●●●●●●●●● ●● ● ● ● ●●●●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ●
●

●

● ●

●

●

●

●●●●●●●●●●●●●●● ●

●

●

●

● ●

●

●

●

●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●● ●

●

●

● ●

●

●

●

●

●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●●● ●● ●●● ●● ●●●●●●●●●●●●●●●●● ● ●●

●

●
●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●● ●●● ● ●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●●●● ● ● ●

●
●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●● ●

●

●

● ●

●

●

●

●●●●●●●●●●●●●●●● ● ● ● ●● ●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ●● ●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●● ● ●● ●● ●●●●●●●●●●●●●●●●●●● ● ● ●● ● ●

●

●●●●●●●●●●●●●●●●● ●● ● ●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ● ●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ●● ●●

●

●
●●●●●●●●●●●●●●●●●●● ● ●● ●●●●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ● ● ●● ●●●●●●●●●●●●●●●●●●● ●

●

●

●
●

●

●

●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●●●●●●●●●●●●●●●●●●● ● ●

●

●●●●●●●●●●●●●●●●●●●● ●

●

●
● ●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ●

●

●

●
●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●● ●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ●● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ●● ●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●● ● ●●● ●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ●

●

●

●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ●● ● ●
●

●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●●●●●●●●●●●●●●●●●● ●

●

●

●

●
●●●●●●●●●●●●●●●●●●● ● ● ● ●●

●

●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ●●● ●●●●●●●●●●●●●●●●●●●● ● ● ●

●

●●

●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●● ●

●

●● ●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●●●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●●●●●●●●●●●●●●●●●●● ●●

●

●●●●●●●●●●●●●●●●●●●● ● ● ●

●

●

●

●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●

●

●

●
●

●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●● ●● ●●

●

●

●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●● ● ● ●● ●●●●●●●●●●●●●●●●●●● ●●

●

●

●
●

●

●●●●●●●●●●●●●●●●● ● ● ●●

●

● ●●●●●●●●●●●●●●●●● ● ● ● ●●

●

●●●●●●●●●●●●●●●●●● ● ●● ●●

●

●

●

●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ●

●

●

●

●●●●●●●●●●●●●●●●●● ● ● ● ● ●

●

●

●

●●●●●●●●●●●●●●●● ● ●● ● ●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●● ● ●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ●
●

●●

●

●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●● ●

●

●

● ●

●

●

●●●●●●●●●●●●●●●●● ● ● ●● ●●●●●●●●●●●●●●●●●●●● ● ●

●

●

●●●●●●●●●●●●●●●●●●●● ●● ● ●●● ●●●●●●●●●●●●●●●●●● ● ● ●

●

●●●● ●●●●●●●●●●●●●●●● ●● ● ● ●● ●●●●●●●●●●●●●●●●●● ● ●● ●●●●●●●●●●●●●●●●●●●● ● ● ● ●● ● ● ●●●●●●●●●●●●●●●●●● ● ● ● ● ●

●

●●●●●●●●●●●●●●●●●● ● ● ●

●

●

●● ●●●●●●●●●●●●●●●●● ●●●● ● ● ●●●●●●●●●●●●●●●●● ● ● ●● ●

●

●●●●●●●●●●●●●●●●●● ● ●● ●●●

●

●

●●●●●●●●●●●●●●●● ● ● ●● ●●●● ●●●●●●●●●●●●●●●●● ● ●●

●

●●
●● ●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●●●●●●●●●●●●●●●●●●● ● ●● ●● ●●●●●●●●●●●●●●●●● ● ●

●

●
●

●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

● ●

●

●

●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ● ● ● ● ●●●●●●●●●●●●●●●●●● ● ●● ●●● ● ● ●●●●●●●●●●●●●●●● ● ●●● ● ● ● ●●●●●●●●●●●●●●●●● ● ●●● ●●●● ●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ● ● ● ●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●● ● ● ●●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●●

●
●

●

●●●●●●●●●●●●●● ●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●● ● ●●●●●● ●●●●●●●●●●●●●●● ● ●● ●

●

● ●
●

●●●●●●●●●●●●●●● ● ●●

●

●●●● ●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●● ● ● ●●●●●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●● ● ●

●

●

● ●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●●●●● ●●● ● ●●●●●●●●●●●●●●●●● ● ●●● ●

●

●

●

●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●●

●

●

●

●
●

●

●

●

● ●●●●●●●●●●●●● ● ● ● ● ● ●

●
●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

● ●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

● ●

●
●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

● ●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

●
●

●

●

●●●●●●●●●●●●●●● ● ● ● ● ●●●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●●● ● ● ● ●

●

●

●

●

●

●
● ●●●●●●●●●●●●● ● ●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●

● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ● ●

●

●

●

●

●
●

●●●●●●●●●●●●● ● ●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●●●● ●● ● ●●● ●●●●●●●●●●●●●●●●● ●●● ● ●

●

●●●●●●●●●●●●●●● ● ● ● ● ●●

●

●

●

●● ●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ● ●

●

●

●

●

●

●

●●

●●●●●●●●●●●●● ●● ● ●●● ● ●●●●●●●●●●●●●●●● ● ●● ● ●●●
●

●
●

● ●●●●●●●●●●●●● ● ● ●● ● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●●● ● ●● ● ● ●●●●●●●●●●●●●●● ● ● ● ● ●●●●

●

●

●●●●●●●●●●●●● ● ● ● ●

●

●

●

●

● ●

●

●

●

●
●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●
●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●●

●
●

●

●●●●●●●●●● ● ● ●

●

●

●

●

● ●

●

●

●
●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●●●●●● ● ● ● ● ●●●

●

●

●

●

●

●● ●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●
●

●

●
●

●

●●●●●●●●●●●●●●●● ●

●

●

●

●

●
●

●

●

●

●
●

●●●●●●●●● ● ● ● ● ● ●

●

●

● ●
●

●
●●●●●●●●●●●● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

● ●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●
● ●

●

●

●

●

●

●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ●●●●● ● ●●●●●● ● ●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ●●● ●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●
●

●

●
●

●

●●●●●● ●●●●●●●●● ● ● ● ● ● ●●

● ●

●

●

●

●

●
●●●●●●●●●● ●●●

●

●

●

● ●

●

●

●

●

●

●●●●●●●●●●● ● ● ● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●● ● ●
●

●

● ●

●

●

●

●

●
●

●

●

●

●●●●●●●●● ● ● ●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●
●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

● ●

●

●

●
●

●
●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●
●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

0 200 400 600 800

0
20

0
40

0
60

0

NWP of direct radiation for k=24

S
ol

ar
 p

ow
er

 (
W

/m
^2

)

●●●●●● ● ● ● ● ●

●

●

●●●●●●●●●●●●●●●● ● ● ● ●●● ●

●

●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ●● ●● ●●

●

●

●

●●●●●●●●●●●●●● ● ●

●●

●

● ● ●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●● ●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

● ●●●●●●●●●●●●●● ● ● ● ●● ●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ● ● ● ● ●●

●

●

●

●

●●●●●●●●●●●● ● ●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●● ● ●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

●●●●●●●●●●

●

●

●

●●

●

●

●

●

●
●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●

●
●●●●●●●●●●● ● ●

●

●

●

●

●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

● ●

●

●
●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●● ● ● ● ●● ●

●

●

●

●●

●

●
●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ●● ● ●

●

●

●●

●

●

●

●

●●●●●●●●●●● ● ●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●● ● ● ●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●● ● ● ● ● ●

●

●

●

●●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●
●●

●

●

●
●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●●

●

●

●

●

● ●●●●●●●●●● ● ● ●
●

●

●

●

●

●

●

●

●

●● ●●●●●●●●●● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●●

●

●

●

●
●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●●

●

●

●

●
●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●●●●●●●● ● ● ●

●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●● ● ●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●● ●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●● ● ● ●

●

● ●●

●

●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ●● ●●● ●●●●●●●●●●● ● ● ● ●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●●

●

●

●
●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ● ●● ●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ● ●●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●
● ●

●●●●●●●●●● ● ● ●

●

●

●

●
●●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●●●●●●● ● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ● ●

●

●

●

●
●
●

●

●

●

●

●●

●●●●●●●●● ● ●
●

●

●

●
●

●

●

●

●●

●

●

●

●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●

●

●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

● ●

●
●

●

●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ● ●

●

●

●

●

●●

● ●

●

●

●

●

●

●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●●●●●●●●●●● ● ●

●
●

●
●

●

●
●

● ●

●

●●●●●●●●●● ● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ●
●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

● ●

●

●

●

●

●●●●●●●●●● ● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●● ● ● ●● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

● ●
●

●

●●●●●●●●●● ● ● ●

●

●
●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ●

●

●

●●
●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ● ● ●

●

●

●

●

●

●
●

●

●

●
●

●
●●●●●●●●● ● ● ● ● ●

● ●

●

●

●

●● ● ●●●●●●●●●●● ● ● ● ● ●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

● ●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●
●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●
●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

● ●

●

●

●

●

●

●

● ●●●●●●●●●●●● ● ●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●● ● ●

●

●

●

● ●

●

●●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●●
●●●●●●●●●●● ● ●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●● ● ● ● ●●

●

●●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●●●

●

●

●

●

●

●
●●●●●●●●●●●●●● ● ●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●
●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ● ● ●

●

●

●

●
●

●

●

●●●●●●●●●●●●● ●

●

●

●
●

●

●

●
●

●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●● ●

●

●

●

●
●

●●●●●●●●●●●●●●●●● ● ● ●

●

●

●

●●●●●●●●●●●●●●●● ● ● ●
●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●● ● ●●●● ●●●●●●●●●●●●●●●●● ● ●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●●

●

●

●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ●

●

●

●

●

●●●●●●●●●●●●●●●●●● ● ● ●● ●●●●● ●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ●
●

●

●●

●

●

●

●●●●●●●●●●●●●●● ●

●

●

●

●●

●

●

●

●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ●● ●●● ●●●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●● ●

●

●

● ●

●

●

●

●

●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ● ● ●● ●●● ●●●●●●●●●●●●●●●● ● ● ● ●

●

●
●●●●●●●●●●●●●●●●●●● ● ● ●

●
●●●●●●●●●●●●●●●●●●●●● ● ● ●● ●●●●●●●●●●●●●●●●●● ● ● ● ●●●●● ● ●●●●●●●●●●●●●●●● ● ●● ●

●
●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●● ●

●

●

●●

●

●

●

●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ●● ● ●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ●● ●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ●● ●●●●●●●●●●●●●●●●●●●● ● ●● ●●●

●

●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●● ● ● ●● ●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ●● ●●●●●●●●●●●●●●●●●●●● ● ● ●● ●●●●●●●●●●●●●●●●●●●● ● ● ●●●

●

●
●●●●●●●●●●●●●●●●●● ● ●●● ●●●●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●●●●●●●●●●●●●●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ●

●

●

●
●

●

●

●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●● ● ● ● ●●● ●●●●●●●●●●●●●●●●●●● ● ●●● ●●●●●●●●●●●●●●●●●●● ●

●

●
●

●

●

●●●●●●●●●●●●●●●●●● ● ●●

●

●●●●●●●●●●●●●●●●●●●● ●

●

●
●●●●●●●●●●●●●●●●●●●●● ● ● ●● ● ●●●●●●●●●●●●●●●●●●●● ●

●

●

●
●●●●●●●●●●●●●●●●●●● ● ●

●

●

●

●●●●●●●●●●●●●●●●●●●● ● ●●● ●●●●●●●●●●●●●●●●●●● ● ●●● ●●●●●●●●●●●●●●●●●●●●●

●

● ●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ●● ● ●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●● ● ●● ●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ●

●

●

●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●
●

●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●●●●●●●●●●●●●●●●●● ●

●

●

●

●
●●●●●●●●●●●●●●●●●●● ● ● ●●●

●

●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ●● ●

●

●●

●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ●● ● ●●●●●●●●●●●●●●●●●●●●● ● ●

●

●●●●●●●●●●●●●●●●●●●●● ● ●● ●●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●●●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●●●●●●●●●●●●●●●●●● ● ● ●

●

●●●●●●●●●●●●●●●●●●●● ●● ●

●

●

●

●●●●●●●●●●●●●●●●●● ●● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ●● ● ● ●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ●

●

●

●
●

●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●

●

●

●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●●●●●●●●●●●●●●●●●●● ● ● ●● ●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●● ● ●● ● ●●●●●●●●●●●●●●●●●●●● ● ● ●

●

●

●
●

●

●●●●●●●●●●●●●●●● ● ●● ● ●

●

●●●●●●●●●●●●●●●●●● ● ● ● ● ●

●

●●●●●●●●●●●●●●●●●● ● ● ● ●●

●

●

●

●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ●●

●

●

●

●●●●●●●●●●●●●●●●●● ● ● ● ●●

●

●

●

●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ●
●

●●

●

●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●● ●

●

●

●●

●

●

●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ●

●

●

●● ●●●●●●●●●●●●●●●●●● ● ●● ● ●●●●●●●●●●●●●●●●●●● ● ● ● ●

●

● ●●●●●●●●●●●●●●●●●● ● ● ● ● ●● ●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ●● ● ●●●●●●●●●●●●●●●●●●●●● ● ●● ●●

●

●●●●●●●●●●●●●●●●● ● ● ● ●

●

●

● ●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●● ● ● ● ● ●

●

●●●●●●●●●●●●●●●●●● ● ● ●● ●●

●

●

●●●●●●●●●●●●●●●● ● ● ● ●● ● ●●●●●●●●●●●●●●●●●● ● ●● ●

●

●●
●●●●●●●●●●●●●●●●● ● ● ●● ● ●●●●●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●● ● ●

●

●
●

●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●●

●

●

● ●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●● ● ● ● ●● ● ●●●●●●●●●●●●●●●●●●● ● ● ●● ●●●●●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ●●● ●●

●●

●

●●●●●●●●●●●●●●● ● ● ●●●● ●●●●●●●●●●●●●●●●●● ●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●● ● ● ●●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●●

●
●

●

●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ● ● ●● ● ● ●●●●●●●●●●●●●●●●● ● ● ● ●●

●

● ●
●

●●●●●●●●●●●●●●● ● ● ●

●

● ● ● ●●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●● ● ●● ● ●●●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●● ● ●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ● ●● ● ●

●

●

●

●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●
●

●

●

●

●●●●●●●●●●●●●● ● ● ● ● ●●

●
●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●●

●
●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●
●

●

●

●●●●●●●●●●●●●●●● ● ● ● ● ● ●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

● ●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●●● ● ● ● ●

●

●

●

●

●

●
●●●●●●●●●●●●●● ● ●

●

●

● ●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ●●●

●

●

●

●

●
●

●●●●●●●●●●●●● ● ●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ● ● ● ●●●●●● ●●●●●●●●●●●●● ● ● ● ● ●● ● ●

●

●●●●●●●●●●●●●●● ● ● ● ● ● ●

●

●

●

●● ●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ● ●

●

●

●

●

●

●

●●

●●●●●●●●●●●● ● ● ● ● ●●●● ● ● ●●●●●●●●●●●●●● ● ● ● ● ●● ●
●

●
●

●●●●●●●●●●●●●● ● ● ● ● ●●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ● ●●●● ●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ●

●

●

●●●●●●●●●●●●● ● ● ● ●

●

●

●

●

●●

●

●

●

●
●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ● ●
●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

● ●

●
●

●

●●●●●●●●●● ● ● ●

●

●

●

●

● ●

●

●

●
●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●●●●● ● ● ● ● ● ●●●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●●

●

●

●
●

●

●
●

●

●●●●●●●●●●●●● ● ● ● ●

●

●

●

●

●
●

●

●

●

●
●

●●●●●●●●● ● ● ● ● ● ●

●

●

●●
●

●
●●●●●●●●●●●● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●
●●

●

●

●

●

●

●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ●●●● ● ● ● ●●●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ● ● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●
●

●

●
●

●

●●●●●●●●●●●●●●● ● ● ● ● ● ●●

● ●

●

●

●

●

●
●●●●●●●●●● ●● ●

●

●

●

● ●

●

●

●

●

●

●●●●●●●●●●● ● ● ● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●● ● ●
●

●

● ●

●

●

●

●

●
●

●

●

●

●●●●●●●●● ● ● ●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ●● ●
●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

● ●

●

●

●
●

●
●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●
●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

0 200 400 600 800 1000

0
20

0
40

0
60

0

NWP of diffuse radiation for k=24

S
ol

ar
 p

ow
er

 (
W

/m
^2

)

●●●● ● ● ● ● ●● ●

●

●

●●●●●●●● ● ●●●●●● ●● ● ● ● ● ● ●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●
●

●

●

●

●●●●●●●●● ● ● ●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●● ●●●● ● ● ●● ● ●

●

●

●

●●●●●●●●●●●●●●● ●

● ●

●

● ● ●

●

●

●●●●●● ●●●●●●● ●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ●●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●●●●●●●● ● ●●●●●●●● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●● ●●● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●● ● ● ● ● ● ●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

● ●●●●●●●●●●●● ● ● ● ● ● ●● ● ●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●● ● ●

●

●

●

● ●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●● ● ● ●●● ●●● ●

● ●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●● ●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●●●●●●● ● ●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●● ●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●● ● ●

●

●

●●●●●●●●●●

●

●

●

● ●

●

●

●

●

●
●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●● ●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●
●

●

●

●

●

●
●●●●●●●●●●●● ●

●

●

●

●

●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

● ●

●

●
●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ●● ●

●

●

●

●

●

● ●

●

●

●

●

●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●● ● ● ● ● ● ●

●

●

●

●●

●

●
●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ● ●

●

●

● ●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ●

●

●

●

● ●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●● ● ●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●● ● ● ● ●

●

●

●

●●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●●●● ●●●●●●● ● ●

●

● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●
● ●

●

●

●
●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

● ●

●

●

●

●

●●●●●●●●●●● ●●●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ● ●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

● ●

●

●

●

●
●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

● ●

●

●

●

●
●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●● ● ●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●● ● ● ●

●

● ● ●

●

● ●●●●●●●●●●●●●●● ●●●●●●● ●●● ● ●●● ● ● ●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

● ●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

● ●

●

●

●
●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●● ● ● ●●●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●
●●

●●●●●●●●●● ● ● ●

●

●

●

●
● ●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●●●●●●● ● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●● ●●●● ●

●

●

●

●
●

●
●

●

●

●

●●

●●●●●●●●●● ●
●

●

●

●
●

●

●

●

●●

●

●

●

●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●

●

●

●
●

●

●

●

●

●

●

●
●●●●●●●●●● ● ●●

●

●

●

●

●

●

●

● ●

●
●

●

●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●● ●●●●●● ● ●

●

●

●

●

● ●

●●

●

●

●

●

●

●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●
●●●●●●●●● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●●●●●●●●●●● ●

●
●

●
●

●

●
●

●●

●

●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●● ●● ●
●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

● ●

●

●

●

●

●●●●●●●●●● ● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●● ● ● ● ● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●●
●

●

●●●●●●●●●● ● ● ●

●

●
●

●

●

●

●

●

●

●

●

●
●●● ●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●● ● ● ●●● ●

●

●

●●
●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●● ●●●●●● ● ● ●

●

●

●

●

●

●
●

●

●

●
●

●
●●● ●●●●●●●● ● ● ●

● ●

●

●

●

●●●●●●●●●●●● ● ●● ● ● ● ●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

● ●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●● ● ● ● ●

●

●

●

●

●

●

●

●

●

●●●● ●●●●●●●● ●
●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●●● ●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●
●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ● ● ● ●●

●

●

●

●

●

●

●

●●●●●●●●●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ●●● ●

●

● ●

●

●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●● ●●●●●●●● ●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●● ●

●

●

●

● ●

●

●●

●

●

●

●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●●●● ●●●●●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●● ●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●● ●●●●●●●● ●

●

●

●

●

●
●

●

●

●

●●
●●●●●●●●●●●● ●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●● ●●●●●●●● ●

●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●● ●●● ● ● ● ●

●

●●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ●●●

●

●

●

●

●

●
●●●●● ●●●●●●●● ●● ●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●● ●● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●● ●●●●●●●● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●
●

●

●

●

●●●●●● ●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ● ●

●

●

●

●
●

●

●

●●●●●●●●●●●●●●

●

●

●
●

●

●

●
●

●●●●●●●●●●●●● ●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●●●●

●

●

●

●

●

●

●

●

●

●●●●● ●●●●●● ●●● ● ● ●

●

●

●

●
●

●●●●●●●●●●● ●●●●●●●● ●

●

●

●

●●●●●●●●●●●●●●●●●● ●
●

●

●

●

●

●

●●●●●●● ●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●●●●● ●●● ●●●●●●●

●

●

●
●

●

●

●

●

●●●●● ●●●●●●● ●●●●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●● ●●●●●●● ● ●●
●

●

●

●

●

●

●

●

●

●

●● ● ● ●●●● ● ● ● ●●●●●

●

●

●

●

●

●

●

●

●●●●● ●●●●●●●●●● ●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●●●●● ●●●●●●● ●● ● ●

●

●

●

●

●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●●●●●●● ● ● ● ● ●●●●● ●
●

●

● ●

●

●

●

●●●●●●●●●●●●●●●●

●

●

●

● ●

●

●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ● ● ● ● ●●●●●●●●● ● ● ●● ● ● ●●●●●●●●

●

●

●

●

●

●

●
●●●●●● ●●●●●●●●●●

●

●

● ●

●

●

●

●

●●●●● ●● ●●● ●●●● ● ● ● ● ●●●●● ●●●●●● ●●●● ● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●●●●●● ●● ● ● ●● ●●●● ● ●●●●●●●●●●●●●● ●●●●●●● ● ● ● ●●

●

●
●●●●●●●●● ●●●●●● ●●●●● ● ●

●
●●●●●●●●●●●●●● ● ● ●●● ● ●● ● ● ● ● ●●●●●●●●●●●●●● ●●● ● ● ● ● ●●●●●●●●●●● ●●● ●●● ●●●●●● ● ●

●
●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●● ●

●

●

● ●

●

●

●

●●●●●●●●●●●● ● ●● ● ● ● ● ● ● ●●●●●●●●●●●● ●●●●●●● ● ● ● ● ●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●● ● ●●●●●● ● ● ● ● ● ● ●● ●● ● ● ●●●● ●●●●●●●●● ● ● ●●●●●●● ●●●●● ● ● ●●●●●●● ● ● ● ●● ●

●

●●●●●●● ●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●● ●●●●●● ● ● ● ●●●●●●●●●●●●●●● ●●● ● ● ●●●●●●● ●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●● ●●●●●●● ● ● ●●●●●●●●● ●●●●●●●●●● ● ● ● ● ● ●●●●● ● ● ● ● ●●●●●●●●●●● ● ● ● ●●●●●●●●●● ●●●●●●●●●● ●●● ● ●

●

●
●●●●●●● ●● ●● ● ● ● ● ● ● ●●● ● ●●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●●●●●●●●●●●●●● ●●●●●● ● ●●●●●●●●●●● ● ●●●●● ●●● ● ● ● ● ● ●●●●●●●●●●●●●●●● ●●●● ●

●

●

●
●

●

●

●●●● ● ● ●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●● ●● ● ● ● ● ● ●●●●● ● ● ● ●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●● ●●●●●● ●●●●●

●

●
●

●

●

●●●●●●●●●●● ● ● ● ● ●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●
● ●●●●●●●●●●●●●●●● ●●●●● ● ● ● ●●●●●●● ● ● ●●●●●● ●●●●●● ●

●

●

●
●●●●●●● ● ● ●●●●●● ●●●●● ●

●

●

●

●●● ●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●● ● ●●●●● ●● ● ●●●●●●●●●●●●●●●●●●● ●

●

● ● ●●●●●●●●●● ●●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●● ●●●●●● ●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●● ●●●●●●●●●●●●●●● ● ● ●●●●●●●● ● ● ●●●●●● ●●●●●● ●●●●●● ●●●●●●●● ●●● ●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●● ●●●●●●● ● ● ●●●●●●●●●●●●●●● ●●●●●● ●

●

●

●
●

●●●●●●●●●●●●●●●●●● ●●●●● ●● ●●●●● ●● ● ●●● ● ● ●●●●●●●●●●●●●●●●●●● ●●● ● ● ●●● ●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●● ●● ●●●●●●●●●●●● ● ● ● ●●●●● ● ● ●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ●

●

●

●●●●●●● ● ●●●●●●●●●●● ● ● ●●●●●●●●●●● ●●●●●●●●●●● ● ● ● ●
●

●● ●●●●●●● ● ● ●●●● ● ● ● ●●●●●●●●●●●●●●●● ● ● ● ●●●●●●● ● ● ● ●●●●●●●●●●●●● ● ●●● ● ● ● ● ● ● ●●●●●●●●● ●●●●●●●●●●●● ● ●●●●●●●●●●●●●●● ● ●●●●●●●●

●

●

●

●

●●●●●●●● ●●● ● ● ● ● ●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●●●●●●●●●●●●● ●●●●● ●

●

●

●

●
●●●●●● ● ●●●●●●● ●●●●●● ● ● ●●

●

●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●● ●●●●● ●● ● ● ●●●● ●

●

●●

● ●●●●●●●●●●●●●●●●● ● ● ● ● ● ●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●● ●●●●●● ● ● ●●●●●●●●●● ●●●●●●●●●●●● ●

●

●●●●●●●●●●●●●●●●●●●●●●● ● ● ●●● ●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●● ● ● ● ● ● ● ● ●●

●

●

●

●

●●● ● ● ● ●● ● ●●●●●●●●●●● ●

●

●●●●●●●●●●●●●●●●●●●● ● ● ●

●

●

●

●●●●●●●●●●●●● ●●●●●● ● ● ● ●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●● ● ●●●●●●●●● ●●●●● ● ● ●●●●●●●●● ●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●● ● ●● ●● ● ● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●

●

●

●
●

●●● ● ●●●●●●●●● ●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●● ● ●

●

●

●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●● ●●●●● ● ● ● ● ●●●● ● ● ● ● ●●●●●●● ●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●● ●●●●● ● ● ● ● ●●●●●●●●● ●●●●●●●●●●●● ●

●

●

●
●

●

●●●●●●●●●●● ● ●●●● ● ● ● ● ●

●

●● ●●●●●●●●●●●●●●●●●● ●●●

●

●● ●●●●●●●●●●●●●● ● ● ● ● ● ● ●

●

●

●

● ● ●●●●●●●●●●● ● ●●●● ●●●●●●●●●●●● ●●●●●●●●●●● ● ●

●

●

●

●●●●●●●● ●●●●●●●● ●●●●● ● ●

●

●

●

●●●●●●●●●●●●●●●●● ●● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●● ●●●●● ●● ● ● ● ●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●● ●●●●●●●●●●●●●●●● ● ● ●
●

●●

●

●●●●●●● ●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

● ●

●

●

●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●● ●●●●●●●●●● ● ●

●

●

● ●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ●●●●●●●●● ●●●●●●●●●● ● ● ●

●

● ●●●●●●●●● ●●●●●●●●●● ● ● ● ● ● ●●●●●●●● ●● ● ●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ●●●●●●●●● ●●●●●●●●●●● ● ● ● ●

●

●●●●●●●● ●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●● ● ● ●

●

●●●●●●●●● ●●●●●●●● ● ● ● ● ● ● ●

●

●

●●●●●●● ●●●●●●●●●● ● ● ● ● ● ●●●●●●●● ● ●●●●●●●●●● ● ● ●

●

●●
●● ●●●●●●●●●●● ● ●●●● ● ● ● ● ●●●●●●●●●●● ● ● ●●● ●●●●● ●

●

●

●

●

●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ● ● ● ● ●

●

●
●

●

●

●

●

●

●●●●●●● ● ● ● ●● ● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●●●●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●● ● ● ●● ●● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●●● ● ● ● ●● ●●● ● ● ●● ● ●●●●●●●●●●●●●●●● ● ● ● ● ●

●

●

●

●

●

●

●●●●●●● ●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●●●●● ●●●●●●●●● ●

●

●

●

●

●
●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ● ● ● ●

●

●

●

●

●

●

●

● ●●●●●●●●●● ● ●●●● ● ● ●

●

●

●

●

●

●

●●●●●● ●●●●●●●●● ● ● ● ● ● ●

●●

●

●●●●●●●●●●●●●●●● ● ● ●●●● ●● ● ●●●●● ●●●●●●●● ● ●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●● ● ● ●●

●

●

●

●

●

●

●●●●●●●●● ● ●●●● ● ●

●

●

●

● ●

●
●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●●● ● ● ●● ● ● ● ● ●●●●●●● ● ●●●●● ●●●● ● ● ●

●

● ●
●

●●●●●●●●●●●●● ●● ● ● ●

●

● ● ● ● ● ●●●●●●●●●●●●● ●● ● ●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●● ●●● ● ● ● ●●●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●● ●

●

●

● ●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●● ● ● ● ● ● ●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ●

●

●

●

●●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

●

●

●
●

●

●

●

●●●●●● ●●●●● ● ● ● ● ● ● ●● ●

●
●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

● ●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ●

●

● ●

●
●

●

●

●

●

●●●●●●●●●●● ●● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ●

●

●

●
●

●

●

●●●●●●●● ●●●●●● ● ● ● ● ● ● ● ●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

● ●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●
● ●●●●●●●●●●●●●● ●

●

●

● ●

●

●

●

●

●

●●●●●●●●●●●●●● ●

● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ● ● ●

●

●

●

●

●
●

●●●●●●●●●●●●●● ●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●
●

●

●

●

●

●

●

●●●●●● ●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●●●● ●●●●●● ●●● ● ● ● ● ●● ● ●●●●●●●●●●●●●● ●●● ● ● ● ● ● ●

●

●●●●●●●● ●●●●●●●● ● ● ● ● ●

●

●

●

●● ●●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ● ● ●

●

●

●

●

●

●

● ●

●●●●●●●●●●● ●●●●● ● ● ● ● ● ● ●●●●●●●●●●●●●●● ● ● ● ●● ●
●

●
●

●●●●●●●●●●●●● ●●● ● ● ● ●

●

●

●

●

●

●

●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●● ●●●● ● ●● ● ●

●

●

●●●●●●●●●●●●● ●● ● ●

●

●

●

●

● ●

●

●

●

●
●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●● ●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●
●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●● ●

●

●

●

●

●

●

● ●

●
●

●

●●●●●●●●●●● ● ●

●

●

●

●

● ●

●

●

●
●

●●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●●●●●● ● ● ● ● ●●●

●

●

●

●

●

●●●●● ●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●
●

●

●
●

●

●●●●●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●
●

●●●●●●●●● ● ● ● ● ● ●

●

●

● ●
●

●
●●●●●●●●●●●●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

● ●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●
● ●

●

●

●

●

●

●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ●● ● ● ●●●●●● ● ●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ● ● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●
●

●

●
●

●

●●● ●●●●●● ●●●●●●● ● ● ● ● ●●

● ●

●

●

●

●

●
●●●●●●●●●●●●●

●

●

●

● ●

●

●

●

●

●

●●●●●●●●●●● ● ● ● ●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●● ●
●

●

● ●

●

●

●

●

●
●

●

●

●

●●●●●●●●● ● ● ●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●● ● ●
●

●

●

●

●

●

●●●●●●●●●●●● ● ●

●
●

●

●

●

●

●

●

●

●●●●●● ●●●●●● ● ● ●

● ●

●

●

●
●

●
●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ● ●
●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●● ● ●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

−10 −5 0 5 10 15 20 25

0
20

0
40

0
60

0

NWP of ambient temperature for k=24

S
ol

ar
 p

ow
er

 (
W

/m
^2

)

Figure D.2: The observed solar power versus the NWPs for k = 24, which are
used as inputs to forecasting models.

of hourly values, such that the most recent available forecast k hours ahead is
selected each hour. The time series are for a given k: the direct radiation

{
Gb,nwp
t+k|t ; t = 1, . . . , N

}
(D.2)

the di�use radiation
{
Gd,nwp
t+k|t ; t = 1, . . . , N

}
(D.3)

and the ambient temperature
{
T a,nwp
t+k|t ; t = 1, . . . , N

}
(D.4)

Due to the 6 hours interval the NWPs for horizons longer than 42 hours are not
complete and therefore the solar power forecasting are only carried out up to 42
hours.

D.3 Clear sky model

For e�ective forecasting with classical linear time series methods stationarity of
the process is required (Madsen, 2007). The process that generates the solar
power is not stationary, which is seen by plotting quantiles of the distribution of
solar power conditioned on the time of day. Such a plot is shown in Figure D.3.
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Figure D.3: The 0, 2%, ..., 100% quantiles of the distribution of the solar power
and the transformed solar power conditioned on the time of day.
Values above 1.5 has been clipped, which was the case for 17
values.

Clearly the distribution of solar power is not independent of the time of day.
The dependency can be removed by a transformation with a clear sky model

τt =
Pt
P cs
t

(D.5)

where Pt is the observed solar power, P cs
t is the estimated clear sky solar power,

and τt is the transformed solar power.

D.3.1 Statistically estimated clear sky solar power

The clear sky solar power is estimated with a statistical non-linear and adaptive
model. Quantile regression locally weighted in the day of year and time of day
dimension is applied. In the present study this is carried out fully causal. The
clear sky model is

P cs
t = q0.99(P1, P2, . . . , Pt, ht, htod, hy) (D.6)

where q0.99 is the 99% quantile of all the solar power values up to t. The
bandwidths ht, htod, and hy, are in the time-, time of day-, and year-dimension,
respectively. The bandwidths control how �locally� the model is �tted, i.e. a
lower bandwidth puts more emphasis on data which is close in time. The local
weighting function is an Epanechnikov kernel. The applied bandwidths are

ht = 120 days, htod = 2 hours, hy = 1.7 years (D.7)
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114 Short-term solar collector power forecasting

which were found by visual inspection of the �tted clear sky curve. Finally, it
is noted that second-order polynomials were applied in the time- and time of
day-dimension to include curvature into the model. The estimate of the clear
sky solar power is shown in Figure D.1. From the plot it is seen that it follows
the highest values of solar power quite well. Clearly, the clear sky power is
most easily carried out in the periods with a high level of solar power. One
advantage of the transformation is that it will automatically adapt to changes
in the system, such as degraded performance or changes in the surroundings e.g.
snow cover and shadowing e�ects. It can as well be used for monitoring of the
solar system, since degraded performance from the same time of year will result
in a lower clear sky solar power curve. Quantile plots of the transformed solar
power conditioned on the time of day are shown in Figure D.3, from which it is
seen that the transformed solar power process is considerably less dependent of
the time of day and therefore a much more stationary process. It is noted that
further work could include physical considerations e.g. by using the air mass as
an input.

D.4 Forecasting models

In this section a description of the applied forecasting models is given. The
models can be divided into models without NWPs as input - autoregressive
(AR) models - and models with NWPs as input: conditional parametric (CP)
and autoregressive with exogenous inputs (ARX) models. Each model is �tted
seperately for each horizon, such that the same model structure is used, but
the parameters are estimated separately for each horizon. In the �nal model, a
combination of models are used to achieve the most optimal performance for all
horizon.

D.4.1 Reference model

To compare the performance of prediction models, and especially when making
comparisons between di�erent studies, a common reference model is essential.
The reference model for solar power used in this study is the best performing
naive predictor for a given horizon. Two naive predictors of solar power are
found to be relevant. Persistence

pt+k = pt + et+k, (D.8)
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D.4 Forecasting models 115

and diurnal persistence

pt+k = pt−s(k) + et+k (D.9)

s(k) = fspd + k mod fspd (D.10)

where fspd = 24 is the sample frequency in number of samples per day and
s(k) ensures that the latest diurnal observation is used, i.e. the value which,
depending on the horizon, is either 24 or 48 hours before the time point that is
to be forecasted.

D.4.2 Autoregressive models

Autoregressive (AR) models are applied to forecast the transformed solar power.
These models can include either the latest available observation or the latest
available diurnal observation, or both, as input. The models are �tted with
k-step recursive least squares with forgetting factor (Bacher et al., 2009). The
model formulated as a k-step AR model

τt+k = m+ a1τt + a24τt−s(k) + et+k (D.11)

s(k) = 24 + k mod 24 (D.12)

where the function s(k) ensures that the latest observation of the diurnal compo-
nent is included. It was found that depending on the horizon better performance
was achieved by only using one input. Thus for short horizons (1 and 2 hours)
the model without the diurnal component

τt+k = m+ a1τt + et+k (D.13)

was found to have the best performance, it is denoted AR1, and for longer
horizons the model with only the diurnal component

τt+k = m+ a24τt−s(k) + et+k (D.14)

was found to have the best performance, it is denoted ARDiurnal.

D.4.3 Conditional parametric models with NWPs as in-

put

Models based on NWPs of solar radiation and ambient temperature are de-
scribed in this section. It is known from physics (Perers, 1997) that the power
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116 Short-term solar collector power forecasting

output of a solar collector can be described by

P = F ′(τα)enKταb(θ)Gb,col + F ′(τα)enKταdGd,col − F ′U0

(
To + Ti

2
− Ta

)

(D.15)

where the Gb,col and Gd,col are respectively direct and di�use solar radiation
normal to the collector plane. This is formed into a forecasting model based on
NWPs by rewriting as follows. First, both the the angle of incidence modi�er
Kταb(θ) and the transformation of solar radiation from horizontal to the col-
lector plane are modelled by letting the coe�cients - for the radiation e�ects -
become a function of time t and time of day ttod. Furthermore, assuming that
the outlet temperature is a function of the solar radiation

To = fb(Gb,col) + fd(Gd,col) (D.16)

this give the total e�ect of direct radiation as a non-linear function

a(t, ttod, Gb, Gd)Gb = F ′(τα)enKταb(θ)Gb,col − F ′U0
1

2
fb(Gb,col) (D.17)

and for the di�use radiation

b(t, ttod, Gb, Gd)Gd = F ′(τα)enKταdGb,col − F ′U0
1

2
fd(Gd,col) (D.18)

Finally, the e�ect of the ambient temperature is kept as

cTa = F ′U0Ta (D.19)

and by assuming a constant inlet temperature this part becomes a constant
e�ect

m = −F ′U0
Ti

2
(D.20)

Thus the CP model structure used for forecasting is

P = m+ a(t, ttod, Gb, Gd)Gb + b(t, ttod, Gb, Gd)Gd + cTa (D.21)

Since the time-dependency and non-linearity are smooth functions in the pa-
rameters, it is modelled with conditional parametric (CP) models. The time
varying e�ect is modelled by conditioning on t and ttod - this is equivalent of
a local constant e�ect - and the dependency of the radiation is modelled with
1-order local polynomials. A kernel method is applied, using a nearest neighbor
approach to �nd the bandwidth of an Epanechnikov weighting function. From
Equation (D.15) it is seen that the output can be negative if little radiation hits
the collector and the ambient temperature is low. In this case the output is zero
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D.4 Forecasting models 117

since the system stops. This e�ect can be seen on the plot in Figure D.2. It is
handled by the non-linearity of the models and by setting negative forecasts to
zero.

The simplest considered conditional parametric model is

Pt+k = m+ a
(
t, ttod, G

nwp
t+k|t

)
Gnwp
t+k|t + et+k (D.22)

where Gnwp
t+k|t is the k-hour NWP of global radiation and denoted as CP1 in the

following. This second CP model has NWPs of direct and the di�use radiation
as inputs

Pt+k = m+ a
(
t, ttod, G

b,nwp
t+k|t , G

d,nwp
t+k|t

)
Gb,nwp
t+k|t (D.23)

+ b
(
t, ttod, G

b,nwp
t+k|t , G

d,nwp
t+k|t

)
Gd,nwp
t+k|t + et+k

where Gb,nwp
t+k|t is the k-hour NWP of direct radiation and Gd,nwp

t+k|t is the k-hour
NWP of di�use radiation, and denoted as CP2. Finally the model is expanded
with NWPs of ambient temperature

Pt+k = m+ a
(
t, ttod, G

b,nwp
t+k|t , G

d,nwp
t+k|t

)
Gb,nwp
t+k|t (D.24)

+ b
(
t, ttod, G

b,nwp
t+k|t , G

d,nwp
t+k|t

)
Gd,nwp
t+k|t + c

(
t, ttod

)
T a,nwp
t+k|t + et+k

where T a,nwp
t+k|t is the k-hour NWPs of the ambient temperature and the model is

denoted as CP3.

In the following the coe�cients dependency of the time of day is elaborated on.
Plots of the �tted forecasting function a

(
t, ttod, G

b,nwp
t+k|t , G

d,nwp
t+k|t

)
are shown in

Figure D.4. It is seen how the slope of the function is lower in the morning,
than in the middle of the day. This is naturally caused by the higher angle of
incidence in the morning, which cause less horizontal radiation to be absorbed
due to re�ection. Likewise for the afternoon. Finally, non-linearity in the �t
is seen, which is caused by the non-negativity of the solar power (mentioned
above) and varying uncertainty of the NWPs.

D.4.4 Autoregressive model with exogenous input

The AR model is be expanded to include the forecast of the CP models, thus
combining information in past observed solar power and NWPs. The solar power

311



118 Short-term solar collector power forecasting
0

2
0
0

6
0
0

P
o
w
e
r
(W

/m
2
)

2010-05-01 08:00:00

Observation

a
(
t, ttod, G

b,nwp
t+k|t , G

d,nwp
t+k|t

)
Gb,nwp

t+k|t
Gd,nwp

t+k|t = 87.6

0
2
0
0

6
0
0

P
o
w
e
r
(W

/
m

2
)

2010-05-01 10:00:00

Observation

a
(
t, ttod, G

b,nwp
t+k|t , G

d,nwp
t+k|t

)
Gb,nwp

t+k|t
Gd,nwp

t+k|t = 104

0
2
0
0

6
0
0

P
o
w
e
r
(W

/
m

2
)

2010-05-01 12:00:00

Observation

a
(
t, ttod, G

b,nwp
t+k|t , G

d,nwp
t+k|t

)
Gb,nwp

t+k|t
Gd,nwp

t+k|t = 127

0
2
0
0

6
0
0

P
o
w
e
r
(W

/m
2
)

2010-05-01 14:00:00

Observation

a
(
t, ttod, G

b,nwp
t+k|t , G

d,nwp
t+k|t

)
Gb,nwp

t+k|t
Gd,nwp

t+k|t = 77.5

0
2
0
0

6
0
0

P
o
w
e
r
(W

/m
2
)

2010-05-01 16:00:00

Observation

a
(
t, ttod, G

b,nwp
t+k|t , G

d,nwp
t+k|t

)
Gb,nwp

t+k|t
Gd,nwp

t+k|t = 54.3

0 200 400 600 800 1000

Forecasted direct radiation (W/m2)

Figure D.4: Examples of the function �tted for forecasting of the e�ect of
direct radiation at di�erent times of the day the 1'th of May
2010 with the CP2 model. For each observation the size of circle
indicates the weighting of the observation in the CP models. Thus
observations with a larger circle have more in�uence on the �tted
function.

forecasts from the CP is transformed with the clear sky model by

τ̂nwp
t+k|t =

P̂ nwp
t+k|t

P cs
t−s(k)

(D.25)

s(k) = fspd + k mod fspd (D.26)

where fspd = 24 is the sample frequency in number of samples per day. This is
applied as an input to the ARX model

τt+k = m+ a1τt + a24τt−s(k) + b1τ
nwp
t+k|t + et+k (D.27)

Again, as for the AR models, di�erent performance is found depending on the
horizon. The ARX1 model is best for short horizons

τt+k = m+ a1τt + b1τ
nwp
t+k|t + et+k (D.28)
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ARXDiurnal for horizons up to 24 hours

τt+k = m+ a24τt−s(k) + b1τ
nwp
t+k|t + et+k (D.29)

and ARX

τt+k = m+ b1τ
nwp
t+k|t + et+k (D.30)

for longer horizons.

D.4.5 Combined model

The �nal model is a combination of the previously described models. The model
is denoted ARXCombined. First, missing values in forecasts from ARX1 are
replaced with forecast values from ARXDiurnal. These missing values are in the
morning, since they were tried to be forecasted based on night values, which are
zero. For horizons longer than 30 hours forecasts from ARX are used. Finally,
any remaining missing values - which are only where the diurnal lag was not
present for ARXDiurnal - are replaced with forecasted values from CP2.

D.5 Evaluation

The methods used for evaluating the prediction models are inspired by Madsen
et al. (2005). They suggest a framework for evaluation of wind power forecasting.
The clear sky model, RLS, and CP �tting do not use any degrees of freedom
and the dataset is therefore not divided into a training set and a test set. It
is only for the optimization of the kernel bandwidths and the forgetting factor
that the entire dataset is used. The period before 2009-03-15 is considered as a
burn-in period and are not used when calculating the error measures.

D.5.1 Error measures

The Root Mean Square Error for the k'th horizon is

RMSEk =

(
1

N

N∑

t=1

e2
t+k

) 1
2

(D.31)
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120 Short-term solar collector power forecasting

where et+k is k-hourly prediction error. The RMSEk is used as the main eval-
uation criterion (EC) for the performance of the models. The Normalized Root
Mean Square Error is found by

NRMSEk =
RMSEk

pmax
(D.32)

where pmax is the maximum observed solar power output. The mean value of
the RMSEk for a range of horizons

RMSEkstart,kend =
1

kend − kstart + 1

kend∑

k=kstart

RMSEk (D.33)

is used as a summary error measure. When comparing the performance of two
models the improvement

IEC = 100 · EC ref − EC

EC ref
(%) (D.34)

is used, where EC is the considered evaluation criterion. When calculating the
error measures it is important to consider how to handle missing values for the
solar power forecasts. The problem is handled by replacing missing forecast
values with forecast values from the reference model Ref.

D.5.2 Completeness

In order to evaluate a model for its performance regarding missing forecast
values a measure is de�ned, it is denoted completeness. The completeness of a
forecast for horizon k, is the ratio of the the summed solar power for time points
where the forecasts are not missing to the total sum of solar power

Ck =

∑N
t=1 Pt I

(
P̂t|t−k

)
∑N
t=1 Pt

(D.35)

where I(P̂t|t−k) is the indicator function which is 0 if P̂t|t−k is missing, and 1 if
not. Only the included values are used, i.e. not night values.

D.6 Results

In this section the results are presented and evaluated. The RMSEkstart,kend

improvement for relevant ranges of horizons are listed in Table D.1. For se-
lected models the RMSEk is shown in the upper plot of Figure D.5 and the
completeness in the lower.
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D.6 Results 121

Considering the improvements it is seen that most of the models perform very
well on either the short horizons or the longer horizons. Starting with short
horizons (1 to 2 hours), the AR1 and ARX1 are clearly superior, which is due
to their inclusion of the most present autoregressive lag. Their performance
on longer horizons are not good. The reason for this is found by considering
the plot of RMSEk and completeness. Here it is seen that the completeness
of AR1 and ARX1 drops really quickly as the horizon increase, which cause
the RMSEk to increase and reach the reference model at the 10 hours horizon.
This is simply due to missing forecast values, since for e.g. the 10 to 14 hours
horizons the models use night values (which are missing) to forecast day values
with.

For horizons longer than three hours the best performance is seen for the mod-
els, that doesn't include the most present AR lag. The ARDiurnal is a clear
improvement from the AR1, and the CP and ARX models - which include the
NWPs - are superior for these horizons. An improved performance is found from
CP1 to CP2 mainly for 3 to 24 hours horizons, whereas no clear increase in im-
provement is found from CP2 to CP3. The CP models are slightly improved by
using them as input to the ARX models, since autocorrelation of the errors are
modelled.

Finally, the combined model ARXCombined utilizes the best parts of: ARX1,
ARX, ARXDiurnal, and CP2. Especially the replacement of missing forecast
values improves the performance for horizons up to 5 hours. The completeness
of the combined model is as high as any of the others.

Table D.1: Improvements in percent for selected ranges of horizons.

Model IRMSE1,2
IRMSE3,24

IRMSE25,42
IRMSE1,42

AR1 30.8 7.1 6.1 7.8
ARDiurnal -10.7 15 18 15.1
CP1 13.5 30 30.6 29.5
CP2 16.2 31.4 30.9 30.5
CP3 15.5 31.6 30.8 30.5
ARX 17.1 32 31.3 31
ARX1 34.4 11.6 8.7 11.4
ARXDiurnal 17.8 32.4 30.5 30.9
ARXCombined 39.3 33.3 31.5 32.8
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Figure D.5: The upper plot is RMSEk for the forecasting models. On the
right side the NRMSEk is indicated. The lower plot is com-
pleteness Ck.

D.7 Discussion and applications

This section contains a short discussion of the results and ideas for further work,
and ends with an outline of applications.

Considering the improvement achieved over the reference model the forecasting
method is found to perform very well. Clearly the quality of the NWPs of solar
radiation is the most in�uential source of error, hence improved NWPs will
improve the forecasting performance. Regarding improvement of the forecasting
models, the following are considered:

• A thorough evaluation of the forecast errors to clarify how the models can
be improved.

• Optimization of forgetting factor of the RLS has not been carried out, this
will improve the performance of the AR and ARX models.

• Application of regime models to handle di�erent aspects of forecasting for
low and high radiation values.

• More optimal ways to combine the models. Utilizing a linear combination
instead of the simple replacement currently carried out.
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• It might be possible to improve performance by including a third-stage,
where modelling of the errors are carried out.

The applications for this type of solar thermal power forecasting counts the
integration of solar thermal energy systems with auxiliary electrical heating
into smart grid systems (Perers et al., 2011). The solar power forecasts will be
used for model predictive control to optimize the operation of the system. Other
applications include optimal control of large solar heating plants.

The method is furthermore well suited for monitoring the performance of solar
thermal systems. Measures of the performance can be derived from the CP
models, with which systems can be compared on an absolute scale. Sudden
high deviation from the CP forecasting model will allow for very fast detection
of failures in the system. For an individual system the change in performance
over time can also be assessed by monitoring the clear sky curve for unusual
behavior, and compare the change from year to year.

D.8 Conclusion

Amethod for forecasting of solar thermal power output is presented. It is applied
to forecast hourly values for horizons up to 42 hours. The method is based on
conditional parametric models. Both models without and with NWPs of solar
radiation and ambient temperature are considered. The NWPs are included by
using a non-linear conditional parametric model, which are formed from prior
physical knowledge. The forecast models which do not use NWPs achieve an
improvement on short horizons (1 to 2 hours) in average 30% over a persistence
reference model, and in average 15% on horizons up to 42 hours. Applying the
NWPs an improvement around 39 % is achieved in average for short horizons
and around 32% in average for longer horizons. The method can furthermore
be applied to monitor and check the performance of solar thermal collectors.
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Abstract

The need for fast and accurate performance testing of solar collectors is increas-
ing. This paper describes a new technique for performance testing which is
based on non-linear continuous time models of the heat dynamics of the collec-
tor. It is shown that all important performance parameters can be accurately
estimated with measurements from a single day. The estimated parameters are
compared with results from standardized test methods (Fischer et al., 2004).

Modelling the dynamics of the collector is carried out using stochastic di�er-
ential equations, which is a well proven e�cient method to obtain accurate
estimates of parameters in physical models. The applied method is described
by Kristensen et al. (2004) and implemented in the software CTSM1. Examples
of successful applications of the method includes modelling the of the heat dy-
namics of integrated photo-voltaic modules (Friling et al., 2009) and modelling
of the heat dynamics of buildings (Madsen and Holst, 1995).

Measurements obtained at a test site in Denmark during the spring 2010 are
used for the modelling. The tested collector is a single glazed large area �at
plate collector with selective absorber and Te�on anti convection layer. The
test rig is described in Fan et al. (2009).

The modelling technique provides uncertainty estimates such as con�dence in-
tervals for the parameters, and furthermore enables statistical validation of the
results. Such tests can also facilitate procedures for selecting the best model to
use, which is a very non-trivial task.

E.1 Introduction

This paper presents a new statistical approach for modelling the heat dynamics
of a solar thermal collector. The applied modelling technique facilitates applica-
tion of detailed models on data sampled with a relatively high sample rate. It is
demonstrated that this allows for parameter estimation with high accuracy to be
achieved with measurements from a single day. In the present study 2 seconds
values averaged to 30 seconds values are used. Conventional non-dynamical
models - by some called pseudo-dynamical models - of solar collectors cannot
use such a high sample rate due to auto-correlation of the errors caused by
non-modelled dynamical e�ects. The applied models are based on stochastic
di�erential equations (SDEs), which gives the possibility to combine physical

1www2.imm.dtu.dk/~ctsm/
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E.1 Introduction 127

and data-driven statistical modelling. Such models are called grey-box models.
A very strong feature of grey-box models is that they provide the possibility
to estimate hidden state variables, i.e. variables in the model which are not
measured. This allows using the same data for �tting models, with which the
system is lumped di�erently, i.e. the physical model of the system can either be
a single-state or a multi-state lumped model, which can be required for di�erent
types of collectors. Furthermore the modelling technique facilitates application
of statistical tests to determine which model is most suitable for the given data.
This is important for model identi�cation and the approach is demonstrated in
the paper. The modelling is carried out based on measurements from a period
of 9 consecutive days in the beginning of May 2010. None of the days could have
been used for stationary testing that is still the most common test method for
solar collectors. Stationary testing requires perfect stable clear weather around
noon. The measurements were performed on a single glazed large area �at plate
collector with selective absorber and Te�on anti convection layer. The collector
was not brand new, but has been in operation for 15 years, which a�ects the
parameter values compared to todays products of the similar design. The results
from the grey-box models are compared with results from the standardized EN
12975 Quasi Dynamic Test Method (CEN, European committee for standard-
ization, 2006), which is based on multiple linear regression (MLR) modelling, to
see if the estimation results matches current test standards. Finally, a thorough
discussion and perspectives of the technique are given.

The paper is arranged as follows. The next section is a presentation of the
theory of the applied grey-box models, with a simple example. This is followed
by a section with a description of the MLR models used and thereafter a section
with a description of all the considered grey-box models. Then the results are
presented, and �nally a discussion and perspective is given before the paper
ends with a conclusion.
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128Models of the heat dynamics of solar collectors for performance testing

Nomenclature

The same notation as in Perers (1997) are used as widely as possible.

Collector model parameters:

F ′(τα)en Zero loss e�ciency for direct radiation at normal incidence

Kταb(θ) Incidence angle modi�er for direct radiation

Kταd Incidence angle modi�er for di�use radiation

F ′U0 Heat loss coe�cient at (Ta − Tf) = 0,
[
W/(m2K)

]
.

F ′U1 Temperature dependence of the heat loss coe�cient,
[
W/(m2K2)

]
.

F ′Uw Wind dependence of the heat loss coe�cient,
[
Ws/(m3K)

]
.

(mC)e E�ective thermal capacitance including piping for the collector,
[
J/(m2K)

]
.

Cf Fluid thermal capacitance,
[
J/(m2K)

]
.

Cm Collector thermal capacitance,
[
J/(m2K)

]
.

Ufa Heat transmission coe�cient from �uid to ambient,
[
J/(Km2)

]
.

Ufm heat transmission coe�cient from �uid to module,
[
J/(Km2)

]
.

Uma heat transmission coe�cient from module to ambient,
[
J/(Km2)

]
.

nc Number of compartments

Measured variables:

Gd Di�use radiation onto the collector plane,
[
W/m2

]
.

Gb Direct radiation onto the collector plane,
[
W/m2

]
.

Ta Ambient air temperature near the collector, [◦C].

To Outlet temperature of the collector, [◦C].

Ti Temperature of the inlet to the collector, [◦C].

Qf Flow of the �uid per square meter of collector,
[
l/(sm2)

]
.

θ incidence angle for the direct solar radiation onto the collector plane, [radians].

w Wind speed, [m/s].

Derived variables etc.:

Tf Average temperature of the collector �uid, [◦C].

Tm Average temperature of the collector, [◦C].

qu Collector power output,
[
W/m2

]
.

cf Speci�c heat capacity of the �uid, [J/(lK)].
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E.2 Grey-box models of a dynamic system 129

E.2 Grey-box models of a dynamic system

A grey-box model is established using a combination of prior physical knowledge
and statistics, i.e. information embedded in data Kristensen et al. (2004). The
prior physical knowledge is formulated by a set of non-linear stochastic di�er-
ential equations (SDEs), also called a stochastic non-linear state-space model in
continuous time. The equations describe a lumped model of the heat dynamics
of the system.

The output of the solar collector is calculated by

qu = cfQf(To − Ti) (E.1)

where To is the outlet temperature and Ti is the inlet temperature of the �uid.
The output qu is power output per square meter of collector aperture area and
Qf is �ow per the same area. From Perers (1997) it is known that the output
of a standard �at plate collector in �rst order accuracy level can be described
by the heat balance

cfQf(To − Ti) = F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd (E.2)

− F ′U0(Tf − Ta)− (mC)e
dTf

dt

For explanation of the symbols, see page 128. A linear temperature pro�le
through the collector is applied by modelling the �uid temperature as a simple
average

Tf =
To + Ti

2
(E.3)

The di�erential of the �uid temperature can then be written as

dTf

dt
=

1

2

dTo

dt
+

1

2

dTi

dt
(E.4)

which for a constant inlet temperature is

dTf

dt
=

1

2

dTo

dt
(E.5)

This substitution, together with the addition of a noise term, is used to form
the SDE

dTo =
(
F ′U0(Ta − Tf) + cfQf(Ti − To) (E.6)

+ F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd

) 2

(mC)e
dt+ σdω
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F ′(τα)enKταb(θ)GbF ′(τα)enKταdGd

QfcfTi

QfcfTo

Ufa(Ta − Tf)

Tf =
Ti+To

2
To Ti

Figure E.1: Diagram of ToComp1 illustrating all the energy �ows included in
the model.

which describes the heat dynamics for the collector in the simplest grey-box
model considered in the paper. It is denoted as ToComp1. In grey-box termi-
nology this is called the system equation of the state-space model. The noise
term σdω is called the system noise and consist of increments of {ω}, which
is a standard Wiener process, and σ2, which is the incremental variance of the
Wiener process. In this model the collector is lumped into one single part and
the state variable is the outlet temperature To. An illustration of the model is
found in Figure E.1.

The physical model part is coupled with the data-driven model part with which
the information embedded in observed data is used for parameter estimation.
The data-driven part in the considered example is represented by the discrete
time measurement equation

Yk = Tok + ek (E.7)

where k is the point in time tk of a measurement, Yk is the measured outlet tem-
perature, and ek is the measurement error, which is assumed to be a Gaussian
white noise process with variance σ2. This assumption - plus the assumption
that W is a Wiener process - enables evaluation and tests of the performance
of the model, since such tests can show if the physical model is consistent with
the observed heat dynamics of the collector.

E.2.1 Maximum likelihood estimation of parameters

Given a grey-box model, as described above, maximum likelihood estimates of
the parameters can be obtained. Let the N observations be represented by

YN = [YN , YN−1, . . . , Y1, Y0] (E.8)
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then the likelihood function is the joint probability density

L(θ;YN ) =

(
N∏

k=1

p(Yk|Yk−1, θ)

)
p(Y0|θ) (E.9)

where p(Yk|Yk−1, θ) is a conditional density denoting the probability of observ-
ing Yk given the previous observations and the parameters θ, and where p(Y0|θ)
is a parameterization of the starting conditions Kristensen et al. (2004). The
maximum likelihood estimates of the parameters are then found by

θ̂ = arg max
θ

{
L(θ;YN )

}
(E.10)

Due to the previously mentioned assumptions about the system and measure-
ment noise, it follows that the conditional densities in Equation (E.10) can be
well approximated by Gaussian densities. Hence an extended Kalman �lter
can be used to calculate the likelihood function, and an optimization algorithm
can be applied to maximize it, thereby calculating the maximum likelihood
estimates, see Kristensen et al. (2004) for a detailed discussion. This is imple-
mented in the computer software CTSM, which has been used for carrying out
the parameter estimation. See more about the methods and software at 2 and
in Kristensen and Madsen (2003).

E.3 Experimental setup and data

The experiments are described by Fan et al. (2009) and were carried out in
the spring of 2010. The measurements were obtained with a 2 seconds sample
interval. For the present study models are identi�ed for both 30 seconds and
10 minutes average values. The data resampled to 10 minute average values is
plotted in Figure E.2. Only time points where the angle of incidence is lower
than 84 degrees are used. For the parameter estimation it is important to acquire
a period, for which the input signals are as uncorrelated as possible and cover
the typical range of operation. Periods with full cloud cover are not feasible,
since there is not enough variation in the direct radiation and in periods with
no cloud cover the radiation and the module temperature is highly correlated.
Hence days with varying cloud cover are most appropriate and these days are
the most common in most locations where people traditionally live.

2www.imm.dtu.dk/~ctsm
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Figure E.2: The data as 10 minutes averaged values. The upper plot is the
measured temperatures, the middle plot is the di�use and direct
(beam) radiation, and the lowest plot is the �uid �ow.

E.4 Multiple linear regression models

The EN 12975 Quasi Dynamic Test Method (CEN, European committee for
standardization, 2006) is applied to have a reference for the results from the new
proposed method. The method is based on multiple linear regression (MLR)
modelling, where down to 5 minutes average values are recommended. The
data was resampled to 10 minutes averages, which for all 9 days gives 593 time
points. MLR modelling with 5 minutes averages was tried and the results were
only marginally di�erent. The following model structure is applied

qu
t = F ′(τα)enKταb(θ)Gb

t + F ′(τα)enKταdG
d
t + F ′U0∆Tt (E.11)

+ F ′U1∆T 2
t − F ′Uw∆Ttwt − (mC)e

dT f
t

dt
+ et

where ∆Tt = T a
t −T f

t . Three models are �tted: MLR1 without F ′U1 and F ′Uw,
MLR2 without F ′U1, and MLR3 with all inputs.

E.5 Applied grey-box models

This section gives an overview of the applied grey-box models and the parts of
the data on which the parameter estimation was carried out. First the single
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Figure E.3: The 10 minutes averaged values from days where the model To-
Comp1 is �tted. The upper plot is of the inlet-, outlet-, and the
ambient temperature. Below this is shown a plot of the direct-
and di�use solar radiation, followed by a plot of the �uid �ow.
The lowest plot is the residuals from the �t from each day, this is
referred to in a later in the paper.

state grey-box model ToComp1, described in Section E.2 was �tted to 10 minutes
average values on the days with varying cloud cover. This data is plotted in
Figure E.3. The model was �tted to data from each day separately and �nally
to all the data from four days pooled together. In addition to the ToComp1
model four other grey-box models have been �tted to the data from the 10'th of
May resampled to 30 second average values. This gives N = 1413 data points,
which are plotted in Figure E.4. The additional four models are expanded as
more detailed versions of ToComp1. There are two ways to expand the model:
either more inputs (explanatory variables) can be used, or - since the models are
lumped models - a better representation can maybe be achieved by lumping the
system into more parts (also called compartments, states, zones, or nodes). The
latter approach is considered in the following. The �rst two expanded models are
made more detailed by lumping the collector into more than one compartment
in the �ow direction of the collector �uid, such that the temperature of the
collector is represented by two or more temperature state variables. This allows
for a better representation of the temperature di�erences between the inlet -
the cold side when solar radiation level is high - and the outlet of the collector.
Furthermore this also gives a better description of the delay introduced since
it takes time for the �uid to �ow through the collector. For the current setup
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Figure E.4: The 30 seconds averaged data for which the modelling is applied.
The upper plot is of the inlet-, outlet-, and the ambient tempera-
ture. Below this is a plot of the direct- and di�use solar radiation,
followed by the plot of the �uid �ow.

and the �ow of the 10'th of May, this is around 1 minute. These two models
are denoted by ToComp2 and ToComp3. The third expanded model is denoted
by ToTmComp1 and in this model the collector is lumped in two parts: one
representing the �uid and one representing the solid part of the collector. This
is a better description of the system, in which the solar radiation �rst heats up
the collector which then heats up the �uid. Finally, the fourth expanded model
TmToComp2 is a combination of the two approaches, where the collector is �rst
divided in two parts - one for the �uid and one for the collector - which then
each are divided into two compartments in the �ow direction of the �uid.
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E.5.1 Models with multiple compartments in the �ow di-

rection

The ToComp1 model can be expanded to a nc compartment model with the
system equations

dTo1 =
(
F ′U0(Ta − Tf1) + nccfQf(Ti − To1) + F ′(τα)enKταb(θ)Gb (E.12)

+ F ′(τα)enKταdGd

) 2

(mC)e
dt+ σ1dω1

dTo2 =
(
F ′U0(Ta − Tf2) + nccfQf(To1 − To2) + F ′(τα)enKταb(θ)Gb

+ F ′(τα)enKταdGd

) 2

(mC)e
dt+ σ2dω2

...

dTonc
=
(
F ′U0(Ta − Tfnc

) + nccfQf(To(nc−1) − Tonc
) + F ′(τα)enKταb(θ)Gb

+ F ′(τα)enKταdGd

) 2

(mC)e
dt+ σnc

dωnc

where nc is the number of compartments. The accompanying measurement
equation is

Yk = Tonck + ek (E.13)

Two models of this type are �tted to the data: ToComp2 with two compart-
ments, and ToComp3 with three compartments. A diagram illustrating To-
Comp2 is shown in Figure E.5

F ′(τα)enKταb(θ)Gb

F ′(τα)enKταdGd

QfcfTi

QfcfTo2

Ufa(Ta − Tf2)

Tf1 = Ti+To1
2

TiTf2 = To1+To2
2

To1

Ufa(Ta − Tf1)

F ′(τα)enKταb(θ)Gb

F ′(τα)enKταdGd

To2

QfcfTo1

Figure E.5: The ToComp2 model with two compartments in the �ow direction
of the �uid.

329



136Models of the heat dynamics of solar collectors for performance testing

E.5.2 Models divided into a collector and a �uid part

The TmToComp1 model illustrated in Figure E.6, where the panel is divided
into two parts, has the system equation

dTm =
(
F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd + Ufm(Tf − Tm) (E.14)

+ Uma(Ta − Tm)
) 1

(mC)e
dt+ σmdωm

dTo =
(
Ufm(Tm − Tf) + cfQf(Ti − To)

) 2

(mC)e
dt+ σodωo

It is seen that the solar radiation enters the collector part, which then heats
up the �uid by conduction. Of the considered models the most detailed model
is TmToComp2, in which the collector is both divided into two parts and 2
compartments in the �uid �ow direction for each part. The following system
equations is formulated for a model with two parts having each nc compartments

dTm1 =
(
F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd + Ufm(Tf1 − Tm1) (E.15)

+ Uma(Ta − Tm1)
) 1

(mC)e
dt+ σm1dωm1

dTo1 =
(
Ufm(Tm1 − Tf1) + nccfQf(Ti − To1)

) 2

(mC)e
dt+ σo1dωo1

dTm2 =
(
F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd + Ufm(Tf2 − Tm2)

+Uma(Ta − Tm2)
) 1

(mC)e
dt+ σm2dωm2

dTo2 =
(
Ufm(Tm2 − Tf2) + nccfQf(To1 − To2)

) 2

(mC)e
dt+ σo2dωo2

...

dTmnc =
(
F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd + Ufm(Tfnc − Tmnc)

+Uma(Ta − Tmnc)
) 1

(mC)e
dt+ σmncdωmnc

dTonc
=
(
Ufm(Tmnc

− Tfnc
) + nccfQf(To1 − Tonc

)
) 2

(mC)e
dt+ σonc

dωonc

i.e. the TmToComp2 model has nc = 2.
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E.6 Results

In this section the results of the parameter estimation with the described models
are presented. Firstly, the results from the traditional MLR models �tted on the
entire data set of 10 minutes values is presented, secondly from grey-box model
ToComp1 �tted on individual days of 10 minutes values, and �nally all grey-
box models �tted on 30 seconds values from the 10'th of May. The parameter
estimates together with the their standard deviation are presented in tables,
and time series of the residuals together with other relevant error measures are
plotted. A short outline of the model identi�cation carried out is also provided.

E.6.1 MLR models

The parameter estimates are listed in Table E.1. The estimates are clearly within
the typical range for this type of collector, see Perers (1993) and Solar Keymark
homepage (Solar Keymark, 2011). The collector under test has been in operation
for 15 years, this a�ects the parameter values compared to todays products. The
standard deviations show that the parameters are very accurately determined.
The only non-signi�cant term are F ′U1 in MLR3, which leads the conclusion
that MLR2 is the most appropriate model of the three. For evaluation of the
model �t the measured collector output versus the predicted is plotted in Figure
E.7. It is seen that the measured output is predicted very well, although it does
seems like the variance increase slightly with the output. This is most likely due
to the periods with low �ow rate for some of the days. Furthermore the inlet
temperature variation range is not fully as high as speci�ed in the standard for
the selected days.

F ′(τα)enKταb(θ)Gb

F ′(τα)enKταdGd

QfcfTi

QfcfTo

Uma(Ta − Tm)

Tf =
Ti+To

2To Ti

TmUfm(Tm − Tf)

Figure E.6: Diagram illustrating the TmToComp1 model. The collector is
divided into a part representing the �uid and another part repre-
senting the collector.
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Parameter MLR1 MLR2 MLR3 Units

F ′(τα)en 0.737 (0.0031) 0.741 (0.0030) 0.746 (0.0043)
b0 0.166 0.172 0.175
Kταd 0.891 0.904 0.895

F ′U0 2.18 (0.45) 2.13 (0.045) 2.02 (0.082)
[
W/(m2K)

]
F ′U1 0.0031∗ (0.0020)

[
W/(m2K)

]
F ′Uw 0.192 (0.034) 0.179 (0.035)

[
W/(m2K)

]
(mC)e 4699 (130) 4751 (127) 4788 (129)

[
J/(m2K)

]
Table E.1: Parameter estimates with MLR models. The standard deviation of

the estimate is in parenthesis to the right of the estimated value.
Insigni�cant terms are marked with ∗.

0 200 400 600

0
2
0
0

4
0
0

6
0
0

Figure E.7: Measured versus the predicted collector output from MLR2.

E.6.2 ToComp1 �tted to 10 minutes values

The single state grey-box model de�ned in Equation (E.6) is �tted to both
10 minutes values from four separate days and all four pooled together. The
estimated parameter are listed in Table E.2. Clearly the parameter estimates
matches the estimates from the MLR models quite well considering the standard
deviations, especially the parameters F ′(τα)en and F ′U0, which are the most
important parameters for evaluation of the collector performance. A very ap-
parent deviation of the results between the days is that the lowest uncertainty
is found on the 5'th of May. This is not a surprise considering a plot of the
residuals, which is shown in the lowest plot of Figure E.3. The level of the
residuals from the �t to this day are smaller than for the other days, and this is
apparently due to the level of the �uid �ow, which is plotted above the residuals
in the �gure. The parameter estimates based on the four days pooled together
seems like a compromise between the estimates from the single days.
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2011-05-02 2011-05-04 2011-05-05

F ′(τα)en 0.755 (0.032) 0.785 (0.032) 0.746 (0.0086)
b0 0.204 (0.039) 0.201 (0.046) 0.18 (0.017)
Kταd 0.903 (0.42) 0.857 (0.11) 0.819 (0.027)
F ′U0 2.07 (1.1) 2.4 (0.35) 1.73 (0.13)
(mC)e 6050 (1060) 6200 (1130) 5040 (279)

2011-05-10 Pooled

F ′(τα)en 0.758 (0.014) 0.763 (0.011)
b0 0.182 (0.023) 0.195 (0.020)
Kταd 0.867 (0.049) 0.839 (0.034)
F ′U0 2.16 (0.26) 2.05 (0.18)
(mC)e 5020 (92) 5666 (638)

Table E.2: Parameter estimates from ToComp1 �tted to 10 minutes values
from single days and all four days pooled. The standard deviation
is given in parenthesis to the right of the estimate.

E.6.3 Grey-box models �tted to 30 seconds values

The �ve grey-box models described are �tted to the data from the 10'th of May
resampled to 30 seconds averages. The parameter estimates are listed in Table
E.3. First, it is noticed that the parameters of the three models pre�xed with To
are not representing the same physical entities as they do in the models pre�xed
with ToTm, since the collector is lumped di�erently in the models. The increase
of the value of F ′(τα)en from To to ToTm models is found to be consistent
with the physical representation, since the reference temperature is closer to
the absorber surface. This means that the estimated optical parameter for the
ToTm models is rather τα. The value F ′ is in the range of 0.95 for this collector
design, which leads to an estimate of F ′(τα)en to 0.752 for ToTmComp2.

Plots of the residual series from each model are shown in Figure E.8. Clearly the
level of the residuals decrease from the upper to the lower plot and the highest
errors occur when a cloud passes by and the level of direct solar radiation shifts
rapidly. The decreased level of the variation of the residuals indicates that the
more detailed models are better. To verify this, statistical likelihood-ratio tests
is applied as described by Bacher and Madsen (2011). The log-likelihood of the
�t for each model is listed in Table E.4, together with the number of parameters,
and the p-value of tests for model expansion. The tests for expansion is a model
versus the expanded model a single step to the right in the table, except for
nl2TmToComp1, from which the expansion is from nl2ToComp2. The results
of the tests are very clear, all expansions are signi�cant. Hence it is concluded
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Prm. ToComp1 ToComp2 ToComp3

F ′(τα)en 0.767 (0.0036) 0.751 (0.0027) 0.743 (0.0015)
b0 0.172 (0.0063) 0.177 (0.0017) 0.18 (0.00044)
Kταd 0.942 (0.015) 0.933 (0.0042) 0.931 (0.002)
Ufa 2.55 (0.076) 2.31 (0.049) 2.2 (0.023)
Ufm

Uma

Cf 6960 (80) 8020 (17) 8580 (36)
Cm

Prm. TmToComp1 TmToComp2

F ′(τα)en 0.816 (0.0025) 0.792 (0.00096)
b0 0.188 (0.0038) 0.189 (0.00067)
Kταd 0.929 (0.008) 0.927 (0.0021)
Ufa

Ufm 49.8 (2.5) 83.7 (0.83)
Uma 2.37 (0.042) 2.22 (0.016)
Cf 3750 (114) 3390 (54)
Cm 962 (64) 1690 (22)

Table E.3: The parameter estimates from the grey-box models �tted to 30 seconds
values from the 10'th of May. Note that the parameters represent dif-
ferent physical entities from the three �rst model (pre�xed with To) to
the last two models (pre�xed with TmTo) and therefore cannot be di-
rectly compared. For each estimate the standard deviation is given in
parenthesis to the right of the estimate.

that nl2TmToComp2 is the most suitable model of these �ve models and that
it might very well be, that the model could be further expanded. Finally, the
auto-correlation function (ACF) and the cumulated periodogram (CP) Madsen
(2007) of the residuals are shown in Figure E.9. The dashed blue lines indicate
95% con�dence intervals for a white noise. According to theory, presented in
Section E.2, then if the residual series are white noise this indicates that the
grey-box model is consistent with the observed heat dynamics of the collector.
From the ACF and CP it is seen that the residuals are close to having white
noise properties. Interestingly it is seen that residuals from ToComp1 are more
white noise like than the residuals from TmToComp1. It is found that this is
caused by a low signal to noise ratio in the residuals for ToTmComp1, i.e. the
dominating errors are on a high frequency which have characteristics like white
noise. As the detailed models includes the faster dynamics, the high frequency
errors are decreased, and they do not �hide� the remaining signal components
in the residuals. However for the most detailed model almost all the systematic
variation in the data is described.
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Figure E.8: The residual series from the grey-box models �tted to 30 seconds
values from the 10'th of May. The greyed series are the direct
solar radiation.

nl2ToComp1 nl2ToComp2 nl2ToComp3

Log-likelihood -35.51 454.8 661
Number of prm. 9 12 14
p-value ≈ 0 ≈ 0

nl2TmToComp1 nl2TmToComp2

Log-likelihood 1185 1307
Number of prm. 13 18
p-value ≈ 0 ≈ 0

Table E.4: Log-likelihood, number of parameters, and p-value of likelihood-
ratio tests for model expansion for each of the grey-box models.
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Figure E.9: Plots of the auto-correlation function (ACF) and the cumulated
periodogram of the residuals from each of the grey-box models
�tted on 30 seconds values.
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E.7 Discussion and applications

In general the results from the MLR models and the grey-box are found to match
well, but it is noted that the result the from grey-box model ToComp1 �tted on
separate days - which have di�erent conditions, especially in the �uid �ow level
- gives some variation to the estimates. Therefore it is concluded that attention
has to be put on the experimental design in order to ensure stable and accurate
parameter estimation for collector testing with grey-box models. Regarding the
more detailed grey-box models �tted to 30 seconds values, it is found that since
the likelihood is not saturated, i.e. the likelihood-ratio tests are very signi�cant,
further expansion of the TmToComp2 is still possible. From the plots of the
residuals in Figure E.8, it is seen that the error level certainly is highest just
after the direct radiation shifts its level very rapidly, and it is this e�ect that
seems to be improved as the more detailed models are used. Hence the main
improvement from the one-state model ToComp1 to the multi-state models
are in the description of the fast dynamics, which includes the delay caused by
movement of the �uid through the collector, e.g. when the direct radiation shifts
from a high to a low level, the �uid passing out of the collector are still hot for
some time. This also indicates the importance of the experiment design, since
for dynamic condition the frequency, with which the system is excited, a�ect
which grey-box model is optimal. For example if the direct radiation varies with
a lower frequency, a simpler model might be in favour over more complex models,
whereas for variation with a higher frequency the inclusion of the fast dynamics
are more important. Therefore if the main excitation of the system, i.e. the
direct radiation, can be controlled, it will be possible to achieve fast and accurate
parameter estimation. This could be carried out with a simple shadowing device,
which should be controlled with PRBS signal to gain maximum information of
the heat dynamics of the system (Madsen and Holst, 1995). Higher accuracy
can also be achieved with more systematic variation of the inlet temperature,
this also applies for the MLR modelling. The right experiment design will allow
inclusion of night measurements - which will improve the separation of heat loss
and radiation e�ects and thereby more accurate estimation - and furthermore
allow for inclusion of more e�ects, such as wind and non-linear radiation e�ects
between the collector and the surroundings. Finally, dividing the collector into
more parts, e.g. one representing the �uid, one representing the metal, and one
representing the surrounding collector body could be tried.

E.7.1 Applications

The most apparent application of grey-box modelling of the heat dynamics of
solar collectors are for the development of fast and accurate performance testing,
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especially for some types of collectors multi-state models are needed to obtain
a required level of accuracy. Especially vacuum tube collectors of dewar type
can have an extra time delay due to the high thermal resistance between the
heat transfer �uid and absorber surface that is not fully taken up by the present
collector model used for performance testing. The new approach described here,
particularly with the TmTo models, has the potential to deal with this in an
accurate way. Additional applications include optimization of operation with
model predictive control, which the grey-box models are perfectly suited for.
Especially larger solar thermal plants might be able to gain much in performance
by applying grey-box modelling and model predictive control.

E.8 Conclusion

Successful modelling of a the heat dynamics of a solar collector with grey-box
models has been carried out. The results have been compared to the EN-
standard MLR modelling and they are in agreement. It is shown that high
accuracy parameter estimates was obtained with measurements from a single
day resampled to 30 seconds average values. This will enable lowering of testing
time signi�cantly compared to current test methods. Highly detailed models
of the heat dynamics of the solar collector can be applied, which can be useful
for many types of collectors. It is found that the conditions under which the
experiment was carried out in�uence the parameter estimates. Therefore it is
concluded that experiment design is the key to achievement of fast, reliable and
high accuracy collector testing methods with grey-box models. Experiments
with PRBS variation of direct radiation with shadowing device should be car-
ried out to obtain higher accuracy and reproducibility of the results, and �nally
models with more explanatory variables, such as wind and long-wave radiation
should be further elaborated.
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148 Short-term heat load forecasting for single family houses

Abstract

This paper present a method for forecasting the load for space heating in a
single-family house. The forecasting model is built using data from sixteen
houses in Sønderborg, Denmark, combined with local climate measurements
and weather forecasts. Every hour the hourly heat load for each house the
following two days is forecasted. The underlying basis of the method is physical
knowledge of building heat dynamics, which, combined with statistical models,
leads to a grey-box modelling approach. The forecast models are adaptive linear
time-series models and the climate inputs used are: ambient temperature, global
radiation, and wind speed. The adaptivity over time is achieved with a recursive
least squares scheme, which is computationally very e�cient. Also included is
a diurnal curve for modelling patterns in the residents behavior, for example a
nightly setback. The models are optimized to �t the individual characteristics
for each house, such as the level of optimal adaptivity and the thermal dynamical
response of the building, which are modelled with simple transfer functions. The
identi�cation of a model, which is suitable for application to all the houses, is
carried out. The results show that the one-step (one hour) ahead errors are
close to white noise and that practically all correlation to the climate variables
are removed with the model. Furthermore the analysis of the results shows that
the main sources to forecast errors are related to: unpredictable high frequency
variations in the heat load signal (predominant only for some houses), shifts in
resident behavior, and uncertainty of the weather forecasts for longer horizons,
especially the solar radiation is a challenge.

F.1 Introduction

The transition to an energy system based on renewables requires methods for
forecasting of energy load and production. In Denmark around 40% of the total
energy consumption is related to buildings and around 29% of the energy for
space heating is covered by individual oil or gas �red furnaces (Danish Com-
mission on Climate Change Policy, 2010b), which is neither an economically
feasible nor environmentally friendly technology. The Danish Commission on
Climate Change Policy recommends replacement with alternative technologies,
especially heat pumps, since this is one of the socio-economically cheapest ini-
tiatives in the transition to an energy system without fossil fuels in Denmark.
Hence, new and alternative technologies for building space heating based on
renewable energy production are of high interest, both for individual and dis-
trict heating. Especially electrical heating systems since large amounts of wind
power are available, which creates a need for �exible load in order to absorb the
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volatile production. As the level of electrical load increase, even load-shifting in
shorter periods of time for peak-shaving of the diurnal electrical consumption is
a valuable service to the grid (Danish Commission on Climate Change Policy,
2010a). Flexible load can be achieved with thermal energy bu�ering, both in
individual heating and district heating, where huge thermal storage capacity is
available. Several studies are considering the possibilities for �exible heating,
for example Pedersen et al. (2011) and Chen (2001) who presents methods for
energy storage in the thermal mass of the building, and Reddy et al. (1991)
and Henze et al. (2004) who consider load-shifting for cooling of buildings. The
present paper presents a method for forecasting of the power load for space
heating in a single-family house. The heat load forecasts can be used as input
to model predictive control, which can be used for load-shifting, for example for
operation under energy markets, where relocation of load to periods with cheap
energy will be rewarded. The method can just as well be used for forecasting of
cooling load and used for load-shifting with cool thermal storage. Perers et al.
(2011) presents solar combisystems, which is a heating system based on a so-
lar thermal collector and electrical heating, where a hot water tank is used for
thermal energy storage. Forecasting of the heat load is vital for optimal and
e�ective use of the thermal storage in such a system.

Forecasting of the load for space heating is carried out for sixteen houses in
Sønderborg, Denmark. Every hour a new forecast is calculated of the hourly
heat load up to 42 hours ahead. The houses are generally built in the sixties
and seventies, with a �oor plan in the range of 85 to 170 m2, and constructed in
bricks. Climate observations - which are measured at the local district heating
plant within 10 kilometers from the houses - together with numerical weather
predictions (NWPs) are used as input to the forecasting model. The NWPs
are from the HIRLAM-S05 model and provided by the Danish Meteorological
Institute. For each house only the total heat load, including both space heating
and water heating, is available. The heat load signal is �rst separated into
two signals: a signal for space heating and a signal for water heating. The
space heating signal is then forecasted. The splitting allows for a clear view of
the e�ects stemming from heat loss to the ambient and heat gains from solar
radiation etc., since the noisy peaks from how water heating is �ltered out. The
indoor temperature is not available, which is accounted for in the models by
including a diurnal curve to model nightly setback and behavioral patterns of
the residents e.g. heat from electrical appliances used for cooking.

Very many approaches to load forecasting are found in the literature. A good
overview of references are given by Mestekemper (2011), who built load forecast-
ing models using dynamic factor models. Dotzauer (2002) use a model based on
the ambient temperature and a weekly pattern for forecasting of the heat load in
district heating, i.e. the total heat load for many houses. Zhou et al. (2008) use
a grey-box model based on transfer functions for building thermal load predic-
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150 Short-term heat load forecasting for single family houses

tion and validates it on a 50 �oors multi purpose building. The models applied
in the present study are originally developed and used for forecasting of heat
load in district heating, as described in (Nielsen et al., 2000) and (Nielsen and
Madsen, 2006). The total heat load for many houses together have less high
frequency variation, due to the averaging e�ects, compared to the heat load for
a single house. Emphasis in the present study is put on the variability in heat
load among the individual houses, for example some react more than others to
solar radiation, and especially the diurnal pattern is very di�erent among the
studied houses.

The paper starts with a section in which the data and the NWPs are described.
This is followed by a presentation of the modelling approach and the model
identi�cation, where a suitable forecasting model is found together with a dy-
namic model for the remaining noise. Finally the results are presented, and the
method is discussed and concluded.

F.2 Data

The data used in the study consist of heat load measurements from sixteen
houses in Sønderborg, Denmark, and local climate measurements and NWPs.
All times are in UTC and the time stamp for average values are set to the end
of the time interval.

F.2.1 Heat load measurements

The houses are typical Danish single family houses from the sixties and seventies.
Only houses with radiator heating is considered. A single signal for each house is
used, which consist of both the energy for space heating and hot water heating.
The heat load measurements consist of 10 minutes average values. Time series
plots over the entire period, spanning nearly two and a half years, for four of the
houses are shown in Figure F.1. Also shown, with red lines, is the distribution
over time, which are estimates of the 0%, 2%, . . . , 98%, 100% quantiles. They are
estimated using local quantile regression (Koenker, 2005), where the weighting
is local in time. They clearly indicate that the distribution of the heat load
is heavily skewed, for example only two percent of the values are between the
two upper lines, which cover more than half of the range. The reason for this
skewness is seen from Figure F.2, where 10 days of heat load for the same four
houses is plotted. The heat load for water heating consist of high frequency
spikes added to the more slowly varying space heating signal. The highest peaks
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Figure F.1: The heat load for four selected houses over the entire period, which
is nearly spanning two and a half years. The red lines are esti-
mates of the 0%, 2%, . . . , 98%, 100% quantiles, which indicate the
distribution of the heat load at a given time.

are from showers and cause the high skewness. Since it is wanted to study the
space heating part, then each signal is splitted into a space heating part and a
water heating part - with the method described in (Saint-Aubain, 2011) used
causally. On the �gure the part of the signal identi�ed as water heating is
marked with red, note that it is added on top of the space heating signal in
the plot. After the splitting the series are resampled into hourly average values.
The hourly space heating for a single house is denoted by

{Qt; t = 1, . . . , N} (F.1)

whereN = 21144 and the unit is kW. Notice that no distinguishment in between
the houses is used in the notation, but when the results are presented the house
number, ranging from 1 to 16, is clearly stated.

F.2.2 Local climate observations

The local climate observations are from a weather station at the district heating
plant in Sønderborg, which is less than 10 kilometers from the houses. The data
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Figure F.2: Heat load for four selected houses for the �rst 10 days of March
in 2010. The peaks marked with red are the parts which are
identi�ed as water heating and the black line is the space heating
part. Note that the water heating is added on top the space
heating signal.

is resampled to hourly average values and the following time series are used:

Ambient temperature:
{
T a,obs
t ; t = 1, . . . , N

}
(F.2)

Global radiation:
{
Gobs
t ; t = 1, . . . , N

}

Wind speed:
{
W s,obs
t ; t = 1, . . . , N

}

F.2.3 Numerical weather predictions

The numerical weather predictions (NWPs) used for the forecasting are pro-
vided by the Danish Meteorological Institute. The NWP model used is DMI-
HIRLAM-S05, which has a 5 kilometer grid and 40 vertical layers (DMI, 2011).
The NWPs consist of time series of hourly values for climate variables, which
are updated four times per day and have a 4 hour calculation delay (e.g. the
forecast starting at 00:00 is available at 04:00). Since a new two day heat load
forecast is calculated every hour, then - in order to use the latest available in-
formation - every hour the latest available NWP value for the k'th horizon at
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time t is picked as

Ambient temperature (◦C): T a,nwp
t+k|t (F.3)

Global radiation (W/m2): Gnwp
t+k|t

Wind speed (m/s): W s,nwp
t+k|t

Wind direction (◦azimuth): W d,nwp
t+k|t

F.2.4 Combining local observations with NWPs

To include the building heat dynamics in an e�cient way, the inputs are low-
pass �ltered as explained in Section F.3.3. Hence, for the forecast calculated at
time t, past values of the inputs are being used. In order to use the information
embedded in the local measurements they are combined with the NWPs. The
combining is carried out by forming the time series for each of the inputs at
time t, for a speci�c horizon k, by

{
T a
t+k|t

}
=
{
. . . , T a,obs

t−1 , T a,obs
t , T a,nwp

t+1|t , T
a,nwp
t+2|t , . . . , T

a,nwp
t+k|t

}
(F.4)

{
Gt+k|t

}
=
{
. . . , Gobs

t−1, G
obs
t , Gnwp

t+1|t, G
nwp
t+2|t, . . . , G

nwp
t+k|t

}

{
W s
t+k|t

}
=
{
. . . ,W s,obs

t−1 ,W s,obs
t ,W s,nwp

t+1|t ,W
s,nwp
t+2|t , . . . ,W

s,nwp
t+k|t

}

{
W d
t+k|t

}
=
{
. . . ,W d,nwp

t−1|t ,W
d,nwp
t|t ,W d,nwp

t+1|t ,W
d,nwp
t+2|t , . . . ,W

d,nwp
t+k|t

}

Notice that local observations are not available for the wind direction.

F.3 Models

As mentioned earlier the applied models are similar to the models used by
Nielsen and Madsen (2006) for modelling of the total heat load for many houses.
The models are based on prior physical knowledge of the heat dynamics of
buildings, which in combination with statistical time series models, forms a grey-
box modelling approach. This allows for inclusion of heat transfer e�ects related
to the climate variables in a combination with time adaptivity for modelling of
changing condition. Furthermore, in order to describe of patterns in resident
behavior, a diurnal curve is included. The forecasting models are �tted, by
optimizing the parameters to minimize the RMSE in an o�-line setting. The
�tting is carried out separately for each house and for each horizon k, which
means that the same model formulation - i.e. same inputs and model structure
- is used, but the parameter values for each house and horizon can be di�erent.
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F.3.1 Time adaptive models

The models are �tted with the k-step recursive least squares scheme described
by Bacher et al. (2009). This means that the coe�cients in the model can change
over time and thereby adapt optimally to changing conditions. The coe�cients
are recursively updated, which means that only a few matrix operations are
required to make a new forecast, hence the scheme is computationally very fast.
It is a recursive implementation of a weighted least squares estimation, where
the weights are exponentially decaying over time. A single parameter is required,
the forgetting factor λ, which determines how fast input data is down-weighted.
The weights are equal to

w(∆t) = λ∆t (F.5)

where ∆t is the age of the data in hours. This means that for λ = 0.98 the
weights are halved in 34 hours, for λ = 0.995 they are halved in 138 hours (∼ 6
days), and for λ = 0.999 in 693 hours (∼ 29 days).

F.3.2 Diurnal curve

A curve for describing systematic diurnal patterns in the heat load is included
in the models, which for example can be caused by a nightly setback and free
heat from electrical appliances. The curve is modelled as a harmonic function
using a Fourier series

µ(ttod, αdiu) =

nhar∑

i=1

αdiu
i,1 sin

( ttodiπ

12

)
+ αdiu

i,2 cos
( ttodiπ

12

)
(F.6)

where ttod is the time of day in hours at time t and nhar is the number of
harmonics included in the Fourier series. For all the applied models a curve is
�tted for working days and another curve for weekends.

F.3.3 Low-pass �ltering for modelling of building dynam-

ics

The heat dynamics of a building can be described by lumped parameter RC-
models, see for example (Madsen and Holst, 1995), (Braun and Chaturvedi,
2002), and (Jiménez et al., 2008). As described by Nielsen and Madsen (2006)
the response in the heat load to changes in the climate variables can be modelled
with rational transfer functions, which is a description of the low-pass �ltering
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e�ect of the building with an RC-model. In the present models the simplest
�rst order low-pass �lter, with a stationary gain equal to one, is used. This is
a model of the building heat dynamics formed by an RC-model with a single
resistance and a single capacitor. As an example the transfer function from the
ambient temperature to the heat load is

Qt = Ha(q)T a
t (F.7)

where

Ha(q) =
1− aTa

1− aTaq
−1

(F.8)

and where q−1 is the backward shift operator (q−1xt = xt−1) (see (Madsen,
2007)) and aTa

∈ [0, 1] is a parameter, which is equivalent to the time constant
for the part of the building a�ected by changes in ambient temperature. A
building with a high thermal mass and good insulation will have a relatively
high aTa , hence the �lter parameter needs to be estimated for each building in
order to describe the heat dynamics properly. First order low-pass �lters are
also applied for wind speed and global radiation, with the �lter parameter is
estimated for matching of the response of the building to each of the climate
variable separately.

F.3.4 Parameter optimization

As described above several parameters needs to be optimized for each house and
horizon. The optimization is carried out in an o�-line setting by minimizing the
root mean square error for each of the sixteen houses and for each horizon k =
1, . . . , 42 separately. This does require some computational power, especially
the low-pass �ltering of the inputs. Therefore a simple bisectioning scheme is
applied for the optimization, since this allows for performing a �ltering of the
inputs only once for parameter values in a given range. Then these series can
be used for optimization for all the houses and horizons.

The following parameters are optimized

• The forgetting coe�cient: λ

• The number of harmonics in the diurnal curve: nhar

• The coe�cients for input low-pass �lters: aTa
, aG, and aWs
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156 Short-term heat load forecasting for single family houses

F.4 Model identi�cation

Forecasting models, which include di�erent types of heat transfer e�ects related
to the climate variables, are applied to identify which of the inputs are important
to include. Furthermore di�erent ways for the inputs to enter the model are
tried. See (Nielsen and Madsen, 2006) for a description of how a physical model
can be rewritten into the identi�able models, which are used here. The model
which include all energy contributions is

Qt+k = Q̂t+k|t + et+k (F.9)

where

Q̂t+k|t = Qa +Qg +Qw (F.10)

where the Qname variables on the right side of the equation represents the heat
contributions from the considered heat transfers, which are described below.

F.4.1 First step in model selection

To select a suitable forecasting model a forward selection approach is used. In
the �rst step the modelD

Q̂t+k|t = αia + µ(ttod, αdiu) (F.11)

which do not include the climate inputs, is �tted. In this model the heat load is
simply modelled as a diurnal curve with an o�set. Note that αia then represents
a constant di�erence between the indoor and the ambient temperature and the
diurnal part will try to capture diurnal patterns in both the indoor and ambient
temperature. Due to the time adaptive scheme the model will be able to track
the slow changes in the temperatures over the year. Finally note also that the
coe�cients could have been denoted with: a t to indicate that they are changing
over time, a house number to indicate that they are �tted to each house, and a
k to indicate that the model is �tted for each horizon separately, but this have
been left out for better readability.

To �nd out if there is useful information available in the climate series as in-
puts to the model, the cross-correlation function (CCF), see (Box et al., 1976),
between the one-step ahead (k = 1 hour) error for modelD and the available
input series is calculated - which is prefered over the NWPs, as it is mainly
the observations which are used for the one-step ahead forecast. Since it is too
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cumbersome to analyze the error series for each house separately, the average
error

ēt+k =
1

nhouses

nhouses∑

i=1

eHouse i
t+k (F.12)

where nhouses = 16 are the number of houses and eHouse i
t+k is the error series for

House i, is used. In this way the CCF to the inputs is summarized for all the
houses in a single plot. This will of course only show if an input is generally
important to include and not the e�ects for each individual house. The e�ects
related to each house - which are di�erent - are considered in later parts of the
paper.

The CCF between the average errors from modelD to the inputs can be seen in
Figure F.3a. Clearly very signi�cant correlations between the error and both
the ambient temperature and the global radiation, but apparently none to the
wind speed, are found. It is decided to add the ambient temperature as input
to the model, which leads to modelA

Q̂t+k|t = Qa (F.13)

where

Qa = αi + µ(ttod, αdiu) + αaHa(q)T a
t+k|t (F.14)

The Ha(q) is the low-pass �lter modelling the dynamics of the building envelope,
i.e. the response of in heat load to changes in ambient temperature. Notice that
the intercept αi is representing a constant indoor temperature modi�ed by the
diurnal curve.

In order to �nd out if any gain in forecasting performance is achieved from
modelD to modelA the root mean square error is used for evaluation as described
in the following.

F.4.1.1 Root mean square error evaluation

To evaluate the models the root mean square error (RMSE) for the k'th horizon

RMSEk =

(
1

N

N∑

t=1

e2
t+k

) 1
2

(F.15)

is used together with the RMSEk improvement

IRMSE = 100 · RMSEref − RMSE

RMSEref
(%) (F.16)
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Figure F.3: The cross-correlation function (CCF) between the average error
series for the one-step ahead forecast (horizon k = 1) and the local
observations of the inputs, since the inputs for the one-step ahead
forecasts are primarily formed by the observations. The plots are
for the errors from the selected model in the four steps of model
identi�cation carried out.
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over the currently selected model as reference. It is noted values not in the
heating season - which starts the 15'th of September and ends 15'th of May in
Denmark - and values before the 15'th of March 2009, which is used as a burn-
in period, are excluded from the RMSEk calculation. For evaluation of the
inclusion of ambient temperature, the RMSEk improvement for modelA over
modelD is calculated. The average improvement for all horizons (from k = 1
to k = 42) for each house is plotted in Figure F.4a. A RMSEk improvement
for the each house in the range from 5 to 25 percent and around 14 percent in
average is achieved. This is clearly a signi�cant improvement, hence modelA is
preferred over modelD.

F.4.2 Second step in model selection

To explore the possibilities for further expansion of modelA the CCFs from the
average errors (de�ned in Equation (F.12)) to each of the climate series are
calculated. They are plotted in Figure F.3b. The correlation to the ambient
temperature is much lower than for modelD and the correlation to the global
radiation is more or less the same. The correlation to the wind speed has
increased, most likely this correlation was "overshadowed" by the correlation to
the ambient temperature for the modelD errors. Notice that there is a signi�cant
correlation decaying over 12 to 24 hours to the lagged inputs, which indicates
that dynamics should be included by low-pass �ltering.

To �nd the most important extension of modelA several extensions involving
the global radiation or the wind speed are �tted (i.e. the RMSEk is minimized
by tuning the parameters listed in Section F.3.4 for each house).

The �rst considered expansion is modelA.G

Q̂t+k|t = Qa + αgHg(q)Gt+k|t (F.17)

where the heat gain from solar radiation is included by letting the global radi-
ation enter through a low-pass �lter, which models the dynamic response from
the global radiation to the heat load of the building. The second expansion is
modelA.W

Q̂t+k|t = Qa + αwsHw(q)W s
t+k|t (F.18)

where the cooling of the building from wind is modelled by letting the wind speed
enter through a low-pass �lter. This is a model of wind cooling not depending on
the ambient temperature, however - due to the time-adaptive modelling scheme
- is does include the slow changes in temperature di�erence between indoor and

353



160 Short-term heat load forecasting for single family houses
0

5
1
0

1
5

2
0

2
5

3
0

A
v
er
a
g
e
R
M
S
E
k
Im

p
ro
v
em

en
t
(%

)

M
od
el

A

House_1
House_2
House_3
House_4
House_5
House_6
House_7
House_8
House_9
House_10
House_11
House_12
House_13
House_14
House_15
House_16
Average

(a) Step one: Improvements over modelD

0
2

4
6

8
1
0

A
v
er
a
g
e
R
M
S
E
k
Im

p
ro
v
em

en
t
(%

)

M
od
el

A
.G

M
od
el

A
.W

M
od
el

A
.V

(b) Step two: Improvements over modelA

-6
-4

-2
0

2
4

A
v
er
a
g
e
R
M
S
E
k
Im

p
ro
v
em

en
t
(%

)

M
od
el

A
.G

.W

M
od
el

A
.G

.V

M
od
el

A
.G

.W
a

M
od
el

A
.G

.V
a

M
od
el

A
.G

.W
d

(c) Step three: Improvements over modelA.G

-3
-2

-1
0

1
2

A
v
er
a
g
e
R
M
S
E
k
Im

p
ro
v
em

en
t
(%

)

M
od
el

A
.G

2
in
.W

M
od
el

A
.G

2
p
o
.W

M
od
el

A
.G

sp
l.
W

M
od
el

A
.G

v
e
r.
W

M
od
el

A
.G

b
d
v
.W

(d) Step four: Improvements overmodelA.G.W

Figure F.4: Improvements over the previously selected model for the models
in each step of the selection.
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ambient temperature. The third expansion is modelA.V

Q̂t+k|t = Qa + αventW
s
t+k|t (F.19)

which include an e�ect of ventilation modelled by inputting the instant e�ect of
wind speed to the heat load.

The RMSEk improvements averaged over all horizons for each house for the
considered expansions is plotted in Figure F.4b. It is seen that the performance
increase is highest for all the houses for modelA.G, hence this model is preferred
and used for expansion in the following step. In the remaining of the paper the
heat contribution from solar radiation is denoted by

Qg = αgHg(q)Gt+k|t (F.20)

F.4.3 Step three: Inclusion of wind speed in the model

In the third step of the model identi�cation several ways of including the wind
speed is considered. First the CCFs between the one-step ahead error, from the
model selected in the previous step, modelA.G and the inputs, are studied to see
if any useful information is remaining in the climate series.

First it is noted that the correlation to the global radiation has decreased com-
pared to the CCF plot for modelA, but that some is still left, indicating that the
dynamic e�ects are not entirely described by the model. Secondly it is noted
that there is a signi�cant cross-correlation to the wind speed and therefore it is
chosen to seek an expansion which include the wind speed. Five di�erent ways
of letting the wind speed enter the model are tried as described in the following.

The �rst expansion is formed by adding the wind speed through a low-pass �lter
for modelling of cooling of the building in modelA.G.W

Q̂t+k|t = Qa +Qg + αwsHw(q)W s
t+k|t (F.21)

and, for modelling ventilation, the instant e�ect of wind speed is added in
modelA.G.V

Q̂t+k|t = Qa +Qg + αwsW
s
t+k|t (F.22)

In the two models above the wind speed enter the model without the interac-
tion with ambient temperature, which means that the temperature di�erence
between the indoor and ambient temperature is modelled as constant and that
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162 Short-term heat load forecasting for single family houses

changes are only tracked with the adaptivity of the model. In the following two
expansions the interaction is also included, with a �lter in modelA.G.Wa

Q̂t+k|t = Qa +Qg + αwsHw(q)W s
t+k|t + αwsaHw(q)W s

t+k|tT
a
t+k|t (F.23)

and as an instant e�ect in modelA.G.Va

Q̂t+k|t = Qa +Qg + αwsW
s
t+k|t + αwsaW

s
t+k|tT

a
t+k|t (F.24)

Finally the wind speed input coe�cient is conditioned on the wind direction in
modelA.G.Wd

Q̂t+k|t = Qa +Qg +

4∑

i=1

αiHw(q)K(u)W s
t+k|tT

a
t+k|t (F.25)

where the kernel function

K(u) = (1− |u|)1{|u|≤1} (F.26)

with

u =
((
W d,nwp
t+k|t + 45 + (i− 1) · 90

)
mod 4

)
− 1 (F.27)

makes four input series, which are linearly interpolated as a function of the
wind direction. The center of the kernels is thus at the most prevailing wind
directions in Denmark, especially southwest in the winter period (Cappelen and
Jørgensen, 1999).

The plot in Figure F.4c shows the improvements over modelA.G for the �ve mod-
els. The improvement is quite di�erent for each house, for some it is negative,
which is because the forecasting model becomes over-parametrized. It is also
seen that the pattern of the improvement among the houses are quite similar
for the �ve models, which indicates that for some houses the wind have a more
prevalent e�ect than for others. Since modelA.G.W generally have the most pos-
itive improvement and since it is the simplest extension, it is preferred over the
others. In the remaining of the paper the model part describing the e�ect of
wind is denoted with

Qw = αwsHw(q)W s
t+k|t (F.28)

F.4.4 Step four: Enhancement of the solar model part

In the �nal step the model part for solar radiation is enhanced in di�erent ways,
as described in the following. Studying the CCFs for modelA.G.W in Figure F.3d
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F.4 Model identi�cation 163

only very little correlation between the errors and the inputs are seen. There
is a little left to the ambient temperature and solar radiation. From studying
plots of the forecasts it is found that it could be possible to improve the model
part, where the e�ect of solar radiation is included.

First an additional input for the solar gain is added the model, this ismodelA.G2in.W

Q̂t+k|t = Qa +Qg + αg2Hg2(q)Gt+k|t +Qw (F.29)

This will allow for an additional dynamic response of the building to solar ra-
diation. Notice that an additional �lter coe�cient for the Hg2(q) �lter is �tted
here.

Secondly the solar radiation part is enhanced by using a two-pole �lter instead
of the one-pole �lter

Q̂t+k|t = Qa + αgH2pol(q)Gt+k|t +Qw (F.30)

where

H2pol(q) =
1− a1 − a2

1− a1q−1 − a2q−2
(F.31)

and

a1 = ag1 + ag2 and a2 = −ag2 (F.32)

The two �lter coe�cients thereby relate to di�erent dynamics: ag1 is related to
the highest time constant (slow response) and ag2 is related to the lowest time
constant of the building (fast response).

In the third model the solar radiation is separated into three inputs: one for the
morning, one for the noon, and one for the evening. This allows for the building
to have di�erent solar gains during the day. The modelA.Gspl.W is

Q̂t+k|t = Qa + αg1Hg(q)Gmorning
t+k|t + αg2Hg(q)Gnoon

t+k|t (F.33)

+ αg3Hg(q)Gevening
t+k|t +Qw

The three inputs are

Gmorning
t+k|t = Gt+k|t 1{t+k∈[trise, trise+∆t]} (F.34)

Gnoon
t+k|t = Gt+k|t 1{t+k∈[trise+∆t, tset−∆t]}

Gevening
t+k|t = Gt+k|t 1{t+k∈[tset−∆t, tset]}

where 1{} is the indicator function, trise and tset is the time of sunrise and sunset,
respectively, and ∆t = (tset − trise)/3 is a third of the day length.
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164 Short-term heat load forecasting for single family houses

Finally two more possible enhancement is applied by projecting the solar radi-
ation onto a vertical surface tracking the solar azimuth angle. The projection
to vertical is carried out by �rst splitting the global radiation into a direct and
a di�use component as in (Ruiz-Arias et al., 2010) and onto a vertical surface
with the Hay and Davies model (Hay and Davies, 1980), see also (Reindl et al.,
1990). The e�ect of the projections is mostly an increased level of solar radia-
tion in the morning and in the evening (or afternoon), when the sun elevation
is low. In modelA.Gver.W

Q̂t+k|t = Qa + αgHg(q)Gver,tr
t+k|t +Qw (F.35)

the total vertical radiation is inputted and in modelA.Gbdv.W

Q̂t+k|t = Qa + αg1Hg(q)Gbeam,tr
t+k|t + αg2Hg(q)Gdiffuse,tr

t+k|t +Qw (F.36)

the direct (or beam) and the di�use component is inputted separately.

The models are �tted to each house and the improvements over modelA.G.W are
calculated and plotted in Figure F.4d. For modelA.G2in.W and modelA.G2po.W

only a little di�erence in performance is seen, and for modelA.Gspl.W the perfor-
mance has decreased. These three models become over-parametrized, however
it is noted that for short horizons the improvement for modelA.Gin2.W is pos-
itive for all the houses. For the last two: modelA.Gver.W and modelA.Gbdv.W,
the change in performance depends on the house. One interesting pattern is
that the houses with the highest change (both decreased and increased) are the
houses which bene�t most from addition of the solar radiation to the model,
as seen in the plot in Figure F.4b. This indicates that increased performance
can be gained with a model which modi�es the solar gain over the day. Such
a model should learn an optimal diurnal solar gain curve for each house. In
general no signi�cant overall increase in performance is found for any of the �ve
models, hence the model selection is ended and the results in the remaining of
the paper are from modelA.G.W, together with a model of the noise, which is
described in the following section.

F.5 Noise model

Considering the auto-correlation for the one-step ahead error for the houses,
shown in the upper plot of Figure F.5, it is found that a model is useful for de-
scribing dynamical information embedded in the errors. A simple auto-regressive
(AR) model is �tted to the errors with the recursive least squares scheme (Bacher
et al., 2009). The AR(1) model

et+k = aeet + enoise
t+k (F.37)
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Figure F.5: The auto-correlation function (ACF) for each house. The upper
plot is the ACF of the errors before the AR(1) noise model is
applied and the lower plot shows the ACF of the errors after.

is �tted for the errors from the selected model modelA.G.W for each horizon
k. The ACF of the noise error enoise

t+k can be seen in the lower plot of Figure
F.5. Compared to the upper plot almost all of the auto-correlation is for lag
1 is removed. Clearly, some of the houses still have signi�cant auto-correlation
left and for the short horizons an error model, which include more lags could
improve the performance. However it was tried to include one more lag (lag 2),
but this did only improve the overall performance marginally, mainly because
no performance improvement is achieved on longer horizons. The houses which
have the highest ACF (in particular House 11 and 16) have some high frequency
oscillations embedded in the heat load signal, as described in the following sec-
tion where the results are discussed. The average RMSEk improvement over all
horizons is in the range of 0.35% to 6.7%, hence a quite signi�cant improvement,
especially for some of the houses. The RMSEk improvement for the one-step
ahead forecasts is in the range 1.3% to 19%, which clearly shows that the noise
model is most important for short horizons.

F.6 Results

In this section the results from forecasting with the selected model are presented
and discussed. First the parameters, which are �tted for each house, are reported
and then the performance for individual houses is discussed.
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Figure F.6: Values of the parameters �tted for each house.

F.6.1 Model parameters

The parameters which are �tted for each house are listed in Section F.3.4. Since
there is a value for each horizon for each house for each parameter, they are
reported with the plots in Figure F.6. It is the general patterns which are
discussed in the following. Starting with the upper most plot in the �gure,
which is of the forgetting coe�cient λ in the recursive least squares scheme, it
can be seen that it has a tendency to be lower for the �rst couple of horizons: for
k = 1 the average over all the house is 0.9755, which means that the weighting
of the input data is halved in only 28 hours. This fast forgetting is most likely
optimal, because it is pro�table for the forecasting model to be able to react fast
to changes in to the system, e.g. residents increase the indoor temperature or
open the windows, which can be tracked on short horizons. On longer horizons
the forgetting is on a stable level: for k = 5 the average is 0.9953 increasing to
0.9963 for k = 42, which means that the weighting of the input data is halved
in around 8 days.

The second plot from the top in Figure F.6 is of the optimized number of
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House 1 2 3 4 5 6 7 8

aTa 0.96 0.91 0.91 0.96 0.94 0.96 0.95 0.96
τTa (hours) 27 11 10 25 16 27 21 26

House 9 10 11 12 13 14 15 16

aTa 0.94 0.97 0.95 0.96 0.95 0.94 0.96 0.92
τTa (hours) 17 32 18 24 19 15 25 13

Table F.1: Values of optimized low-pass �lter coe�cient for the response from
ambient temperature to heat load and corresponding RC time con-
stant τTa

in hours.

harmonics in the diurnal curve: a higher number means that it is pro�table to
include harmonics up to higher frequencies in the diurnal curve. Clearly, a huge
variation among the houses is found, which is very reasonable, since the diurnal
patterns are very di�erent as shown later in the paper.

The middle plot of the �gure is of the optimized coe�cient for the low-pass �lter
transfer function from the ambient temperature to the heat load. Except for
the two lowest lines the variation for each house as a function of the horizon k is
actually quite little (in the range of ±0.01), which leads to the conclusion that
this does describe very well, how fast the response of heat load is to changes in
ambient temperature for the house. In Table F.1 the average coe�cient for each
house is listed together with the equivalent RC time constants. The values are
within a reasonable range compared to values found in other studies (Nielsen
and Madsen, 2006), (Reddy et al., 1991).

The �tted values of low-pass �lter coe�cient for global radiation aG and for
wind speed aWs

are shown in the lower two plots of Figure F.6. The values
are all in the same range, generally between 0.8 and up to near 1, but with
some lower values for a couple of the houses, which are houses where the solar
radiation and wind speed are not very important inputs.

F.6.2 Forecasting performance

In this section the forecasting performance is presented and discussed, espe-
cially the di�erences in performance among the houses. For evaluation of the
performance the normalized root mean square error for each horizon

NRMSEk =
RMSEk
Q̄t

(F.38)
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Figure F.7: The NRMSEk as a function of the horizon k for modelA.G.W for
each house.

is used, where Q̄t is the average heat load for the house, which is calculated
with the same values as used for calculation of the RMSEk (see the text below
Equation (F.15)).

The plot in Figure F.7 shows the NRMSEk as a function of the horizon k
for each house using the selected modelA.G.W. Clearly the poorest forecasting
performance is for House 8. The explanation is found by considering the plot
for House 8 in Figure F.8, which shows the heat load together with the 1 hour
and 24 hour forecasts. The main reason for the poor forecasts is a very irregular
diurnal curve. A nightly setback makes a huge di�erence in heat load from day
to night and furthermore the time of day, where the heat is turned high again,
varies among the days and is probably controlled manually by the residents.
This is opposed to the nightly setback for House 10, which have a much more
regular pattern that can be much better forecasted.

Another source for high errors is seen in the plots for House 2 and 16, where noisy
�uctuations occur on the higher frequencies in the signals. The smaller �uctu-
ations are probably partly from water heating, which was not well separated
from the space heating, but clearly higher peaks not related to water heating
are seen. For House 11 a more steady, but still quite unpredictable, �uctuation
is seen, which is likely to come from some oscillation in the thermostatic control
of the heat system.

The heat load signals for House 1, 9, and 15 are much less volatile. These houses
are also the ones with a lower NRMSEk, as seen from the plot in Figure F.7.
The most obvious thing to notice is the deviation between the 1 and the 24 hour
forecasts. Starting with the drop on the 21'st of February, which is followed well
by the 1 hour forecast, but not by the 24 hour forecast. This drop is clearly
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caused by solar radiation. It is a clear-sky day as seen by the high level of
observed global radiation (the second uppermost plot of Figure F.8), which is
also predicted by the 24 hour NWP. However the drop is not followed by the 24
hour load forecast, since the previous day was also forecasted as a clear-sky day
by the 24 hour NWP, but it was not a clear-sky day as seen by the low observed
level. Hence there is a much higher uncertainty on the global radiation input to
the 24 hour model compared to the 1 hour model, which use mostly observations
as input, and therefore the global radiation is not given much weight in the 24
hour forecasting model. From the 1'st of March a sunny period begins and it can
be seen how the 24 hour forecasts starts to track the mid-day drops in heat load,
as more weight is put on the global radiation input due to the time adaptivity
of the modelling scheme. Finally it is noted that the drop the 23'th of February
and the peak the 27'th of February in the heat load for House 15 are not seen
in the other heat loads. It is attributed to residents behavior, which cannot be
forecasted - though it is tracked in the 1 hour forecast, but with a delay.

F.7 Discussion

For the data used in the study the indoor temperature was not available and
it is therefore modelled as constant modi�ed with a diurnal curve. If the in-
door temperature is available it will allow for advancements of the method by
including it as an input to the model. The estimation of a time constant for the
building can be carried out with higher accuracy, which will allow the method to
be used for smart grid applications, such as load-shifting by use of the building
structure for thermal storage.

Regarding the model part in which the solar radiation is entering, further ad-
vancements could be tried. For example more information about the individual
buildings such as the azumuth angle of the walls, would provide a more de-
tailed projection of the radiation from horizontal to vertical surfaces. However
it will be favorable for operation if no speci�c information about the buildings
is needed. The possibilities are then to try non-linear functions, which could
be applied with piecewise linear or regime switching functions depending on the
level of solar radiation, or a non-parametric approach could also taken with an
o�-line method for learning how the building respond to solar radiation over the
day. Finally it is found that performance can be increased by using di�erent
models depending on the horizon, especially it is more relevant to increase the
model complexity for shorter horizons.

363



170 Short-term heat load forecasting for single family houses

F.8 Conclusion

A method for forecasting the load for space heating in a single-family house
is presented. It is formed by adaptive linear time-series modelling techniques,
using local observations and weather forecasts as input. Based on measurements
from sixteen houses a model, which is suitable for all the houses, is identi�ed by
using a forward selection approach. It is shown how the forecasting performance
increases when the ambient temperature, global radiation, and wind speed are
added as inputs to the model. For inclusion of the heat dynamics of the building
into the model simple transfer functions are used. Several further advancements
to the model are tried, but this makes the model over-parametrized and results
in decreased performance. In a second step an auto-regressive model is applied
for modelling of the remaining dynamic information in the error. After this
it is shown that almost no auto-correlation is left in the errors and thereby
that the heat load is modelled very well. The model parameters, which have
been �tted individually for each house, are analyzed and it is found that they
provide reliable information about the dynamic response of the building. The
forecasting results are then analyzed thoroughly to give insight into the sources
of error, for example unpredictable behavior of the residents and uncertainty
in the inputs, especially from the solar radiation weather forecasts. Finally, a
discussion is given with ideas for further advancements.
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Revisions

Compared to the originally published paper the included paper has the following
revisions:

• The estimates of the parameters related to the system and measurement
noise have been included in Appendix G.9 together with a short discussion.
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Abstract

The present paper suggests a procedure for identi�cation of suitable models for
the heat dynamics of a building. Such a procedure for model identi�cation is
essential for better usage of readings from smart meters, which is expected to be
installed in almost all buildings in the coming years. The models can be used for
di�erent purposes, e.g. control of the indoor climate, forecasting of energy con-
sumption, and for accurate description of energy performance of the building.
Grey-box models based on prior physical knowledge and data-driven modelling
are applied. This facilitates insight into otherwise hidden information about the
physical properties of the building. A hierarchy of models of increasing com-
plexity is formulated based on prior physical knowledge and a forward selection
strategy is suggested enabling the modeller to iteratively select suitable models
of increasing complexity. The performance of the models is compared using
likelihood ratio tests, and they are validated using a combination of appropriate
statistics and physical interpretation of the results. A case study is described in
which a suitable model is sought after for a single storey 120 m2 building. The
result is a set of di�erent models of increasing complexity, with which building
characteristics, such as: thermal conductivity, heat capacity of di�erent parts,
and window area, are estimated.

G.1 Introduction

This paper describes a new method for obtaining detailed information about the
heat dynamics of a building based frequent readings of the heat consumption,
indoor temperature, ambient air temperature, and other climate variables. Such
a method is considered to be of uttermost importance as a key procedure for
better usage of readings from smart meters, which is expected to be installed in
almost all buildings in the coming years. The method is based on a procedure
for selecting a suitable model of the heat dynamics for a building. Rabl (1988)
gives an overview of techniques for steady state and for dynamic analysis of en-
ergy use in a building, the latter implicate modelling of the heat dynamics of the
building. Such dynamic models can be realized with a set of di�erential equa-
tions, as carried out by Sonderegger (1978) and Boyer et al. (1996). Parameter
estimation in dynamical models is known as system identi�cation and a survey of
di�erent approaches for buildings is found in Bloem (1994). The applied models
in the present method are grey-box models, which consist of a set of continuous
time stochastic di�erential equations coupled with a set of discrete time mea-
surement equations. Grey-box modelling is well proven as a comprehensive and
accurate method to model dynamical systems and thereby obtain knowledge of
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the thermal properties of a building, see Madsen and Holst (1995), Andersen
et al. (2000), and Jiménez et al. (2008). The problem of identifying a suitable
model is both �nding a model that is in agreement with the physical reality
and �nding a model, which has a complexity that is in agreement with the level
of information embedded in data, which means that the model should neither
be under-�tted nor over-�tted. The most suitable model is identi�ed from a
set of models of increasing complexity. A forward selection strategy is used, in
which the modeller starts out with the simplest feasible model and iteratively
selects models of increasing complexity. In each iteration the models are com-
pared using likelihood-ratio tests and the models performances are evaluated.
The selection procedure runs until no signi�cant improvement of the model is
found. See Pawitan (2001) and Madsen and Thyregod (2010) for an in-depth
assessment of likelihood theory and model selection. The procedure is demon-
strated by identifying a suitable model for a single storey 120 m2 building. The
building is part of the experimental distributed energy system, Syslab, at Risø
DTU in Denmark. It is constructed of wood on the outside and plaster boards
on the inside, with a layer of insulation wool in between. The data used spans
6 days and stems from a set of experiments for building energy performance,
which was carried out in the winter period of 2009. It is thoroughly described
in Bacher and Madsen (2010).

The remaining of the article is organized as follows. The applied grey-box
modelling technique is described in Section G.2, and in Section G.3 the statistical
test used for model selection is described. Then the suggested procedure for
identifying a suitable model is outlined in Section G.4. The following section
is devoted to a case-study, where the procedure is applied. It starts with a
description of the building and the data, followed by an outline of the applied
models and the selection, and ends with a discussion of the results. Finally a
perspective of the applications are given in Section G.6 and the conclusions are
drawn in Section G.7.

G.2 Grey-box models of a dynamic system

A grey-box model is established using a combination of prior physical knowledge
and statistics, i.e. information embedded in data. The prior physical knowledge
is formulated by a set of �rst-order stochastic di�erential equations, also called a
stochastic linear state-space model in continuous time. The equations describe
a lumped model of the heat dynamics of the building. It is emphasized that the
physical interpretation of the parameters is dependent on how the building is
divided into entities in the model.
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Figure G.1: RC-network of the model described by Equation (G.1) and (G.2).
The model is divided into di�erent parts indicating the corre-
sponding part of the building.

An example of a feasible model is given here. It has two state variables, one
describing the interior temperature Ti and one representing the temperature
of the building envelope Te. The �rst-order dynamics are represented by the
stochastic di�erential equations

dTi =
1

RieCi
(Te − Ti)dt+

1

Ci
Φhdt+

1

Ci
AwΦsdt+ σidωi (G.1)

dTe =
1

RieCe
(Ti − Te)dt+

1

ReaCe
(Ta − Te)dt+ σedωe (G.2)

where t is the time, Rie is the thermal resistance between the interior and the
building envelope, Rea is the thermal resistance between the building envelope
and the ambient air, Ci is the heat capacity of the interior, Ce is the heat capacity
of the building envelope, Φh is the energy �ux from the heating system, Aw is
the e�ective window area, Φs is the energy �ux from solar radiation, Ta is the
ambient air temperature, {ωi,t} and {ωe,t} are standard Wiener processes, and
σ2

i and σ2
e are the incremental variances of the Wiener processes. The model can

be represented with the RC-network depicted in Figure G.1, where the model
is divided into di�erent parts to show the corresponding parts of the building.

The physical model part is coupled with the data-driven model part with which
the information embedded in observed data is used for parameter estimation.
The data-driven part in the considered example is represented by the discrete
time measurement equation

Yk = Tik + ek (G.3)

where k is the point in time tk of a measurement, Yk is the measured interior
temperature and ek is the measurement error, which is assumed to be a Gaussian
white noise process with variance σ2. This assumption enables evaluation and
tests of the performance of the model, since if it is met, this indicates that the
physical model is consistent with the observed heat dynamics of the building.
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G.2.1 Maximum likelihood estimation of parameters

Given a grey-box model, as described above, maximum likelihood estimates of
the parameters can be obtained. Let the observations be represented by

YN = [YN , YN−1, . . . , Y1, Y0] (G.4)

then the likelihood function is the joint probability density

L(θ;YN ) =

(
N∏

k=1

p(Yk|Yk−1, θ)

)
p(Y0|θ) (G.5)

where p(Yk|Yk−1, θ) is a conditional density denoting the probability of observ-
ing Yk given the previous observations and the parameters θ, and where p(Y0|θ)
is a parameterization of the starting conditions. The maximum likelihood esti-
mates of the parameters are then found by

θ̂ = arg max
θ

{
L(θ;YN )

}
(G.6)

Due to the previously mentioned assumptions about the noise process and the
fact that the model is linear, it follows that the conditional densities in Equa-
tion (G.6) are Gaussian densities. Since the conditional densities are Gaussian a
Kalman �lter can be used to calculate the likelihood function, and an optimiza-
tion algorithm can be applied to maximize it, thereby calculating the maximum
likelihood estimates, see Kristensen et al. (2004) for a detailed discussion. This
is implemented in the computer software CTSM, which has been used for car-
rying out the parameter estimation, see more about the software at 1 and in
Kristensen and Madsen (2003).

G.3 A statistical test for model selection

Statistical tests can be utilized in the search for the most suitable model. If a
model is a sub-model of larger model, then a likelihood ratio test can determine
if the larger model performs signi�cantly better than the sub-model. Using a
sequence of such tests a strategy for selection of the best model can be evolved.

G.3.1 Likelihood ratio tests

Let a model have parameters θ ∈ Ω0 where Ω0 ∈ Rr is the parameter space and
r = dim(Ω0) is the number of parameters in the model. Let a larger model have

1www.imm.dtu.dk/~ctsm
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parameters θ ∈ Ω where Ω ∈ Rm and dim(Ω) = m, and assume that

Ω0 ⊂ Ω (G.7)

i.e. the �rst model is a sub-model of the second model and r < m.

The likelihood ratio test

λ(YN ) =
supθ∈Ω0

L(θ;YN )

supθ∈ΩL(θ;YN )
(G.8)

where YN is the observed values, can then be used to test the hypothesis

H0 : θ ∈ Ω0 vs. Ha : θ ∈ Ω \ Ω0 (G.9)

since under H0 the test statistic −2log
(
λ(YN )

)
converges to a χ2 distributed

random variable with (m − r) degrees of freedom as the number of samples in
YN goes to in�nity. If H0 is rejected then the likelihood of the larger model
is signi�cantly higher than the likelihood of the sub-model, and it is concluded
that YN is more likely to be observed with the larger model. Hence the larger
model is needed over the sub-model to describe the information embedded in
data. For more details see Madsen and Thyregod (2010).

G.3.2 Forward selection

In a forward selection procedure the modeller starts with the smallest feasible
model and then in each step extends the model with the part that gives the
lowest p-value, i.e. the most signi�cant improvement. The possible candidates
for improvement that are selected in each iteration are the smallest possible
extensions to the current model. The procedure stops when no extensions to
the model yields a p-value below a pre-speci�ed limit, usually set to 5%.

G.4 Model selection procedure

Di�erent strategies for identifying a suitable model is proposed in the literature
and �nding an appropriate strategy depends on the speci�c modelling setup.
An purely algorithmic and exhaustive selection procedure is seldomly feasible,
hence iterative methods, in which the modeller is partly involved in the selection,
are commonly applied. Here, a forward selection procedure is suggested for
identi�cation of a suitable model for the heat dynamics. It is based on likelihood
ratio testing, which is described in Section G.3.1.
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Model �tting

Begin with the simplest
model

Likelihood-ratio tests of
extended models

End selection

Evaluate the selected model

All p-values > 5%

OK

Not OK

Figure G.2: Illustration of the model selection procedure

G.4.1 Model selection

The procedure starts by a formulation of the simplest feasible model having
parameter space Ωm and a full model with parameter space Ωfull, such that

Ωm ⊂ Ωfull. (G.10)

Within this range a set of models can be formed, in which a suitable model
is to be identi�ed. A suitable model is a su�cient model, which is the small-
est model that describes all information embedded in the data (Madsen and
Thyregod, 2010). The selection is initiated with the simplest model and then
extensions of the model are iteratively added. The selection stops when all of the
extensions to the selected model, gives a likelihood-ratio test p-value above the
pre-speci�ed limit. Hence the procedure will stop with a model from which no
larger model can be found, with which it is signi�cantly more likely to observe
the data. As mentioned above a purely algorithmic procedure is not possible,
hence the modeller must be involved to evaluate the models estimated in each
iteration. The evaluation is carried out by analyzing the properties of residuals
and parameter estimates, and if some of the properties are not in line with the
assumptions and physical reality, then the modeller may have to in�uence the
choice of model. The procedure is illustrated in Figure G.2 and the steps are

Model �tting The models which are extended from the current model are
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�tted to the data by maximum likelihood estimation of the parameters.

Likelihood-ratio tests Calculate the likelihood-ratio test statistic for the cur-
rent model versus each of the extended models. Stop if none of the tests
have a p-value below 5% and use the current model as the �nal model,
else then select the extended model which yield the lowest p-value.

Evaluate The modeller evaluates the selected extended model. If the result is
satisfactory the model is kept and next iteration can be started; if not,
the previous step should be repeated to select another extension.

If two extensions show an almost identical improvement, i.e. the p-values of
the tests are nearly equal, the selection can be branched and extensions with
di�erent parts examined separately. The procedure will then end with several
models, which cannot be tested directly against each other, and it is then up
to the modeller to decide which should be preferred. This should be done by
comparing the likelihoods, where if two models have almost equal likelihoods
the smaller model should be preferred, and furthermore by an evaluation of the
residuals and parameter estimates. It can also happen that several models have
only marginal di�erence in performance and that each of them can be considered
to be a su�cient model.

G.4.2 Model evaluation

In each step the selected model must be evaluated. This serves both to check
if the model meet the assumptions and if it gives reasonable estimates from a
physical point of view. Furthermore the evaluation can reveal model de�cien-
cies from which it can be learned which parts of the model should be further
elaborated. The evaluation should consist of the following:

• The assumption of white noise residuals should be inferred upon using the
auto-correlation function (ACF) and the cumulated periodogram (CP),
which can also reveal how well dynamics on di�erent timescales are mod-
elled.

• Plots of the inputs, outputs, and residuals. These plots can be used to
understand which e�ects are not described properly by the model.

• Evaluation of the estimated physical parameters. Clearly the results should
be consistent among di�erent models, e.g. estimate of the thermal resis-
tance of the building envelope should not change signi�cantly among the
models. Furthermore the modeller have to judge if the results are consis-
tent with reality.

377



184 Identifying suitable models for the heat dynamics of buildings

(a) (b)

Figure G.3: (a) the north facade and (b) is the south facade of the building.

G.5 Case study: model identi�cation for a build-

ing

The method is demonstrated by applying it to identify a suitable model for a
building. The building, named FlexHouse, is part of the experimental energy
system Syslab, at Risø DTU in Denmark. It is well suited for such experiments
since it has a controllable electrical heating system. Measurements consisting
of �ve minute values over a period of six days are used, for further details see
Bacher and Madsen (2010), in which a thorough description of the experiments
and data is given. This section starts with a description of the building and
measurement equipment, then the data is presented, followed by an outline of
the considered models, and �nally the model identi�cation and evaluation is
given.

G.5.1 Description of the building and measurement equip-

ment

The outer walls of the building are constructed of wood on the outside and
plaster boards on the inside, with a layer of insulation wool in between. An
image of the north facade and an image of the south facade of the building can
be seen in Figure G.3. The building rests on piles, leaving an air gab between
the ground and the building. The roof is �at and covered with roo�ng felt. The
dimensions of the �oor plan is approximately 7.5 times 16 meters. In Figure
G.4 the �oor plan of the building is shown. A server system is installed in the
building, which can control the electrical heaters located as indicated on the �oor

378



G.5 Case study: model identi�cation for a building 185

Figure G.4: The �oor plan of the building.

plan. To measure the indoor temperature Hobo U12-012 Temp/RH/Light/Ext
sensors mounted on a small piece of wood was hanged freely in the middle of each
each room. A small climate station is located two meters east of the building,
the position relative to the building is indicated in Figure G.4.

G.5.2 Data

The present study is based on data collected during a series of experiments
carried out in February to April 2009. The following time series consisting of
�ve minute average values are used:

y (◦C) A single signal representing the indoor temperature. It is formed as the
�rst principal component of the measurements of the indoor temperature
from the Hobo sensors.

Ta (◦C) Observed ambient air temperature at the climate station.

Φh (kW) Total heat input from the electrical heaters in the building.

Φs (kW/m2) The global irradiance measured at the climate station.

Plots of the time series can be found in Figure G.5. The controlled heat input is
a pseudo-random binary sequence (PRBS), which has white noise properties and
no correlation with the other inputs. It is designed to excite the heat dynamics
at several ranges of frequencies in which the time constants of the building
is expected to be, such that the information embedded in data is optimized
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for estimation of the heat dynamic properties of the building, see Madsen and
Schultz (1993).

G.5.3 Applied models

The proposed procedure is such, that the modeller starts with the simplest
model and iteratively selects more complex models. This implies �tting a set of
models from the simplest model to the most feasible complex model, denoted
the full model. In this section the set of applied models and the result of the
iterative selection procedure is described. All the models are grey-box models,
in which the physical part is stochastic linear state-space model (as presented
in Section G.2) and where the dynamics of the states can be written

dT = ATdt+ BUdt+ dω (G.11)

where T is the state vector and U is the input vector, and none of the state
variables or input variables are in A or B which only consist of parameters. All
the considered models have an input vector with three inputs

U = [Ta,Φs,Φh]T (G.12)

All the models are lumped, but with a di�erent structure, which implies that a
given parameter does not necessarily represent the same physical entity in each
model. For example the parameter Ci is representing the heat capacity of the
entire building in the simplest model, whereas this heat capacity is divided into
�ve heat capacities in the full model, in which the parameter Ci represents the
heat capacity of the indoor air. This is elaborated further in Section G.5.5.2,
where the parameter estimates for the models are presented. Furthermore it
should be kept in mind that these models are linear approximations to the real
system.

In the following sections the full and the simplest model are described, since they
represent the range of applied models. First the full model is outlined to give a
complete overview of all the individual parts, which is included in the models.
Then the simplest model is presented, since it is the �rst model applied in the
selection procedure and furthermore it illustrates how the models are lumped.
Each model is named from its state vector and where needed a few parameter
names. See G.8 for a list of RC-networks corresponding to all applied models.
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Figure G.5: The data set. From the top, the �rst plot shows the observed
indoor temperature y, the second shows the ambient air temper-
ature Ta, followed by a plot of the heat input Φh, and �nally the
lower plot shows the global irradiance Φs.
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Figure G.6: The full model TiTmTeThTsAeRia with the individual model
parts indicated. This model includes all parts which is included
in any of the applied models.

G.5.3.1 The full model TiTmTeThTsAeRia

The RC-network of the full model, which is the most complex model applied,
is illustrated in Figure G.6. This model includes all the individual parts of the
building, which it is found feasible to include in linear models, with the current
available data. The individual model parts are indicated on the �gure. The
model parts are:

Sensor The temperature sensors are modelled with a heat capacity and a ther-
mal resistance to the interior.

Interior In the full model the interior is considered to be the indoor air (again
remember that, since the models are lumped models, the building part
represented by �Interior� is mostly di�erent for each model) and it is mod-
elled as a heat capacity connected to other parts by thermal resistances.

Medium A thermal medium inside the building is the interior walls and furni-
ture, which is modelled with a heat capacity and a thermal resistance to
the interior.

Heater The heaters are modelled by a heat capacity and a thermal resistance
to the interior.

Solar The heat input from solar radiation is modelled by the global irradiance
multiplied with the e�ective window area.
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Envelope The building envelope is modelled with a heat capacity and thermal
resistances to both the interior and the ambient. A thermal resistance
directly coupled to the ambient is also included.

Ambient The ambient is represented by the observed ambient air temperature.

The full model includes �ve state variables, that each represents the temperature
in a part of the building, and they are:

Ts The temperature of the sensor, which for the full model is used as the model
output, i.e. Yk in the measurement equation

(
Equation (G.19)

)
.

Ti The temperature of the interior, i.e. the indoor air.

Tm The temperature of an interior thermal medium, i.e. interior walls and fur-
niture.

Th The temperature of the heaters.

Te The temperature of the building envelope.

The parameters of the model represent di�erent thermal properties of the build-
ing. This includes thermal resistances:

Ris between the interior and the sensor,

Rim between the interior and the interior thermal medium,

Rih between the heaters and the interior,

Ria between the interior and the ambient,

Rie between from the interior and the building envelope,

Rea between the building envelope and the ambient.

The heat capacities of di�erent parts of the building are represented by:

Cs for the temperature sensor,

Ci for the interior,

Cm for the interior walls and furniture,

Ch for the electrical heaters,
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Ce for the building envelope.

Finally two coe�cients are included, each representing an estimate of an e�ective
area in which the energy from solar radiation enters the building. They are:

Aw The e�ective window area of the building.

Ae The e�ective area in which the solar radiation enters the building envelope.

The set of stochastic di�erential equations describing the heat �ows in the full
model are

dTs =
1

RisCs
(Ti − Ts)dt+ σsdωs (G.13)

dTi =
1

RisCi
(Ts − Ti)dt+

1

RimCi
(Tm − Ti)dt+

1

RihCi
(Th − Ti) (G.14)

1

RieCi
(Te − Ti)dt+

1

RiaCi
(Ta − Ti)dt+

1

Ci
AwΦsdt+ σidωi (G.15)

dTm =
1

RimCm
(Ti − Tm)dt+ σmdωm (G.16)

dTh =
1

RihCh
(Ti − Th)dt+

1

Ch
Φhdt+ σhdωh (G.17)

dTe =
1

RieCe
(Ti − Te)dt+

1

ReaCe
(Ta − Te)dt+

1

Ce
AeΦsdt+ σedωe (G.18)

and the measurement equation is

Yk = Ts,k + ek (G.19)

since the observed temperature is encumbered with some measurement error.

G.5.3.2 The simplest model Ti

The simplest model considered is illustrated by the RC-network in Figure G.7.
The model has one state variable Ti and the following parameters:

Ria The thermal resistance from the interior to the ambient.

Ci The heat capacity of the entire building, including the indoor air, interior
walls, furniture etc., and the building envelope.

Aw is the e�ective window area of the building.
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Figure G.7: RC-network of the model Ti, which is the simplest feasible model.

The stochastic di�erential equation describing the heat �ow is

dTi

dt
=

1

RiaCi
(Ta − Ti) +

1

Ci
AwΦs +

1

Ci
Φh + σi

dωi

dt
(G.20)

and the measurement equation is

Yk = Ti,k + ek (G.21)

Note the di�erences in representation of the building parts between the simplest
and full model, e.g. Ria represent the thermal resistance of the building envelope
in the simplest model, whereas this is represented by a coupling of Ria, Rie, and
Rea in the full model.

G.5.4 Model identi�cation

The identi�cation procedure is applied to �nd a su�cient model in the set
of models ranging from Ti to TiTmTeThTsAeRia. The log-likelihood of each
model, which is �tted, is listed in Table G.1 ordered by the iterations of the
model selection. The procedure begins with the simplest model. Then in the �rst
iteration four extended models are �tted and TiTh is selected since it has the
highest log-likelihood, hence the lowest p-value of the likelihood-ratio tests (the
four models have the same number of parameters). The selection procedure is
carried out until no signi�cant extension can be found, which occurs in iteration
number �ve. During each iteration the current selected model is evaluated,
see Section G.5.5. It is found that the models selected in each iteration are all
satisfying the evaluation with respect to improvement of the results etc. In Table
G.2 the result of likelihood-ratio tests for model expansion in each iteration is
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Iteration Models

Start Ti
l(θ;YN ) 2482.6
m 6

1 TiTe TiTm TiTs TiTh
3628.0 3639.4 3884.4 3911.1
10 10 10 10

2 TiThTs TiTmTh TiTeTh
4017.0 5513.1 5517.1
14 14 14

3 TiTeThRia TiTeThAe TiTmTeTh TiTeThTs
5517.3 5520.5 5534.5 5612.4
15 15 18 18

4 TiTeThTsRia TiTmTeThTs TiTeThTsAe
5612.5 5612.9 5614.6
19 22 19

5 TiTmTeThTsAe TiTeThTsAeRia
5614.6 5614.7
23 20

Table G.1: Log-likelihood l(θ;YN ) for the �tted models ordered by iterations
of the model selection procedure and in each row by log-likelihood.
In each iteration the extended model with highest log-likelihood is
selected, which is the rightmost models in the table. The number
of estimated parameters for each model is indicated by m.

listed. Clearly, the expansions carried out in the �rst three iterations indicate
very signi�cant improvements of the model. In iteration four, the improvement is
still below 5%, whereas no signi�cant improvement is found in iteration �ve. The
procedure thus ends with TiTeThTsAe as a su�cient model, which is illustrated
by the RC-network in Figure G.8.

G.5.5 Model evaluation

In the following the selected models are evaluated as outlined in Section G.4.2.
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Iteration Sub-model Model m− r −2log(λ(y)) p-value

1 Ti TiTh 4 2857 < 10−16

2 TiTh TiTeTh 4 3212 < 10−16

3 TiTeTh TiTeThTs 4 190.5 < 10−16

4 TiTeThTs TiTeThTsAe 1 4.5 0.035
5 TiTeThTsAe TiTeThTsAeRia 1 0.12 0.73

Table G.2: Tests carried out in the model selection procedure.
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Figure G.8: The �nal selected model TiTeThTsAe with the individual model
parts indicated.

G.5.5.1 Residuals

Plots of output, inputs, and residuals for each model can be seen in Figure G.9.
For each model the auto-correlation function (ACF) of the residuals is plotted
in Figure G.10 and the cumulated periodogram (CP) in Figure G.11. It is seen
directly from the plot of the residuals from the simplest model Ti, that they
do not have white noise properties and that they are not independent of the
inputs. The ACF of the residuals also clearly show a high lag dependency, and
the CP reveals that the model is not detailed enough to describe the dynamics.
Examining the plot of the residuals for the model selected in the �rst itera-
tion, TiTh, it is seen that the level of the residuals is reduced compared to the
residuals for Ti. The ACF and CP indicate that the assumption of white noise
residuals is not ful�lled. From the plot of the residuals for the model selected in
the second iteration, TiTeTh, it is seen that the level of the residuals is reduced
dramatically, but that some dependency of the inputs is still seen, mostly from
the solar irradiance. The ACF reveals that the characteristics of the residuals
are much closer to white noise, which is also seen from the CP, indicating that
the model now describes the heat dynamics of the building quite well. The
plot of the residuals, ACF, and CP for the model selected in the third iteration

387



194 Identifying suitable models for the heat dynamics of buildings
y

T
a

Φ
h

Φ
s

Output and inputs

e k
(◦
C

)

-0
.1

0.
0

0.
1

Ti

e k
(◦
C

)

-0
.1

0.
0

0.
1 TiTh

e k
(◦
C

)

-0
.0

5
0.

05

TiTeTh

e k
(◦
C

)

-0
.0

5
0.

05

TiTeThTs

0 20 40 60 80 100 120 140

e k
(◦
C

)

-0
.0

5
0.

05

k (h)

TiTeThTsAe

Figure G.9: The upper plot is of the output and inputs, and the following
plots are of the residuals for each of the selected models. On each
plot of the residuals the model name is indicated.

388



G.5 Case study: model identi�cation for a building 195

0
1

A
C
F
(e

k
)

Ti

0
1

A
C
F
(e

k
)

TiTh

0
1

A
C
F
(e

k
)

TiTeTh

0
1

A
C
F
(e

k
)

TiTeThTs

0 5 10 15 20 25 30

0
1

Lag

A
C
F
(e

k
)

TiTeThTsAe

lag (5 min)

Figure G.10: The auto-correlation function of the residuals for each of the
selected models.

389



196 Identifying suitable models for the heat dynamics of buildings

0
1

Ti

0
1

TiTh

0
1

TiTeTh

0
1

TiTeThTs

0.0 0.1 0.2 0.3 0.4 0.5

0
1

x

TiTeThTsAe

Frequency (6/h)

Figure G.11: The cumulated periodogram of the residuals for each of the se-
lected models.

390



G.5 Case study: model identi�cation for a building 197

TiTeThTs, reveals only slight improvements compared to the previous model.
Finally the plots for the �nal selected model TiTeThTsAe, show that almost
no di�erences can be observed from the previous model. The highest level of
error can be observed where the solar irradiance is high, hence it is found that
further improvement of the model should be focused on the part in which the
solar radiation enters the building, or alternatively in letting the incremental
variance of the Wiener process depend on the solar radiation.

G.5.5.2 Parameter estimates

The parameter estimates of the selected models are evaluated in the following.
The estimates are presented in Table G.3 together with the time constants cal-
culated for each of the selected models. The total heat capacity and thermal
resistance of the building envelope estimated by the selected models are pre-
sented in Table G.4. As found by evaluating the residuals, see previous section,
the models Ti and TiTh do not describe the dynamics of the system very well,
which implies that the estimates of the heat capacities are not reliable. Esti-

Model Ti TiTh TiTeTh TiTeThTs TiTeThTsWithAe

Ci 2.07 1.36 1.07 0.143 0.0928
Ce - - 2.92 3.24 3.32
Ch - 0.309 0.00139 0.321 0.889
Cs - - - 0.619 0.0549
Ria 5.29 5.31 - - -
Rie - - 0.863 0.909 0.897
Rea - - 4.54 4.47 4.38
Rih - 0.639 93.4 0.383 0.146
Ris - - - 0.115 1.89
Aw 7.89 6.22 5.64 6.03 5.75
Ae - - - - 3.87

τ1 10.9 0.16 0.129 0.0102 0.0102
τ2 - 8.9 0.668 0.105 0.105
τ3 - - 18.4 0.786 0.788
τ4 - - - 19.6 19.3

Table G.3: The estimated parameters. The heat capacities, Cx, are in
[kWh/◦C]. The thermal resistances, Rxx, are in [◦C/kW]. The
areas, Ax, are in

[
m2
]
. The time constants, τx, are in hours. Note

that the physical interpretation for many of the parameters is dif-
ferent for each model.
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Model Ti TiTh TiTeTh TiTeThTs TiTeThTsAe

Ctotal 2.07 1.67 3.99 4.32 4.36
Renvelope 5.29 5.31 5.40 5.38 5.28
αUA 1.55 1.55 1.52 1.53 1.55

Table G.4: The total heat capacity [kWh/◦C] and thermal resistance [◦C/kW]
of the building envelope estimated by the selected models. The
UA-values αUA are in

[
W/(◦Cm2)

]
.

mates of the heat capacities found by the tree larger models are more credible,
especially it is seen that the time constants are almost equal, indicating that
the models comprise the same dynamics. The exact physical interpretation of
the smaller heat capacities Ci, Ch, and Cs cannot be given, but it is noted that
their sum, for each of the three larger models, is quite close ranging from 1.03
to 1.08 [kWh/◦C].

The estimated total thermal resistance of the building envelope and thereby the
UA-values is quite similar for all models, as seen in Table G.4.

G.6 Applications

Identi�cation of a suitable model of the heat dynamics of a building based on
frequent readings of heat consumption, indoor temperature, ambient air temper-
ature, and climate variables, will be very useful for di�erent purposes. Important
�elds of application are:

Accurate description of energy performance of the building An energy
signature of buildings can provide important information for energy- and
cost e�ective improvements of the building. The most e�ective actions
to be taken for an individual building can be identi�ed. Furthermore the
heat consumption due to physical e�ects, such as a poor isolated build-
ing envelope, can be separated from behavioral e�ects, e.g. a high indoor
temperature.

Forecasting of energy consumption for heating Forecasting of energy con-
sumption for heating can be used for integration of large amounts of renew-
able energy, such as wind- and solar energy. Implementation of electrical
heating with hot water tanks for heat storage in individual houses can be
pro�table in the near future. Knowledge of the heat dynamics of buildings
is essential to forecasting and control of such systems.

392



G.7 Conclusion 199

Indoor climate control Control of the indoor temperature, ventilation etc.
to provide a good indoor climate conditions can be carried out with meth-
ods which include models of the heat dynamics. The models can also be
extended to include the e�ect of wind and thereby provide information of
the air tightness of buildings.

G.7 Conclusion

A procedure for identi�cation of the most suitable models for the heat dynamics
of a building has been described and applied on the basis of data from an
experiment carried out in February 2009. The procedure is based on likelihood-
ratio testing combined with a forward selection strategy. The proposed models
are grey-box models, where a combination of prior physical knowledge and data-
driven modelling is utilized. The data used for the modelling consist of: climate
data measured at the location, measurements of the indoor temperature, and a
PRBS controlled heat input.

The results of the identi�cation procedure are evaluated and discussed, both
in a statistical and physical context. The evaluation reveal that the selected
model meet the assumptions of white noise residuals, hence it can be applied
to give reliable estimates consistent with reality and the results are statistically
validated. Furthermore model de�ciencies are pointed out, from which further
advancement of the model should be pursued. For the considered building this is
primarily on the model part where the solar radiation input enters the building.

It has been shown that the method is able to provide rather detailed knowledge
of the heat dynamics of the building. This includes for instance the thermal
resistance of the envelope and thereby the UA-value, parameters describing the
capabilities for storing heat, and the time constants of the building.
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G.8 RC-networks of applied models
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(d) RC-network network of TiTh.
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Ci

Ti

Interior

Φh

Ch

Rih

Th

Heater

AwΦs

Solar

Ce

Rie Rea

Te

AeΦs

Envelope

+− Ta

Ambient

(d) RC-network network of TiTeThAe.
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(c) RC-network network of TiTmTeThTs.
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G.9 Estimates of system and observation noise

parameters

The estimates of the scaling of the increments in the Wiener process in the
system equations together with the standard deviation of the observation noise
are listed in Table G.5. Considering the level of the estimated system noise for
Ti and TiTh compared to the level of the estimated system noise for each of the
three larger models, it should intuitively be higher, since Ti is a submodel of the
larger models. However, since the residuals for Ti and TiTe are not white noise,
then the system noise is almost surely not a Wiener process. Hence the de�nition
of the parameters are not valid and a direct comparison not possible. For the
three larger models TiTeTh,TiTeThTs, and TiTeThTsWithAe the estimated
level of system noise is high compared to the level of measurement noise. This
indicates that not all information is described by the model, hence that a more
complicated and possibly non-linear model could be identi�ed as more suitable
than TiTeThTsWithAe.

Model Ti TiTh TiTeTh TiTeThTs TiTeThTsWithAe

σi 0.19 4.9 ·10−6 0.017 0.13 0.18
σe 0.27 0.28 0.28
σh 1.4 4.0 ·10−5 7.2 ·10−5 2.7 ·10−5

σs 3.8 ·10−13 2.0 ·10−12

σ 1.7 ·10−11 1.7 ·10−11 2.4 ·10−6 1.1 ·10−6 1.4 ·10−6

Table G.5: The estimated values of system noise and measurement noise
related parameters. The unit of the system noise parameters
σi, σe, σh, σs is ◦C/

√
h and the unit of the measurement noise σ

is ◦C.
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MODELS OF THE HEAT DYNAMICS OF SOLAR COLLECTORS FOR
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2DTU Civil Engineering, Brovej, Building 118, DK-2800 Lyngby, Denmark

Abstract

The need for fast and accurate performance testing of solar collectors is increasing. This paper describes
a new technique for performance testing which is based on non-linear continuous time models of the heat
dynamics of the collector. It is shown that all important performance parameters can be accurately estimated
with measurements from a single day. The estimated parameters are compared with results from standardized
test methods (Fischer et al., 2004).

Modelling the dynamics of the collector is carried out using stochastic differential equations, which is
a well proven efficient method to obtain accurate estimates of parameters in physical models. The applied
method is described by Kristensen et al. (2004) and implemented in the software CTSM1. Examples of
successful applications of the method includes modelling the of the heat dynamics of integrated photo-voltaic
modules (Friling et al., 2009) and modelling of the heat dynamics of buildings (Madsen and Holst, 1995).

Measurements obtained at a test site in Denmark during the spring 2010 are used for the modelling.
The tested collector is a single glazed large area flat plate collector with selective absorber and Teflon anti
convection layer. The test rig is described in Fan et al. (2009).

The modelling technique provides uncertainty estimates such as confidence intervals for the parameters,
and furthermore enables statistical validation of the results. Such tests can also facilitate procedures for
selecting the best model to use, which is a very non-trivial task.

1 Introduction

This paper presents a new statistical approach for modelling the heat dynamics of a solar thermal collector. The
applied modelling technique facilitates application of detailed models on data sampled with a relatively high
sample rate. It is demonstrated that this allows for parameter estimation with high accuracy to be achieved with
measurements from a single day. In the present study 2 seconds values averaged to 30 seconds values are used.
Conventional non-dynamical models - by some called pseudo-dynamical models - of solar collectors cannot use
such a high sample rate due to auto-correlation of the errors caused by non-modelled dynamical effects. The
applied models are based on stochastic differential equations (SDEs), which gives the possibility to combine
physical and data-driven statistical modelling. Such models are called grey-box models. A very strong feature
of grey-box models is that they provide the possibility to estimate hidden state variables, i.e. variables in the
model which are not measured. This allows using the same data for fitting models, with which the system is
lumped differently, i.e. the physical model of the system can either be a single-state or a multi-state lumped
model, which can be required for different types of collectors. Furthermore the modelling technique facilitates
application of statistical tests to determine which model is most suitable for the given data. This is important
for model identification and the approach is demonstrated in the paper. The modelling is carried out based on
measurements from a period of 9 consecutive days in the beginning of May 2010. None of the days could have
been used for stationary testing that is still the most common test method for solar collectors. Stationary testing
requires perfect stable clear weather around noon. The measurements were performed on a single glazed large
area flat plate collector with selective absorber and Teflon anti convection layer. The collector was not brand
new, but has been in operation for 15 years, which affects the parameter values compared to todays products
of the similar design. The results from the grey-box models are compared with results from the standardized
EN 12975 Quasi Dynamic Test Method (CEN, European committee for standardization, 2006), which is based
on multiple linear regression (MLR) modelling, to see if the estimation results matches current test standards.
Finally, a thorough discussion and perspectives of the technique are given.

The paper is arranged as follows. The next section is a presentation of the theory of the applied grey-box
models, with a simple example. This is followed by a section with a description of the MLR models used and
thereafter a section with a description of all the considered grey-box models. Then the results are presented,
and finally a discussion and perspective is given before the paper ends with a conclusion.

1www2.imm.dtu.dk/˜ctsm/
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F ′(τα)enKταb(θ)GbF ′(τα)enKταdGd
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Ufa(Ta − Tf)

Tf =
Ti+To

2
To Ti

Figure 1: Diagram of ToComp1 illustrating all the energy flows included in the model.

2 Grey-box models of a dynamic system

A grey-box model is established using a combination of prior physical knowledge and statistics, i.e. infor-
mation embedded in data Kristensen et al. (2004). The prior physical knowledge is formulated by a set of
non-linear stochastic differential equations (SDEs), also called a stochastic non-linear state-space model in
continuous time. The equations describe a lumped model of the heat dynamics of the system.
The output of the solar collector is calculated by

qu = cfQf(To − Ti) (1)

where To is the outlet temperature and Ti is the inlet temperature. The output qu is power output per square
meter of collector aperture area and Qf is flow per the same area. From Perers (1997) it is known that the
output of a standard flat plate collector in first order accuracy level can be described by the heat balance

cfQf(To − Ti) = F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd − F ′U0(Tf − Ta)− (mC)e
dTf
dt

(2)

For explanation of the symbols, see page 11. A linear temperature profile through the collector is applied by
modelling the fluid temperature as a simple average

Tf =
To + Ti

2
(3)

The differential of the fluid temperature can then be written as

dTf
dt

=
1

2

dTo
dt

+
1

2

dTi
dt

(4)

which for a constant inlet temperature is

dTf
dt

=
1

2

dTo
dt

(5)

This substitution, together with the addition of a noise term, is used to form the SDE

dTo =
(
F ′U0(Ta − Tf)dt+ cfQf(Ti − To)dt+ F ′(τα)enKταb(θ)Gbdt+ F ′(τα)enKταdGddt

) 2

(mC)e
+ σdω (6)

which describes the heat dynamics for the collector in the simplest grey-box model considered in the paper. It
is denoted as ToComp1. In grey-box terminology this is called the system equation of the state-space model.
The noise term σdω is called the system noise and consist of increments of {ω}, which is a standard Wiener
process, and σ2, which is the incremental variance of the Wiener process. In this model the collector is lumped
into one single part and the state variable is the outlet temperature To. An illustration of the model is found in
Figure 1.

The physical model part is coupled with the data-driven model part with which the information embedded
in observed data is used for parameter estimation. The data-driven part in the considered example is represented
by the discrete time measurement equation

Yk = Tok + ek (7)
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Figure 2: The data as 10 minutes averaged values. The upper plot is the measured temperatures, the middle plot is the
diffuse and direct (beam) radiation, and the lowest plot is the fluid flow.

where k is the point in time tk of a measurement, Yk is the measured outlet temperature, and ek is the mea-
surement error, which is assumed to be a Gaussian white noise process with variance σ2. This assumption -
plus the assumption that W is a Wiener process - enables evaluation and tests of the performance of the model,
since such tests can show if the physical model is consistent with the observed heat dynamics of the collector.

2.1 Maximum likelihood estimation of parameters

Given a grey-box model, as described above, maximum likelihood estimates of the parameters can be obtained.
Let the N observations be represented by

YN = [YN , YN−1, . . . , Y1, Y0] (8)

then the likelihood function is the joint probability density

L(θ;YN ) =

(
N∏

k=1

p(Yk|Yk−1, θ)

)
p(Y0|θ) (9)

where p(Yk|Yk−1, θ) is a conditional density denoting the probability of observing Yk given the previous ob-
servations and the parameters θ, and where p(Y0|θ) is a parameterization of the starting conditions Kristensen
et al. (2004). The maximum likelihood estimates of the parameters are then found by

θ̂ = arg max
θ

{
L(θ;YN )

}
(10)

Due to the previously mentioned assumptions about the system and measurement noise, it follows that the
conditional densities in Equation (10) can be well approximated by Gaussian densities. Hence an extended
Kalman filter can be used to calculate the likelihood function, and an optimization algorithm can be applied to
maximize it, thereby calculating the maximum likelihood estimates, see Kristensen et al. (2004) for a detailed
discussion. This is implemented in the computer software CTSM, which has been used for carrying out the
parameter estimation. See more about the methods and software at 2 and in Kristensen and Madsen (2003).

3 Experimental setup and data

The experiments are described by Fan et al. (2009) and were carried out in the spring of 2010. The measure-
ments were obtained with a 2 seconds sample interval. For the present study models are identified for both 30

2www.imm.dtu.dk/˜ctsm
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Figure 3: The 10 minutes averaged values from days where the model ToComp1 is fitted. The upper plot is of the inlet-,
outlet-, and the ambient temperature. Below this is shown a plot of the direct- and diffuse solar radiation, followed by a plot
of the fluid flow. The lowest plot is the residuals from the fit from each day, this is referred to in a later in the paper.

seconds and 10 minutes average values. The data resampled to 10 minute average values is plotted in Figure 2.
Only time points where the angle of incidence is lower than 84 degrees are used. For the parameter estimation
it is important to acquire a period, for which the input signals are as uncorrelated as possible and cover the
typical range of operation. Periods with full cloud cover are not feasible, since there is not enough variation
in the direct radiation and in periods with no cloud cover the radiation and the module temperature is highly
correlated. Hence days with varying cloud cover are most appropriate and these days are the most common in
most locations where people traditionally live.

4 Multiple linear regression models

The EN 12975 Quasi Dynamic Test Method (CEN, European committee for standardization, 2006) is applied
to have a reference for the results from the new proposed method. The method is based on multiple linear
regression (MLR) modelling, where down to 5 minutes average values are recommended. The data was re-
sampled to 10 minutes averages, which for all 9 days gives 593 time points. MLR modelling with 5 minutes
averages was tried and the results were only marginally different. The following model structure is applied

qut = F ′(τα)enKταb(θ)Gb
t + F ′(τα)enKταdG

d
t + F ′U0∆Tt + F ′U1∆T 2

t − F ′Uw∆Ttwt − (mC)e
dT f

t

dt
+ et

(11)

where ∆Tt = T a
t − T f

t . Three models are fitted: MLR1 without F ′U1 and F ′Uw, MLR2 without F ′U1, and
MLR3 with all inputs.

5 Applied grey-box models

This section gives an overview of the applied grey-box models and the parts of the data on which the parameter
estimation was carried out. First the single state grey-box model ToComp1, described in Section 2 was fitted
to 10 minutes average values on the days with varying cloud cover. This data is plotted in Figure 3. The model
was fitted to each day separately and finally to all four days pooled together. In addition to the ToComp1 model
four other grey-box models have been fitted to the data from the 10’th of May resampled to 30 second average
values. This gives N = 1413 data points, which are plotted in Figure 4. The additional four models are
expanded as more detailed versions of ToComp1. There are two ways to expand the model: either more inputs
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Figure 4: The 30 seconds averaged data for which the modelling is applied. The upper plot is of the inlet-, outlet-, and the
ambient temperature. Below this is a plot of the direct- and diffuse solar radiation, followed by the plot of the fluid flow.

(explanatory variables) can be used, or - since the models are lumped models - a better representation can
maybe be achieved by lumping the system into more parts (also called compartments, states, zones, or nodes).
The latter approach is considered in the following. The first two expanded models are made more detailed by
lumping the collector into more than one compartment in the flow direction of the collector fluid, such that
the temperature of the collector is represented by two or more temperature state variables. This allows for a
better representation of the temperature differences between the inlet - the cold side when solar radiation level
is high - and the outlet of the collector. Furthermore this also gives a better description of the delay introduced
since it takes time for the fluid to flow through the collector. For the current setup and the flow of the 10’th of
May, this is around 1 minute. These two models are denoted by ToComp2 and ToComp3. The third expanded
model is denoted by ToTmComp1 and in this model the collector is lumped in two parts: one representing the
fluid and one representing the solid part of the collector. This is a better description of the system, in which
the solar radiation first heats up the collector which then heats up the fluid. Finally, the fourth expanded model
TmToComp2 is a combination of the two approaches, where the collector is first divided in two parts - one for
the fluid and one for the collector - which then each are divided into two compartments in the flow direction of
the fluid.

5.1 Models with multiple compartments in the flow direction

The ToComp1 model can be expanded to a nc compartment model with the system equations

dTo1 =
(
F ′U0(Ta − Tf1) + nccfQf(Ti − To1) + F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd

) 2

(mC)e
dt+ σ1dω1

(12)

dTo2 =
(
F ′U0(Ta − Tf2) + nccfQf(To1 − To2) + F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd

) 2

(mC)e
dt+ σ2dω2

...

dTonc =
(
F ′U0(Ta − Tfnc ) + nccfQf(To(nc−1) − Tonc ) + F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd

) 2

(mC)e
dt+ σ2dω2

where nc is the number of compartments. The accompanying measurement equation is

Yk = Tonck + ek (13)

Two models of this type are fitted to the data: ToComp2 with two compartments, and ToComp3 with three
compartments. A diagram illustrating ToComp2 is shown in Figure 5
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QfcfTo1

Figure 5: The ToComp2 model with two compartments in the flow direction of the fluid.

5.2 Models divided into a collector and a fluid part

The TmToComp1 model illustrated in Figure 6, where the panel is divided into two parts, has the system
equation

dTm =
(
F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd + Ufm(Tf − Tm) + Uma(Ta − Tm)

) 1

(mC)e
dt+ σmdωm (14)

dTo =
(
Ufm(Tm − Tf) + cfQf(Ti − To)

) 2

(mC)e
dt+ σodωo

It is seen that the solar radiation enters the collector part, which then heats up the fluid by conduction. Of the
considered models the most detailed model is TmToComp2, in which the collector is both divided into two parts
and 2 compartments in the fluid flow direction for each part. The following system equations is formulated for
a model with two parts having each nc compartments

dTm1 =
(
F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd + Ufm(Tf1 − Tm1) + Uma(Ta − Tm1)

) 1

(mC)e
dt+ σm1dωm1

dTo1 =
(
Ufm(Tm1 − Tf1) + nccfQf(Ti − To1)

) 2

(mC)e
dt+ σo1dωo1 (15)

dTm2 =
(
F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd + Ufm(Tf2 − Tm2) + Uma(Ta − Tm2)

) 1

(mC)e
dt+ σm2dωm2

dTo2 =
(
Ufm(Tm2 − Tf2) + nccfQf(To1 − To2)

) 2

(mC)e
dt+ σo2dωo2

...

dTmnc =
(
F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd + Ufm(Tfnc − Tmnc ) + Uma(Ta − Tmnc )

) 1

(mC)e
dt+ σmncdωmnc

dTonc =
(
Ufm(Tmnc − Tfnc ) + nccfQf(To1 − Tonc )

) 2

(mC)e
dt+ σoncdωonc

i.e. the TmToComp2 model has nc = 2.

F ′(τα)enKταb(θ)Gb

F ′(τα)enKταdGd

QfcfTi

QfcfTo

Uma(Ta − Tm)

Tf =
Ti+To

2To Ti

TmUfm(Tm − Tf)

Figure 6: Diagram illustrating the TmToComp1 model. The collector is divided into a part representing the fluid and another
part representing the collector.
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Table 1: Parameter estimates with MLR models. The standard deviation of the estimate is in parenthesis to the right of the
estimated value. Insignificant terms are marked with ∗.

Parameter MLR1 MLR2 MLR3 Units

F ′(τα)en 0.737 (0.0031) 0.741 (0.0030) 0.746 (0.0043)
b0 0.166 0.172 0.175
Kταd 0.891 0.904 0.895
F ′U0 2.18 (0.45) 2.13 (0.045) 2.02 (0.082)

[
W/(m2K)

]
F ′U1 0.0031∗ (0.0020)

[
W/(m2K)

]
F ′Uw 0.192 (0.034) 0.179 (0.035)

[
W/(m2K)

]
(mC)e 4699 (130) 4751 (127) 4788 (129)

[
J/(m2K)

]

6 Results

In this section the results of the parameter estimation with the described models are presented. Firstly, the
results from the traditional MLR models fitted on the entire data set of 10 minutes values is presented, secondly
from grey-box model ToComp1 fitted on individual days of 10 minutes values, and finally all grey-box models
fitted on 30 seconds values from the 10’th of May. The parameter estimates together with the their standard
deviation are presented in tables, and time series of the residuals together with other relevant error measures
are plotted. A short outline of the model identification carried out is also provided.

6.1 MLR models

The parameter estimates are listed in Table 1. The estimates are clearly within the typical range for this type
of collector, see Perers (1993) and Solar Keymark homepage (Solar Keymark, 2011). The collector under test
has been in operation for 15 years, this affects the parameter values compared to todays products. The standard
deviations show that the parameters are very accurately determined. The only non-significant term are F ′U1 in
MLR3, which leads the conclusion that MLR2 is the most appropriate model of the three. For evaluation of the
model fit the measured collector output versus the predicted is plotted in Figure 7. It is seen that the measured
output is predicted very well, although it does seems like the variance increase slightly with the output. This
is most likely due to the periods with low flow rate for some of the days. Furthermore the inlet temperature
variation range is not fully as high as specified in the standard for the selected days.

6.2 ToComp1 fitted to 10 minutes values

The single state grey-box model defined in Equation (6) is fitted to both 10 minutes values from four separate
days and all four pooled together. The estimated parameter are listed in Table 2. Clearly the parameter esti-
mates matches the estimates from the MLR models quite well considering the standard deviations, especially
the parameters F ′(τα)en and F ′U0, which are the most important parameters for evaluation of the collector
performance. A very apparent deviation of the results between the days is that the lowest uncertainty is found
on the 5’th of May. This is not a surprise considering a plot of the residuals, which is shown in the lowest plot
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Figure 7: Measured versus the predicted collector output from MLR2.
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Table 2: Parameter estimates from ToComp1 fitted to 10 minutes values from single days and all four days pooled. The
standard deviation is given in parenthesis to the right of the estimate.

2011-05-02 2011-05-04 2011-05-05 2011-05-10 Pooled

F ′(τα)en 0.755 (0.032) 0.785 (0.032) 0.746 (0.0086) 0.758 (0.014) 0.763 (0.011)
b0 0.204 (0.039) 0.201 (0.046) 0.18 (0.017) 0.182 (0.023) 0.195 (0.020)
Kταd 0.903 (0.42) 0.857 (0.11) 0.819 (0.027) 0.867 (0.049) 0.839 (0.034)
F ′U0 2.07 (1.1) 2.4 (0.35) 1.73 (0.13) 2.16 (0.26) 2.05 (0.18)
(mC)e 6050 (1060) 6200 (1130) 5040 (279) 5020 (92) 5666 (638)

Table 3: The parameter estimates from the grey-box models fitted to 30 seconds values from the 10’th of May. Note that the
parameters represent different physical entities from the three first model (prefixed with To) to the last two models (prefixed
with TmTo) and therefore cannot be directly compared. For each estimate the standard deviation is given in parenthesis to
the right of the estimate.

ToComp1 ToComp2 ToComp3 TmToComp1 TmToComp2

F ′(τα)en 0.767 (0.0036) 0.751 (0.0027) 0.743 (0.0015) 0.816 (0.0025) 0.792 (0.00096)
b0 0.172 (0.0063) 0.177 (0.0017) 0.18 (0.00044) 0.188 (0.0038) 0.189 (0.00067)
Kταd 0.942 (0.015) 0.933 (0.0042) 0.931 (0.002) 0.929 (0.008) 0.927 (0.0021)
Ufa 2.55 (0.076) 2.31 (0.049) 2.2 (0.023)
Ufm 49.8 (2.5) 83.7 (0.83)
Uma 2.37 (0.042) 2.22 (0.016)
Cf 6960 (80) 8020 (17) 8580 (36) 3750 (114) 3390 (54)
Cm 962 (64) 1690 (22)

of Figure 3. The level of the residuals from the fit to this day are smaller than for the other days, and this is
apparently due to the level of the fluid flow, which is plotted above the residuals in the figure. The parameter
estimates based on the four days pooled together seems like a compromise between the estimates from the
single days.

6.3 Grey-box models fitted to 30 seconds values

The five grey-box models described are fitted to the data from the 10’th of May resampled to 30 seconds
averages. The parameter estimates are listed in Table 3. First, it is noticed that the parameters of the three
models prefixed with To are not representing the same physical entities as they do in the models prefixed with
ToTm, since the collector is lumped differently in the models. The increase of the value of F ′(τα)en from To
to ToTm models is found to be consistent with the physical representation, since the reference temperature is
closer to the absorber surface. This means that the estimated optical parameter for the ToTm models is rather
τα. The value F ′ is in the range of 0.95 for this collector design, which leads to an estimate of F ′(τα)en to
0.752 for ToTmComp2.

Plots of the residual series from each model are shown in Figure 8. Clearly the level of the residuals
decrease from the upper to the lower plot and the highest errors occur when a cloud passes by and the level of
direct solar radiation shifts rapidly. The decreased level of the variation of the residuals indicates that the more
detailed models are better. To verify this, statistical likelihood-ratio tests is applied as described by Bacher
and Madsen (2011). The log-likelihood of the fit for each model is listed in Table 4, together with the number
of parameters, and the p-value of tests for model expansion. The tests for expansion is a model versus the
expanded model a single step to the right in the table, except for nl2TmToComp1, from which the expansion is
from nl2ToComp2. The results of the tests are very clear, all expansions are significant. Hence it is concluded
that nl2TmToComp2 is the most suitable model of these five models and that it might very well be, that the
model could be further expanded. Finally, the auto-correlation function (ACF) and the cumulated periodogram
(CP) Madsen (2007) of the residuals are shown in Figure 9. The dashed blue lines indicate 95% confidence
intervals for a white noise. According to theory, presented in Section 2, then if the residual series are white
noise this indicates that the grey-box model is consistent with the observed heat dynamics of the collector.
From the ACF and CP it is seen that the residuals are close to having white noise properties. Interestingly it is
seen that residuals from ToComp1 are more white noise like than the residuals from TmToComp1. It is found
that this is caused by a low signal to noise ratio in the residuals for ToTmComp1, i.e. the dominating errors
are on a high frequency which have characteristics like white noise. As the detailed models includes the faster
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Figure 8: The residual series from the grey-box models fitted to 30 seconds values from the 10’th of May. The greyed series
are the direct solar radiation.

dynamics, the high frequency errors are decreased, and they do not “hide” the remaining signal components in
the residuals. However for the most detailed model almost all the systematic variation in the data is described.

7 Discussion and applications

In general the results from the MLR models and the grey-box are found to match well, but it is noted that the
result the from grey-box model ToComp1 fitted on separate days - which have different conditions, especially
in the fluid flow level - gives some variation to the estimates. Therefore it is concluded that attention has to be
put on the experimental design in order to ensure stable and accurate parameter estimation for collector testing
with grey-box models. Regarding the more detailed grey-box models fitted to 30 seconds values, it is found that
since the likelihood is not saturated, i.e. the likelihood-ratio tests are very significant, further expansion of the
TmToComp2 is still possible. From the plots of the residuals in Figure 8, it is seen that the error level certainly
is highest just after the direct radiation shifts its level very rapidly, and it is this effect that seems to be improved
as the more detailed models are used. Hence the main improvement from the one-state model ToComp1 to the
multi-state models are in the description of the fast dynamics, which includes the delay caused by movement of
the fluid through the collector, e.g. when the direct radiation shifts from a high to a low level, the fluid passing
out of the collector are still hot for some time. This also indicates the importance of the experiment design,
since for dynamic condition the frequency, with which the system is excited, affect which grey-box model is
optimal. For example if the direct radiation varies with a lower frequency, a simpler model might be in favour
over more complex models, whereas for variation with a higher frequency the inclusion of the fast dynamics

Table 4: Log-likelihood, number of parameters, and p-value of likelihood-ratio tests for model expansion for each of the
grey-box models.

nl2ToComp1 nl2ToComp2 nl2ToComp3 nl2TmToComp1 nl2TmToComp2

Log-likelihood -35.51 454.8 661 1185 1307
Number of prm. 9 12 14 13 18
p-value ≈ 0 ≈ 0 ≈ 0 ≈ 0
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Figure 9: Plots of the auto-correlation function (ACF) and the cumulated periodogram of the residuals from each of the
grey-box models fitted on 30 seconds values.

are more important. Therefore if the main excitation of the system, i.e. the direct radiation, can be controlled,
it will be possible to achieve fast and accurate parameter estimation. This could be carried out with a simple
shadowing device, which should be controlled with PRBS signal to gain maximum information of the heat
dynamics of the system (Madsen and Holst, 1995). Higher accuracy can also be achieved with more systematic
variation of the inlet temperature, this also applies for the MLR modelling. The right experiment design will
allow inclusion of night measurements - which will improve the separation of heat loss and radiation effects
and thereby more accurate estimation - and furthermore allow for inclusion of more effects, such as wind and
non-linear radiation effects between the collector and the surroundings. Finally, dividing the collector into
more parts, e.g. one representing the fluid, one representing the metal, and one representing the surrounding
collector body could be tried.

7.1 Applications

The most apparent application of grey-box modelling of the heat dynamics of solar collectors are for the de-
velopment of fast and accurate performance testing, especially for some types of collectors multi-state models
are needed to obtain a required level of accuracy. Especially vacuum tube collectors of dewar type can have an
extra time delay due to the high thermal resistance between the heat transfer fluid and absorber surface that is
not fully taken up by the present collector model used for performance testing. The new approach described
here, particularly with the TmTo models, has the potential to deal with this in an accurate way. Additional
applications include optimization of operation with model predictive control, which the grey-box models are
perfectly suited for. Especially larger solar thermal plants might be able to gain much in performance by
applying grey-box modelling and model predictive control.

8 Conclusion

Successful modelling of a the heat dynamics of a solar collector with grey-box models has been carried out.
The results have been compared to the EN-standard MLR modelling and they are in agreement. It is shown that
high accuracy parameter estimates was obtained with measurements from a single day resampled to 30 seconds
average values. This will enable lowering of testing time significantly compared to current test methods.
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Highly detailed models of the heat dynamics of the solar collector can be applied, which can be useful for
many types of collectors. It is found that the conditions under which the experiment was carried out influence
the parameter estimates. Therefore it is concluded that experiment design is the key to achievement of fast,
reliable and high accuracy collector testing methods with grey-box models. Experiments with PRBS variation
of direct radiation with shadowing device should be carried out to obtain higher accuracy and reproducibility of
the results, and finally models with more explanatory variables, such as wind and long-wave radiation should
be further elaborated.

Nomenclature

The same notation as in Perers (1997) are used as widely as possible.

Collector model parameters:

F ′(τα)en Zero loss efficiency for direct radiation at normal incidence

Kταb(θ) Incidence angle modifier for direct radiation

Kταd Incidence angle modifier for diffuse radiation

F ′U0 Heat loss coefficient at (Ta − Tf) = 0,
[
W/(m2K)

]
.

F ′U1 Temperature dependence of the heat loss coefficient,
[
W/(m2K2)

]
.

F ′Uw Wind dependence of the heat loss coefficient,
[
Ws/(m3K)

]
.

(mC)e Effective thermal capacitance including piping for the collector,
[
J/(m2K)

]
.

Cf Fluid thermal capacitance,
[
J/(m2K)

]
.

Cm Collector thermal capacitance,
[
J/(m2K)

]
.

Ufa Heat transmission coefficient from fluid to ambient,
[
J/(Km2)

]
.

Ufm heat transmission coefficient from fluid to module,
[
J/(Km2)

]
.

Uma heat transmission coefficient from module to ambient,
[
J/(Km2)

]
.

nc Number of compartments

Measured variables:

Gd Diffuse radiation onto the collector plane,
[
W/m2

]
.

Gb Direct radiation onto the collector plane,
[
W/m2

]
.

Ta Ambient air temperature near the collector, [◦C].

To Outlet temperature of the collector, [◦C].

Ti Temperature of the inlet to the collector, [◦C].

Qf Flow of the fluid per square meter of collector,
[
l/(sm2)

]
.

θ incidence angle for the direct solar radiation onto the collector plane, [radians].

w Wind speed, [m/s].

Derived variables etc.:

Tf Average temperature of the collector fluid, [◦C].

Tm Average temperature of the collector, [◦C].

qu Collector power output,
[
W/m2

]
.

cf Specific heat capacity of the fluid, [J/(lK)].

References

P. Bacher and H. Madsen. Identifying suitable models for the heat dynamics of buildings. Energy & Buildings, 43(7):
1511–1522, 2011. ISSN 03787788. doi: 10.1016/j.enbuild.2011.02.005.

410



CEN, European committee for standardization. En 12975-2:2006, thermal solar systems and components - collectors - part
2: Test methods, 2006.

J. Fan, Z. Chen, S. Furbo, B. Perers, and B. Karlsson. Efficiency and lifetime of solar collectors for solar heating plants.
Proceedings of the ISES Solar World Congress 2009: Renewable Energy Shaping Our Future, 2009.

S. Fischer, W. Heidemann, H. Müller-Steinhagen, B. Perers, P. Bergquist, and B. Hellström. Collector test method under
quasi-dynamic conditions according to the european standard en 12975-2. Solar Energy, 76(1-3):117–123, 2004. ISSN
0038092x. doi: 10.1016/j.solener.2003.07.021.
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Online Short-term Solar Power Forecasting
Peder Bacher, Henrik Madsen, Henrik Aalborg Nielsen

Abstract—This paper describes two methods for online fore-
casting of power production from PV systems. The methods are
suited for online forecasting in many applications and in this
paper they are used to predict hourly values of solar power for
horizons up to 32 hours. The data used is hourly observations
of solar power from a single PV system located on a rooftop
in a small village in Denmark. One approach is a two-stage
method in which a statistical normalization of the solar power
is obtained using a clear sky model. The clear sky model is
found using statistical smoothing techniques, which ensure that
local phenomena are directly modelled from data, as opposed
to applying a deterministically derived clear sky model. In
the second stage forecasts of the normalized solar power are
calculated using adaptive linear time series models. A second
approach is to apply conditional parametric models with both
autoregressive input and NWPs exogenous input. The results
indicate that for forecasts up to two hours ahead the most
important input is the available observations of solar power, while
for longer horizons NWPs are the most important input. A root
mean square error improvement over a persistence model around
40 % is achieved for 1 and 2 hour horizons and around 35 %
for longer horizons.

Index Terms—Solar power, prediction, forecasting, time series,
photovoltaic, numerical weather predictions, clear sky model

I. INTRODUCTION

The increasing installed solar power capacity rises the chal-
lenges of grid integration. The need for efficient forecasting
methods is evident and the research activities within the
topic is increasing, see for example [1], [2], [3], and [4].
In this paper methods for online forecasting are presented.
The methods are suited for forecasting of solar power for
different systems and here they are applied to forecast the
power production of a single 4 kW-peak PV-system installed
on a rooftop of a single family house. Due to the fluctuating
nature of solar power such forecasts are essential for optimal
grid integration and will be essential for solar power smart
grid technology. The applications include energy trading for
large solar power producers, and diurnal peak-shaving and
cost optimization for smaller systems with storage capacity
in battery packs (e.g. provided in an electrical car). Two
approaches are considered. One is based on a two-stages
approach: first the systematic dependency of the position of
the sun relative to the PV panel are removed with a clear sky
model, and secondly the resulting process is forecasted with
time-adaptive linear time series methods. The clear sky model
is calculated with non-linear statistical techniques, which will
also model the local conditions, such as e.g. shadows from
elements in the surrounding environment and snow cover. In

P. Bacher and H. Madsen are with the Department of Informatics, Technical
University of Denmark, DK-2800 Lyngby, Denmark (e-mail: pb@imm.dtu.dk)
H.A. Nielsen is with ENFOR A/S, Lyngsø Alle 3, DK-2970 Hørsholm,
Denmark (URL: www.enfor.eu)

the second approach numerical weather predictions (NWPs)
are used as input to conditional parametric non-linear models
[5] to forecast the solar power. Finally, the two approaches
are combined by normalizing the forecast with the clear sky
model, and finally using this as input to the linear forecasting
model, such that an ARX model is formed.

The paper is organized as follows. First the data and how
it is preprocessed is described. The next section contains an
outline of the clear sky model, followed by a section where
all the forecasting models are described. Then an evaluation is
given and the results are presented, followed by a discussion
of the results and ideas for further work. Finally, the paper
ends with a conclusion.

II. DATA

The data used in this study consist of hourly mean values
of solar power from a 4 kW-peak PV-system and NWPs of
global irradiance. The NWPs are provided by the Danish
Meteorological Institute using the HIRLAM mesoscale NWP
model. The data covers the entire year 2006.

The time series of hourly observed solar power is

{Pt; t = 1, . . . , N} (1)

where N = 8760. The NWPs have a calculation time of 4
hours, which is taken into consideration, such that e.g. the
forecast from 2009-01-01 00:00 are only available from 2009-
01-01 04:00. The NWPs are provided in a time resolution of
3 hours. They are pre-processed into time series of hourly
values, such that the most recent available forecast k hours
ahead is selected each hour. The time series for a given k of
the direct radiation is{

Gnwp
t+k|t; t = 1, . . . , N

}
(2)

A. Pre-processing

The solar power data is plotted for each hour of the day
in Figure 1. The solar radiation is zero at night, hence the
observed solar power is also zero. For the current data set
only periods, for a given hour of the day longer than 40 days
in which the solar power is different from zero, are included
for evaluation of the model performance. This is illustrated in
Figure 1, where the non-included periods are grayed out.

III. CLEAR SKY MODEL

Forecasting effectively using linear time series methods calls
for stationarity of the underlying process [6]. The process that
generates the solar power is not stationary, which is seen by
plotting quantiles of the distribution of solar power conditioned
on the time of day, see Figure 2. Clearly the distribution of
solar power is not independent of the time of day.
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Fig. 1. The solar power data. The greyed area are not included in the evaluation of the model performance.

Most of this dependency can be removed by a normalization
using a clear sky model

τt =
Pt

P cs
t

(3)

where Pt is the observed solar power, P cs
t is the estimated

clear sky solar power, and τt is the normalized solar power.

A. Statistically estimated clear sky solar power

The clear sky solar power is estimated using a statistical
non-linear and adaptive model. Quantile regression [7] locally
weighted in the day of year and time of day dimension is
applied. This is carried out fully causal, i.e. only past values
are used. The clear sky model is

P̂ cs
t = q0.99(P1, P2, . . . , Pt, hy, htod) (4)

where q0.99 is the 99% quantile based on the solar power
values up to time t. The bandwidths hday and htod, are in
the day of year and time of day dimension, respectively. The
bandwidths control how “locally” the model is fitted, i.e. a
lower bandwidth puts more emphasis on data which is close
in the two dimensions. The local weighting function is an
Epanechnikov kernel. The applied bandwidths are

hday = 100 days, htod = 3 hours (5)

which were found by visual inspection of the fitted clear sky
curve. Finally, it is noted that second-order polynomials were
applied in the time of day dimension to include curvature into
the model. The estimated clear sky solar power is shown in
Figure 3.

One advantage of the normalization is that it will auto-
matically adapt to changes in the system, such as degraded
performance or changes in the surroundings e.g. snow cover
and shadowing effects. It can as well be used for monitoring of
the solar system, since degraded performance from the same
time of year will result in a lower clear sky solar power curve.
Plots of the quantiles of the distribution of normalized solar
power conditional on the time of day are shown in Figure 2,
from which it is seen that the normalized solar power process
is considerably less dependent on the time of day and therefore
a much more stationary process. It is noted that further work
could include physical considerations into the clear sky model.

[t]

IV. FORECASTING MODELS

In this section a description of the applied forecasting
models is given. The models can be divided into models using
linear time series models to forecast the normalized solar
power: autoregressive (AR) and autoregressive with exogenous
inputs (ARX) models - and models which forecast in a single
stage: conditional parametric (CP) models. Each model is fitted
separately for each horizon, such that the same model structure
is used, but the parameters are estimated separately for each
horizon.

A. Reference model

To compare the performance of prediction models, and es-
pecially when making comparisons between different studies,
a common reference model is essential. The reference model
for solar power used in this study is the best performing naive
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Fig. 2. The 0, 4%, ..., 100% quantiles of the distribution of the solar power
and the normalized solar power conditioned on the time of day. Values above
1.5 has been clipped, which was the case for 6 values.

predictor for a given horizon. Two naive predictors of solar
power are found to be relevant. Persistence

pt+k = pt + et+k, (6)

and diurnal persistence

pt+k = pt−s(k) + et+k (7)
s(k) = 24 + k mod 24 (8)

where s(k) ensures that the latest diurnal observation is used,
i.e. the value which, depending on the horizon, is either 24 or
48 hours before the time point that is to be forecasted.

B. Autoregressive models

Autoregressive (AR) models are applied to forecast the
normalized solar power. These models can include either
the latest available observation or the latest available diurnal
observation, or both, as input. The models are fitted with k-step
recursive least squares with forgetting factor [8]. The model
formulated as a k-step AR model

τt+k = m+ a1τt + a24τt−s(k) + et+k (9)
s(k) = 24 + k mod 24 (10)

where the function s(k) ensures that the latest observation
of the diurnal component is included. The model without
the diurnal component, denoted AR, performs best on short
horizons

τt+k = m+ a1τt + et+k (11)

and is included in the evaluation. The AR model with only
the diurnal performs better on longer horizons, but is inferior
to the models including the NWPs.

Fig. 3. The estimated clear sky solar power.

C. Conditional parametric models

Conditional parametric (CP) models where the coefficients
are conditional on the time of day and time of year are applied
with both past solar power observations and NWPs as inputs.
The CP model with the latest solar power observation as input
is

Pt+k = m+ a
(
tday, ttod, Pt

)
Pt + et+k (12)

where the coefficient function is a non-linear function of the
solar power. It is denoted as CPP . The CP model with NWPs
of global radiation as input is

Pt+k = m+ b
(
tday, ttod, G

nwp
t+k|t

)
Gnwp

t+k|t + et+k (13)

where Gnwp
t+k|t is the k-hour ahead NWP of global radiation.

This model is denoted CPNWP . Finally, the model with both
inputs

Pt+k =m+ a
(
tday, ttod, Pt

)
Pt (14)

+ b
(
tday, ttod, G

nwp
t+k|t

)
Gnwp

t+k|t + et+k (15)

is denoted CPNWP,P .
In the following the coefficients dependency of the time

of day for CPNWP is elaborated on. It is noted that the
bandwidths are optimized for each horizon. Plots of the fitted
forecasting function b

(
tday, ttod, G

nwp
t+k|t

)
for k = 24 hours

are shown in Figure 4. It is seen how the slope of the function
is lower in the morning, than in the middle of the day. This
is naturally caused by the higher angle of incidence in the
morning, which cause less horizontal radiation to be absorbed
due to reflection. Likewise for the afternoon. Finally, non-
linearity in the fitted function is seen.

D. Autoregressive model with exogenous input

The AR model is be expanded to include the forecast of
the CP models, thus combining information in past observed
solar power and NWPs. The solar power forecasts from the
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CP is normalized with the clear sky model by

τ̂nwp
t+k|t =

P̂ nwp
t+k|t

P cs
t−s(k)

(16)

s(k) = fspd + k mod fspd (17)

where fspd = 24 is the sample frequency in number of
samples per day. The ARX1 model is

τt+k = m+ a1τt + b1τ
nwp
t+k|t + et+k (18)

V. EVALUATION

The methods used for evaluating the prediction models are
inspired by [9]. The clear sky model, RLS, and CP fitting do
not use any degrees of freedom and the data set is therefore
not divided into a training set and a test set. It is only for the
optimization of the kernel bandwidths and the forgetting factor
that the entire data set is used. The period before 2006-03-01
is considered as a burn-in period and not used for calculating
the error measures.

A. Error measures

The Root Mean Square Error for the k’th horizon is

RMSEk =

(
1

N

N∑

t=1

e2t+k

) 1
2

(19)

where et+k is the k-hourly prediction error. The RMSEk is
used as the main evaluation criterion (EC) for the performance
of the models. The Normalized Root Mean Square Error is
found by

NRMSEk =
RMSEk

pmax
(20)

where pmax is the maximum observed solar power output. The
mean value of the RMSEk for a range of horizons

RMSEkstart,kend
=

1

kend − kstart + 1

kend∑

k=kstart

RMSEk (21)

is used as a summary error measure. When comparing the
performance of two models the improvement

IEC = 100 · EC ref − EC

EC ref
(%) (22)

is used, where EC is the considered evaluation criterion. When
calculating the error measures it is important to consider how
to handle missing values for the solar power forecasts. The
problem is handled by replacing missing forecast values with
forecast values from the reference model Ref.

B. Completeness

In order to evaluate a model for its performance regarding
missing forecast values a measure is defined. It is denoted
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completeness. The completeness of a forecast for horizon k,
is the ratio of the total sum of solar power and the summed
solar power for time points where the forecasts are not missing

Ck =

∑N
t=1 Pt I

(
P̂t|t−k

)
∑N

t=1 Pt

(23)

where I() is the indicator function which is 0 if P̂t|t−k is
missing, and 1 if not. Only the included values are used, i.e.
not values during nighttime.

VI. RESULTS

In this section the results are presented and evaluated. The
RMSEkstart,kend

improvements for relevant ranges of horizons
are listed in Table I. For selected models the RMSEk is shown
in the upper plot of Figure 5 and the completeness in the lower.

Considering the improvements it is seen that most of the
models perform very well on either the short horizons or the
longer horizons. Starting with short horizons (1 to 2 hours) the
four models using the latest observed solar power have better
performance than CPNWP , which only uses the NWPs. Using
the combination of observed solar power and NWPs improves
the performance, except on longer horizons where using only
NWPs are slightly better. Considering the performance of AR,
CPP , and ARX it is seen that the RMSEk increase really fast

TABLE I
IMPROVEMENTS IN PERCENT FOR SELECTED RANGES OF HORIZONS.

Model IRMSE1,2
IRMSE3,17

IRMSE18,32

AR 34.3 7.4 12.6
CPP 36.7 17 11.5
CPNWP 25 38.4 33.1
CPNWP,P 40.8 37.6 31.4
ARX 40.1 15.9 25

as the horizon increases and reach the reference model around
a horizon of 10 hours. This is simply because the models are
using night values (which are missing) to forecast day values.
This is also seen in the completeness of the AR and ARX
model.

VII. DISCUSSION AND APPLICATIONS

This section contains a short discussion of the results and
ideas for further work, and ends with an outline of applica-
tions.

Considering the improvement achieved over the reference
model the forecasting models are found to perform very well.
Clearly the quality of the NWPs of solar radiation is the most
influential source of error, hence improved NWPs will improve
the performance. Especially using NWPs of direct and diffuse
radiation should be tried. Regarding further improvement of
the forecasting models, it is suggested that the following
should be considered:
• Application of regime models and hidden Markov models

to handle different aspects of forecasting for e.g. low
and high radiation values, and it might be useful to use
different forecasting models for different types of cloud
conditions. This is ideal to apply in the setting of the CP
models.

• For the CP models using higher order polynomials in
the day of year and time of day dimensions should
improve the models. It was tried but didn’t improve the
performance, but as the NWPs are getting better this will
most likely be important.

• A thorough evaluation of the forecast errors to find ideas
for how the models can be improved.

The applications for solar power forecasting include the
integration of PV systems into the electricity grid, especially
for smart grids. The solar power forecasts can be used as
input to model predictive control to optimize the operation
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of the PV system. This will enable diurnal peak-shaving and
cost optimization for smaller systems with storage capacity
in battery packs (e.g. provided in an electrical car). For large
solar power producers forecasting is essential for optimized
energy trading.

The method is furthermore well suited for monitoring the
performance of PV systems. Measures of the performance can
be derived from the CP models, with which systems can be
compared on an absolute scale. Sudden high deviation from
the CP forecasting model will allow for very fast detection of
failures in the system. For an individual system the change in
performance over time can also be assessed by monitoring the
clear sky curve for unusual behavior, and compare the change
from year to year.

VIII. CONCLUSION

Two approaches for solar power forecasting are presented
and applied to forecast hourly values for horizons up to 32
hours. Both a method based on a two-stage approach, where
first the solar power is normalized with a statistical clear-sky
model, and a method in which the solar power is forecasted
in a single step. The normalization with a clear sky model
removes most of the non-stationarity caused by the changing
position of the sun relative to the PV panel. This a pre-
requisite for optimal application of linear time series models.
Conditional parametric models are used to include NWPs
of global radiation, and a one-stage approach, solely based
on conditional parametric models, is presented. A root mean
square improvement over a persistence reference model on
short horizons (1 to 2 hours) is in average 40%, and in average
35% on the longer horizons. The method can furthermore be
applied to monitor and check the performance of PV systems.
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Abstract

This paper describes a new approach to online forecasting of power production from PV systems. The method is suited to online
forecasting in many applications and in this paper it is used to predict hourly values of solar power for horizons of up to 36 h. The data
used is 15-min observations of solar power from 21 PV systems located on rooftops in a small village in Denmark. The suggested method
is a two-stage method where first a statistical normalization of the solar power is obtained using a clear sky model. The clear sky model is
found using statistical smoothing techniques. Then forecasts of the normalized solar power are calculated using adaptive linear time ser-
ies models. Both autoregressive (AR) and AR with exogenous input (ARX) models are evaluated, where the latter takes numerical
weather predictions (NWPs) as input. The results indicate that for forecasts up to 2 h ahead the most important input is the available
observations of solar power, while for longer horizons NWPs are the most important input. A root mean square error improvement of
around 35% is achieved by the ARX model compared to a proposed reference model.
� 2009 Elsevier Ltd. All rights reserved.

Keywords: Solar power; Prediction; Forecasting; Time series; Photovoltaic; Numerical weather predictions; Clear sky model; Quantile regression;
Recursive least squares
1. Introduction

Efforts to increase the capacity of solar power produc-
tion in Denmark are concentrating on installing grid con-
nected PV systems on rooftops. The peak power of the
installed PV systems is in the range of 1- to 4-kWp, which
means that the larger systems will approximately cover the
electricity consumption (except heating) of a typical family
household in Denmark. The PV systems are connected to
the main electricity grid and thus the output from other
power production units has to be adjusted in order to bal-
ance the total power production. The cost of these adjust-
0038-092X/$ - see front matter � 2009 Elsevier Ltd. All rights reserved.
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ments increases as the horizon of the adjustments decreases
and thus improved forecasting of solar power will result in
an optimized total power production, and in future power
production systems where energy storage is implemented,
power forecasting is an important factor in optimizing uti-
lization of storage facilities (Koeppel and Korpas, 2006).

The total electricity power production in Denmark is
balanced by the energy market Nord Pool, where electricity
power is traded on two markets: the main market Elspot
and a regulation market Elbas. On Nord Pool the produc-
ers release their bids at 12:00 for production each hour the
following day, thus the relevant solar power forecasts are
updated before 12:00 and consist of hourly values at hori-
zons of 12- to 36-h. The models in this paper focus on such
forecasts, but with the 1- to 11-h horizons also included.

Interest in forecasting solar power has increased and
several recent studies deal with the problem. Many of these
consider forecasts of the global irradiance which is
0
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Nomenclature

p solar power (W)
pcs clear sky solar power (W)
s normalized solar power (–)
t time index (–)
k forecast horizon index (–)
i, j miscellaneous indexes (–)
pt observation of average solar power (W)
p̂tþkjt k-step prediction of solar power (W)
p̂cs

t estimated clear sky solar power (W)
ĝi;k ith update of NWP of global irradiance (W/m2)
ĝ00

k;t NWP of global irradiance updated at 00:00
(W/m2)

ĝ12
k;t NWP of global irradiance updated at 12:00

(W/m2)

p00
k;t observation of solar power corresponding to ĝ00

k;t
(W)

p12
k;t observation of solar power corresponding to ĝ12

k;t
(W)

st normalized solar power (–)
ŝtþkjt k-step prediction of normalized solar power (–)
ŝnwp

t NWPs transformed into normalized solar power
(–)

xt day of year (–)
yt time of day (–)
et+k k-step prediction error (–)
q quantile level (–)
h bandwidth of smoothing kernel (–)
k forgetting factor (–)

P. Bacher et al. / Solar Energy 83 (2009) 1772–1783 1773
essentially the same problem as forecasting solar power.
Two approaches are dominant:

� A two-stage approach in which the solar power (or glo-
bal irradiance) is normalized with a clear sky model in
order to form a more stationary time series and such
that the classical linear time series methods for forecast-
ing can be used.
� Another approach in which neural networks (NNs) with

different types of input are used to predict the solar
power (or global irradiance) directly.

In a study, Chowdhury and Rahman (1987) make sub-
hourly forecasts by normalizing with a clear sky model.
The solar power is divided into a clear sky component,
which is modelled with a physical parametrization of
the atmosphere, and a stochastic cloud cover component
which is predicted using ARIMA models. Sfetsos and
Coonick (2000) use NNs to make one-step predictions
of hourly values of global irradiance and compare these
with linear time series models that work by predicting
clearness indexes. Heinemann et al. (2006) use satellite
images for horizons below 6 h, and in (Lorenz et al.,
2007) numerical weather predictions (NWPs) for longer
horizons, as input to NNs to predict global irradiance.
This is transformed into solar power by a simulation
model of the PV system. Hocaoglu et al. (2008) investi-
gate feed-forward NNs for one-step predictions of hourly
values of global irradiance and compare these with sea-
sonal AR models applied on solar power directly. Cao
and Lin (2008) use NNs combined with wavelets to pre-
dict next day hourly values of global irradiance. Different
types of meteorological observations are used as input to
the models; among others the daily mean global irradi-
ance and daily mean cloud cover of the day to be
forecasted.
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This paper describes a new two-stage method where first
the clear sky model approach is used to normalize the solar
power and then adaptive linear time series models are
applied for prediction. Such models are linear functions
between values with a constant time difference, where the
model coefficients are estimated by minimizing a weighted
residual sum of squares. The coefficients are updated regu-
larly, and newer values are weighted higher than old values,
hence the models adapt over time to changing conditions.

Normalization of the solar power is obtained by using a
clear sky model which gives an estimate of the solar power
in clear (non-overcast) sky at any given point in time. The
clear sky model is based on statistical smoothing techniques
and quantile regression, and the observed solar power is the
only input. The adaptive linear prediction is obtained using
recursive least squares (RLS) with forgetting. It is found
that the adaptivity is necessary, since the characteristics of
a PV system are subject to changes due to snow cover,
leaves on trees, dirt on the panel, etc., and this has to be
taken into account by an online forecasting system.

The data used in the modelling is described in Section 2.
The clear sky model used for normalizing the solar power is
defined in Section 3 followed by Section 4 where the adap-
tive time series models used for prediction are identified. In
Section 5 an approach to modelling of the uncertainty in
the forecasts is outlined. The evaluation of the models
and a discussion of the results are found in Section 6 and
finally the conclusions of the study are drawn in Section 7.
2. Data

The data used in this study is observations of solar
power from 21 PV systems located in a small village in Jut-
land, Denmark. The data covers the entire year 2006. Fore-
casts of global irradiance are provided by the Danish



0 200 400  600 800
NWPs of global irradiance (W M2)

So
la

r p
ow

er
 (W

)
0

10
00

20
00
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the corresponding NWPs of global irradiance with 24-h horizon. Hence
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Meteorological Institute using the HIRLAM mesoscale
NWP model.

The PV array in each the 21 PV systems is composed of
‘‘BP 595” PV modules and the inverters are of the type ‘‘BP
GCI 1200”. The installed peak power of the PV arrays is
between 1020 W peak and 4080 W peak, and the average
is 2769 W peak. Let pi,t denote the average value of solar
power (W) over 15 min observed for the ith PV system at
time t. These observations are used to form the time series

fpt; t ¼ 1; . . . ;Ng; ð1Þ
where

pt ¼
1

21

X21

i¼1

pi;t: ð2Þ

This time series is used throughout the modelling. The time
series covers the period from 01 January 2006 to 31 Decem-
ber 2006. The observations are 15-min values, i.e.
N = 35040. Plots of {pt} are shown in Fig. 1 for the entire
period and for two shorter periods.

The NWPs of global irradiance are given in forecasts of
average values for every third hour, and the forecasts are
updated at 00:00 and 12:00 each day. The ith update of
the forecasts is the time series

ĝi;k; k ¼ 1; . . . ; 12f g; ð3Þ
which then covers the forecast horizons up to 36 h ahead,
and is given in W/m2.

Time series are resampled to lower sample frequencies
by mean values and when the resampled values are used
this is noted in the text. In order to synchronize data with
different sample frequencies, the time point for a given
mean value is assigned to the middle of the period that it
covers, e.g. the time point of an hourly value of solar power
from 10:00 to 11:00 is assigned to 10:30.
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Fig. 1. The observations of average solar power used in the study. Top: The
selected periods.
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As an example of the NWPs of global irradiance Fig. 2
shows values at time of day 10:30 of {pt} resampled to 3-h
interval values plotted versus the corresponding fĝi;kg val-
ues with a 24-h horizon. Clearly the plot indicates a signif-
icant correlation. Hence it is seen that there is information
in the NWPs, which can be utilized to forecast the solar
power.
3. Clear sky model

A clear sky model is usually a model which estimates the
global irradiance in clear (non-overcast) sky at any given
time. Chowdhury and Rahman (1987) divide the global
irradiance into a clear sky component and a cloud cover
component by

G ¼ Gcs � sc; ð4Þ
ul Sep Nov Jan

May 02

Aug 05

solar power over the entire year 2006. Bottom: The solar power in two
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where G is the global irradiance (W/m2), and Gcs is the
clear sky global irradiance (W/m2). Finally, sc is the trans-
missivity of the clouds which they model as a stochastic
process using ARIMA models. The clear sky global irradi-
ance is found by

Gcs ¼ I0 � sa; ð5Þ
where I0 is the extraterrestrial irradiance (W/m2). sa is the
total sky transmissivity in clear sky which is modelled by
atmospheric dependent parametrization.

In this study the same approach is used, but instead of
applying the factor on global irradiance it is applied on
solar power, i.e.

p ¼ pcs � s; ð6Þ
where p is the solar power (W) and pcs is the clear sky solar
power (W). The factors s and sc are much alike, but since
the clear sky model developed in the present study esti-
mates pcs by statistical smoothing techniques rather than
using physics, the method is mainly viewed as a statistical
normalization technique and s is referred to as normalized
solar power.

The motivation behind the proposed normalization of
the solar power with a clear sky model is that the normal-
ized solar power (the ratio of solar power to clear sky solar
power) is more stationary than the solar power, so that
classical time series models assuming stationarity (Madsen,
2007) can be used for predicting the normalized values. The
non-stationarity is illustrated in Fig. 3 where modified box-
plots indicate the distribution of solar power pt as a func-
tion of time of day. Clearly a change in the distributions
over the day is seen and this non-stationarity must be con-
sidered. Fig. 4 shows the same type of plot for the normal-
ized solar power and it is seen that the distributions over
the day are closer to being identical. Thus the effect of
the changes over the day is much lower for the normalized
solar power than for the solar power.
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Fig. 3. Modified boxplots of the distribution of the solar power as a
function of time of day. The boxplots are calculated with all the 15-min
values of solar power, i.e. covering all of 2006. At each time of the day the
box represents the center half of the distribution, from the first to the third
quantile. The lower and upper limiting values of the distribution are
marked with the ends of the vertical dotted lines, and dots beyond these
indicate outliers.
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The clear sky model is defined as

pcs ¼ fmaxðx; yÞ; ð7Þ

where pcs is the clear sky solar power (W), x is the day of
year and y is the time of day. The function fmax(�,�) is as-
sumed to be a smooth function and thus fmax(�,�) can be
estimated as a local maximum (Koenker, 2005). Fig. 5
shows the solar power plotted as a function of x and y,
and the estimated clear sky solar power f̂ maxð�; �Þ is shown
as a surface in Fig. 6. Due to outliers the weighted quantile
regression method outlined in Appendix A is used to find
the local maximum. The f̂ maxð�; �Þ is then used to form
the output of the clear sky model as the time series

p̂cs
t ; t ¼ 1; . . . ;N

� �
; ð8Þ

where p̂cs
t is the estimated clear sky solar power (W) at time

t, and N = 35040. The normalized solar power is now de-
fined as

st ¼
pt

p̂cs
t

; ð9Þ

and this is used to form time series of normalized solar
power

fst; t ¼ 1; . . . ; 35040g: ð10Þ
Fig. 5. The solar power as a function of the day of year, and the time of
day. Note that only positive values of solar power are plotted.
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For each (xt,yt) corresponding to the solar power obser-
vation pt, weighted quantile regression estimates the q

quantile by a Gaussian two-dimensional smoothing kernel,
defined in Appendix A. The smoothing kernel is used to
form the weights applied in the quantile regression. As seen
in Fig. 7, which shows the smoothing kernel used, the
weights in the day of year dimension w(xt,xi,hx), are
decreasing as the absolute time differences are increasing.
Similarly for the weights in the time of day dimension
w(yt,yi,hy). The applied weights are finally found by multi-
plying the weights from the two dimensions. The choice of
the quantile level q to be estimated and the bandwidth in
each dimension, hx and hy, is based on a visual inspection
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of the results. A level of q = 0.85 was used since this gives
st � 1 for days with clear sky all day, as seen in Fig. 8. The
plot for days with varying cloud cover in Fig. 9 shows that
estimates where st > 1 occur. These are ascribed to reflec-
tions from clouds and varying level of water vapour in
the atmosphere. Future work should elaborate on the
inclusion of such effects in the clear sky model.

For small p̂cs
t values the error of st is naturally increasing

and at nighttime the error is infinite. Therefore all values of
p̂cs

t where

p̂cs
t

max p̂cstf gð Þ < 0:2; ð11Þ

are removed from {st}. The function max p̂cs
t

� �� �
gives the

maximum value in p̂cs
t

� �
.

The estimates of clear sky solar power are best in the
summer period. The bad estimates in winter periods are
caused by the sparse number of clear sky observations. It
should also be possible to improve the normalization
toward dusk and dawn, and thus lower the limit where val-
ues in p̂csf g are removed, either by refining the modelling
method or by including more explanatory variables such
as e.g. air mass.

Finally, it is noted that the deterministic changes of
solar power are really caused by the geometric relation
between the earth and the sun, which can be represented
in the current problem by the sun elevation as x and sun
azimuth as y. The clear sky solar power was also modelled
in the space spanned by these two variables, by applying
the same statistical methods as for the space spanned by
day of year and time of day. The result was not satisfac-
tory, i.e. the estimated clear sky solar power was less accu-
rate, probably because neighboring values in this space are
not necessarily close in time and thus changes in the sur-
roundings to the PV system blurred the estimates.

4. Prediction models

Adaptive linear time series models (Madsen, 2007) are
applied to predict future values of the normalized solar
power st. The inputs are: lagged observations of st and
transformed NWPs ŝnwp

t . Three types of models are
identified:
p
p̂cs

l 2 Sep 14 Oct 17 Nov 3

τ

r. The time-axis ticks refer to midday points, i.e. at 12:00. The upper plot
er plot shows the normalized solar power s.
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� A model which has only lagged observations of st as
input. This is an autoregressive (AR) model and it is
referred to as the AR model.
� A model with only ŝnwp

t as input. This is referred to as
the LMnwp model.
� A model with both types of input. This is an autoregres-

sive with exogenous input (ARX) model and it is
referred to as the ARX model.

The best model of each type is identified by using the
autocorrelation function (ACF).

4.1. Transformation of NWPs into predictions of normalized
solar power

In order to use the NWPs of global irradiation ĝi;k as
input to the prediction models, these are transformed into
ŝnwp

t which are meteorological based hourly predictions of
st. This is done by first transforming ĝi;k into solar power
predictions and then transforming these by the clear sky
model. The time series fĝi;kg, defined in (3), holds the ith
NWP forecast of 3-h interval values, and was updated at

timei ¼ t0 þ ði� 1Þ � 12h; ð12Þ

where t0 = 2006-01-0 100:00. Thus the time series with sam-
ple period of one day

ĝ00
k;t; t ¼ 1; . . . ; 364

n o
¼ ĝi;k; i ¼ 1; 3; . . . ; 727f g; ð13Þ

consist of all the NWPs updated at time of day 00:00 at
horizon k, i.e. the superscript ‘‘00” forms part of the name
of the variable. Similarly the time series

ĝ12
k;t; t ¼ 1; . . . ; 364

n o
¼ ĝi;k; i ¼ 2; 4; . . . ; 728f g; ð14Þ

consist of all the NWPs updated at time of day 12:00. The
corresponding time series of solar power covering the iden-
tical time intervals are, respectively

fp00
k;t; t ¼ 1; . . . ; 364g ¼

fpt; t ¼ k; ð1 � 8þ kÞ; . . . ; ð363 � 8þ kÞg ð15Þ

and
425
p12
k;t; t ¼ 1; . . . ; 364

n o
¼ pt; t ¼ k þ 4; ð1 � 8þ k þ 4Þ; . . . ;f

363 � 8þ k þ 4Þð g; ð16Þ

where {pt} has been resampled to 3-h interval values. The
NWPs are modelled into solar power predictions by the
adaptive linear model

p̂00
k;t ¼ bt þ at ĝ00

k;t þ et: ð17Þ

Note that the hat above the variable indicates that these
values are predictions (estimates) of the solar power. A
similar model is made for the NWP updates at time of
day 12:00 giving p̂12

k;t. The interpretion of the coefficients
bt and at is not further elaborated here, but it is noted
that they are time dependent in order to account for
the effects of changing conditions over time, e.g. the
changing geometric relation between the earth and the
sun, dirt on the solar panel. This adaptivity is obtained
by fitting the model with k-step recursive least squares
(RLS) with forgetting, which is described in Appendix
B. In order to use the RLS algorithm, p00

k;t has to be
lagged depending on k. Each RLS estimation is opti-
mized by choosing the value of the forgetting factor k
from 0.9,0.905, . . ., 1 that minimizes the root mean square
error (RMSE).

The last steps in the transformation of the NWPs is to
normalize p̂00

k;t and p̂12
k;t with the clear sky model, and resam-

ple up to hourly values by linear interpolation. Finally, the
time series

ŝnwp
t ; t ¼ 1; . . . ; 8760

� �
ð18Þ

of the NWPs of global irradiance transformed into predic-
tions of normalized solar power is formed, and this is used
as input to the ARX prediction models as described in the
following. More details can be found in Bacher (2008).
4.2. AR model identification

To investigate the time dependency in {st}, i.e.
dependency between values with a constant time difference,
the ACF is calculated and plotted in Fig. 10. Clearly an
AR(1) component is indicated by the exponential decaying
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pattern of the first few lags and a seasonal diurnal AR
component by the exponential decaying peaks at
lag = 24,48,. . .. By considering only first-order terms this
leads to the 1-step AR model

stþ1 ¼ mþ a1st þ a2st�23 þ etþ1: ð19Þ

And a reasonable 2-step AR model is

stþ2 ¼ mþ a1st þ a2st�22 þ etþ2: ð20Þ

Note that here the 1-step lag cannot be used, since this is
st+1, i.e. a future value, and thus the latest observed value
is included instead. Formulated as a k-step AR model

stþk ¼ mþ a1st þ a2st�sðkÞ þ etþk; ð21Þ
sðkÞ ¼ 24þ k mod 24; ð22Þ

where the function s(k) ensures that the latest observation
of the diurnal component is included. This is needed, since
for k = 25 the diurnal 24-h AR component cannot be used
and instead the 48-h AR component is used. This model is
referred to as the AR model.
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Fig. 11 shows the ACF of {et+k}, which is the time series
of the errors in the model for horizon k, for six selected
horizons after fitting the AR model with RLS, which is
described in Appendix B. The vertical black lines indicate
which lags are included in the model. For k = 1 the corre-
lation of the AR(1) component is removed very well and
the diurnal AR component has also been decreased consid-
erably. There is high correlation left at lag = 24,48, . . ..
This can most likely be ascribed to systematic errors caused
by non-stationarity effects left in {st}, and it indicates that
the clear sky model normalization can be further opti-
mized. For k = 2 and 3 the grayed points show the lags that
cannot be included in the model and the high correlation of
these lags indicate that information is not exploited. The
AR model was extended with higher order AR and diurnal
AR terms without any further improvement in perfor-
mance, see Bacher (2008).

4.3. LMnwp model identification

The model using only NWPs as input

stþk ¼ mþ b1ŝ
nwp
tþkjt þ etþk ð23Þ

is referred to as LMnwp. It is fitted using RLS and the ACF
of {et+k} is shown in Fig. 12 for two horizons. For k = 1
clearly correlation is left from an AR(1) component, but
as seen for both horizons the actual NWP input removes
diurnal correlation very well.

4.4. ARX model identification

The model using both lagged observations of st and
NWPs as input is an ARX model. The LMnwp revealed
an exponential decaying ACF for short horizons and thus
an AR(1) term is clearly needed, whereas adding the diur-
nal AR component has only a small effect. The results show
that in fact the diurnal AR component can be left out, but
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it is retained since this clarifies that no improvement is
achieved by adding it, this is showed later. The model

stþk ¼ mþ a1st þ a2st�sðkÞ þ b1ŝ
nwp
tþkjt þ etþk ð24Þ

is referred to as the ARX model. The model is fitted using
RLS and the ACF of {et+k} is plotted in Fig. 13. It is seen
that the AR(1) component removes the correlation for the
short horizons very well. The ARX was extended with high-
er order AR and diurnal AR terms without any further
improvements in performance.
427
4.5. Adaptive coefficient estimates

The plots in Fig. 14 show the online coefficient estimates
for the AR model, where a value of k = 0.995 is used since
this is the value that minimizes the RMSEk best for all hori-
zons in the current setting. Clearly the values of the coeffi-
cient estimates change over time and this indicates that the
adaptivity is needed to make an optimal model for online
forecasting.

5. Uncertainty modelling

Extending the solar power forecasts, from predicting a
single value (a point forecast) to predicting a distribution
increases their usefulness. This can be achieved by model-
ling the uncertainties of the solar power forecasts and a
simple approach is outlined here. The classical way of
assuming normal distribution of the errors will in this case
not be appropriate since the distribution of the errors has
finite limits. Instead, quantile regression is used, inspired
by Møller et al. (2008) where it is applied to wind power
forecasts. Plots of {st} versus ŝtf g for a given horizon
reveal that the uncertainties depend on the level of ŝ.
Fig. 15 shows such plots for horizons k = 1 and k = 24.
The lines in the plot are estimates of the 0.05, 0.25, 0.50,
0.75 and 0.95 quantiles of the probability distribution func-
tion of s as a function of ŝ. The weighted quantile regres-
sion with a one-dimensional kernel smoother, described
in Appendix A, is used.

Fig. 15 illustrates that the uncertainties are lower for ŝ
close to 0 and 1, than for the mid-range values around
0.5. Thus forecasts of values toward overcast or clear sky
have less uncertainty than forecasts of a partlyovercast
sky, which agrees with results by Lorenz et al. (2007). Fur-
ther work should extend the uncertainty model to include
NWPs as input.

6. Evaluation

The methods used for evaluating the prediction models
are inspired by Madsen et al. (2005) where a framework
for evaluation of wind power forecasting is suggested.
The RLS fitting of the prediction models does not use
any degrees of freedom and the dataset is therefore not
divided into a training set and a test set. It is, however,
noted that the clear sky model and the optimization of k
does use the entire dataset, and thus the results can be a lit-
tle optimistic. The values in the burn-in period are not used
in calculating the error measures. In Fig. 14 the burn-in
periods for the AR model are shown.

6.1. Error measures

The k-step prediction error is

etþk ¼ ptþk � p̂tþkjt: ð25Þ

The root mean square error (RMSE) for the kth horizon is
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RMSEk ¼
1

N

XN

t¼1

e2
tþk

 !1
2

: ð26Þ

The RMSEk is used as the main evaluation criterion (EC)
for the performance of the models. The normalized root
mean square error (NRMSE) is found by
NRMSEk ¼
RMSEk

pnorm

; ð27Þ

where either

pnorm ¼ �p ¼ 1

N

XN

t¼1

pt; ð28Þ

or pnorm is the average peak power of the 21 PV systems.
The mean value of the RMSEk for a range of horizons
42
RMSEks;ke ¼
1

ke � ks þ 1

Xke

k¼ks

RMSEk ð29Þ

is used as a summary error measure. When comparing the
performance of two models the improvement

IEC ¼ 100 � ECref � EC
ECref

ð%Þ ð30Þ

is used, where EC is the considered evaluation criterion.
6.2. Reference model

To compare the performance of prediction models, and
especially when making comparisons between different
studies, a common reference model is essential. A reference
model for solar power is here proposed as the best perform-
8
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ing naive predictor for the given horizon. Three naive pre-
dictors of solar power are found to be relevant. Persistence

ptþk ¼ pt þ etþk; ð31Þ

diurnal persistence

ptþk ¼ pt�sðkÞ þ etþk; ð32Þ
sðkÞ ¼ fspd þ k mod f spd; ð33Þ

where s(k) ensures that the latest diurnal observation is
used and fspd is the sample frequency in number of samples
per day, and diurnal mean

ptþk ¼
1

n

Xn

i¼1

pt�sðk;iÞ þ etþk ð34Þ

sðk; iÞ ¼ i � fspd þ k mod f spd; ð35Þ
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which is the mean of solar power of the last n observations
at the time of day of pt+k. The value of n is chosen such that
all past samples are included.

Fig. 16 shows the RMSEk for each of the three naive
predictors. It is seen that for k 6 2 the persistence predictor
is the best while the best for k > 2 is the diurnal persistence
predictor. This model is referred to as the Reference model.
6.3. Results

Examples of solar power forecasts made with the ARX
model are shown in Fig. 17 for short horizons and in
Fig. 18 for next day horizons. It is found that the fore-
casted solar power generally follows the main level of the
solar power, but the fluctuations caused by sudden changes
in cloud cover are not fully described by the model.

The NRMSEk is plotted for each model in Fig. 19.
Clearly the performance is increasing from the Reference

model to the AR model and further to the ARX model.
The differences from using either the solar power or the
NWPs, or both, as input become apparent from these
results.

At k = 1 the AR model that only uses solar power as
input is better than the LMnwp which only uses NWPs as
input, but at k = 2, . . ., 6 the LMnwp is better, though only
slightly. This indicates that for making forecasts of hori-
zons shorter than 2 h, solar power is the most important
input, whereas for 2- to 6-h horizons, forecasting systems
using either solar power or NWPs can perform almost
equally. The ARX model using both types of input does
have an increased performance at all k = 1, . . ., 6 and thus
8 12 18Aug 20 12 18Sep 19 12 18Oct 19 12 18Nov 19

p
p̂
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ons k = 1, . . .,6 made with the ARX model.
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ons k = 19, . . ., 29 made with the ARX model.



Table 1
Summary error measures of improvements compared to the Reference

model for short horizons k = 1, . . ., 6 and next day horizons k = 19, . . ., 29.

Models IRMSE1;6
ð%Þ IRMSE19;29

ð%Þ
AR over Reference 27 17
LMnwp over Reference 25 36
ARX over Reference 35 36
LMnwp over AR �2 23
ARX over AR 12 23
ARX over LMnwp 13 1
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combining the two types of input is found to be the supe-
rior approach.

For k = 19, . . ., 29, which are the next day horizons, very
clearly the LMnwp model and the ARX model perform bet-
ter than the AR model. Since the LMnwp model and the
ARX model perform almost equally, it is seen that no
improvement is achieved from adding the solar power as
input, and thus using only the NWPs as input is found to
be adequate for next day horizons.

A summary of the improvement in performance is calcu-
lated using (29) and (30). The improvements compared to
the Reference model are calculated for the four models
by IRMSE1;6

for short horizons and IRMSE19;29
for next day hori-

zons. The results are shown in Table 1. These results natu-
rally show the same as stated above, though the difference
at k = 1 from AR to LMnwp cannot be seen. These results
show that a RMSE improvement of around 35% over the
Reference model can be achieved by using the ARX model.
7. Conclusions

Inspired by previous studies, the present method for
solar power forecasting has been developed from scratch.
A new approach to clear sky modelling with statistical
smoothing techniques has been proposed, and an adaptive
prediction model based on RLS makes a solid framework
allowing for further refinements and model extensions,
e.g. by including NWPs of temperature as input. The adap-
tivity of the method makes it suited to online forecasting
43
and ensures comprehension of changing conditions of the
PV system and its surroundings. Furthermore, the RLS
algorithm is not computer intensive, which makes updating
of forecasts fast. The clear sky model used to normalize the
solar power delivers a useful result, but can be improved,
especially for the estimates toward dawn and dusk, by
using polynomial-based kernel regression. A procedure
based on quantile regression is suggested for calculating
the varying intervals of the uncertainty of the solar power
predictions and the results agree with other studies. The
best performing prediction model is an ARX model where
both solar power observations and NWPs are used as
input. The results indicate that for horizons below 2-h solar
power is the most important input, but for next day hori-
zons no considerable improvement is achieved from using
available values of solar power, so it is adequate just to
use NWPs as input. Thus, depending on the application
of the forecasting system using only either of the inputs
can be considered, and a lower limit of the latency, at
which solar power observations are needed for the forecast-
ing system, can be different. Finally, it is noted that a com-
parison to other online solar power forecasting methods,
e.g. Lorenz et al. (2007) and Hocaoglu et al. (2008), has
not been carried out, but that such a study would be infor-
mative in order to describe strengths and accuracy of the
different proposed methods.
Appendix A. Weighted quantile regression

The solar power time series {pt, t = 1, . . .,N} is the real-
ization of a stochastic process {Pt, t = 1, . . .,N}. The esti-
mated clear sky solar power at time t is p̂cs

t and it is
found as the q quantile of fP t , the probability distribution
function of Pt. The problem is reduced to estimating p̂cs

t

as a local constant for each (xt,yt), where x is the day of
year and y the time of day. This is done by weighted quan-
tile regression in which the loss function is

qðq; �iÞ ¼
q�i; �i P 0;

ð1� qÞ�i; �i < 0;

�
ð36Þ
0
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where �i ¼ pi � p̂cs
t . The fitting of p̂cs

t is then done by

p̂cs
t ¼ arg min

p̂cs
t

XN

i¼1

kðxt; yt; xi; yiÞ � qðq; �iÞ; ð37Þ

where

kðxt; yt; xi; yiÞ ¼
wðxt; xi; hxÞ � wðyt; yi; hyÞPN
i¼1wðxt; xi; hxÞ � wðyt; yi; hyÞ

ð38Þ

is the two-dimensional multiplicative kernel function which
weights the observations locally to (xt,yt) (Hastie and Tibsh-
irani, 1993). Details of the minimization are found in
Koenker (2005). In each dimension a Gaussian kernel is used

wðxt; xi; hxÞ ¼ fstd
jxt � xij

hx

� �
; ð39Þ

where fstd is the standard normal probability density func-
tion. A similar kernel function is used in the y dimension,
and the final two-dimensional kernel is found by multiply-
ing the two kernels as shown in (37).
Appendix B. Recursive least squares

Fitting of the prediction models is done using k-step
recursive least squares (RLS) with forgetting, which is
described in the following using the ARX model

stþk ¼ mþ a1st þ a2st�sðkÞ þ b1ŝ
nwp
tþkjt þ etþk; ð40Þ

as an example. The regressor at time t is

XT
t ¼ 1; st; st�sðkÞ; ŝ

nwp
tþkjt

	 

: ð41Þ

The parameter vector is

hT ¼ ðm; a1; a2; b1Þ; ð42Þ
and the dependent variable

Y t ¼ st: ð43Þ
Hence the model can be written as

Y t ¼ XT
t hþ et: ð44Þ

The estimates of the parameters at t are found such that

ĥt ¼ arg min
h

StðhÞ; ð45Þ

where the loss function is

StðhÞ ¼
Xt

s¼1

kt�s Y s � XT
s h

� �2
: ð46Þ

This provides weighted least squares with exponential for-
getting. The solution at time t leads to

ĥt ¼ R�1
t ht; ð47Þ
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see Madsen (2007), where

Rt ¼
Xt

s¼1

kt�sXsX
T
s ; ht ¼

Xt

s¼1

kt�sXsY s: ð48Þ

The k-step RLS-algorithm with exponential forgetting is
then

Rt ¼ kRt�1 þ Xt�kXT
t�k; ð49Þ

ĥt ¼ ĥt�1 þ R�1
t Xt�k Y t � XT

t�k ĥt�1

	 

; ð50Þ

and the k-step prediction at t is

bY tþk ¼ XT
t ĥt: ð51Þ
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Abstract 
A first research version is now in operation of a software package for multiple linear regression (MLR) 

modeling and analysis of solar collectors according to ideas originating all the way from Walletun et. al. 

(1986), Perers, (1987 and 1993). The tool has been implemented in the free and open source program R 

http://www.r-project.org/. Applications of the software package includes: visual validation, resampling and 

conversion of data, collector performance testing analysis according to the European Standard EN 12975  

(Fischer et al., 2004), statistical validation of results, and the determination of collector incidence angle 

modifiers without the need of a mathematical function (Perers, 1997). The paper gives a demonstration with 

examples of the applications, based on measurements obtained at a test site at DTU in Denmark (Fan et al., 

2009). The tested collector is a single glazed large area flat plate collector with selective absorber and teflon 
anti convection layer. 

The package is intended to enable fast and reliable validation of data, and provide a united implementation 

for MLR testing of solar collectors. This will furthermore make it simple to replicate the calculations by a 

third party in order to validate the results. Finally more advanced methods can be implemented and easily 

shared as extensions to the package, for example methods for statistical estimation of the incidence angle 

modifier with non-linear functions for collectors with more complicated optics. 

The overall advantage of this kind of tool and analysis is that it is almost the inverse of simulation. Therefore 

the model and parameters will be very well validated for application in later use for system simulation, even 

if the test is no real system test. Also for annual collector performance calculations with a new Excel tool 

connected to EN 12975 (Kovacs, 2011) this built in validation gives an extra quality assurance.  

 

Introduction 
A large database is created during a normal solar collector test according to the EN12975 (2006) standard. 

To have a fast check and efficient evaluation of the data there is a need for a software that can run through 

the data quickly. Some of the steps are check and selection of OK data points, scaling of units and 

conversion of raw data to an appropriate MLR input form and finally statistically estimated collector 

parameters can be reported. When applying stationary testing (SS) a larger amount of data, has to be 

collected compared to a quasi dynamic test (QDT). But the number of data points finally used in the analysis 

to get the collector parameters is much larger in the QDT method. Therefore a fast and efficient evaluation 

tool is very desirable.  

 

For the QDT method several parameter identification methods can be used. One of them is Multiple Linear 
Regression (MLR). In opposition to what you normally think, due to the word Linear,  the collector model 

can still be highly nonlinear in the terms, when using MLR. Also stepwise identification using so called 

“dummy variables” can be applied to identify a parameter in different ranges of the database in the same run. 

This is for example very useful for collectors with an incidence angle behavior that can’t be described with a 

simple mathematical function. A big advantage of the MLR method proposed in the QDT method is also that 

a time sequence of data without gaps is not needed. Therefore the deselection of data points due intermittent 

problems with for example the test rig, test object or sensors is no problem. 

 

In Sweden an Excel tool has been developed at SP www.sp.se for the analysis of QDT test results. This is 

used for all kinds of collectors. When the database becomes large, and when highly asymmetric collectors 

are investigated, Excel has limitations in capacity and the first steps have been taken to develop an 

alternative tool using the open source statistical and graphical software “R” http://www.r-project.org/ 
 

Some of the ideas implemented here come from the period when the first steps towards the MLR/QDT 

method was taken and access to the Minitab statistical software was available. This work was done in 

connection to the IEA SH&C Task III cooperation for collector and system testing. Walletun et. al. (1986), 

Perers, (1987 and 1993). 

 

The overall advantage of this kind of tool and analysis is that it is almost the opposite of simulation so the 

model and parameters will be very well validated for application in later use for system simulation even if 
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the test is no real system test. Also for standardized annual collector performance calculations with a newly 
developed Excel tool for EN 12975  Perers et. al. (2011) this built in validation in the QDT method and this 

tool gives an extra quality assurance. 

  

The test design is also very important and should be a systematic emulator of all normal operating states for 

the collector in a real system, plus some extra extreme states of high and low operating temperature to 

separate the model parameters from each other.   

 

This principle can be further improved in the EN12975 QDT method. The QDT method was very much 

restricted in the standard writing to also give stationary test (SS) data points in the same test period. 

Therefore a perfect constant inlet temperature was specified during all test days. In this respect the SS 

method is far from an all day model plus parameter validation, even if the model plus parameters are very 

well defined for clear sky conditions within a certain diffuse fraction range, that is the requirement during 
testing. The built in error due to varying diffuse fraction during an SS test, is quantified and a correction 

method is proposed in Kovacs et. al. (2011) 

 

The proposed evaluation tool can be extended to also select and evaluate stationary collector test data if the 

test sequence is run according to the SS method. MLR is already applied to determine the stationary collector 

parameters and efficiency curve in an SS test, but in a limited form for only tree parameters. 

 

 

1. Description of the main parts of the tool 
The tool can be divided in a number of important steps from reading of raw data until final results. 

1) Raw test data reading into the software 
2) Input of collector parameters as Aperture area, Tilt and Orientation. Latitude and Longitude of the 

test site. 

3) Organisation of the data in a standardized format including units for further analysis 

4) Check of data and removing obviously wrong data points like negative solar radiaton, temperatures 

or other variables out of range. (This can be caused by power failures or repair of sensors or wires 

for example). Plots of raw data can be a very efficient check too to see strange or wrong values. 

5) Creation of the collector model terms in a standardized way like the term (Tm-Ta) or (Tm-Ta)2 or 

the dTf/Dt capacitance term. Note that the collector model terms are set up in output power form 

and not efficiency form so that the parameters set derived in the analysis will minimize the error in 

collector output power and not the error in efficiency like in the SS method. 

6) Re-sampling from the time step in raw data like 30 sec averages or 2 sec instantaneous values to a 

time step suitable for the model analysis, normally 5-10 min averages, presently when using just a 
one node capacitance correction term. 

7) Check of the cross correlation of the input series in the collector model to see that the requirement 

for independency is fulfilled and that the input variables like inlet temperature and incidence angles 

are varied enough during the test to achieve reliable parameter values. This is an often forgotten 

requirement not only for an MLR analysis. It is not possible to identify accurate and reliable 

parameters if for example the inlet temperature variations has been too limited like in most cases in 

system operation of a collector. 

8) Selection of data according to specific rules in the standard or research requirements. It can be 

positive collector output, incidence angles smaller than 85 deg or solar radiation greater than 

50W/m2 for example. 

9) Run the MLR routine. Check if the parameter values and statistical results are reasonable. For 
example the t-ratio should be greater than 2 to keep a parameter and term in the collector equation. 

10) Plot of the statistical results and model output power versus measured output. Check for outliers that 

can indicate wrong data in some way. For example visitors shading the collector sample for some 

minutes unintentionally or a bird sitting on a solar sensor for some time. A lose wire or connector 

can also give intermittent measurement errors. There are many more examples in real testing life 

that has to be removed from data before accurate results can be achieved. In this step the R tool is 

very efficient in plotting the data and finding the strange points. Also the allowance in the MLR 

procedure to have data gaps when data has to be removed is very useful. 

 

2. Some examples of results from the MLR/QDT- R tool 

Below are some diagrams showing results of an analysis of measurements on a large area flat plate collector 

at DTU, (Fan et. al. 2009). The test was done according to the SS method, but as different operating 
temperatures were present within the test period also the QDT and MLR method could be used to analyse 

data. In this case as it was a research test also data points during the night could be used to check the future 
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possibilities to shorten the testing time, by varying the inlet temperature during night and estimate the heat 
loss parameters more accurately and faster. 

 

Figure 1-3 gives all day and also night results showing that the analysis method gives a very good model fit 

to real measurements of collector output. Also some large fluctuations in inlet temperature and flow are 

shown to be handled well as rapid fluctuations in solar radiation. 

 

Figure 4 gives an example of the option in the tool to determine the incidence angle modifier with statistical 

estimation of non-linear functions without the need of a simple mathematical function (black and red points). 

Also the separation of morning and afternoon values are shown to give an impression of the reproducibility 

that the method can give. As a comparison the standard b0 equation is shown for the same data set. It is 

interesting to note the cut off before 90 degrees that is caused by shading of the absorber from the frame of 

the collector. This detailed evaluation of the measurements, require a test rig and sensors in very good shape. 
Small errors will otherwise show up here like a test rig not oriented due south for example or bad adjustment 

or mounting of a shading ring or misalignment of solar sensors. Also other measurement problems or errors 

will show up and this is also one advantage with this tool that the quality of the test rig can be improved step 

by step based on this kind of results. 

 

 
Fig. 1: All day measurements and validation of the method and model plus parameters. The red curve in the upper diagram is 

measured collector output and the green curve is the model output with the identified parameters for the whole test period 

Modelled and measured 

collector output power 
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Fig. 2: All day measurements and validation of the method and model plus parameters. The red curve in the upper diagram is 

measured collector output and the green curve is the model output with the identified parameters for the whole test period 

 

Modelled and measured 

collector output power 
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Fig. 3: All day measurements and validation of the method and model plus parameters. The red curve in the upper diagram is 

measured collector output and the green curve is the model output with the identified parameters for the whole test period 

 

Modelled and measured 

collector output power 
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Figure 4. Example of the option to determine the Incidence angle modifier with statistical estimation of non-linear functions 

without the need of a simple mathematical function (black and red points). Also the separation of morning and afternoon values 

are shown to give an impression of the reproducibility that the method can give. As a comparison the standard b0 equation is 

shown.  

 

 
Fig. 5: Model versus measurements including also night heat loss measurements. (Points with negative collector output). 
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3. Discussion and Conclusions 

A first version of a tool has been developed and tested, for all day test data evaluation according to the QDT 

option in the EN 12975 standard  . 

 

The tool contains all steps from import of data to display of final parameters with statistical information. 

 

In the tool the built in model plus parameter validation in the EN12975 QDT method can be applied and 

displayed. This helps a lot to assure reliable results and especially to find intermittent errors in the test rig, 

collector samples (like condensation or micro fluid leaks), measurement equipment problems or even 

unusual occasions like visitors or birds shading the test instruments or collector. 

 

The tool is prepared to deselect obviously wrong data from the analysis and use the advantage with the QDT 
and MLR method to allow data gaps if needed. 

 

The development has been done with no dedicated project for the work. Therefore further improvements and 

refinements, as more user friendliness, are possible if a project could be created for this. Also the addition of 

the EN12975 stationary test SS evaluation could be an option. 
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Abstract

This paper presents a method for forecasting the load for space heating in a single-family house.
The forecasting model is built using data from sixteen houses located in Sønderborg, Denmark,
combined with local climate measurements and weather forecasts. Every hour the hourly heat
load for each house the following two days is forecasted. The forecast models are adaptive linear
time-series models and the climate inputs used are: ambient temperature, global radiation and
wind speed. A computationally efficient recursive least squares scheme is used. The models are
optimized to fit the individual characteristics for each house, such as the level of adaptivity and
the thermal dynamical response of the building, which is modeled with simple transfer functions.
Identification of a model, which is suitable for all the houses, is carried out. The results show
that the one-step ahead errors are close to white noise and that practically all correlation to the
climate variables are removed. Furthermore, the results show that the forecasting errors mainly
are related to: unpredictable high frequency variations in the heat load signal (predominant only
for some houses), shifts in resident behavior patterns and uncertainty of the weather forecasts for
longer horizons, especially for solar radiation.

Keywords: Heat load, single-family house, building heat dynamics, forecasting, numerical
weather predictions, thermal, cooling

1. Introduction

The transition to an energy system based on renewables requires methods for forecasting of
power load and generation. In Denmark around 40% of the total energy consumption is related to
buildings and around 29% of the energy used for space heating is covered by individual oil or gas
fired furnaces [1], which is neither economically feasible nor environmentally friendly technologies.
The Danish Commission on Climate Change Policy recommends replacement with alternative
technologies, especially with electric heat pumps since this is one of the socio-economically cheapest
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alternatives in the transition to an energy system without fossil fuels in Denmark. Hence, new and
alternative technologies for building space heating based on renewable energy production are of
high interest, both for individual and district heating. Especially electrical heating systems since
large amounts of wind power are available, which creates a need for flexible load in order to absorb
the increasingly volatile production. As the level of electrical load increase, load-shifting in shorter
periods of time for peak-shaving of the diurnal electrical consumption is a valuable service to the
grid [2]. Flexible load can be achieved with thermal energy buffering, both in individual heating
and district heating, where huge thermal storage capacity is available. Several studies consider the
possibilities for flexible heating, for example [3] and [4] who present methods for energy storage in
the thermal mass of buildings, and [5] and [6] who consider load-shifting for cooling of buildings.
The present paper presents a method for forecasting of the power load for space heating in a
single-family house, referred to as the space heat load or simply heat load. The heat load forecasts
can be used as input to model predictive control, which can be used for optimized load-shifting,
for example for operation under energy markets where relocation of load to periods with cheap
energy is rewarded. The method can just as well be used for forecasting of cooling load and used
for load-shifting with cool thermal storage. [7] presents solar a combisystem, which is a heating
system based on a solar thermal collector and electrical heating, where a hot water tank is used
for thermal energy storage. Forecasting of the heat load is vital for optimal and effective use of
the thermal storage in such a system.

Forecasting of the heat load is carried out for sixteen houses located in Sønderborg, Denmark.
Every hour a new forecast is calculated of the hourly heat load up to 42 hours ahead. The houses
are generally built in the sixties and seventies, with a floor plan in the range of 85 to 170 m2

and constructed in bricks. Climate observations - which are measured at the local district heating
plant within 10 kilometers from the houses - together with numerical weather predictions (NWPs)
are used as input to the forecasting model. The NWPs are from the HIRLAM-S05 [15] model
and provided by the Danish Meteorological Institute. For each house only the total heat load,
including both space heating and hot water heating in a single signal, is available. The total heat
load signal is separated into two signals: one for space heating and one for hot water heating, and
then the space heating is forecasted. The splitting allows for a clear view of the effects stemming
from heat loss to the ambient and heat gains from solar radiation etc., since the noisy peaks from
hot water heating are filtered out. The indoor temperature is not available, but this is accounted
for in the models by including a diurnal curve to model nightly setback and behavioral patterns of
the residents e.g. heat from electrical appliances used for cooking.

Many approaches to load forecasting are found in the literature. A good overview of references
are given by [8], who also built load forecasting models using dynamic factor models. [9] use a
model based on the ambient temperature and a weekly pattern for forecasting of the heat load
in district heating, i.e. the total heat load for many houses. [10] use a grey-box model based on
transfer functions for building thermal load prediction and validates it on a 50 floors multi-purpose
building. The models applied in the present study are originally developed and used for forecasting
of heat load in district heating, as described in [11] and [12]. The heat load summed for many
houses have less high frequency variation, due to the averaging effects, compared to the heat load
for a single house. Emphasis in the present study is put on the variability in heat load among the
individual houses, for example some react more than others to solar radiation and especially the
diurnal pattern is very different among the studied houses.

The paper starts with a section in which the data and the NWPs are described. This is
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followed by a presentation of the modeling approach and the model identification, where a suitable
forecasting model is found together with a dynamic model for the remaining noise. Finally, the
results are presented, and the method is discussed and concluded.

2. Data

The data used in the study consists of measurements from sixteen houses located in Sønderborg,
Denmark, local climate measurements and NWPs. All times are in UTC and the time stamp for
average values are set to the end of the time interval.

2.1. Heat load measurements

The houses are typical Danish single family houses from the sixties and seventies. Only houses
with radiator heating are considered. A single signal for each house is used. It consists of the total
energy for both space heating and hot water heating. The measurements consist of 10 minutes
average values. Time series plots of the entire period, spanning nearly two and a half years, for
four of the houses are shown in Figure 1. Also shown, with red lines, is the distribution over
time as smoothing estimates of the 0%, 2%, . . . , 98%, 100% quantiles. They are estimated using
local quantile regression [13], where the weighting is local in time. They clearly show that the
distribution of the measurements is heavily skewed, as only two percent of the values are between
the two upper lines, which cover more than half of the range. The reason for this skewness is
seen from Figure 2, where the measurements from a period of 10 days for the same four houses
are plotted. The hot water heat load consists of high frequency spikes added to the more slowly
varying space heat load. The highest peaks are from showers and cause the high skewness. Since it
is wanted to study the space heating part, then each signal is separated into a space heating part
and a hot water heating part - with the method described in [14] applied causally. On the figure
the part of the signal identified as hot water heat load is marked with red, note that it is added
on top of the space heat load in the plot. After the splitting the series are re-sampled into hourly
average values. The hourly space heating for a single house is denoted by

{Qt; t = 1, . . . , N} (1)

where N = 21144 and the unit is kW. Notice that no distinction in between the houses is used in
the notation, but when the results are presented the house number, ranging from 1 to 16, is clearly
stated.

2.2. Local climate observations

The local climate observations are from a weather station at the district heating plant in
Sønderborg, which is less than 10 kilometers from the houses. The observations are re-sampled to
hourly average values and the following time series are used:

Ambient temperature:
{
T a,obs
t ; t = 1, . . . , N

}
(2)

Global radiation:
{
Gobs

t ; t = 1, . . . , N
}

Wind speed:
{
W s,obs

t ; t = 1, . . . , N
}
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2.3. Numerical weather predictions

The numerical weather predictions (NWPs) used for the forecasting are provided by the Danish
Meteorological Institute. The NWP model used is DMI-HIRLAM-S05, which has a 5 kilometer grid
and 40 vertical layers [15]. The NWPs consist of time series of hourly values for climate variables,
which are updated four times per day and have a 4 hour calculation delay (e.g. the forecast starting
at 00:00 is available at 04:00). Since a new two-day heat load forecast is calculated every hour,
then - in order to use the latest available information - every hour the latest available NWP value
for the k’th horizon at time t is picked as

Ambient temperature (◦C): T a,nwp
t+k|t (3)

Global radiation (W/m2): Gnwp
t+k|t

Wind speed (m/s): W s,nwp
t+k|t

Wind direction (◦azimuth): W d,nwp
t+k|t

2.4. Combining local observations with NWPs

To include the building heat dynamics in an efficient way, the inputs are low-pass filtered as
explained in Section 3.3. Hence, for the forecast calculated at time t, past values of the inputs
are being used. In order to use the information embedded in the local measurements they are
combined with the NWPs. The combining is carried out by forming the time series for each of the
inputs at time t, for a specific horizon k, by{

T a
t+k|t

}
=
{
. . . , T a,obs

t−1 , T a,obs
t , T a,nwp

t+1|t , T
a,nwp
t+2|t , . . . , T

a,nwp
t+k|t

}
(4){

Gt+k|t
}

=
{
. . . , Gobs

t−1, G
obs
t , Gnwp

t+1|t, G
nwp
t+2|t, . . . , G

nwp
t+k|t

}
{
W s

t+k|t
}

=
{
. . . ,W s,obs

t−1 ,W s,obs
t ,W s,nwp

t+1|t ,W
s,nwp
t+2|t , . . . ,W

s,nwp
t+k|t

}
{
W d

t+k|t
}

=
{
. . . ,W d,nwp

t−1|t ,W
d,nwp
t|t ,W d,nwp

t+1|t ,W
d,nwp
t+2|t , . . . ,W

d,nwp
t+k|t

}
Notice that local observations are not available for the wind direction and that the most recent
NWP is used for past values instead.

3. Models

As mentioned earlier the applied models are similar to the models used in [12] for forecasting
of the summed total heat load for many houses. The models are based on prior physical knowledge
of the heat dynamics of buildings, which in combination with statistical time series models, forms
a grey-box modeling approach. This allows for inclusion of heat transfer effects related to the
climate variables in combination with a time adaptive estimation scheme applied to meet changing
condition. Furthermore, in order to describe of patterns in resident behavior, a diurnal curve is
included. The forecasting models are fitted, by optimizing the parameters to minimize the root
mean square error (RMSE) in an off-line setting. The fitting is carried out separately for each
house and for each horizon k, which means that the same model formulation - i.e. same inputs
and model structure - is used, only the parameter values for each house and horizon can vary.
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3.1. Time adaptive models

The models are fitted with the k-step recursive least squares scheme described in [16]. This
means that the coefficients in the model can change over time and adapt optimally, in a least
squares sense, to changing conditions. The coefficients are recursively updated, which means that
only a few matrix operations are required to compute an updated forecast, hence the scheme is
computationally very fast. It is a recursive implementation of a weighted least squares estimation,
where the weights are exponentially decaying over time. A single parameter is required, the for-
getting factor λ, which determines how fast input data is down-weighted. The weights are equal
to

w(∆t) = λ∆t (5)

where ∆t is the age of the data in hours. This implies that for λ = 0.98 the weights are halved in
34 hours, for λ = 0.995 they are halved in 138 hours (∼ 6 days) and for λ = 0.999 in 693 hours
(∼ 29 days).

3.2. Diurnal curve

A diurnal curve is included in the models for describing systematic diurnal patterns in the heat
load, which for example can be caused by a nightly setback and free heat from electrical appliances.
The curve is modeled as a harmonic function using a Fourier series

µ(ttod, nhar, αdiu) =

nhar∑
i=1

αdiu
i,1 sin

( ttodiπ

12

)
+ αdiu

i,2 cos
( ttodiπ

12

)
(6)

where ttod is the time of day in hours at time t, nhar is the number of harmonics included in the
Fourier series and αdiu is a vector consisting of the coefficients for the included harmonics. For all
the applied models a curve is fitted for working days and another curve for weekends.

3.3. Low-pass filtering for modeling of building heat dynamics

The heat dynamics of a building can be described by lumped parameter RC-models, see for
example [17], [18] and [19]. As described by [12] the response in the heat load to changes in the
climate variables can be modeled with a rational transfer function, which is a description with an
RC-model of the low-pass filtering effect through the building. In the applied models the simplest
first order low-pass filter, with a stationary gain equal to one, is used. This is a model of the
building heat dynamics formed by an RC-model with a single resistance and a single capacitor. As
an example the transfer function from the ambient temperature to the heat load is

Qt = αaHa(q)T a
t (7)

where

Ha(q) =
1− aTa

1− aTaq
−1

(8)

and where q−1 is the backward shift operator (q−1xt = xt−1) (see [20]), αa is the stationary gain
from the ambient temperature to heat load and aTa ∈ [0, 1] is a parameter, which is corresponding
to the time constant for the part of the building affected by changes in ambient temperature.
A building with a high thermal mass and good insulation will have a relatively high aTa , hence
the filter parameter needs to be tuned for each building in order to describe the heat dynamics
properly. First order low-pass filters are also applied for wind speed and global radiation, with the
filter parameter tuned to match the response of the building to each effect separately.
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3.4. Parameter optimization

As described above several parameters need to be optimized for each house and horizon. The
optimization is carried out in an off-line setting by minimizing the RMSE for each of the sixteen
houses and for each horizon k = 1, . . . , 42 separately. This does require some computational power,
for example for the low-pass filtering of the inputs. Therefore a simple bisectioning scheme is
applied for the optimization, since this allows for performing a filtering of the inputs only once for
parameter values in a given range. Then these series can be used for optimization for all the houses
and horizons. The properties of the optimization is not studied in detail in this work, however
some remarks regarding an operational implementation are given in the discussion in Section 7.

The following parameters are optimized:

• The forgetting factor: λ,

• The number of harmonics in the diurnal curve: nhar,

• The coefficients for input low-pass filters: aTa , aG and aWs .

4. Model identification

Forecasting models, which include different types of heat transfer effects related to the climate
variables, are applied in order to identify which of the inputs are important to include. Furthermore,
models in which the inputs enters differently are tried. See [12] for a description of how a physical
model can be rewritten into the identifiable models, which are applied here. The model which
include all energy contributions is

Qt+k = Q̂t+k|t + et+k (9)

where

Q̂t+k|t = Qa +Qg +Qw (10)

where the Qname variables on the right side of the equation represent the heat contributions from
the considered heat transfers as described in the following.

4.1. First step in model selection

To select a suitable forecasting model a forward selection approach is used. In the first step
the modelD

Q̂t+k|t = αia + µ(ttod, nhar, αdiu) (11)

which do not include any climate inputs, is fitted. In this model the heat load is simply modeled
as a diurnal curve with an offset. Note that the offset αia then represents a difference, which is
constant over 24 hours, between the indoor and the ambient temperature, and that the diurnal
curve will then capture diurnal patterns in both the indoor and ambient temperature in this model.
Due to the time adaptive scheme this model will be able to track the slow changes in temperatures
over the year. Finally, note also that the coefficients could have been denoted with a t to indicate
that they are changing over time, a house number to indicate that they are fitted to each house,
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and a k to indicate that the model is fitted for each horizon separately, however these have been
left out for better readability.

To find out if useful information can be gained from applying climate series as inputs to the
model, the cross-correlation function (CCF), see [21], between the one-step ahead (k = 1 hour)
prediction residuals for modelD and the available input series is calculated. Since there is a series
of residuals for each house the average over all houses

ēt+k =

nhouses∑
i=1

eHouse i
t+k (12)

where nhouses = 16 are the number of houses and eHouse i
t+k is the residual series for House i, is used.

In this way the CCF to each of the inputs can be summarized for all the houses in a single plot.
This will of course only show if an input is generally important to include and not the effects for
each individual house. The effects related to each house - which are different - are considered in
later parts of the paper.

The CCF between the average residuals from modelD to the inputs can be seen in Figure 3a.
Clearly, very significant correlations between the residuals and both the ambient temperature, and
the global radiation, but apparently none to the wind speed, are found. It is decided to add the
ambient temperature as input to the model, which leads to modelA

Q̂t+k|t = Qa (13)

where

Qa = αia + µ(ttod, nhar, αdiu) + αaHa(q)T a
t+k|t (14)

The Ha(q) is the low-pass filter describing the heat dynamics of the building envelope, i.e. the
response of in heat load to changes in ambient temperature. Notice that the intercept αia is
representing a 24 hour constant indoor temperature modified by the diurnal curve.

In order to find out if any gain in forecasting performance is achieved from modelD to modelA

the RMSE is used for evaluation as described in the following.

4.1.1. Root mean square error evaluation

To evaluate the models the root mean square error (RMSE) for the k’th horizon

RMSEk =

(
1

N

N∑
t=1

e2
t+k

) 1
2

(15)

is used together with the RMSEk improvement

IRMSE = 100 · RMSEref − RMSE

RMSEref
(%) (16)

over the currently selected model as reference. It is noted values not in the heating season - which
starts the 15’th of September and ends 15’th of May in Denmark - and values before the 15’th of
March 2009, which is used as a burn-in period, are excluded from the RMSEk calculation. For
evaluation of the inclusion of ambient temperature, the RMSEk improvement for modelA over
modelD is calculated. The average improvement for all horizons (from k = 1 to k = 42) for each
house is plotted in Figure 4a. A RMSEk improvement for the each house in the range from 5 to 25
percent and around 14 percent in average is achieved. This is clearly a significant improvement,
hence modelA is preferred over modelD.
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4.2. Second step in model selection

To explore the possibilities for further expansion of modelA the CCF from the average residuals
(defined in Equation (12)) to each of the climate series is calculated and plotted in Figure 3b. The
correlation to the ambient temperature is much lower than for modelD and the correlation to the
global radiation is more or less the same. The correlation to the wind speed has increased, most
likely this correlation was ”covered” by the correlation to the ambient temperature for modelD

residuals. Notice, that there is a significant correlation decaying over 12 to 24 hours to the lagged
inputs indicating that dynamics should be included by low-pass filtering.

To find the most important extension of modelA several extensions involving the global radiation
or the wind speed are fitted (i.e. the RMSEk is minimized by tuning the parameters listed in Section
3.4 for each house).

The first considered expansion is modelA.G

Q̂t+k|t = Qa + αgHg(q)Gt+k|t (17)

where the heat gain from solar radiation is included by letting the global radiation enter through
a low-pass filter, which describes the dynamic response from the global radiation to the heat load.
The second expansion is modelA.W

Q̂t+k|t = Qa + αwsHw(q)W s
t+k|t (18)

where the cooling of the building from wind is described by letting the wind speed enter through a
low-pass filter. This is a model of wind cooling not depending on the ambient temperature, however
- due to the time-adaptive modeling scheme - is does include the slow changes in temperature
difference between indoor and ambient temperature. The third expansion is modelA.V

Q̂t+k|t = Qa + αventW
s
t+k|t (19)

which includes the effect of ventilation by inputting the instant effect of wind speed to the heat
load.

The RMSEk improvements averaged over all horizons for each house for the considered expan-
sions are plotted in Figure 4b. It is seen that the increase in performance is highest for all the
houses using modelA.G, hence this model is preferred and used for expansion in the following step.
In the remaining of the paper the heat contribution from solar radiation is denoted by

Qg = αgHg(q)Gt+k|t (20)

4.3. Step three: Inclusion of wind speed in the model

In the third step of the model identification several ways of including the wind speed is consid-
ered. First the CCF between the one-step ahead residuals, from the model selected in the previous
step, modelA.G and the inputs, are studied to see if any useful information is remaining in the
climate series.

Firstly, it is noted that the correlation to the global radiation has decreased compared to the
CCF plot for modelA, but that some is still left, indicating that the dynamic effects are not entirely
described by the model. Secondly, it is noted that there is a significant cross-correlation to the
wind speed and therefore an expansion which includes the wind speed is sought. Five different
ways of letting the wind speed enter the model are tried as described in the following.
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The first expansion is formed by adding the wind speed through a low-pass filter for modeling
of cooling of the building in modelA.G.W

Q̂t+k|t = Qa +Qg + αwsHw(q)W s
t+k|t (21)

and, for modeling ventilation, the instant effect of wind speed is added in modelA.G.V

Q̂t+k|t = Qa +Qg + αwsW
s
t+k|t (22)

In the two models above the wind speed enter the model without the interaction with ambient
temperature, which means that the temperature difference between the indoor and ambient tem-
perature is modeled as constant and that changes are only tracked due to the adaptivity of the
model. In the following two expansions the interaction is also included, with a filter in modelA.G.Wa

Q̂t+k|t = Qa +Qg + αwsHw(q)W s
t+k|t + αwsaHw(q)W s

t+k|tT
a
t+k|t (23)

and as an instant effect in modelA.G.Va

Q̂t+k|t = Qa +Qg + αwsW
s
t+k|t + αwsaW

s
t+k|tT

a
t+k|t (24)

Finally, the wind speed input coefficient is conditioned on the wind direction in modelA.G.Wd

Q̂t+k|t = Qa +Qg +
4∑

i=1

αiHw(q)K(u)W s
t+k|tT

a
t+k|t (25)

where the kernel function

K(u) = (1− |u|)1{|u|≤1} (26)

with

u =
((
W d,nwp

t+k|t + 45 + (i− 1) · 90
)

mod 4
)
− 1 (27)

is used to create four input series, which are linearly interpolated as a function of the wind direction.
The center of the kernels is thus at the most prevailing wind directions in Denmark, especially
southwest in the winter period [22].

The plot in Figure 4c shows the improvements over modelA.G for the five models. The im-
provement is quite different for each house, for some it is negative, which is because the forecasting
model becomes over-parameterized. It is also seen that the pattern of the improvement among the
houses are quite similar for the five models, indicating that for some houses the wind have a more
prevalent effect than for others. Since modelA.G.W generally have the most positive improvement
and since it is the simplest extension, it is preferred over the others. In the remaining of the paper
the model part describing the effect of wind is denoted with

Qw = αwsHw(q)W s
t+k|t (28)
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4.4. Step four: Enhancement of the solar model part

In the final step the model part for solar radiation is enhanced in different ways, as described
in the following. Studying the CCFs for modelA.G.W in Figure 3d it is seen that the correlation
between the residuals and the inputs has been decreased compared to the CCFs for the smaller
models, however there is some left to the ambient temperature and solar radiation. From studying
plots of the forecasts it is found that it might be possible to improve the model part in which the
effect of solar radiation is included.

Firstly, an additional input for the solar gain is added and modelA.G2in.W

Q̂t+k|t = Qa +Qg + αg2Hg2(q)Gt+k|t +Qw (29)

is formed. This allows for an additional dynamic response of the building to solar radiation. Notice
that an additional filter coefficient for the Hg2(q) filter is fitted.

Secondly, the solar radiation part is enhanced by using a two-pole filter instead of a one-pole
filter

Q̂t+k|t = Qa + αgH2pol(q)Gt+k|t +Qw (30)

where

H2pol(q) =
1− a1 − a2

1− a1q−1 − a2q−2
(31)

and

a1 = ag1 + ag2 and a2 = −ag2 (32)

The two filter coefficients thereby relate to different dynamics: ag1 is related to the highest time
constant and ag2 is related to a faster time constant of the building.

In the third extension the solar radiation is separated into three inputs: one for the morning,
one for the noon and one for the evening. This allows for the building to have different solar gains
during the day. The modelA.Gspl.W is

Q̂t+k|t = Qa + αg1Hg(q)Gmorning
t+k|t + αg2Hg(q)Gnoon

t+k|t (33)

+ αg3Hg(q)Gevening
t+k|t +Qw

The three inputs are

Gmorning
t+k|t = Gt+k|t 1{t+k∈[trise, trise+∆t]} (34)

Gnoon
t+k|t = Gt+k|t 1{t+k∈[trise+∆t, tset−∆t]}

Gevening
t+k|t = Gt+k|t 1{t+k∈[tset−∆t, tset]}

where 1{·} is the indicator function, trise and tset is the time of sunrise and sunset, respectively and
∆t = (tset − trise)/3 is a third of the day length.

Finally, two enhancement are formed by projecting the solar radiation onto a vertical surface
tracking the solar azimuth angle. The projection to vertical is carried out by first splitting the
global radiation into a direct and a diffuse component as in [23] and onto a vertical surface with
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the Hay and Davies model [24], see also [25]. The effect of the projections is first of all an increase
in the level of solar radiation when the sun elevation is low, i.e. in the morning and in the evening
(or afternoon). In modelA.Gver.W

Q̂t+k|t = Qa + αgHg(q)Gver,tr
t+k|t +Qw (35)

the total vertical radiation is inputted and in modelA.Gbdv.W

Q̂t+k|t = Qa + αg1Hg(q)Gbeam,tr
t+k|t + αg2Hg(q)Gdiffuse,tr

t+k|t +Qw (36)

the direct (or beam) and the diffuse component is inputted separately.
The models are fitted to each house and the RMSE improvements over modelA.G.W are calcu-

lated and plotted in Figure 4d. For modelA.G2in.W and modelA.G2po.W only a little difference in per-
formance is seen, and for modelA.Gspl.W the performance has decreased. These three models become
over-parameterized, however it is noted that for short horizons the improvement for modelA.Gin2.W

is positive for all the houses. For the last two models: modelA.Gver.W and modelA.Gbdv.W, the
change in performance depends on the house. One interesting pattern is that the houses with the
highest change (both decreased and increased) are the houses, which benefited most from addition
of the solar radiation in the step second step of the model selection, as seen in the plot in Figure
4b. This indicates that increased performance can be obtained by modifying the solar gain over
the day by learning an optimal diurnal solar gain curve for each house, however this is beyond the
scope of the present study. In general no significant overall increase in performance is found for
any of the five suggested enhancements, hence the model selection is ended. The presented results
in the remaining of the paper are from modelA.G.W, together with a model of the noise, which is
described in the following section.

5. Noise model

Considering the auto-correlation function (ACF) for the one-step prediction residuals for the
houses, shown in the upper plot of Figure 5, it is found that a model is useful for describing
dynamical information embedded in the residuals. A simple auto-regressive (AR) model is fitted
to the residuals with the recursive least squares scheme [16]. The AR(1) model

et+k = aeet + enoise
t+k (37)

is fitted for the residuals from the selected model modelA.G.W for each horizon k. The ACF of the
noise residuals enoise

t+k can be seen in the lower plot of Figure 5. Compared to the upper plot the auto-
correlation for lag 1 is significantly lower indicating that the noise model improves performance.
Clearly, some of the houses still have significant auto-correlation left and for the short horizons a
noise model, which include more lags would improve performance further. However it was tried to
include one more lag (lag 2), but this did only improve the overall performance marginally, mainly
because no performance improvement is achieved on longer horizons. The houses which have the
highest ACF (in particular House 11 and 16) have some high frequency oscillations embedded in the
heat load signal, as described in the following section where the results are discussed. The average
RMSEk improvement over all horizons is in the range of 0.35% to 6.7%, hence a quite significant
improvement, especially for some of the houses. The RMSEk improvement for the one-step ahead
forecasts is in the range 1.3% to 19%, which clearly shows that the noise model is most important
for short horizons.
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6. Results

In this section the results from forecasting with the selected model are presented and discussed.
First the parameters, which are fitted for each house, are reported and then the performance for
individual houses is discussed.

6.1. Model parameters

The parameters, which are fitted for each house, are listed in Section 3.4. Since there is a value
for each horizon for each house and for each parameter, they are reported with the plots in Figure
6. The general patterns are discussed in the following. Starting with the upper most plot in the
figure, which is of the forgetting factor λ in the recursive least squares scheme, it can be seen that
it has a tendency to be lower for the first couple of horizons: for k = 1 the average over all the
house is 0.9755, which implies that the weighting of the input data is halved in only 28 hours.
This quick forgetting is most likely optimal, because it is profitable for the forecasting model to be
able to react fast to changes in the system, e.g. residents increase the indoor temperature or open
the windows, which can be tracked on short horizons. On longer horizons the forgetting is on a
stable level: for k = 5 the average is 0.9953 increasing to 0.9963 for k = 42, which implies that the
weighting of the input data is halved in around 8 days.

The second plot from the top in Figure 6 is of the optimized number of harmonics in the
diurnal curve: a higher number means that it is profitable to include higher frequencies in the
curve. Clearly, a huge variation among the houses is found, which is very reasonable, since the
diurnal patterns are very different, this is shown below.

The middle plot of the figure is of the optimized coefficient for the low-pass filter transfer
function from the ambient temperature to the heat load. Except for the two lower lines the
variation for each house as a function of the horizon k is quite small (in the range of ±0.01), which
leads to the conclusion that the applied low-pass filtering describes the response of heat load to
changes in ambient temperature for each house appropriately. In Table 1 the average coefficient
for each house is listed together with the equivalent RC time constants. The values are within a
reasonable range compared to values found in other studies [12], [5]. The fitted values of low-pass
filter coefficient for global radiation aG and for wind speed aWs are shown in the lower two plots of
Figure 6. The values are all in the same range, generally between 0.8 and up to near 1, but with
some lower values for a couple of the houses, which are houses where the solar radiation and wind
speed are not very important inputs.

6.2. Forecasting performance

In this section the forecasting performance is analyzed and discussed, especially the differences
in performance among the houses. For evaluation of the performance the normalized root mean
square error for each horizon

NRMSEk =
RMSEk

Q̄t
(38)

is used, where Q̄t is the average heat load for the house, which is calculated with the same values
as used for calculation of the RMSEk (see the text below Equation (15)).

The plot in Figure 7 shows the NRMSEk as a function of the horizon k for each house using
the selected modelA.G.W and the noise model. Clearly, the poorest forecasting performance is for
House 8. The explanation is found by considering the plot for House 8 in Figure 8, which shows the
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heat load together with the 1 hour and 24 hour forecasts. The main reason for the poor forecasts is
a very irregular diurnal curve. A nightly setback results in a high difference between day and night
and the time of day at which the heat is switched to a high level again is not following a regular
pattern. It is probably controlled manually by the residents. This is opposed to the nightly setback
for House 10, which have a much more regular pattern which can be much better forecasted.

Another source for high errors is seen in the plots for House 2 and 16, where noisy fluctuations
occur on the higher frequencies in the signals. The smaller fluctuations are probably partly from
hot water heating, which was not well separated from the space heating, but clearly higher peaks
which are not related to hot water heating are seen. For House 11 a more steady, but still quite
unpredictable, pattern is seen, which is likely to come from some oscillation in the thermostatic
control of the heat system.

The heat load signals for House 1, 9 and 15 are much less volatile. These houses are also the
ones with a lower NRMSEk, as seen from the plot in Figure 7. The most obvious point to notice
is the deviation between the 1 and the 24 hour forecasts. Starting with the drop on the 21’st of
February, which is followed well by the 1 hour forecast, but not by the 24 hour forecast. This drop
is clearly caused by solar radiation. It is a clear-sky day, as seen by the high level of observed
global radiation (the second uppermost plot of Figure 8), which is also predicted well by the 24
hour NWP. However the drop is not followed by the 24 hour load forecast, since the previous day
was also forecasted as a clear-sky day by the 24 hour NWP, but it was not a clear-sky day as seen
by the low observed level. Hence, there is a much higher uncertainty on the global radiation input
to the 24 hour forecast model compared to the 1 hour forecast, which use mostly observations as
input, and therefore the global radiation input is not given much weight in the 24 hour forecasting
model. From the 1’st of March a sunny period begins and it can be seen how the 24 hour forecasts
starts to track the mid-day drops in heat load, as more weight is put on the global radiation input
due to the time adaptivity of the modeling scheme. Finally, it is noted that the drop the 23’th
of February and the peak the 27’th of February in the heat load for House 15 are not seen in the
other heat loads. It is attributed to residents behavior, which cannot be predicted. However, it is
tracked with a delay in the 1 hour forecast.

7. Discussion

The presented heat load forecasts can be used to form the input for optimization of the heat
supply to buildings in smart grid applications. Such optimization can be based on model predictive
control. It is especially useful for optimization of heating systems with a thermal storage medium,
for example a hot water tank. For the data used in the study the indoor temperature was not
available and it is therefore modeled as constant offset modified by a diurnal curve. If the indoor
temperature is available it will allow for advancements of the method by including it as an input
to the model. Thereby the estimation of a time constant for the building can be carried out with
higher accuracy, which will allow the method to be used for optimization, where the thermal mass
of the building is used for thermal storage. It is also noted that the type of linear time-adaptive
models applied for the forecasting furthermore can be used for characterization and monitoring of
the thermal performance of buildings [26]. Especially, the inclusion of user behavior is an important
issue and should be further elaborated in studies focusing on such applications.

The forecasting method is found feasible to implement operationally and can be automatized
to a high degree. Certainly, flawed data can cause problems, however schemes for identifying issues
which needs manual handling can be implemented. Alarms could for example be triggered by
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unusual changes in coefficient estimates or unusually highly auto-correlated residuals. It is noted
that the current implementation in R 1 is not compiled code and can be further optimized. However,
a test shows that around 1000 forecast updates (including the recursive parameter estimation)
of the 42 hours forecasts using the selected modelA.G.W can be calculated in approximately 10
seconds on a 2.4 GHz single CPU computer. This is due to the computationally light recursive
least squares scheme. If an update is needed every hour the time in-between updating can be used
for data handling and off-line parameter optimization of the parameters listed in Section 3.4. The
off-line optimization can be implemented with a recursive scheme and do not require updating
very often, perhaps once a week. Based on this very coarse assessment it is found that operational
implementation for a very large number of houses can be carried out with feasible amounts of
computational power.

Regarding the model part in which the solar radiation is entering, is should be possible to achieve
improvements in forecasting performance. For example more information about the individual
buildings, such as the azimuth angle of the walls, would provide the possibility for projection
of the radiation from horizontal to the vertical wall surfaces. However, it will be favorable for
operation if no specific information about the buildings is needed. The non-linear functions, which
could be applied with piecewise linear or regime switching functions depending on the level of solar
radiation, or a non-parametric approach, could also taken with an off-line method for learning how
the building respond to solar radiation over the day. Furthermore, it might be that performance
can be increased by using different models depending on the horizon, especially it is more relevant
to increase the model complexity for shorter horizons.

Finally, further work could be focused on modeling the uncertainties of the heat load forecasts.
As found in the analysis of the results the two most important effects related to the uncertainties
seems to be user behavior and solar radiation. Modeling the uncertainties is no trivial task since
the uncertainties of the inputs propagates through the model and the relations change over time.
One approach would be to characterize the uncertainties of the forecasted inputs and use this to
build a model of the heat load forecast uncertainties. For example the uncertainties related to the
user behavior will most likely have diurnal and regime shifting patterns which could be modeled
with hidden Markov models.

8. Conclusion

A method for forecasting the load for space heating in a single-family house is presented. It is
formed by adaptive linear time-series modeling techniques, using local observations and weather
forecasts as input. Based on measurements from sixteen houses, a model, which is suitable for all
the houses, is identified by using a forward selection approach. It is shown how the forecasting
performance increases when the ambient temperature, global radiation and wind speed are added
as inputs to the model. For inclusion of the heat dynamics of the building in the model a simple
low-pass filter transfer function is used. In the last step of the model selection several enhancements
of the model are tested, resulting in over-parameterization and decreased forecasting performance.
In a second stage a noise model formed by an auto-regressive model is applied for modeling of the
remaining dynamic information in the residuals. After applying the noise model, it is shown that
almost no auto-correlation remains. The model parameters, which have been fitted individually for

1www.r-project.org
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each house, are analyzed and it is found that they provide reliable information about the dynamic
response of the buildings. The forecasting results are then analyzed thoroughly to give insight
into the error sources, for example unpredictable behavior of the residents and uncertainty in the
inputs, especially from the solar radiation weather forecasts. Finally, a discussion is given with
ideas for applications and further advancements of the method.
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Figure 1: The heat load for four selected houses over the entire period, which is nearly spanning
two and a half years. The red lines are estimates of the 0%, 2%, . . . , 98%, 100% quantiles, which
indicate the distribution of the heat load at a given time.
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Figure 2: Heat load for four selected houses for the first 10 days of March in 2010. The peaks
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Figure 3: The cross-correlation function (CCF) between the average error series for the one-step
ahead forecast (horizon k = 1) and the local observations of the inputs, since the inputs for the
one-step ahead forecasts are primarily formed by the observations. The plots are for the errors
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SHORT-TERM SOLAR COLLECTOR POWER FORECASTING
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Abstract

This paper describes a new approach to online forecasting of power output from solar thermal collectors.
The method is suited for online forecasting in many applications and in this paper it is applied to predict
hourly values of power from a standard single glazed large area flat plate collector. The method is applied for
horizons of up to 42 hours.

Solar heating systems naturally come with a hot water tank, which can be utilized for energy storage also
for other energy sources. Thereby such systems can become an important part of energy systems with a large
share of uncontrollable energy sources, such as wind power. In such a scenario online forecasting is a vital
tool for optimal control and utilization of solar heating systems.

The method is a two-step scheme, where first a non-linear model is applied to transform the solar power
into a stationary process, which then is forecasted with robust time-adaptive linear models. The approach is
similar to the one by Bacher et al. (2009), but contains additional effects due to differences between solar
thermal collectors and photovoltaics. Numerical weather predictions provided by Danish Meteorological
Institute are used as input. The applied models adapt over time enabling tracking of changes in the system
and in the surrounding conditions, such as decreasing performance due to wear and dirt, and seasonal changes
such as leaves on trees. This furthermore facilitates remote monitoring and check of the system.

1 Introduction

Forecasting of energy production is vital for optimization of energy systems which include wind and solar
energy production. This paper describes an approach to online forecasting of power production from solar
thermal collectors. In Denmark the level of wind power penetration already now gives periods with a surplus
of energy and facilities to absorb this energy are needed. Solar heating systems with a hot water tank and
auxiliary electrical heating can provide energy storage, which can facilitate absorption of wind energy and
peak shaving, especially for levelling out diurnal energy consumption. The method is planned to be part of
the control system for such heating systems (Perers et al., 2011). The study is carried out with climate data
observed at a weather station at Danish Technical University. From this data, simulated hourly average values
of solar thermal power is generated with a very detailed simulation model. Furthermore numerical weather
predictions (NWPs) provided by Danish Meteorological Institute data is used. The forecasting method is a
two-step scheme, where first a statistical clear sky model is applied to transform the solar power into a more
stationary process, which then is forecasted with robust time-adaptive linear models. The NWPs are used as
input to conditional parametric time-adaptive models to forecast the solar power. These forecasts are then
transformed with the clear sky model, such that they can be applied as inputs to the linear forecasting models.
Finally, a combined model, which is the most optimal for all horizons, is formed.

The paper is organized as follows. First the data and how it is preprocessed is described in a section.
The next section contains an outline of the clear sky model, and this is followed by a section where all the
forecasting models are described. Then an evaluation is given and the results are presented, each in a section.
The second last section contains a discussion of the results and ideas for further work, and finally, the paper
ends with a conclusion.

2 Data

The forecasting method is applied on simulated solar output power data for a flat plate collector carefully tested
and modelled at DTU. A validated collector model and longterm climate data from the DTU Byg climate
station was used to create realistic operating data for a solar collector during the year. The simulation model
and weather data was introduced in TRNSYS 16 and the collector output power was calculated as hourly mean
values. The simulation model is dynamic, such that dynamical effects - introduced when the collector starts
and stops and during rapidly varying solar radiation conditions - are modelled.

In this study all time series are hourly average values and all units are implicitly per hour. Time points
are set to the end of their respective sample period and all are in UTC. The units for radiation are W

m2 and for
temperatures ◦C.
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Figure 1: The observed solar power for each hour of the day. The grayed area shows the periods not included in the
modelling. The curve following the highest values of solar power is the estimated clear sky power, which is referred to in
later parts of the paper.

2.1 Solar power

The simulated solar power time series is plotted for each hour of the day in Figure 1. A few short periods are
with missing values.

2.2 Numerical weather predictions

The numerical weather predictions (NWPs) used in the study are provided by Danish Meteorological Institute.
The NWP model is DMI-HIRLAM-S05, which has a 5 kilometer grid and 40 vertical layers (Danish Meteo-
rological Institute, 2011). NWPs are updated every 6’th hour and are up to a 48 hours horizon. They consist
of hourly predictions of ambient temperature, and horizontal direct- and diffuse solar radiation. A couple of
the considered forecasting models use the global radiation as input, which is simply the direct and the diffuse
radiation summed. The scatter plots in Figure 2 shows the solar power versus the NWPs for a 24 hour horizon.
Clearly, the solar power is highly correlated with both the global and direct radiation, whereas the effect of
diffuse and ambient temperature are not as apparent.

2.3 Pre-processing

On most locations on earth the solar radiation is zero at night time, hence the observed solar power is also zero.
For the current dataset only periods, for a given hour of the day longer than 40 days in which the solar power
is different from zero, are included. This is illustrated in Figure 1, where the non-included periods are grayed
out. Furthermore a few short periods are missing from the observations. The time series of hourly observed
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Figure 2: The observed solar power versus the NWPs for k = 24, which are used as inputs to forecasting models.

solar power spanning the period from 2009-01-01 to 2010-07-01 is

{Pt; t = 1, . . . , N} (1)

where N = 13104. The NWPs have a calculation time of 4 hours, which is taken into consideration, such
that e.g. the forecast from 2009-01-01 00:00 are only available from 2009-01-01 04:00. The NWPs are pre-
processed into time series of hourly values, such that the most recent available forecast k hours ahead is selected
each hour. The time series are for a given k: the direct radiation

{
Gb,nwp
t+k|t ; t = 1, . . . , N

}
(2)

the diffuse radiation
{
Gd,nwp
t+k|t ; t = 1, . . . , N

}
(3)

and the ambient temperature
{
T a,nwp
t+k|t ; t = 1, . . . , N

}
(4)

Due to the 6 hours interval the NWPs for horizons longer than 42 hours are not complete and therefore the
solar power forecasting are only carried out up to 42 hours.

3 Clear sky model

For effective forecasting with classical linear time series methods stationarity of the process is required (Mad-
sen, 2007). The process that generates the solar power is not stationary, which is seen by plotting quantiles
of the distribution of solar power conditioned on the time of day. Such a plot is shown in Figure 3. Clearly
the distribution of solar power is not independent of the time of day. The dependency can be removed by a
transformation with a clear sky model

τt =
Pt
P cs
t

(5)

where Pt is the observed solar power, P cs
t is the estimated clear sky solar power, and τt is the transformed solar

power.
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Figure 3: The 0, 2%, ..., 100% quantiles of the distribution of the solar power and the transformed solar power conditioned
on the time of day. Values above 1.5 has been clipped, which was the case for 17 values.

3.1 Statistically estimated clear sky solar power

The clear sky solar power is estimated with a statistical non-linear and adaptive model. Quantile regression
locally weighted in the day of year and time of day dimension is applied. In the present study this is carried
out fully causal. The clear sky model is

P cs
t = q0.99(P1, P2, . . . , Pt, ht, htod, hy) (6)

where q0.99 is the 99% quantile of all the solar power values up to t. The bandwidths ht, htod, and hy, are in
the time-, time of day-, and year-dimension, respectively. The bandwidths control how “locally” the model is
fitted, i.e. a lower bandwidth puts more emphasis on data which is close in time. The local weighting function
is an Epanechnikov kernel. The applied bandwidths are

ht = 120 days, htod = 2 hours, hy = 1.7 years (7)

which were found by visual inspection of the fitted clear sky curve. Finally, it is noted that second-order
polynomials were applied in the time- and time of day-dimension to include curvature into the model. The
estimate of the clear sky solar power is shown in Figure 1. From the plot it is seen that it follows the highest
values of solar power quite well. Clearly, the clear sky power is most easily carried out in the periods with a
high level of solar power. One advantage of the transformation is that it will automatically adapt to changes
in the system, such as degraded performance or changes in the surroundings e.g. snow cover and shadowing
effects. It can as well be used for monitoring of the solar system, since degraded performance from the same
time of year will result in a lower clear sky solar power curve. Quantile plots of the transformed solar power
conditioned on the time of day are shown in Figure 3, from which it is seen that the transformed solar power
process is considerably less depend end of the time of day and therefore a much more stationary process. It is
noted that further work could include physical considerations e.g. by using the air mass as an input.

4 Forecasting models

In this section a description of the applied forecasting models is given. The models can be divided into models
without NWPs as input - autoregressive (AR) models - and models with NWPs as input: conditional parametric
(CP) and autoregressive with exogenous inputs (ARX) models. Each model is fitted seperately for each horizon,
such that the same model structure is used, but the parameters are estimated separately for each horizon. In the
final model, a combination of models are used to achieve the most optimal performance for all horizon.

4.1 Reference model

To compare the performance of prediction models, and especially when making comparisons between different
studies, a common reference model is essential. The reference model for solar power used in this study is the
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best performing naive predictor for a given horizon. Two naive predictors of solar power are found to be
relevant. Persistence

pt+k = pt + et+k, (8)

and diurnal persistence

pt+k = pt−s(k) + et+k (9)
s(k) = fspd + k mod fspd (10)

where fspd = 24 is the sample frequency in number of samples per day and s(k) ensures that the latest diurnal
observation is used, i.e. the value which, depending on the horizon, is either 24 or 48 hours before the time
point that is to be forecasted.

4.2 Autoregressive models

Autoregressive (AR) models are applied to forecast the transformed solar power. These models can include
either the latest available observation or the latest available diurnal observation, or both, as input. The models
are fitted with k-step recursive least squares with forgetting factor (Bacher et al., 2009). The model formulated
as a k-step AR model

τt+k = m+ a1τt + a24τt−s(k) + et+k (11)
s(k) = 24 + k mod 24 (12)

where the function s(k) ensures that the latest observation of the diurnal component is included. It was found
that depending on the horizon better performance was achieved by only using one input. Thus for short horizons
(1 and 2 hours) the model without the diurnal component

τt+k = m+ a1τt + et+k (13)

was found to have the best performance, it is denoted AR1, and for longer horizons the model with only the
diurnal component

τt+k = m+ a24τt−s(k) + et+k (14)

was found to have the best performance, it is denoted ARDiurnal.

4.3 Conditional parametric models with NWPs as input

Models based on NWPs of solar radiation and ambient temperature are described in this section. It is known
from physics (Perers, 1997) that the power output of a solar collector can be described by

P = F ′(τα)enKταb(θ)Gb,col + F ′(τα)enKταdGd,col − F ′U0

(
To + Ti

2
− Ta

)
(15)

where the Gb,col and Gd,col are respectively direct and diffuse solar radiation normal to the collector plane.
This is formed into a forecasting model based on NWPs by rewriting as follows. First, both the the angle of
incidence modifier Kταb(θ) and the transformation of solar radiation from horizontal to the collector plane are
modelled by letting the coefficients - for the radiation effects - become a function of time t and time of day
ttod. Furthermore, assuming that the outlet temperature is a function of the solar radiation

To = fb(Gb,col) + fd(Gd,col) (16)

this give the total effect of direct radiation as a non-linear function

a(t, ttod, Gb, Gd)Gb = F ′(τα)enKταb(θ)Gb,col + F ′U0
1

2
fb(Gb,col) (17)

and for the diffuse radiation

b(t, ttod, Gb, Gd)Gd = F ′(τα)enKταdGb,col + F ′U0
1

2
fd(Gd,col) (18)
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Finally, the effect of the ambient temperature is kept as

cTa = F ′U0Ta (19)

and by assuming a constant inlet temperature this part becomes a constant effect

m = F ′U0
Ti
2

(20)

Thus the CP model structure used for forecasting is

P = m+ a(t, ttod, Gb, Gd)Gb + b(t, ttod, Gb, Gd)Gd + cTa (21)

Since the time-dependency and non-linearity are smooth functions in the parameters, it is modelled with con-
ditional parametric (CP) models. The time varying effect is modelled by conditioning on t and ttod - this
is equivalent of a local constant effect - and the dependency of the radiation is modelled with 1-order local
polynomials. A kernel method is applied, using a nearest neighbor approach to find the bandwidth of an
Epanechnikov weighting function. From Equation (15) it is seen that the output can be negative if little radia-
tion hits the collector and the ambient temperature is low. In this case the output is zero since the system stops.
This effect can be seen on the plot in Figure 2. It is handled by the non-linearity of the models and by setting
negative forecasts to zero.

The simplest considered conditional parametric model is

Pt+k = m+ a
(
t, ttod, G

nwp
t+k|t

)
Gnwp
t+k|t + et+k (22)

where Gnwp
t+k|t is the k-hour NWP of global radiation and denoted as CP1 in the following. This second CP

model has NWPs of direct and the diffuse radiation as inputs

Pt+k = m+ a
(
t, ttod, G

b,nwp
t+k|t , G

d,nwp
t+k|t

)
Gb,nwp
t+k|t + b

(
t, ttod, G

b,nwp
t+k|t , G

d,nwp
t+k|t

)
Gd,nwp
t+k|t + et+k (23)

where Gb,nwp
t+k|t is the k-hour NWP of direct radiation and Gd,nwp

t+k|t is the k-hour NWP of diffuse radiation, and
denoted as CP2. Finally the model is expanded with NWPs of ambient temperature

Pt+k =m+ a
(
t, ttod, G

b,nwp
t+k|t , G

d,nwp
t+k|t

)
Gb,nwp
t+k|t + b

(
t, ttod, G

b,nwp
t+k|t , G

d,nwp
t+k|t

)
Gd,nwp
t+k|t (24)

+ c
(
t, ttod

)
T a,nwp
t+k|t + et+k (25)

where T a,nwp
t+k|t is the k-hour NWPs of the ambient temperature and the model is denoted as CP3.

In the following the coefficients dependency of the time of day is elaborated on. Plots of the fitted forecast-
ing function a

(
t, ttod, G

b,nwp
t+k|t , G

d,nwp
t+k|t

)
are shown in Figure 4. It is seen how the slope of the function is lower

in the morning, than in the middle of the day. This is naturally caused by the higher angle of incidence in the
morning, which cause less horizontal radiation to be absorbed due to reflection. Likewise for the afternoon.
Finally, non-linearity in the fit is seen, which is caused by the non-negativity of the solar power (mentioned
above) and varying uncertainty of the NWPs.

4.4 Autoregressive model with exogenous input

The AR model is be expanded to include the forecast of the CP models, thus combining information in past
observed solar power and NWPs. The solar power forecasts from the CP is transformed with the clear sky
model by

τ̂nwp
t+k|t =

P̂ nwp
t+k|t

P cs
t−s(k)

(26)

s(k) = fspd + k mod fspd (27)

where fspd = 24 is the sample frequency in number of samples per day. This is applied as an input to the ARX
model

τt+k = m+ a1τt + a24τt−s(k) + b1τ
nwp
t+k|t + et+k (28)
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Figure 4: Examples of the function fitted for forecasting of the effect of direct radiation at different times of the day the 1’th
of May 2010 with the CP2 model. For each observation the size of circle indicates the weighting of the observation in the CP
models. Thus observations with a larger circle have more influence on the fitted function.

Again, as for the AR models, different performance is found depending on the horizon. The ARX1 model is
best for short horizons

τt+k = m+ a1τt + b1τ
nwp
t+k|t + et+k (29)

ARXDiurnal for horizons up to 24 hours

τt+k = m+ a24τt−s(k) + b1τ
nwp
t+k|t + et+k (30)

and ARX

τt+k = m+ b1τ
nwp
t+k|t + et+k (31)

for longer horizons.

4.5 Combined model

The final model is a combination of the previously described models. The model is denoted ARXCombined.
First, missing values in forecasts from ARX1 are replaced with forecast values from ARXDiurnal. These
missing values are in the morning, since they were tried to be forecasted based on night values, which are zero.
For horizons longer than 30 hours forecasts from ARX are used. Finally, any remaining missing values - which
are only where the diurnal lag was not present for ARXDiurnal - are replaced with forecasted values from CP2.

5 Evaluation

The methods used for evaluating the prediction models are inspired by Madsen et al. (2005). They suggest
a framework for evaluation of wind power forecasting. The clear sky model, RLS, and CP fitting do not use
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any degrees of freedom and the dataset is therefore not divided into a training set and a test set. It is only for
the optimization of the kernel bandwidths and the forgetting factor that the entire dataset is used. The period
before 2009-03-15 is considered as a burn-in period and are not used when calculating the error measures.

5.1 Error measures

The Root Mean Square Error for the k’th horizon is

RMSEk =

(
1

N

N∑

t=1

e2t+k

) 1
2

(32)

where et+k is k-hourly prediction error. The RMSEk is used as the main evaluation criterion (EC) for the
performance of the models. The Normalized Root Mean Square Error is found by

NRMSEk =
RMSEk

pmax
(33)

where pmax is the maximum observed solar power output. The mean value of the RMSEk for a range of
horizons

RMSEkstart,kend =
1

kend − kstart + 1

kend∑

k=kstart

RMSEk (34)

is used as a summary error measure. When comparing the performance of two models the improvement

IEC = 100 · EC ref − EC

EC ref =
(%) (35)

is used, where EC is the considered evaluation criterion. When calculating the error measures it is important
to consider how to handle missing values for the solar power forecasts. The problem is handled by replacing
missing forecast values with forecast values from the reference model Ref.

5.2 Completeness

In order to evaluate a model for its performance regarding missing forecast values a measure is defined, it is
denoted completeness. The completeness of a forecast for horizon k, is the ratio of the total sum of solar power
and the summed solar power for time points where the forecasts are not missing

Ck =

∑N
t=1 Pt I

(
P̂t|t−k

)
∑N
t=1 Pt

(36)

where I() is the indicator function which is 0 if P̂t|t−k is missing, and 1 if not. Only the included values are
used, i.e. not night values.

6 Results

In this section the results are presented and evaluated. The RMSEkstart,kend improvement for relevant ranges
of horizons are listed in Table 1. For selected models the RMSEk is shown in the upper plot of Figure 5 and
the completeness in the lower.

Considering the improvements it is seen that most of the models perform very well on either the short
horizons or the longer horizons. Starting with short horizons (1 to 2 hours), the AR1 and ARX1 are clearly
superior, which is due to their inclusion of the most present autoregressive lag. Their performance on longer
horizons are not good. The reason for this is found by considering the plot of RMSEk and completeness. Here
it is seen that the completeness of AR1 and ARX1 drops really quickly as the horizon increase, which cause
the RMSEk to increase and reach the reference model at the 10 hours horizon. This is simply due to missing
forecast values, since for e.g. the 10 to 14 hours horizons the models use night values (which are missing) to
forecast day values with.
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Figure 5: The upper plot is RMSEk for the forecasting models. On the right side the NRMSEk is indicated. The lower
plot is completeness Ck.

For horizons longer than three hours the best performance is seen for the models, that doesn’t include the
most present AR lag. The ARDiurnal is a clear improvement from the AR1, and the CP and ARX models -
which include the NWPs - are superior for these horizons. An improved performance is found from CP1 to
CP2 mainly for 3 to 24 hours horizons, whereas no clear increase in improvement is found from CP2 to CP3.
The CP models are slightly improved by using them as input to the ARX models, since autocorrelation of the
errors are modelled.

Finally, the combined model ARXCombined utilizes the best parts of: ARX1, ARX, ARXDiurnal, and CP2.
Especially the replacement of missing forecast values improves the performance for horizons up to 5 hours.
The completeness of the combined model is as high as any of the others.

7 Discussion and applications

This section contains a short discussion of the results and ideas for further work, and ends with an outline of
applications.

Considering the improvement achieved over the reference model the forecasting method is found to perform
very well. Clearly the quality of the NWPs of solar radiation is the most influential source of error, hence
improved NWPs will improve the forecasting performance. Regarding improvement of the forecasting models,
the following are considered:

Table 1: Improvements in percent for selected ranges of horizons.

Model IRMSE1,2
IRMSE3,24

IRMSE25,42
IRMSE1,42

AR1 30.8 7.1 6.1 7.8
ARDiurnal -10.7 15 18 15.1
CP1 13.5 30 30.6 29.5
CP2 16.2 31.4 30.9 30.5
CP3 15.5 31.6 30.8 30.5
ARX 17.1 32 31.3 31
ARX1 34.4 11.6 8.7 11.4
ARXDiurnal 17.8 32.4 30.5 30.9
ARXCombined 39.3 33.3 31.5 32.8
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• A thorough evaluation of the forecast errors to clarify how the models can be improved.

• Optimization of forgetting factor of the RLS has not been carried out, this will improve the performance
of the AR and ARX models.

• Application of regime models to handle different aspects of forecasting for low and high radiation values.

• More optimal ways to combine the models. Utilizing a linear combination instead of the simple replace-
ment currently carried out.

• It might be possible improve performance by including a third-stage, where modelling of the errors are
carried out.

The applications for this type of solar thermal power forecasting counts the integration of solar thermal
energy systems with auxiliary electrical heating into smart grid systems (Perers et al., 2011). The solar power
forecasts will be used for model predictive control to optimize the operation of the system. Other applications
include optimal control of large solar heating plants.

The method is furthermore well suited for monitoring the performance of solar thermal systems. Measures
of the performance can be derived from the CP models, with which systems can be compared on an absolute
scale. Sudden high deviation from the CP forecasting model will allow for very fast detection of failures in the
system. For an individual system the change in performance over time can also be assessed by monitoring the
clear sky curve for unusual behavior, and compare the change from year to year.

8 Conclusion

A method for forecasting of solar thermal power output is presented. It is applied to forecast hourly values
for horizons up to 42 hours. The method is based on a two-stage approach, where first the solar power is
normalized with a statistical clear-sky model, and secondly forecasted with time-adaptive linear time series
models. Both models without and with NWPs of solar radiation and ambient temperature are considered. The
NWPs are included by using non-linear conditional parametric models, which are formed from prior physical
knowledge. The forecast models which do not use NWPs achieve an improvement on short horizons (1 to 2
hours) in average 30% over a persistence reference model, and in average 15% on horizons up to 42 hours.
Applying the NWPs an improvement around 39 % is achieved in average for short horizons and around 32%
in average for longer horizons. The method can furthermore be applied to monitor and check the performance
of solar thermal collectors.
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Nomenclature

Pt Hourly solar thermal power,
[
W/m2

]
.

P cs
t Estimated clear sky solar power,

[
W/m2

]
.

τt Normalized solar power.

t Time index, [h].

k Forecast horizon index, [h].

ttod Time of day.

F ′(τα)en Zero loss efficiency of collector for direct radiation at normal incidence

Kταb(θ) Incidence angle modifier for direct radiation

Kταd Incidence angle modifier for diffuse radiation

F ′U0 Heat loss coefficient at (Ta − Tf) = 0,
[
W/(m2K)

]
.

Gnwp
t+k|t NWP of global radiation,

[
W/m2

]
.

Gb,nwp
t+k|t NWP of direct solar radiation,

[
W/m2

]
.

Gd,nwp
t+k|t NWP of diffuse solar radiation,

[
W/m2

]
.

T a,nwp
t+k|t NWP of ambient temperature, [◦C].

P̂nwp
t+k|t k-hour prediction of solar power,

[
W/m2

]
.

τ̂t+k|t k-hour prediction of normalized solar power.

et+k k-step prediction error.
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Verification of cloud physical properties

Kristian Pagh Nielsen

Danish Meteorological Institute, Ministry of Climate and Energy, Copenhagen, Denmark

Abstract

For the first time, field verification of NWP cloud

physical properties against measurements from

the MSG satellite are presented. In classical ob-

servations clouds are described in terms of 1/8

fractions of cloud cover. The cloud fraction, how-

ever, is only one of the factors that determine

the reflectance and transmittance of a cloud field.

The other factors are the inherent cloud phys-

ical properties. These are particularly impor-

tant with respect to shortwave radiative trans-

fer. Therefore, satellite measurements of cloud

physical properties, much improves the capability

of cloud verification. With these measurements,

processes such as aerosol indirect effects can also

be assessed in detail. Results will be presented

and discussed.

Introduction

•Clouds are affected by virtually
all processes in the atmosphere;

•Cloud prediction is essential for
prediction of radiative forcing
and precipitation;

•New satellite data give 3D-
information on clouds.

Theory

The equation of radiative transfer:

µ
dIλ(τ , µ, φ)

dτ
= Iλ(τ , µ, φ) − (1 − a)Bλ(T ; τ )

−
a

4π

∫

4π

dω′p(τ , µ′, φ′)Iλ(τ , µ, φ)

−S∗

λ(τ , µ, φ) (1)

Inherent optical properties (IOPs):

• τ : Optical depth [-], the integrated extinction;

• a: Single scattering albedo = 1 - emittance [-];

• p: Phase function [-], in practice a function only of the
asymmetry factor g (Henyey & Greenstein 1941);

•Lower boundary albedo / BRDF [-].

• “Cloud albedo” is not an inherent optical property!

The good news is that the cloud IOPs can be adequately derived
from only two physical quatities

•Cloud liquid water path (CLWP) [kg/m2];

•Effective cloud drop radius (re) [µm].

In the visible spectral range the following inherent optical prop-
erties can be derived from Mie-Debye theory.

τvis =
3CLWP

2reρl
, avis = 1, gvis = 0.85 (2)

re ≡

∫
∞

0

drn(r)r3/

∫
∞

0

drn(r)r2 (3)

Satellite data

Figure 1: Meteosat Second Generation satellite.

•MSG Cloud mask;

•MSG Cloud physical products (CPP);

•CloudSat.

Results

Figure 2: Comparision of DMI-HIRLAM forecast (2009-03-08 00:00
+12h) and MSG CPP data.

Figure 3: Comparision of DMI-HIRLAM forecast (2009-03-08 00:00
+13h) and Cloudsat CPP data.

Discussion and conclusion

•New satellite products with CPPs are very valuable

in NWP verification;

•Continous variables - can be quantified;

•Possible MSG CPP issues:

–Snow cover in northern Scandinavia - albedo bias.

–Low sensitivity to high optical thickness (τ > 50).

•Vertical variations of re not (yet) available;
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Verification of HIRLAM cloud forecasts with MSG cloud physical
products

Kristian P. Nielsen, Danish Meteorological Institute

July 2, 2009

1 Introduction

For the first time, field verification of Cloud Physical Properties (CPP) forecast with Numerical Weather
Prediction (NWP) models against measurements from the Meteosat Second Generation (MSG) satellite are
presented. In classical observations, clouds are described in terms of 1/8 fractions of cloud cover. The cloud
fraction, however, is only one of the factors that determine the reflectance and transmittance of a cloud field.
The other factors are the inherent cloud physical properties. In the infrared spectral region, the temperature of
the cloud also affects the radiative properties of clouds.

Clouds are affected by virtually all processes in the atmosphere, and they themselves strongly affect radiative
forcing and precipitation. Thus, they are both one of the most difficult and important of the meteorological
variables to simulate.

Today cloud verification is done by verifying the fractional cloud cover. Such verification does not account for
one of the key cloud physical properties: The cloud optical thickness. This property is very important for the
transmittance of short wave radiation. If only the cloud cover is considered, a very thick cloud layer is seen as
no different from a very thin cloud layer, provided that they both cover 8/8 fractions of a given area. Clearly,
this is not satisfactory.

Another problem with verification against cloud cover is that satellite data,e.g.the MSG cloud mask product
is often given as either

• cloud free,

• partly cloudy, or

• cloudy.

Such data cannot be verified quantifically.

Satellite measurements of CPP, much improves the capability of cloud verification. Recently, algorithms for
deriving CPP from MSG data have been made (Roebeling, Feijt & Stammes 2006). The CloudSat satellite
data provide detailed tomographies of the clouds in its path (Stephenset al. 2008). With these measurements
CPP, and thereby processes such as aerosol indirect effects and stratocumulus clouds in the boundary layer can
be assessed in detail. Results will be presented and discussed.

1
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2 Theory

The equation of radiative transfer for a given wavelength (λ), direction (µ, φ) and optical depth (τ ) is given by
(Lommel 1889, Chandrasekhar 1960, Thomas & Stamnes 2002)

µ
dIλ(τ , µ, φ)

dτ
= Iλ(τ , µ, φ) − (1 − a(τ))Bλ(T ; τ )

−
a(τ )

4π

∫

4π

dω′p(τ )Iλ(τ , µ′, φ′) − S∗

λ(τ , µ, φ) [
W

m2 nm sr
]. (1)

HereIλ is the spectral radiance,µ ≡ cos θ is the cosine of the zenith angle,φ is the azimuth angle,a is the
single scattering albedo,Bλ is the Planck function,T is the temperature,dω′ is the differential solid angle for
the multiple scattering integral, andS∗

λ
is the source function of direct sunlight scattered into the direction

(µ, φ).

If the inherent optical properties(IOPs) are known for the column of interest, including the optical properties
of the surface, Eq. (1) can be solved to a high degree of accuracy as shown by Hesteneset al. (2007).

The inherent optical properties (IOPs) are

• τ : Optical depth [-], the integrated extinction;

• a(τ ): Single scattering albedo = 1 - emittance [-];

• p(τ ): Phase function [-], for most practical purposes a function of the asymmetry factor onlyg(τ )
(Henyey & Greenstein 1940).

The surface IOPs in NWP models are generally represented by theirflux albedoand all surfaces are assumed
to be Lambertian (Thomas & Stamnes 2002).

In recent literature the term “cloud albedo” is often used, in particular in relation to aerosol indirect effects
(Seinfeld & Pandis 1997). This is a somewhat misleading term since “cloud albedo" or rathercloud
reflectanceis not an inherent optical property,e.g.it is important to remember that the same cloud may have a
very different reflectance/albedo depending the optical properties of the surface below it; if the cloud is moved
from being over the northern Atlantic Ocean to being over the Greenland ice sheet, its reflectance will increase
significantly. Sagan & Pollack (1967) stated that:

“The reflection spectra obtained from dispersed media - both clouds and powders - depend on the
monochromatic single-scattering albedo, the single-scattering phase function, the particle-size
distribution, the total optical depth, and the albedo of the underlying surface."

Later, it has been shown that it is not necessary to know the complete particle size distribution of clouds. In
fact, the cloud IOPs can be adequately derived from only two physical quantities (Hu & Stamnes 1993)

• Cloud liquid water path (CLWP) [kg/m2];

• Equivalent cloud drop radius (re) [µm],

wherere is defined as the ratio between the third and second moments of the cloud drop size distribution
(Hansen & Travis 1974)

2
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re ≡

∫
∞

0

drn(r)r3/

∫
∞

0

drn(r)r2. (2)

In the visible spectral range the following inherent optical properties of clouds can be derived from
Mie-Debye theory (e.g.Ricchiazziet al.1998)

τvis =
3CLWP

2reρl

, avis = 1, gvis = 0.85. (3)

In the infrared spectral range the dependencies are more complicated, but parameterizations based on only
CLWP andre still yield very accurate results (Hu & Stamnes 1993).

These two cloud physical properties are derived in the MSG CPP product (Nakajima & King 1990, Roebeling
et al.2006). From the polar orbiting CloudSat satellite the optical thickness (τvis) of each vertical bin of
approximately 240 meters thickness is given as output (Stephenset al. 2008).

In HIRLAM CLWP andre are derived as described by Wyseret al. (1999).

3 Results

Figure 1: Comparision of DMI-HIRLAM cloud cover and the MSG cloudmask.Upper left: The DMI-HIRLAM
cloud cover forecast (2009-03-08 0 UTC +13h).Upper right: The MSG cloudmask, partially clouded pixels
are given a value of 0.5.Lower left: The difference between the model and satellite data. Negative biases are
blueish to purple, while positive biases are yellowish to red.Lower right: Discrete statistics for all forecast
hours run at 2009-03-08 0 UTC. MSG pixels classified as partly cloudy are excluded from this statistics.

In Fig. 1 an attempt of making quantitative statistics of the HIRLAM cloud cover fraction and the MSG cloud
mask product is shown in the lower right panel. This should be taken with a large grain of salt for the reasons
mentioned in the introduction section.

3
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From the panels in Fig. 1 a large area with negative bias in the cloud cover over the North Sea is clearly seen.
Negative bias in cloud cover over the North Sea is not unusual for the DMI-HIRLAM S model.

In Fig. 2 the CPP comparison for the same forecast as shown in Fig. 1 is shown. The large bias area seen in
cloud cover over the North Sea is here seen not to correspond to a large bias in CLWP andτV IS . In Fig. 2 the
most prominent bias is the positive bias and CLWP andτV IS seen in the frontal area that stretches from Oslo
over Denmark to northern Germany. The same area can in Fig. 1 be seen as correctly forecast 8/8 fractions of
cloud cover! A similar bias is seen for the smaller front strecthing between the Faroe islands and the Shetland
islands.

Figure 2: Comparision of DMI HIRLAM and MSG CPP data.Left column: The DMI-HIRLAM CPP forecast
for 2009-03-08 0 UTC +13h.Centre column: The MSG CPP values at 2009-03-08 13 UTC.Right column:
The difference between the DMI-HIRLAM and the MSG CPP.Upper row: Cloud Liquid Water Path (CLWP)
[kg/m2]. Centre row: Cloud drop equivalent radius,re [µm]. Lower row: Cloud optical thickness,τV IS [-].

Another prominent bias that can be seen in Fig. 2 is over southern Norway. Here a strong negative bias in
CLWP (≈ 3 kg/m2) and a positive bias inre (≈ 20µm) is found. This from Eq. (3) leads to a negative bias in
τV IS of more than 200.

In Fig. 3 a comparison of the DMI HIRLAM CPP data with the CloudSat CPP data along the CloudSat track
across the DMI HIRLAM S area at 13h UTC on the 8th of March 2009 is shown. At this time CloudSat
passed over the small frontal structure between the Shetland islands and the Faroe islands. In the frames
showing the biases ofτV IS/∆z and cloud liquid water concentration the “double penalty" of verification of
high resolution data sets is clearly visible, with negative (bluish) biases scattered among positive (yellowish)
biases. For the particular small frontal structure at 60◦N, there is, however, a dominating positive bias. In the
core of the structure DMI HIRLAM has a cloud liquid water concentration of more than 1 g/m3, whereas the
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CloudSat data show no more than 0.5 g/m3. This corresponds to the positive bias seen in the CLWP at the
same position in Fig. 2.

A negative bias inτV IS/∆z is seen at 54◦N, i.e. over the East of England. In the central frame it can be seen
that there are clouds over the East of England in the DMI-HIRLAM forecast, but these are laterally displaced
eastwards of the CloudSat track.

The differences between cloud drop equivalent radius,re, simulated with DMI-HIRLAM and that from the
CloudSat product are small along the track of the satellite. This is shown in the centre left frame of Fig. 3.

Figure 3: Comparision of the DMI HIRLAM forecast at 2009-03-080 UTC +13h and CPP data from the
CloudSat satellite at approximately 2009-03-08 13 UTC.Centre frame: The track of the CloudSat satellite
across the DMI-HIRLAM S area plotted over the CLWP frame from Fig. 2.Centre right frame: The time
difference in minutes between the forecast and the CloudSat overpass as a function of latitude. 0 minutes marks
the forecast time.Centre left frame: The weigted vertical averages ofre for DMI-HIRLAM (green points),
CloudSat (red points) and the difference between them (blue points) along the CloudSat track as a function
of latitude. Upper row Cloud optical thicknesses per vertical bins,∆z = 240m, for DMI HIRLAM (left),
CloudSat (centre) and the difference between them (right), as a function of latitude and height from 0 - 20000
m.a.s.l.Lower row Cloud liquid water concentration [g/m3] for DMI HIRLAM (left), CloudSat (centre) and
the difference between them (right) in the same coordinates as the upper row figures.
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4 Discussion

By comparing Figs. 1 and 2 the advantages of using CPP for cloud verification, rather than using the fractional
cloud cover only, should be clear: Clouds have a very large range of thicknesses, where an 8/8 fractional cover
can represent both a very thin stratocumulus cloud layer or a 10 km thick frontal cloud system. The
transmittance of radiation through these two cloud types will be very different. By using new CPP satellite
products this shortcoming of fractional cloud cover can be overcome.

In Fig. 2 an area of negative bias is seen over southern Norway. On the 8th of March 2009 the highlands in this
part of Norway were covered by snow. The high albedo of a snow covered ground increases the reflectance
strongly in the MSG spectral bands used in the MSG CPP algorithm. Therefore, it is likely that the bias is
induced by either erroneous assumptions about the surface albedo, or, the heightened uncertainty of CPP
retrieval over snow covered areas as described by Kinget al. (2006).

The frontal zones in Fig. 2 have a significant positive bias in CLWP and therebyτV IS. This could be due to
the increasing uncertainty in retrieving the optical thickness of clouds withτV IS > 50, as discussed by
Deneke and Roebeling (2007). The same authors have, however, shown that the CPP retrieval algorithm
performs very well, by validating it against surface solar irradiance measurements in the Nertherlands
(Deneke, Feijt & Roebeling 2008). Therefore, it is not unlikely that the positive bias of DMI-HIRLAM CLWP
is real. Further tests should be performed to certify this.

The CloudSat measurements (Fig. 3) provide cross sections of cloud features. These are extremely valuable
for case studies. Their limitation is in the element of luck required that CloudSat has an overpass of the feature
of interest at the correct time. Also, as with all tomographies, they give the best information when they are
perpendicular to the feature of interest. This, of course, cannot be assured for a CloudSat overpass.

5 Conclusion

New satellite products with cloud physical properties (CPP) have been tested for verification of a NWP model
for the first time, and shown to give very relevant information. In particular, many advantages of using CPP
for cloud verification over using only fractional cloud cover for cloud verification, have been shown.

This new method of NWP verification is likely to provide information that will help improve
parameterizations for cloud microphysics, precipitation and convection.
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Computationally efficient tilted independent column calculations of
surface radiation

Kristian P. Nielsen and Bent H. Sass

November 18, 2011

1 Introduction

As numerical weather prediction (NWP) models move to ever higher resolution, it is clear that ever larger
errors will occur by using the current 1-dimensional radiation schemes, which keep all radiation calculations
within independent vertical columns (Sass 2010). Full 3-dimensional radative calculations are, however, not
feasible within the foreseeable future for the computation times required by NWP models. Hence smarter
solutions are needed.

Várnai & Davies (1999) suggested that the errors in vertical independent column approximation (ICA) could
be alleviated by performing the shortwave radiation calculations in columns tilted toward the Sun. This tilted
independent column approximation (TICA) has been found to be a very good approximation for the direct
solar radiation at the surface when compared to the results from a cloud-resolving model with full
3-dimensional radation calculations (Wapler 2007; Wapler & Mayer 2008). Wapler (2007) further found that
the development of simulated convective clouds were significantly affected by correctly representing the cloud
shadows, and, that convective clouds have shorter lifetimes when the TICA is not applied.

The effect of the TICA on super-cell thunderstorms has been studied by Markowski & Harrington (2005) and
Frame & Markowski (2010). Oberthaler & Markowski (2010) studied the effect of the TICA on squall lines.
They found that correctly representing the cloud shadows affects both the propagation and the structure of the
squall lines.

As discussed by Sass (2010) the ICA also causes errors in the calculation of longwave radiation. Here, we
will, however, focus only on the issues of shortwave radiation. We have simulated the month of August 2010
with both the DMI-HIRLAM S05 model and a version of this in which the TICA is applied for the calculation
of the surface shortwave radiation (DMI-HIRLAM S05 TICA). August 2010 was chosen since several strong
precipitation events occured in Denmark.

2 Theory

In order to apply the TICA in the calculation of the shortwave surface calculation, it is necessary to transform
all the arrays that are important for this calculation from vertical arrays to arrays tilted toward the Sun. These
arrays are: Cloud cover, cloud water, cloud ice, specific humidity and temperature.

(1) and (2) show the equations for the transformed array indices xtilt and ytilt of the tilted arrays as a function
of the regular array indices x, y and z.

xtilt(x, y, z) =
Z(x, y, z) tan(θ0(x, y))

λ(x, y, z)
sin(φ0(x, y)− ρgrid(x, y)) (1)

1
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ytilt(x, y, z) =
Z(x, y, z) tan(θ0(x, y))

φ(x, y, z)
cos(φ0(x, y)− ρgrid(x, y)) (2)

ρgrid(x, y) = − tan−1
(

φ(x+ 1, y)− φ(x− 1, y)

cos(φ(x, y))(λ(x+ 1, y)− λ(x− 1, y))

)
(3)

ρgrid is the local rotation between the modeling grid and the geographical grid, Z is the geopotential height, θ0
is the solar zenith angle, φ0 is the solar azimuth angle, φ is the latitude and λ is the longitude.

3 Practical issues with parallel computing

The array transformation obviously is limited by the edges of the model domain, at which it is necessary to
use the standard vertical array indices. The errors caused by this are of course acceptable, as long as the
domain edges are sufficiently far away from the area of interest of the limited area model. When the model
physics is parallelized into several sub-domains, however, these errors deteriorate the forecast. An example of
this is shown in Figure 1. In sub-domains with clouds at their egdes discontinuities in the surface shortwave
radiation are seen.

Figure 1: The first parallel processing simulation made with DMI-HIRLAM S05 with tilted arrays. The figure
shows surface shortwave radiation in a 2-hour forecast started on 2010-08-01 at 6 UTC.

On the other hand, if the TICA calculations are not parallelized, the computation time increases by several
hundred percent.

To solve this problem the halo zone points in the semi-Lagrangian advection scheme were utilized. Thus, the
tilted arrays were calculated for sub-domains extended with the semi-Lagrangian halo zones. In
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DMI-HIRLAM S05 the halo zones are 8 grid points wide corresponding to more than 40 km. In the
simulations from August 2010 this was adequate for removing the effects shown in Figure 1. With the
utilization of the halo zones in DMI-HIRLAM S05 TICA this is only 9% slower than DMI-HIRLAM S05.

4 Results and discussion

Figure 2: 24 hour accumulated precipitation over Denmark simulated with DMI-HIRLAM S05. The run was
started 2010-08-14 at 0 UTC.

In the general verification statistics virtually no differences are seen between the DMI-HIRLAM S05 and the
DMI-HIRLAM S05 TICA runs (results not shown here). For the convective events during August 2010,
however, significant differences are seen in the precipitation patterns. In Figure 2 and Figure 3 an example of
this is shown. Both figures show 24-forecasts of accumulated precipitation on the 14th of August 2010. The
difference in accumulated precipitation between the models is shown in Figure 4. Here it can be seen that the
difference is up to 33 mm in North-East Zeeland.

Obviously, much cannot be concluded from a few convective cases during a single month. Further studies are
needed before it may be concluded whether the TICA is needed in a 0.05◦ resolution model, or whether it may
be sufficient with the regular ICA.

We plan to include the TICA model as a member in the DMI operational ensemble runs, in order to test this
further.
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Figure 3: 24 hour accumulated precipitation over Denmark simulated with DMI-HIRLAM S05 TICA. The run
was started 2010-08-14 at 0 UTC.

Figure 4: Difference in 24 hour accumulated precipitation over Denmark between the DMI-HIRLAM S05 TICA
and the DMI-HIRLAM S05 run. Both runs were started 2010-08-14 at 0 UTC.

5 Concluding remarks

• We have deviced a method for implementing tilted array modeling, which is only 9 % slower than a
regular NWP run;
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• Tilted array modeling has virtually no effect on the general verification statisics of DMI-HIRLAM S05;

• Tilted array modeling significantly affects the strength and distribution of convective precipitation of
DMI-HIRLAM S05;

• Further experiments are needed before anything conclusive can be stated in this matter.
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Testing cloud parametrizations in NWP models against satellite data

Kristian P. Nielsen

November 18, 2011

1 Introduction

The classical meteorological description of clouds includes descriptive terms such as:

• Cloud cover in octas;

• Low, medium, and high clouds;

• Cloud types.

None of these terms give quantitative information about essential cloud parameters such as the shortwave
transmittance, reflectance and absorptance, or the longwave transmittance, reflectance and emittance.
Nevertheless, many numerical meteorologists still verify only the cloud cover from their models. Also, many
operational meteorologist still use model output of ’high’, ’medium’ and ’low’ clouds rather than utilizing the
multilayer cloud output that is available from the models. Often only clouds shaded white as a function of the
total cloud cover is presented to the public.

The physical description of clouds gives additional information to the classical description of clouds. Clouds
physical properties are given either as 2-dimensional or 3-dimensional arrays. 2-dimensional properties
include quantities such as:

• Integrated cloud water path [kg m−2];

• Vertically averaged effective cloud particle size, re, [µm];

• Cloud top temperature [K];

• Cloud bottom temperature [K],

of which the former two are essential for the shortwave forcing of the clouds, and the latter two are also
important for the longwave forcing of the clouds.

3-dimensional cloud physical properties include quantities such as:

• Cloud water concentration [g m−3];

• Ice phase fraction [-];

• Effective cloud particle size, re,wat/re,ice, [µm];

• Detailed size distribution of cloud particles;

1
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• Detailed shape distribution of cloud particles.

In numerical weather prediction models today, it is standard to include the concentration of cloud liquid water
concentration and the cloud ice concentration as global variables. The effective cloud particle size (Hansen &
Travis 1974) is, however, only included as a local variable in the radiation schemes of the models (e.g. Wyser
et al. (1999); Sun & Rikus (1999); Sun (2001)). The shape distribution is important for cloud ice particles,
whereas all cloud liquid drops may well be assumed to be spherical. The detailed size distribution of cloud
particles has been show to be of little significance for shortwave radiation (Hu & Stamnes 1993). This is due
to the fact that the cloud particles are much larger than the wavelength of shortwave radiation. In the longwave
spectral region, however, this is not the case, as shown by Mitchell et al. (2002; 2010).

As discussed by Nielsen (2010) the inherent optical properties of clouds may be derived, when the physical
properties of the clouds are known, i.e. the visible optical thickness of a cloud, τvis, is

τvis =
3CWP

2reρl
, (1)

where CWP is the integrated cloud water path, re is the vertically averaged effective cloud partical size, and
ρl is the density of water. From the inherent optical properties the cloud transmittance, reflectance and
absorptance may then be calculated. Even when only the cloud water path and the vertically averaged effective
cloud particle size are available, i.e. the 2-dimensional physical properties, these are sufficient to give good
estimates of the cloud shortwave transmittance, as shown be Deneke et al. (2008).

In situ observations of clouds, e.g. from aircrafts, provide the most reliable measurements of 3-dimensional
cloud microphysical properties (Baker & Lawson 2006; Lawson et al. 2006), however, such measurements are
for practical reasons very limited in time and space. With recent advances in remote sensing and the launch of
the A-Train satellites many more measurements of cloud physical properties have become available (Stephens
et al. 2002; Stephens et al. 2008). In particular, the CloudSat satellite data provide detailed tomographies of
the clouds in its path.

Here cloud physical property data will be presented from the European Satellite Application Facility on
Climate Monitoring (CM SAF) Cloud Physical Product (CPP) (Roebeling et al. 2006) and the CloudSat Radar
and Visible Optical Depth (RVOD) product (Wood 2008).

2 Results and discussion

2.1 Testing 2-D cloud physical properties

Figure 1 illustrates the degree of variability in the visible cloud optical thickess in the CM SAF CPP data. In
large areas the clouds are optically thin with optical thicknesses between 1 and 10 (grey colors). In other areas
local clouds with optical thicknesses over 50 (yellow colors) and 150 are seen (red colors). Such locally
optically very thick clouds correspond to convective clouds.

The effect of the variability in cloud optical thickness on the integrated shortwave radiation, i.e. the global
radiation, is illustrated in Figure 2. Where the measured global radiation is more than 700 W/m2 at noon on
cloud free days, it is less then 100 W/m2 at noon on other days. This implies a local shortwave radiative
forcing of more than 600 W/m2 on days with optically very thick clouds. Clearly, this shows the importance of
getting the cloud optical thickness right in meteorological and climate forecasting.

An example of comparing cloud water path from the HARMONIE Denmark model with cloud water path
from CM SAF CPP data is shown in Figure 3. Both have a line of convective clouds going from the North Sea
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Figure 1: The visible cloud optical thicknesses (τvis) over NW-Europe on the 23rd of July 2010 at 15:00. The
data is from the CM SAF CPP data. The blue color shows cloud free areas, the grey colors τ > 1, the green
colors τ > 10, the yellow colors τ > 50, and the red colors τ > 150.

Figure 2: Measured and simulated global radiation at a station in Denmark during a 10 day period in August
2010.

across Southern Jutland to Northern Germany as a distinguishing feature. In the CM SAF CPP data this is,
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however a 100 km further north than in the model data. Also, the CM SAF convective clouds contain more
water (> 3 kg/m2) than the modelled convective clouds (1-2 kg/m2).

Figure 3: Comparison of modelled cloud water path from Harmonie 33h Denmark and cloud water path from
CM SAF CPP. The data is from 2009-09-03 at 11 UTC, and the forecast was started at 0 UTC.

2.2 Testing 3-D cloud physical properties

In HIRLAM the cloud ice effective size is calculated as a third degree polynomial as a function of temperature
(Ou & Liou 1995; Wyser et al. 1999):

4

496



HIRLAM Newsletter no.58, September 2011 Author Name

re,ice,Ou&Liou = 163.15 + 6.21TC + 0.0985T 2
C + 0.0006T 3

C , TC = T − 273.15 (2)

The same expression is also an option in HARMONIE.

The CloudSat RVOD product contains both cloud liquid water effective sizes and cloud ice effective size. The
latter can be compared to the the parameterization in Equation 2. Such a comparison is shown in Figures 4 and
5.

Figure 4: Comparison of 199371 measurements from the CloudsSat RVOD product of re,ice as a function of the
temperature and the equivalent values found with the parameterization of Ou & Liou (1995). The isolines in
the plot show the density of the data with the density doubling for each isoline.

Figure 5: Comparison of 199371 measurements from the CloudsSat RVOD product of re,ice as a function of the
ice water concentration and the equivalent values found with the parameterization of Ou & Liou (1995). The
isolines in the plot show the density of the data with the density doubling for each isoline.
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(van Zadelhoff et al. 2004) showed that radar retrievals of re,ice become biased if the lower limit of radar
reflectivity is too high; unbiased retrievals can be made if the radar can detect signals that are -40 dBZ and
stronger. Since the CloudSat radar can only detect signals stronger than -30 dBZ (L’Ecuyer et al. 2008).
CloudSat estimates of re,ice have a positive bias for ice clouds with very low ice water contration, e.g. high
cirrus clouds. This has also been pointed out by (Protat et al. 2010), who found that the CloudSat re,ice-bias
was 8-12 µm when compared to ground-based radar-lidar retrievals of ice clouds. Thus, the data shown in
Figures 4 and 5 may be biased with the CloudSat data being approx. 10 µm too large, and we should be
careful with drawing too strong conclusions from these data. Nevertheless - bias or no bias - it is clear that the
Ou & Liou (1995) parametrization that is only a function of temperature does not adequately account for the
variability of re,ice as a function of the cloud ice water concentration that is seen in the CloudSat data. Thus, a
parametrization that treats re,ice as a function of both temperature and cloud ice water concentration, such a
that of Sun & Rikus (1999) and Sun (2001), is likely to be a better choise than that of Ou & Liou. Here it
should be noticed that this is possible to chose in HARMONIE by setting the switch NRADIP to 3.

3 Concluding remarks

• Accurate cloud physical properties in models are essential for prediciting cloud radiative forcing.

• MSG 2D cloud physical properties are useful for verifying NWP models.

• CloudSat 3D cloud physical properties are useful for verifying microphysical parametrizations.
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Abstract

To comply with an increasing demand for sustainable energy sources, a solar
heating unit is being developed at the Technical University of Denmark.
To make optimal use — environmentally and economically —, this heating
unit is equipped with an intelligent control system using forecasts of the
heat consumption of the house and the amount of available solar energy. In
order to make the most of this solar heating unit, accurate forecasts of the
available solar radiation are esstential. However, because of its sensitivity to
local meteorological conditions, the solar radiation received at the surface of
the Earth can be highly fluctuating and challenging to forecast accurately.

To comply with the accuracy requirements to forecasts of both global,
direct, and diffuse radiation, the uncertainty of these forecasts is of inter-
est. Forecast uncertainties can become accessible by running an ensemble of
forecasts, and to this end, these three meteorological quantities have since
August 2011 been output parameters from the high-resolution ensemble pre-
diction system at the Danish Meteorological Institue.

The appropriateness of complementing forecast values with uncertainty
estimates derived from the ensemble forecasts has been assessed by investi-
gating the degree to which the ensemble members and the truth — here ma-
terialised by the verifying observation — are statistically indistinguishable.
A degree of under-dispersion of the ensemble members is evident concerning
global radiation, and the ensemble forecasts will therefore tend to express
too little uncertainty in the forecast values. Under-dispersiveness is a well-
known problem in ensemble prediction. Uncertainties on obsrvations may
cause some of the under-dispersiveness of the ensemble forecasts of global
radiation.
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Referat (danish)

For at imødekomme en stigende efterspørgsel efter vedvarende energikilder
er en særlig solvarmeenhed — udstyret med et intelligent styresystem —
under udvikling p̊a Danmarks Tekniske Universitet.

For at f̊a optimalt udnytte af solvarmeenheden— klimamæssigt og økonomisk
— anvender det intelligente styresystem prognoser af varmeforbruget i huset
og af den solenergi, der er til r̊adighed. Præcise prognoser af solstr̊alingen
er afgørende for bedst mulig brug af varmeenheden, men p̊a grund af sol-
str̊alingens sensitivitet over for lokale meteorologisk forhold kan den være
stærkt varierende og vanskelig at forudsige præcist.

I forbindelse med udviklingen af solvarmeenheden er det Danmarks Me-
teorologiske Instituts (DMI’s) — og dermed mit Ph.d.-projekts — rolle
at levere præcise prognoser af solstr̊alingen. En evaluering af prognoser af
globalstr̊alingen og den direkte og den diffuse str̊aling har afsløret proble-
mer i str̊alingsskemaet i DMI’s HIRLAM modeller, og str̊alingsskemaet er
efterfølgende blevet revideret.

En måde at efterkomme kravene til præcision af prognoser af global-
str̊alingen, den direkte og den diffuse str̊alingen, er ved at beskæftige sig
med usikkerhederne for prognoserne. Disse usikkerheder kan blive tilgæn-
gelige ved at kører et ensemble af simultane prognoser. DMI’s ensemble-
prognose-system baseret p̊a en højopløsningsmodel beregnet til at opfange
lokale detaljer i vejret har siden august 2011 leveret prognoser af global-
str̊alingen, den direkte og den diffuse str̊aling.

Egnetheden af de estimater — udledt af ensemblemedlemmerne — af
prognoseusikkerhederne er blevet vurderet ud fra en undersøgelse af i hvor
høj grad ensemblemedlemmerne og den sande værdi — her observationen
— er statistisk uafhængige. Spredningen blandt ensemblemedlemmerne er
fundet for lille til at indeholde observationerne med en forventet andel,
og ensembleprognoserne vil derfor være tilbøjelige til at give en for beske-
den usikkerhed p̊a de forudsagte værdier. For lille spredning blandt ensem-
lemedlemmerne er et velkendt problem i ensemble-prognose-systemer. En
del af den begrænsede ensemblespredning kan muligvis skyldes usikkerheder
p̊a observationerne.

Hvad ang̊ar RMSE, skill score og diskrimination præsterer ensemble-
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midlet bedre ens kontrolprognosen, og det kan være en ide at supplere vær-
dien af en operationel prognose af globalstr̊alingen, men måske ogs̊a relevant
for andre meteorologiske parametre, med værdien af ensemble-midlet.
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1 Introduction

Under the direction of the Department of Civil Engineering at the Technical
University of Denmark, a project with the purpose of elucidating how to
best design an individual heating unit based on solar energy was initiated
in 2008. This solar heating unit is a so-called smart solar heating unit in
the sense that it adjust its heated water volume according to forecasts of
the heat consumption of the household and of the available solar energy.

The solar radiation available at the ground (and at the solar collectors) is
highly variable due to the dependence on meteorological conditions (Lorenz
et al., 2011), and in order to make optimal use — environmentally and
economically — of this smart solar heating unit, accurate predictions of the
available solar energy are essential. Within this project, the task of the
Danish Meteorological Institute (DMI) — and thus my Ph.D. work — is to
deliver accurate forecasts of the solar radiation reaching the surface of the
Earth.

It is, however, highly challenging to forecast solar radiation at the surface
of the Earth accurately even though the position of the Sun in the sky can be
determined accurately from astronomical formulas and the transfer of solar
radiation through an absorbing and scattering medium like the atmosphere
is well established (Paltridge and Platt, 1976; Thomas and Stamnes, 1999).
On the way through the atmosphere, the solar radiation interacts with atmo-
spheric constituents such as molecules, ozone, water vapour, aerosols, and
cloud particles (water droplets and/or ice particles) (Paltridge and Platt,
1976; Savijärvi, 1990; Stephens, 1984; Wyser et al., 1999), which all attenu-
ate the solar radiation by absorption or scattering. The distribution of cloud
particles and aerosols can be difficult to forecast to a high degree of accuracy,
and especially cloud particles may reflect a large fraction of the incoming
solar radiation (Juan and Da-Ren, 2012; Kasten and Czeplak, 1980).

Different approaches have been used to predict the solar surface radia-
tion depending on the time scale of the forecast. Hammer et al. (1999) used
cloud motion vectors derived from consecutive satellite pictures to make very
short-range (30 minutes to 2 hours) forecasts of solar radiation reaching the
surface. At forecast ranges beyond about 6 hours, numerical weather predic-
tion (NWP) models have been found superior to other alternatives (Perez

1

510



2

et al., 2011). Apparently, the full coherent system of equations describing
the evolution of the atmosphere is needed for these longer forecast ranges.

1.1 Ensemble Prediction

An inherent instability of an atmospheric state to small-scale perturbations
(Lorenz, 1963) imposes a challenge to NWP forecasting of any meteorolog-
ical parameter. This atmospheric instability — caused by non-linearity of
the atmosphere — introduces a high degree of sensitivity to the initial con-
ditions of an NWP forecast. The observations of the atmosphere, on which
the initial conditions of an NWP forecast is based, are typically neither
sufficiently exact nor sufficiently dense to consider the initial conditions as
known with certainty (Epstein, 1969). Due to the imperfections in the ob-
servations, a multitude of nearly identical initial states will all be consistent
with the observations, and each of these initial states may in time evolve
into considerably different atmospheric states (Epstein, 1969; Lorenz, 1982).
Because of the non-linearity of the atmosphere, the fate of NWP forecasting
is that small errors in determining the initial state of the atmosphere, may
with time lead to a forecasts that diverges from the true evolution of the
atmosphere. Epstein (1969) concluded that the atmosphere could not be
completely described with a single forecast run due to this uncertainty in
the initial state, and in the following decades, the idea of running a collec-
tion, or an ensemble, of forecasts initiated from slightly perturbed states
emerged (see e.g. Molteni et al. (1996); Toth and Kalnay (1993); Tracton
and Kalnay (1993)).

Since the 1990s, ensemble prediction forecasts have become increasingly
important as a mean of addressing forecast uncertainty, and ensemble pre-
dictions are made at most of the major operational weather prediction cen-
tres worldwide including the National Centers for Environmental Predic-
tion (NCEP), the European Centre for Medium-Range Weather Forecasts
(ECMWF), the United Kingdom Met Office and Meteo-France. Until re-
cently, the main focus has been on global medium range (typically 10 days)
forecasts, but with increased computer resources it has become relevant to
pay attention to high resolution ensemble forecasts for a limited area (re-
ferred to as LAM models) (Bowler et al., 2008; Dı́az et al., 2012; Feddersen,
2009). These model systems have the potential of addressing the uncertainty
in both high impact weather and more detailed features of cloud fields and
radiation up to about two days ahead (Dı́az et al., 2012).

To access the uncertainty of solar radiation forecasts, DMI’s high-resolution,
limited area (LAM) ensemble prediction system (DMI-EPS) has since Au-
gust 2011 made forecasts of the incoming solar radiation. DMI-EPS is aimed
at capturing small-scale weather features of which a solar heating unit can
be expected to be sensitive. Making forecasts of the future and providing
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these with estimates of the uncertainty associated with them is fundamental
in ensemble forecasting and is in line with the on-going transition within the
field of meteorology from point prediction toward distributional prediction
(Gneiting et al., 2008).

1.2 Organisation of the Thesis

In addressing the performance of forecasts of solar radiation, this thesis
consists of two parts separated in time:

1. A part that describes the identification of shortcomings in the radiation
scheme of DMI’s NWP models that followed from evaluating model
calculations of solar radiation against observations (a work performed
during 2009). A short description of the subsequent revision of the
radiation scheme finishes this part.

2. A part that describes a detailed verification of ensemble forecasts of
solar radiation with the aim of investigating the prospects of com-
plementing the forecasts with uncertainty estimates as derived from
ensemble forecasts from DMI-EPS (a work performed during 2011–
2012).

The organization of my thesis is as follows:

Chapter 2 describes the smart solar heating unit being the foundation of
this work, and the role of the involved partners in developing this solar
heating unit.

Chapter 3 defines global, direct, and diffuse radiation and describes the
parametrisations of these quantities in the radiation scheme of DMI’s NWP
models.

Chapter 4 gives a general description of observations and model calcula-
tions of global radiation.

Chapter 5 describes the identification of problems of the radiation scheme
of DMI’s NWP models and the subsequent revision of the scheme.

Chapter 6 describes the configuration of DMI’s ensemble prediction system,
DMI-EPS.

Chapter 7 describes aspects of forecasts quality used to evaluate the en-
semble forecasts.

Chapter 8 verifies by different means the forecasts of global radiation from
DMI’s ensemble prediction system.
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Chapter 9 contains an assessment of the potential of DMI’s ensemble fore-
casts of solar radiation and of the possibility of using the distribution of the
ensemble members as estimates of the forecast uncertainties.

Chapter 10 concludes this work and provides some outlooks.

Most data analysis and plotting have been performed with the aid of the
language for statistical computing R Development Core Team (2011) and
associated packages to R: NCAR - Research Application Program (2010)
and Weigel (2010).
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2 Prelude: The Smart Solar
Heating Unit

The project on developing a smart solar heating unit using forecasts of the
heat consumption and the available solar energy is a collaboration between
a number of partners. Beside the Department of Civil Engineering at the
Technical University of Denmark (DTU) and DMI, other contributors in-
clude DTU Informatics (DTU), COWI A/S (Consultancy Within Engineer-

ing, Environmental Science and Economics), ENFOR A/S (Forecasting and

Optimization for the Energy Sector), Ohmatex Aps, Ajva Aps, and Innogie
Aps (Perers et al., 2009). In this brief description of the project and this
smart solar heating unit, the role of the different partners will be outlined.

A solar heating unit illustrated in figure 2.1 includes a solar thermal
collector plate and a water tank, where heat can be stored. If the solar
energy cannot cover the full heat demand, which in the Danish climate
probably will be the case on most days, an electricity based auxiliary energy
source, such as an electric heating element or a heat pump, should provide
the heat deficiency.

In Denmark, it is expected that an increasing part of the energy con-
sumption in the future will be covered by wind farms (Perers et al., 2009).
From the newly negotiated energy agreement (http://www.kemin.dk/en-US/
Climate_energy_and_building_policy_Denmark/energy_agreements/Sider/

Forside.aspx), it is evident that by 2020, just below 50 % of the Danish
electricity consumption should be covered by wind energy. This will give an
increased number of windy periods with a surplus of electricity and hence
low electricity prices. These variable electricity prices, which contains a daily
variation, are not yet of benefit to the customer. With the introduction in
large scale of wind energy into the Danish electricity grid, fluctuating elec-
tricity prices at the customer level are expected to be a reality (Perers et al.,
2009). The solar heating unit developed at DTU is optimized to make use of
this occasional excess electricity produced in windy periods either through
an electric heating element or via a heat pump. The smart solar heating
unit can, if used in large numbers, facilitate the introduction of wind energy
into the Danish energy system (Perers et al., 2009). In the future electricity

5
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6

Figure 2.1: Illustration of the principle in a solar heating unit; cold water from the
bottom of the tank gets heated by the solar collectors and re-enters in
the top of the tank, which acts as a storage of energy. The hot water
is used for domestic use and space heating (from the two top outlets).
Typically, solar thermal collectors make use of solar radiation with
wavelengths within the interval 300−4000 nm (Badescu, 2008, Chap.
1), which is referred to as shortwave radiation. Note that here, no
auxiliary heating of the water is shown.

The figure is from http://www.terms-cz.com/en/thermal-collectors.php.

grid, the customer will, equipped with a smart solar heating unit, be able
to benefit from periods of low electricity prices.

In a traditional solar heating tank seen in figure 2.2(a)(left), a fixed
volume in the top of the water tank is kept at a certain temperature either
by solar energy or by the auxiliary heating. If the solar energy suffices, it
also heats the remaining volume of the water. In the smart solar heating
unit developed at DTU illustrated in figure 2.2(a)(right), the water is heated
from above and has a flexible volume determined by the actual heat demand.
This configuration lowers the heat loss of the tank and hence increases the
thermal performance of the water tank compared to ordinary solar heating
tanks (Furbo and Andersen, 2009). To lower the heat loss further, a strong
thermal stratification within the tank is desirable. At the Department of
Civil Engineering at DTU, simulations of solar heating units to identify the
best design of the water tank, the optimal area of the solar collector, and
the financial reduction for the costumer by introducing variable electricity
prices have been performed and are described in Perers et al. (2009, 2010).
At time of writing, a solar collector area of 9 m2 and a water tank of 750 l

produced by Ajva Aps (as the one seen in figure 2.2(b)) are chosen for the
smart solar heating unit. Tests of stratification inlet pipes within the solar
water tank resulted in fabric pipes from Ohmatex Aps, which are able to
support a thermal stratification. To find the most favorable solution of the
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(a) Illustration of solar water tanks (b) Picture of the so-
lar water tank

Figure 2.2: To the left in figure (a), a standard, marketed solar hot water tank
with a fixed volume of hot water is illustrated; to the right in fig-
ure (a), an advanced solar water tank with a flexible hot water vol-
ume heated from above and adjusted to the actual heat demand of
the house is illustrated. In figure 2.2(b), a picture of a solar water
tank is seen. Figure 2.2(a) is from Furbo and Andersen (2009) and
figure 2.2(b) is from (Perers et al., 2011).

auxiliary heating concerning the degree of thermal stratification within the
tank and thereby the heat balance of the tank and price of purchase and
endurance, three different auxiliary systems are being tested at the test site
at the Department of Civil Engineering at DTU.

At COWI A/S, a socio-economic analysis evaluating the advantages to
society in terms of cost-savings and reductions in CO2 emissions of imple-
menting in large scale the smart solar heating unit into the Danish energy
system has been performed for different types of houses with respect to the
heat demand and for both types of auxiliary heating (electric heating ele-
ment and heat pump). Without considering expenses to the solar heating
unit, a unit using a heat pump as the auxiliary heating performs better with
respect to reductions in socio-economic costs and to reductions in CO2 emis-
sions. The smart solar heating unit has the potential of being an appealing
alternative to oil burners and natural gas boilers both from an environmental
and an economical point of view (Perers et al., 2009).

Adjusting the hot water volume in the tank to always cover the heat de-
mand requires knowledge of the future heat consumption. In co-cooperation,
DTU Informatics and ENFOR A/S have developed a model described in
Bacher (2012) to forecast the demand for space heating in a single-family
house. The forecast model is based on observations of the space heat con-
sumption in 16 single-family houses in Sønderborg in Denmark, knowledge
of the heat dynamics of buildings, and weather forecasts of the ambient, i.e.
outdoor, temperature (a low ambient temperature typically increases the
heat demand), the global radiation (solar radiation entering through the
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windows typically lowers the heat demand), and the wind speed (high wind
speeds typically increase the ventilation of the house and thereby increase
the heat demand).

If the solar energy available cannot cover the full heat demand of the
house, the auxiliary heating will be activated by an advanced control sys-
tem within the smart solar heating unit. To increase the fraction of solar
energy usage in this smart solar heating unit and thereby reduce the use of
the electricity based auxiliary heating, the advanced control system should
activate the auxiliary heating only when solar energy is insufficient in cov-
ering the expected heat consumption and, if possible, only when electricity
prices are favorable e.g. in windy periods or at night (Perers et al., 2009).
For optimal use environmentally and economically of the smart solar heating
unit, the advanced control system needs forecasts of the expected heat pro-
duction in the solar collectors and forecasts of the electricity prices. Based
on weather forecasts of the ambient temperature and of the direct and dif-
fuse components of the solar radiation (described in chapter 3) provided by
DMI, DTU Informatics and ENFOR A/S have provided an approach de-
scribed in Bacher et al. (2011) to obtain forecasts of the heat production
in the solar thermal collectors. The solar thermal collectors are sensitive to
the characteristics of the solar radiation, that is, the amount and incidence
angle of the direct radiation and the amount of diffuse radiation received at
the collectors (illustrated in figure 3.1). Using variable electricity prices in
an advanced control system, might imply considerable savings at the cus-
tomer level. Perers et al. (2009) estimate annual reductions in the costs of
the auxiliary heating of 300 ¿ at Nord Pool Spot1 prices. Nord Pool Spot
is the Nordic electricity stock exchange, which sell electricity at prices that
vary with fluctuating availability. Each day at 13:00 (local time), hourly
electricity prices for the next 35 hours are determined.

From measured water temperatures within the tank, forecasts of the
future heat demand of the house, forecasts of the disposable solar heat, and
future electricity prices, the advanced control system developed by Innogie
Aps should decide the optimal solution environmentally and economically
of the water volume to heat, by which energy supply, and when. Central to
the smart solar heating unit is the delivery of accurate forecasts of the solar
radiation provided by DMI. These accurate predictions is the basis of my
thesis.

1http://www.nordpoolspot.com
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3 Global Radiation

As solar shortwave1 radiation traverses the atmosphere of the Earth, inter-
actions between the solar beam and the atmospheric constituents attenuates
the solar radiation by either absorption or scattering of the radiation. Radi-
ation that has been subjected to absorption is typically “lost” with respect
to the amount of solar radiation penetrating the atmosphere. Radiation that
has been scattered one or several times is referred to as diffuse. The remain-
ing unabsorbed and unscattered radiation is called the direct radiation. The
total downward solar radiation from the celestial sphere impinging upon a
horizontal surface is called the global radiation.

The contributions to the diffuse radiation may vary with the position in
the sky (Paltridge and Platt, 1976, Chap. 6), but is approximately isotropic
(Paltridge and Platt, 1976, Chap. 6). The direct radiation varies likewise
with the position in the sky, but its direction in definite and given by the
zenith angle.

For a solar thermal collector, the direction of the direct beam relative to
the normal of the solar collector plate is decisive for the amount of energy
received at the solar collector. This is not the case for the diffuse radiation,
which is approximately isotropic and therefore not sensitive to the slope
of the solar collector. This is illustrated in figure 3.1. This difference in
sensitivity to the slope of the solar collector between the direct and the
diffuse radiation makes a distinction between them necessary.

In NWP models, detailed angular integrations of all the contributions
to the diffuse radiation are not feasible. Typically in NWP models, and
also the case for DMI’s HIRLAM models, the contributions to the diffuse
radiation is limited to either upward or downward diffuse radiation.

3.1 Definitions

By use of Paltridge and Platt (1976, TABLE 3), the following components of
solar radiation (or solar irradiance) in W

m2 to be used throughout the thesis
are defined below.

1Radiation with wavelengths less than about 5 µm (Paltridge and Platt, 1976, TABLE
2.3), which constitutes most of the radiation from the Sun.

9
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Figure 3.1: Illustration of the sensitivity of the direct radiation received at the
solar collector to the slope of the collector relative to the direct radi-
ation beam and the insensitivity of the diffuse radiation received at
the solar collector to the slope of the collector; the two solar collectors
receive (more or less) the same amount of diffuse radiation, but not
the same amount of direct radiation.� Direct normal solar radiation, Fdirect:

– solar radiation (or irradiance) that has not been subjected to
scattering and is incident upon a surface perpendicular to the
direction of the beam.� Direct horizontal radiation, F↓

direct:

– direct normal solar radiation incident on a horizontal surface,
that is, F↓

direct = Fdirect · cos θ, when the angle of the direct solar
beam and the normal to the surface is θ (see e.g. figure 3.2).� Diffuse horizontal solar radiation, F↓

diffuse:

– downward solar radiation (or irradiance) incident on a horizontal
surface from a solid angle of 2 π (the sky) with the exception of
the solid angle subtended by the Sun’s disc.� Global radiation, F↓

– downward solar radiation (or irradiance) incident on a horizontal
surface from a solid angle of 2 π (the sky). It is the sum of

the direct horizontal, F↓
direct, and the diffuse horizontal radiation,

F↓
diffuse.

Throughout this thesis, the direct horizontal radiation, F↓
direct will be re-

ferred to as “direct radiation” and the diffuse horizontal radiation, F↓
diffuse,

will be referred to as “diffuse radiation”.
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Figure 3.2: Definition of solar zenith angle θ as the angle between a solar beam
of radiation impinging upon a horizontal surface and the normal to
the surface

3.2 Shortwave Radiation in DMI’s HIRLAM mod-

els

The attenuation of solar radiation in an absorbing and scattering medium
— like the atmosphere — is described by a complex equation, “the transfer
equation”, involving detailed wavelength and angular integrations of the
radiation (Thomas and Stamnes, 1999). To obtain the computational speed
required in NWP forecasting, some sort of approximation to the this highly
detailed transfer equation is often needed — the degree of which depends on
the problem at hand. The transfer of radiation within the atmosphere is in
DMI’s operational NWP model calculated with a very fast radiation scheme
(Savijärvi, 1990; Wyser et al., 1999), wherein the interaction between the
solar shortwave radiation and the atmosphere is highly parametrised, and
the diffuse radiation is treated as going either up or down. The radiation
scheme is documented in Sass et al. (1994).

Since the distance between the Earth and the Sun has an annual change,
so does the solar radiation at the Earth’s distance from the Sun. This solar
radiation is parametrised in terms of the running day from January 1, d, as

S =S0 · (1 + 0.034221 · cos(2π·d365 ) + 0.00128 · sin(2π·d365 )

+ 0.00719 · cos(22π·d
365 )) (3.1)

(Paltridge and Platt, 1976; Savijärvi, 1990). S is the extraterrestrial ra-
diation normal to the solar beam (Badescu, 2008). The annual change in
the Earth-Sun distance and thereby in S is about ±3.3 % (Paltridge and
Platt, 1976, Chap. 3), which amounts to about ±45W

m2 . The quantity S0

is referred to as the “solar constant” and is the total solar radiation (that
is, integrated over all wavelengths) at the mean distance of the Earth from
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the Sun2 (Thomas and Stamnes, 1999, Chap. 9). It is, in fact, not a con-
stant and a more appropriate term is “total solar irradiance” (Thomas and
Stamnes, 1999). In the radiation scheme of DMI’s HIRLAM models, this
total solar irradiance, S0, is equal to 1365 W

m2 .
At a given solar zenith angle θ (defined in figure 3.2), the total downward

solar radiation, that is, the global radiation (see e.g. chapter 3), received at
the top of the atmosphere (toa), F↓(toa), before any attenuation by absorp-
tion or scattering of radiation, is

F↓(toa) = S · cos θ (3.2)

by the cosine law. Before atmospheric absorption and scattering, this ra-
diation is all direct and coming from the direction of the Sun. The zenith
angle θ (or cosine of the zenith angle) on a given location is parametrised in
terms of the latitude, Φ, the solar declination, δ3, and the local hour angle,
T (described in Paltridge and Platt (1976, Chap. 3)), as

cos(θ) = sin(δ)sin(Φ) + cos(δ)cos(Φ)cos(T ) (3.3)

(Paltridge and Platt, 1976; Savijärvi, 1990). The solar declination, δ, is
parametrised in terms of the running day from January 1, d, as

δ =0.006918 − 0.399912 · cos(2π·d365 ) + 0.070257 · sin(2π·d365 )− 0.006758 · cos(22π·d
365 )

+ 0.000907 · sin(22πd
365 )− 0.002697 · cos(32π·d

365 ) + 0.001480 · sin(32π·d
365 )

(3.4)

(Paltridge and Platt, 1976, Chap. 3).
In a clear atmosphere, the diffuse radiation at the surface is found from

the empirical formula

F↓
diffuse = 100 · (1− exp(−2.865 · h)),

where h is the solar elevation, which is 90°−θ. This equation an environ-
mental adjustment of an equation in Paltridge and Platt (1976, Chap. 6).

The direct radiation at the surface, F↓
direct, is the difference between the

global radiation, F↓(surface), and the diffuse radiation, F↓
diffuse(surface) at

the surface.

2The mean distance of the Earth from the Sun is one astronomical unit, which is
1.5 · 1011 m (Wallace and Hobbs, 2006).

3The solar declination is the angle between the plane spanned by the Earth and the Sun
and the celestial equator, which is a projection of the terrestrial equator onto a celestial
sphere surrounding the Earth. It varies between +23.5° (on June 22) and −23.5° (on
December 22) (Paltridge and Platt, 1976, Chap. 3).
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Cloud-free atmosphere In a cloud-free atmosphere, the total downward
solar radiation received at the ground, F↓(surface), is obtained by reducing
the radiation impinging upon the top of the atmosphere, F↓(toa) = S ·
cos θ according to equation (3.2), by atmospheric absorption (mainly by
ozone, water vapour, and absorbing aerosols) and scattering (mainly by
atmospheric molecules and scattering aerosols) parametrised as

F↓(surface) = F↓(toa)
(

1 “top of atmosphere” radiation

−0.24(cos θ)−0.5
absorption by ozone

−aa · 0.11
(

u
cos θ

)0.25
absorption by water vapour and CO2

−as · 0.28
1+6.42·cos θ atmospheric scatter

+as · 0.07α back-scattered reflected beam

)

(3.5)

(Savijärvi, 1990). The parametrisation in equation (3.5) takes the following
absorption and scattering into account: i) absorption by ozone of ultravi-
olet and visible solar radiation, the degree of which is determined by the
solar zenith angle (and thereby by the path through the atmosphere) as
0.024 · (cos θ)−0.5, ii) absorption of solar radiation by water vapour, CO2,
and O2, which depends on the (scaled) water vapour amount u and the solar
zenith angle, θ as 0.11 · ( u

cos θ )
0.25, iii) atmospheric scatter (in a cloud-free

atmosphere this is scatter by atmospheric molecules — also referred to as
Rayleigh scatter), which depends on the solar zenith angle as 0.28

1+6.43·cos θ ,
and iv) downward scatter of the reflected radiation given by 0.07 · α, when
the surface albedo is α. Reflection at the surface gives an upward radia-
tion determined by the incident beam and the surface albedo, F↓(toa) · α.
Atmospheric scatter will re-direct a small portion (F↓(toa) · α · 0.07) of the
reflected radiation back toward the surface.

Scattering and absorption by aerosols is included by enhancing the water
vapour absorption by multiplying with aa, and the atmospheric scattering by
multiplying the atmospheric scatter with as. In DMI’s operational HIRLAM
model, aa and as are equal to 1.2 and 1.25, respectively, thereby increasing
the absorption by 20 % and the scattering by 25 %. These values are found
by fitting model calculations to observations and should be applicable to
North European conditions (Savijärvi, 1990).

Cloudy atmosphere The radiative properties of clouds depend strongly
on the size of the cloud particles (Wyser et al., 1999). Compared to large
cloud droplets, smaller cloud droplets increase the scatter and reflectivity
of the cloud, so that more solar radiation is reflected back to space and less
reaches the surface (Wyser et al., 1999). Transmission of radiation through a
cloud is parametrised in terms of the vertically integrated cloud condensate
(the total amount of water droplets and ice particles (in g

m2 )) within the
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column of the model containing clouds, the cosine of the zenith angle, cos θ,
and the effective radius, re, of the cloud particles. For radiation purposes,
the effective radius is an appropriate measure of the average particle size in
a distribution of spherical droplets in a water cloud (Wyser et al., 1999).

In calculating the effective radius, re, for a cloud, a distinction between
cloud droplets and ice particles is made. At a given vertical level, only
one effective radius is computed, which should then be representative of all
cloud layers above the level in which re is calculated. To obtain this, the
effective radius is found as a weighted average, where the weights consist of
the amount of cloud condensate at the level under consideration normalised
by the total amount of cloud condensate from the top of the atmosphere to
that level. The full parametrisation of shortwave radiation through clouds
can be found in Wyser et al. (1999).
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4 Data

4.1 Observations

24 of DMI’s pyranometers, situated on different locations in Denmark, mea-
suring global radiation, form the observational basis for the evaluation and
verification of global radiation forecasts treated in this work. Location and
number of the pyranometers can be seen in figure 4.1. Data from the pyra-
nometers are reported as an average of measurements during the preceding
hour.

In the process of verifying model calculations of global radiation against
observations, the first step has been to investigate the quality of the ob-
servations. For correct measurement of global radiation it is important
that the pyranometer is in level (and not tilted toward or away from the
Sun) and that the glass dome protecting the pyranometer is clear, see fig-
ure 4.2. To ensure the above, the pyranometers are inspected 2-12 times a
year (Nordstrøm, 2005). There is in addition a continuous control of data
from the pyranometers so that any evidently erroneous values are detected
(John Cappelen, personal communication). This gives reasonable expecta-
tions to the measurements of DMI’s pyranometers, which are of the type
Star-pyranometer made in Austria by P. H. Schenk. They are sensitive to
radiation with wavelengths in the interval 0.3-3 µm (Nielsen, 2005). After
two years of running operationally (which was the case in 2005), the uncer-
tainty on hourly values was reported to be ±8.4 % at a confidence interval
of 95 % (Nordstrøm et al., 2005). This value was found from propagation of
uncertainty (Nordstrøm et al., 2005; Taylor, 1997) and a reported stability
of 1 % per year of an operational pyranometer (Nielsen, 2005). Here, the
uncertainty on the observations is estimated to be 10 %.

4.2 Matching Observations with Model Calcula-

tions

Forecasts from NWP models are typically calculated on a horizontal grid.
The observations available to evaluate and verify the forecasts are located
at points that are (most likely) not coincident with the forecast grid, and

15
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Figure 4.1: Location and number of 24 of DMI’s pyranometers
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Figure 4.2: A pyranometer of the type Star pyranometer by Phillip Schenk

in such a case, it is necessary to select a method to match the observations
to the forecast grid (Jolliffe and Stephenson, 2012, section 6.2). Two such
methods exist: upscaling and downscaling. In upscaling, the observation is
compared with the forecast value at the closest grid point thereby preserving
the forecasted value and in downscaling, forecast values are calculated often
by an interpolation method at the observation point. The result of matching
forecast grid points with observation points depends on the method (upscal-
ing or downscaling) being used (Jolliffe and Stephenson, 2012, Chap. 6).
Likewise, the choice of downscaling (interpolation method) applied might
influence the result of evaluation.

4.3 Model calculations

DMI is a member of the international program HIRLAM (High Resolu-
tion Limited Area Model), the aim of which it is to develop, maintain, and
improve NWP models for operational use by the participating institutions
(information on the HIRLAM corporation can be found at http://www.

hirlam.org). A HIRLAM model is a high-resolution limited area (that is,
covering a small domain) NWP model. At DMI, the HIRLAM models exist
in a number of versions differing in horizontal and vertical resolution as well
as in geographical coverage.

In 2009, the operational HIRLAM model, S03 (with a horizontal res-
olution of 0.03°), was nested into the lower resolution HIRLAM model,
T15 (with a horizontal resolution of 0.15°), which again was nested into
the global low-resolution model, IFS, at ECMWF (European Centre for
Medium-Range Weather Forecasts). In 2011, the resolution of IFS was com-
parable with the HIRLAM model T15, and the S05 model (with a horizontal
resolution of 0.05°) used in DMI-EPS is now directly nested into the global
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Figure 4.3: Model domain of HIRLAM model versions S03 and S05

IFS model. At time of verification, the global IFS model had a horizontal
resolution of 0.15°and 91 vertical layers, while the S03 and the S05 models
had 40 vertical layers. For model S03, S05, and T15, a new forecast was
initiated at 00, 06, 12, 18 UTC. See table 4.1 for details on model setup and
figure 4.3 for the model domain of S03 and S05, which are (almost) identical.

In DMI’s HIRLAM models, calculations of the accumulated global, di-
rect, and diffuse radiation are provided every hour. In taking differences of
the accumulated radiation, values accumulated within the preceding hour
are obtained.

4.4 Multidimensional Data

As often in meteorology, a data set contains some kind of multidimensional-
ity — either by forecasts of several weather components at the same location
or by the same weather component simultaneously forecasted at different lo-
cations, or a combination of this (Jolliffe and Stephenson, 2012). To match
the global radiation measurements at the 24 pyranometers seen in figure 4.1,
the data set — for either single or ensemble forecasts — consists of forecasts
simultaneously predicted at 24 points, and this introduces multidimension-
ality into the data set.
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Model name S05 S03 T15

Number of vertical layers 40 40 40
Horizontal resolution 0.05°(≈ 5 km) 0.03°(≈ 3 km) 0.15°(≈ 16 km)

Time step 150 s 150 s 400 s
Forecast length 54 hours 54 hours 60 hours
Number of forecasts per day 4 4 4
Global model IFS IFS IFS

Table 4.1: Model setup at time of verification
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5 Performance of Global Ra-
diation Forecasts

The delivery of accurate forecasts of global, direct, and diffuse radiation to
the solar heating unit developed at the Technical University of Denmark
initiated an evaluation of the solar radiation forecasts from DMI’s HIRLAM
models. This evaluation had not previously been performed at DMI and was
expected to unveil problems and successes in the model calculations. The
performance of global radiation forecasts was evaluated against observations
at the 24 DMI pyranometers.

5.1 Data

5.1.1 Observations

The period of verification was April 1 to June 1 2009. Inspection of the
observations of this period revealed some obviously incorrect values: i) night
values of a few W

m2 over long periods of time and ii) individual values that
are unrealistically high and which for some reason slipped through the data
control. To compensate for these errors in the observations, night values of
global radiation of a few W

m2 have been set equal to zero and unrealistically
high values of global radiation have been marked as invalid.

5.1.2 Model Calculations of Global Radiation

To investigate global radiation forecasts from the — at time of verification
— operational HIRLAM model S03, a time series matching the observa-
tions have been constructed from a 24 hour long forecast for each 00 UTC
forecast within the time period April 1 to June 1. Matching forecasts with
observations, the method of upscaling (see e.g. section 4.2) has been applied.

It is highly challenging in model calculations to capture small scale
clouds. Since they give rise to locally different atmospheric conditions and
hence global radiation, some discrepancies between observations and model
calculations are expected. To confine these discrepancies, a distinction be-
tween clear days and non-clear days is made. April 2009 was in Denmark

20
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Figure 5.1: Global radiation at the verifying location 6188 (Sjælsmark); blue: ob-
servations; cyan: uncertainty on observations (±10.0 %); red: model
calculations

characterized by sunny weather and is therefore considered appropriate for
collecting a statistical sample of clear days1.

5.2 Comparison of Model Calculations with Ob-
servations

Figure 5.1 shows the measured and calculated global radiation at the verify-
ing location 6188 (Sjælsmark in Zealand) (see e.g. figure 4.1) on four days in
April. April 25 was a clear day and exhibits the characteristics — a smooth
curve peaking at noon — typical of clear days. In general, on clear days,
and also valid for April 25, model calculations fit the observations within
the uncertainties.

As expected, on cloudy days, the fit between model calculations and
observations is reduced. This is illustrated in figure 5.2 for some days in
May. The model tends to overestimate the global radiation compared to
the observations, which might be related to HIRLAM’s tendency to under-
estimate the cloud cover (Bent Hansen Sass, personal communication). On
May 23 and 24, the shape of the curve representing model calculations (red)
resembles the curve of the observations (blue), but the timing is a couple of
hours off.

On April 26 in figure 5.1, the forecasted global radiation at noon exceeds
the “noon-radiation” on clear days. This is the case for several verifying loca-
tions, but here only shown for station 6188. These values are unrealistically
high and do not agree with observations, which show a depression in the

1A “clear day” is here loosely defined as a prevailing clear day, since actually only
few days during sunny April 2009 were completely cloud-free in the whole country from
sunrise to sunset.
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Figure 5.2: Global radiation at the verifying location 6188 (Sjælsmark); blue: ob-
servations; cyan: uncertainty on observations (±10.0 %); red: model
calculations
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Figure 5.3: Calculations from DMI’s operational model of diffuse (thick red) and
direct (thin green) radiation at the verifying location station 6188
(Sjælsmark); Yellow, vertical bars mark clear days.

global radiation in the late morning in consistency with satellite pictures2,
which show a cloud cover over northern Zealand around that time.

5.3 Comparing Model Calculations with DTU Ob-

servations

Decomposing the global radiation into its direct and diffuse parts and ana-
lyzing them separately is expected to give a deeper understanding of short-
comings of the radiation scheme, some of which are displayed on April 26
in figure 5.3. According to figure 5.4, the peak in the calculated global

2www.sat.dundee.ac.uk
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Figure 5.4: Calculations from DMI’s operational model of diffuse (thick red) and
direct (thin green) radiation at the grid point nearest to DTU and
DTU measurements of diffuse (thick cyan) and direct (thin blue) ra-
diation; Yellow, vertical bars mark clear days.
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Figure 5.5: Zoom in of figure (5.4)

radiation at noon on April 26 consists of only diffuse radiation (the direct
radiation is zero).

At DTU, global, direct and diffuse radiation are measured at the weather
station at the Department of Civil Engineering at DTU. They have most
kindly placed their radiation data from 1 April to 1 May 2009 at disposal
for a comparison with DMI’s diffuse and direct radiation computations.

In figure 5.4 and 5.5, this peak in global radiation on April 26 with
zero direct radiation doesn’t agree with DTU observations, which do show a
depression around noon in the direct radiation (in accordance with satellite
pictures), but which have a value of about 150 W

m2 .
Running test cases showed that the radiation scheme of HIRLAM gives

100 % diffuse radiation in case of a complete cloud cover — regardless of
the optical thickness of the cloud.

Disagreements between observations and model calculations is also seen
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on April 27 in figure 5.4 and 5.5. However, on April 27 the model is to
some extent able to capture the shape oF the observations for both direct
and diffuse radiation, although the model in general overestimates both
quantities compared to the observed DTU values.

Another point to be made from figure 5.4 is that on certain days (e. g. on
April 28), the model calculations result in a diffuse radiation typical of a clear
day, while DTU observations show elevated diffuse radiation, characteristic
of a day with some cloud cover. Satellite pictures3 confirm the presence of
clouds over Denmark for most of that day. The “clear day” seen in the model
calculations might be related to HIRLAM’s tendency to underestimate the
cloud extent and hence overestimate the global radiation reaching the ground
(Bent Hansen Sass, personal communication).

5.4 A Revision of the Radiation Scheme in DMI’s
HIRLAM models

In general, two problems of the radiation scheme have been encountered
from this evaluation of global radiation forecasts: i) events of high values of
global radiation consisting of only diffuse radiation, which do not agree with
observations and ii) events of “clear days” in terms of radiation pattern that
disagree with observations.

Since the commence of this evaluation, test cases with a revised radiation
scheme by Bent Hansen Sass and Kristian Pagh Nielsen have been performed
to deal with i) above. Before the implementation of the changes to the
shortwave parametrisations, they made all radiation entering (and leaving)
a cloud layer diffuse, and in case of a complete cloud cover, all radiation
became diffuse. The revision has enabled a correction of a few errors within
the radiation scheme — which should rectify the cases of very high values of
global radiation — and has led to a change in the shortwave parametrisations
to allow a transmission of direct radiation through a cloud layer depending
on the integrated amount of cloud condensate, W , within the cloud, the
effective radius, re, of the cloud particles, and the solar zenith angle, θ.

The major change in the shortwave parametrisations is to assume an
exponential attenuation of the direct radiation traversing a cloud of optical
thickness4 τλ,z

5 as

Fdirect(surface) = Fdirect(at cloud top) · exp(− τλ,z
cos θ )

3www.sat.dundee.ac.uk
4The optical thickness is a measure of the number and strength of optically active

particles — that either absorb or scatter radiation — along the radiation beam (Thomas
and Stamnes, 1999, Chap. 2).

5The relationship between an optical path, τλ, related to the direction of the solar
beam, and an optical thickness, τλ,z, related to the vertical axis of a typical NWP model,
is given by τλ =

τλ,z

cos θ
.
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(confer Beer’s Law on exponential attenuation of a monochromatic beam of
radiation entering an absorbing and/or scattering medium (Paltridge and
Platt, 1976; Thomas and Stamnes, 1999) — described in appendix A). The
optical thickness, τλ,z, of a cloud can in the visible part of the solar spectrum
be approximated by τλ,z ≈ 3W

2·re
(Stephens, 1984), which gives

Fdirect(surface) = Fdirect(at cloud top) · exp(− 3W
2·re·cos θ

). (5.1)

Multiplying Fdirect(surface) with cos θ gives F↓
direct(surface).

A combination of a large value of integrated cloud condensate, W , and a
small effective radius, re, (i.e. a large water content spread over many small
cloud droplets) effectively impedes the direct radiation passing through the
cloud layer. The cloud is said to be optically thick. The opposite — a small
value of W and a large effective radius, re, (i.e. a small water content spread
over a few large cloud droplets) — allows, to a large extent, transfer of
direct radiation through the cloud. By comparison, the cloud is in this case
optically thin. This is in accordance with results obtained by Wyser et al.
(1999, Figure 2) showing the influence of the integrated cloud condensate,
W , and the effective radius, re, on the transmission of global radiation
through a water cloud.

This new parametrization (equation (5.1)) ensures that optically thin
clouds can transfer direct radiation to the ground — also in case of a com-
plete cloud cover. This is illustrated in figure 5.6, where the direct (hori-
zontal) radiation — normalised by the value for zero cloud condensate —

received at the surface, F↓
direct(surface), is plotted against W in a case of

a 100 % cloud cover. A value of integrated cloud condensate, W , below
about 50 g

m2 allows direct radiation at the ground. With the old radiation
scheme, this was not possible, since radiation leaving a cloud was considered
as diffuse and in case of a complete cloud cover, all radiation became diffuse.

A highly detailed radiative transfer model, the DISORT model (de-
scribed in Stamnes et al. (1988)), has been run by Kristian Pagh Nielsen
and is included in figure 5.6 for a comparison with the revised radiation
scheme of DMI’s HIRLAM model. The resemblance between the two is
highly satisfying and indicates of a considerable improvement and success of
the HIRLAM shortwave parametrisations of direct radiation. Note that the
direct radiation from the old radiation scheme would be zero for any value
of W in case of a complete cloud cover. This revised radiation scheme is
now implemented in DMI’s HIRLAM models.

A justification for implementing a simple exponential attenuation of the
polychromatic (here, visible) direct radiation (as Beer’s law describes for
monochromatic radiation entering an absorbing and/or scattering medium
— described in appendix A) can be found from the following considera-
tions. When direct radiation enters a cloud, cloud droplets and ice particles
attenuate the incident radiation primarily by scatter (Stephens, 1984). In
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Figure 5.6: Normalised direct radiation as a function of the integrated amount
of cloud condensate, W , within a 100 % cloud cover from 500 to
1000 m above the surface. The zenith angle is 30°and the surface
albedo 0.35. The red full line shows results of the revised radiation
scheme and the green dashed line the results of the DISORT model —
a highly detailed radiation model in which the number of wavelengths
and solid angles in which to discretise equation (A.6)can be chosen.

the visible part of the spectrum, this scatter is to a first approximation in-
dependent of wavelength. This condition that all visible wavelengths are
scattered equally makes (most) clouds appear white. The transmission of
direct radiation through a cloud can (at least in the visible part of the solar
spectrum) be considered independent of wavelength, and this makes the ap-
plication of a simple exponential attenuation of the direct radiation incident
at the top of the cloud possible.

The remedy of point ii) above is an improvement in the prediction of
clouds — their location, their horizontal and vertical extent, and their exact
timing. All this may highly affect the global radiation received at a pyra-
nometer or a solar collectors. The exact location of a cloud, its extent and
exact timing might be some of the most difficult parameters to forecast in
NWP modelling. Clouds may even appear on such a small scale, that they
cannot (yet) be resolved in present NWP models despite their increasing
resolution.
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6 DMI’s Ensemble Prediction
System

An NWP forecast is in general subject to forecast uncertainties (or forecast
errors) occurring from a combination of i) uncertainties in determining the
initial state of the atmosphere arising from inaccuracy and incompleteness
in the observations of the atmosphere (Epstein, 1969), and ii) uncertainties
arising from deficiencies in the NWP model formulation (Leith, 1974). The
information contained in a deterministic forecast is therefore best appreci-
ated if complemented with estimates of these uncertainties in the forecast
value.

Deficiencies in NWP models relate both to the errors introduced by
the difference in resolution between a numerical model and the real at-
mosphere — illustrated in figure 6.1 — and to physical processes in the
atmosphere appearing on such small scales, that they cannot be resolved
by the NWP model (Wilks, 2006, Chap. 6). These physical processes must
be parametrized in terms of variables that can be resolved by the model,
and since these small-scale processes are often not fully determined by the
resolved variable, all parametrisations might introduce uncertainties in the
NWP formulation (Wilks, 2006, Chap. 6).

Figure 6.1: Illustration of the difference between a real world and the world as
represented by an NWP model. From Wilks (2006, FIGURE 6.19)
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6.1 Ensemble Prediction

Forecast uncertainties arising from model deficiencies are addressed in de-
veloping NWP models and ensemble prediction has (until recently) mainly
focused on forecast uncertainties related to uncertainties in determining the
initial state in an NWP model.

Because of the uncertainty in determining the initial state of the atmo-
sphere, a multitude of states will all be consistent with the observations. In
the high-dimensional phase space of a typical NWP model — in which an
estimated state of the atmosphere is a point and its time evolution is along
a trajectory in the phase space to another point — this multitude of states
can be associated with a probability distribution function (PDF) character-
izing the probability of each of these initial atmospheric states. At any time
(initial or future), a PDF can be ascribed to the multitude of possible at-
mospheric states — a multitude in which the true atmospheric state is one.
From the initial time to a given forecast time, the initial PDF transforms
into a forecast PDF quantifying the uncertainty in the forecast.

A feasible way of addressing forecast uncertainty is by running an ensem-
ble of forecasts initiated from slightly perturbed conditions. At the initial
time, the PDF is assumed to be represented by a finite sample of all possible
initial states (Molteni et al., 1996). Each of the ensemble members is then
integrated forward in time by an NWP model, and at any forecast time,
the properties of the PDF are assumed to be described by the ensemble
members (Molteni et al., 1996).

Figure 6.2 attempts to illustrate the evolution of both the PDF of a
two-dimensional phase space and the ensemble members representing the
PDF. At “T = 0”, the cyan cross represents the atmospheric state from
which a traditional forecast would be initiated. This point in phase space
represents only one in a number of atmospheric states all consistent with
the uncertainty in the initial state. The PDF of these states is represented
by the small ellipse (Wilks, 2006, Chap. 6). A time integration moves the
three initial states through phase space along trajectories, which in this
case diverge. From “T = 0” to “T = 24”, the PDF expands implying
less agreement between the three ensemble members on the atmospheric
state at “T = 24”. The shape, or spread, of the PDF is related to the
uncertainty in the forecast. A small ensemble spread would generally imply
little uncertainty in the forecast value and thereby a high confidence in it.
Conversely, a large ensemble spread would imply large uncertainty and low
confidence in the forecast value. In the high-dimensional phase space of a
typical NWP model, some directions are associated with states that with
time diverge and to sample the forecast PDF appropriately, a degree of
dispersion of the ensemble members is necessary (Wilks, 2006, Chap. 7). In
figure 6.2, if at “T = 0” the top black cross and the blue cross were sampled
as an ensemble, their dispersion at “T = 24” would be too small to represent
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Figure 6.2: A simple illustration of the time evolution in a two-dimensional phase
space (from 0 to 24 hours) of the true state of the atmosphere (red),
and an ensemble prediction system consisting of three members: the
standard forecast initiated from the “best estimate” of the initial
conditions (T = 0) and two forecasts started from atmospheric states
consistent with the uncertainty in the initial state (black). The ovals
indicate the PDF and from left to right, its time evolution is illus-
trated.

The figure is inspired by a figure in: http://www.metoffice/gov.uk/research/
areas/data-assimilation-and-ensembles/ensembles/

ensemble-forecasting/explanation
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the forecast uncertainty and to capture the true state of the atmosphere.
Generating ensemble members that at all time (initial and future) de-

scribe the features of the PDF, that is, behave as a random sample of the
PDF, is the ideal goal in ensemble prediction (Gneiting et al., 2008; Tracton
and Kalnay, 1993). If 1) the applied NWP model is accurate and 2) if the
ensemble members a the initial time is a random sample of the PDF of the
analysis1 (Gombos and Hansen, 2007), that is, if the ensemble represents the
uncertainty in the analysis (Toth and Kalnay, 1993), the ensemble members
will approximate the PDF (Molteni et al., 1996; Wilks, 2006) and be able to
capture its features. Requirement 2 above ensures that at the initial time,
the ensemble members approximates the initial PDF, while requirement 1
ensures that after integrating these ensemble members forward in time, they
will approximate the PDF at the forecast time. If the above two require-
ments are fulfilled, the true state of the atmosphere will behave as one more
member of the ensemble, that is, the true state of the atmosphere will be sta-
tistically indistinguishable from the ensemble members (Wilks, 2006, Chap.
7). This condition, that the true atmospheric state behaves statistically like
any of the ensemble members, is called consistency of the ensemble (Wilks,
2006, Chap. 7). A degree of ensemble dispersion is a prerequisite of ensemble
consistency (Wilks, 2006, Chap. 7).

With no a priori information on the uncertainties in the initial state,
generating ensemble members that reflect this uncertainty is challenging.

6.1.1 Initial Condition Perturbations

A number of methods differing in complexity of generating the initial en-
semble members exist, but they all submit to the following form illustrated
for ensemble member yj

yj(t = 0) ≡ y0(t = 0) + δyj(t = 0), (6.1)

(Buizza et al., 1999), where y0 is the unperturbed control forecast and
δyj(t = 0) is the initial condition (IC) perturbation of the control forecast
y0. The control forecast at time t = 0, y0(t = 0), is the most recent analysis.
A challenging in ensemble prediction is to generate ensemble pertubations
that reflect the uncertainty in the analysis.

A model integration of equations of the type

∂yj

∂t
= A(yj , t) +P(yj , t), (6.2)

whereA andP are the dynamic (non-parametrised) and physical (parametrised)
processes, respectively, of the ensemble member yj from the initial time and

1The analysis is the estimated state of the atmosphere that serves as the initial condi-
tions of an NWP forecast.
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to a time t gives

yj(t) =

∫ t

t=0
[A(yj , t) +P(yj , t)]dt.

Here,
∂yj

∂t
in equation (6.2) could be the time derivative of either the ve-

locity components as governed by the equation of motion (or momentum)
originating from Newton’s second law, of the temperature governed by the
thermodynamic energy equation, or the density governed by the continu-
ity equation. Combined, these three governing equations are often referred
to as the primitive equations. “A” represents the causes of a change as
described by the primitive equations and “P” represents additional forces
from atmospherical processes that are less well described in a typical NWP
model. These could be heating by solar radiation, changes of both heat and
velocity components due to convection, and changes in velocity components
due to turbulence and surface friction.

6.1.2 Model Perturbations

Until recently, the main focus in developing ensemble prediction systems
(EPSs) has been on medium-range forecasts (Molteni et al., 1996; Trac-
ton and Kalnay, 1993) that typically cannot resolve local features of the
weather. Increased computer resources has created an interest in address-
ing forecast uncertainties in the local weather by developing short-range,
high resolution, limited-area EPSs. These are now evolving rapidly in many
centres (Bowler et al., 2008). The use of short-range, high-resolution EPSs
has necessitated an additional simulation of deficiencies in the NWP model
formulations (Bowler et al., 2008; Buizza et al., 1999). This concerns re-
quirement 1 above. Generating an EPS that takes into account both the
uncertainty in the analysis and the imperfections of the NWP model poses
an additional challenge to ensemble prediction. Within the last decade,
there has been enhanced focus on the effect of model deficiencies on forecast
uncertainty, and on how to use ensemble prediction to address these model
imperfections. Dealing with model errors in EPS is, however, thought to
be an even greater challenge than simulating initial condition perturbations
(Bowler et al., 2008).

One approach to simulate forecast uncertainty associated with model
deficiencies is to include, besides the initial condition perturbations, multi-
ple NWP models, which could, for example, consists of two or more com-
peting model schemes describing some physical parametrisations (Bowler
et al., 2008; Buizza et al., 1999; Feddersen, 2009; Wilks, 2006). Another
approach to simulate this uncertainty is to introduce random perturbations
to these physical parametrisations (Bowler et al., 2008; Feddersen, 2009;

Wilks, 2006). These can be obtained by perturbing the total tendency
∂yj

∂t

540



32

in equation (6.2) of each ensemble member yj in the following way

∂yj

∂t
= A(yj , t) +P(yj , t) + rj(λ, φ, z, t) ·P(yj , t). (6.3)

The term rj(λ, φ, z, t) is a stochastic perturbation coefficient with λ and φ as
horizontal coordinates and z as the vertical coordinate. To limit its growth,
the time evolution in the perturbation coefficient rj(λ, φ, z, t) is generated
by an auto-regression model2 as

rj(λ, φ, z, t + T ) = a · rj(λ, φ, z, t) + sj, (6.4)

where a is a coefficient and sj is a uniformly distributed random number.
A time integration then gives for ensemble member yj

yj(t) =

∫ t

t=0
[A(yj , t) +P(yj , t) + rj(λ, φ, z, t) ·P(yj , t)]dt (6.5)

starting, (with t = 0), from the perturbed initial condition of equation (6.1).

6.2 Construction of DMI-EPS

At DMI, a short-range, high resolution ensemble prediction system (DMI-
EPS) has during 2009 been developed and verified for the prognostic pa-
rameters temperature, wind speed, and precipitation (Feddersen, 2009).

6.2.1 Initial Condition Perturbations

Because of the limited forecast period of short-range, high-resolution ensem-
ble forecasts, and more complex methods in which the model perturbations
are developed in the early part of a forecast (as the singular-vector approach
used at ECMWF (Molteni et al., 1996)) may not be suitable and other
means of producing the ensemble perturbations must be applied (Bowler
et al., 2008). In DMI-EPS, a scaled lagged average forecasting (SLAF)
method (described in Ebisuzaki and Kalnay (1992)), to generate the ini-
tial perturbations, is used. In the SLAF method, the difference between a
very-short-range forecast predicting the present analysis and this analysis
(here denoted the forecast error) is used as perturbations (δyj(t = 0)) of the
control analysis (y0(t = 0)) in equation (6.1) to estimate the uncertainty in
the analysis. The perturbations have the following form

δyj(t = 0) = ±αn(y0n(n)− y0(t = 0)) (6.6)

2An auto-regression model is, loosely speaking, a model to predict an outcome of a
system at a time T + t from the outcome of the system at a previous time t.
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where y0n(n) is an n hour old and unperturbed (control) forecast propagated
n hours forward in time to predict the present analysis3. Equation (6.1) can
together with equation (6.6) be translated to

initial condition = analysis ± αn (forecastn hour old(n)− analysis) (6.7)

(Feddersen, 2009).
An old forecast generally has larger forecast errors — it has become less

skillful compared to a young forecast. Not to let these larger forecast errors
influence the estimates of the uncertainty in the analysis, a scaling factor α is
introduced to control the magnitude of the forecast error, so that larger fore-
cast errors of older forecasts are damped more than smaller forecast errors
of younger forecasts (Feddersen, 2009; Toth and Kalnay, 1993). Presently,
a 6 hour old and a 12 hour old forecast generate through equation equa-
tion (6.7) four perturbed initial conditions in addition to the unperturbed
control forecast, which have the form

IC0 = analysis

IC6+ = analysis + α6 · (forecast6 hour old(6)− analysis)

IC6− = analysis− α6 · (forecast6 hour old(6)− analysis)

IC12+ = analysis + α12 · (forecast12 hour old(6) − analysis)

IC12− = analysis− α12 · (forecast12 hour old(12) − analysis). (6.8)

The scaling factors were at time of verification

α6 = 0.80 and α12 = 0.56

(Feddersen, 2009).

6.2.2 Model perturbations

In DMI-EPS, the perturbation coefficient, rj(λ, φ, z, t), in equation (6.4) is
allowed to vary horizontally, but not vertically, so rj(λ, φ, z, t) = rj(λ, φ, t).
To limit calculations, each horizontal domain D has its own perturbation co-
efficient, rj , and random number, sj, (associated with the ensemble member
yj) – denoted by 〈...〉D in equation (6.9), and T is the time interval between
the updates of rj . This gives the perturbation coefficient

rj(λ, φ, t + T ) = a〈rj(λ, φ, t)〉D + 〈sj〉D. (6.9)

Values presently employed in DMI-EPS can be found in table 6.1. In order
to prevent the perturbation coefficients from escalating in the course of a
forecast, rj is limited to the interval {-0.5, 0.5} as indicated in table 6.1.

3Here n, which denotes a previous forecast that predicts the present analysis, is sep-
arated from t, which denotes a time integration from the present analysis and into the
future, i.e. a forecast.
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Parameter Value

T 45 min
D 53 x 53 grid points

sj ∈ {-0.15, 0.15}
a 0.9

rj ∈ {-0.5, 0.5}

Table 6.1: Values used to construct the perturbation coefficients (Feddersen,
2009)

STRACO KF/RK STRACO

no stoc. phy. stoc. physics no stoc. phy. stoc. physics stoc. phy. + pert. rough

IC1 = IC0 1 6 11 16 21
IC2 = IC6+ 2 7 12 17 22
IC3 = IC6− 3 8 13 18 23
IC4 = IC12+ 4 9 14 19 24
IC5 = IC12− 5 10 15 20 25

group I II III IV V

Table 6.2: Configuration of the 25 ensemble members in DMI-EPS; IC: initial
conditions; use and no use of stochastic physics (“stoc. phys.” and “no stoc.

phy.”) and application of a perturbed roughness length (“pert. rough”);
the computation of the initial conditions can be seen in equation (6.8).

In DMI-EPS, the total tendencies
∂yj

∂t
in equation (6.3) of the four three-

dimensional model variables of temperature, wind speed, humidity and cloud
water are randomly perturbed according to equation (6.3) and (6.9).

To simulate model deficiencies, each of the five initial conditions emerg-
ing from the application of equation (6.6) and shown in equation (6.8) is com-
bined with two different cloud schemes — the STRACO cloud scheme (doc-
umented in Sass (2002)) and the Kain-Fritsch/Rasch-Kristjánsson (KF/RK)
cloud scheme (documented in Kain (2004); Rasch and Kristjánsson (1998))
— yielding a total of 10 ensemble members. Model deficiencies are further
simulated by subjecting each ensemble member to stochastic perturbations,
which increases the number of ensemble members to 20. According to Fed-
dersen (2009), five ensemble members (members 21 to 25) have been dedi-
cated to studying the impact of perturbing the roughness lengths for urban
areas in addition to the application of stochastic physics. At the start of a
forecast, a roughness length in meters in the interval {0.05, 1.1} is chosen at
random for each of the ensemble members 21 to 25. The roughness length
for the other 20 ensemble members (1 to 20) is equal to 1. An overview of
the configuration of all 25 ensemble members can be seen in table 6.2.
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7 A Framework for Forecast
Verification

The purpose of forecast verification is to assess the quality of forecasts.
Forecast quality describes the association between the forecasts and the cor-
responding observations for a number of forecast-observation pairs (Wilks,
2006). Forecast quality can be assessed in a number of ways each describing
a different aspect of the quality of forecasts. Different approaches of assess-
ing these aspects exist involving both measures and graphical displays.

Approaches of assessing forecast quality have been applied to both in-
dividual ensemble members of DMI-EPS as well as their derivatives as the
ensemble mean and the ensemble median.

Aspects of forecast quality are described in section 7.1. In section 7.2,
a description of some methods to address quality of ensemble forecasts is
given.

7.1 Aspects of Forecast Quality

7.1.1 Traditional Measures of Forecast Quality

The more traditional measures of forecast quality applicable to continuous
forecasts of a scalar variable (Wilks, 2006, Chap. 7) includes forecast bias,
forecast accuracy, and forecast skill.

Bias

Forecast bias describes any systematic deviation between a forecast y and
a matching observation x and is often measured by the mean error (ME),
which is given by

ME =
1

N

N
∑

i=1

(yi − xi). (7.1)

In the forecast example illustrated in table 7.1, the forecasts display no bias
since the difference between the mean of the observations and the mean of
the forecasts is zero.
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Accuracy

Forecast accuracy is often measured by the mean squared error (MSE) or
its related root mean squared error (RMSE), which are defined as

MSE =
1

N

N
∑

i=1

(yi − xi)
2

RMSE =
√
MSE (7.2)

respectively. Both ME, MSE, and RMSE will be equal to or above zero.
They are all negatively oriented, so that small values are preferred to large
values, and for perfect forecasts MSE, and RMSE, are all equal to zero. In
the forecast example in table 7.1, the forecasts are not completely accurate,
since neither MSE (nor RMSE) is zero. In taking the square in the MSE,
and hence in the RMSE, large deviations between forecasts and observations
will be highly penalised.

Skill

Forecast skill is often measured by a forecast skill score, SS, which is a
relative accuracy measure, that is, the accuracy of a set of forecasts relative
to a set of unskillful reference forecasts (Jolliffe and Stephenson, 2012; Wilks,
2006). For a given set of forecast-observation pairs, the skill score for a
measure of accuracy, A, (which could be MSE or RMSE) with respect to
the accuracy measure for a set of unskillful reference forecasts, Aref , is

SS =
A−Aref

Aperf −Aref

· 100 %, (7.3)

where Aperf is the value of the accuracy measure that would be obtained for
a set of perfect forecasts (Wilks, 2006, Chap. 7). The unskillful reference
forecasts might be climatology or persistence (Wilks, 2006, Chap. 7). Skill
scores, as defined here, can be interpreted as a percentage improvement over
the unskillful reference forecasts.

In this work, a skill score based on MSE is generated. According to
equation (7.3), the skill score can be written as

SS =
MSE−MSEref

MSEperf −MSEref

· 100 % =

(

1− MSE

MSEref

)

· 100 %. (7.4)

The last equation follows from MSE being zero for perfect forecasts, that
is MSEperf = 0. If the MSE for the forecasts being evaluated equals the
MSE for perfect forecasts, that is, MSE = MSEperf , the skill score attains
its maximum value of 100 %. If the forecast MSE equals the MSE for the
unskillful reference forecasts, that is, MSE = MSEref , SS = 0 %, implying
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Forecast Observation

2.0 1.0
2.0 3.0
2.0 0.0
2.0 4.0

Table 7.1: A simple example illustrating forecasts with corresponding observa-
tions; the values could be mm of rain.

that the forecasts contain no improvement compared to the unskillful refer-
ence forecasts (Wilks, 2006, Chap. 7). If the forecasts being evaluated are
inferior to the unskillful reference forecasts, the skill score becomes negative,
so SS < 0 % (Wilks, 2006, Chap. 7).

7.1.2 General approach to Forecast Verification

The framework of verification introduced by Murphy and Winkler (1987),
offers a general approach to forecast verification with access to other aspects
of forecast quality than those described above. This approach of verification
is based on the joint distribution of forecasts and observations. Denoting
observations by x — and a specific value by X — and forecasts by y — and
a specific value by Y , p(x, y) denotes the joint distribution of all relevant
values of X and Y . This joint distribution p(x, y) contains information
about the forecasts, the observations, and the relationships between the
forecasts and the observations (Murphy et al., 1989). For a given data
set, the joint distribution p(x, y) is represented by a distribution of the
relative occurrences (or relative frequencies) of the simultaneous events of
forecasting a specific value Y , while observing a specific value X for all
relevant combinations of X and Y .

Any joint distribution can be factored into a conditional and a marginal
distribution in two ways (Murphy and Winkler, 1987; Wilks, 2006). The
information contained in the joint distribution, p(y, x) becomes more acces-
sible, when it is factored in either of these ways (Murphy and Winkler, 1987;
Murphy et al., 1989; Wilks, 2006).

One factorization is the calibration-refinement factorization, which has
the form

p(x, y) = p(x|y) · p(y) (7.5)

(Murphy et al., 1989; Wilks, 2006). This factorization of p(x, y) involves the
conditional distribution p(x|y), which is the distribution of the observations
given a forecast value y, and the marginal distribution of the forecasts p(y).
The other factorization is called the likelihood-base rate factorization and
has the form

p(x, y) = p(y|x) · p(x) (7.6)
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(Murphy et al., 1989; Wilks, 2006). It involves the conditional distribution
p(y|x) of the forecasts given an observed value x and the marginal distribu-
tion of the observations p(x).

Reliability

Forecast reliability (or forecast calibration) is related to the conditional dis-
tribution of the observations associated with a specific forecast value, Y ,
p(x|y = Y ) in equation (7.5) (Murphy, 1993).

Forecasts possess good reliability by a high degree of similarity be-
tween the mean of the observations associated with a specific forecast Y ,
E(x|y = Y ), and that forecast value Y (Murphy et al., 1989). According
to Murphy (1993), evaluation of reliability can assess a question like this:
“Does the mean observed temperature on those occasions on which the pre-
dicted temperature is 10� correspond to that value?”. If

E(x|y = Y ) = Y for all Y, (7.7)

where E(x|y = Y ) is the expected (or mean) value of the observations given
a specific forecast value Y , the forecasts are said to be completely reliable
(or perfectly calibrated) (Murphy and Winkler, 1987; Murphy et al., 1989).
In table 7.1, the forecasts are completely reliable, since the mean of the
observations on those occasions on which the predicted amount of rain is
0.2 equals 0.2.

In forecasting, two types of bias might be present: i) unconditional (or
systematic or overall) bias and ii) conditional bias, that is, a forecast bias
that depends on (or is conditional on) the forecast value. A presence of
either of these biases imply a lack of reliability of the forecasts, which can
be appreciated from the following considerations by use of the reliability
criterion in equation (7.7). In a case of 10 forecasts, Y1, . . . , Y10, if

E(x|y = Y ) > Y for Y1, Y2, Y3, Y4, and Y5

and

E(x|y = Y ) < Y for Y6, Y7, Y8, Y9, and Y10 (7.8)

the forecasts values Y1, . . . , Y10 are said to be conditionally biased (Murphy
et al., 1989) and are not completely reliable according to equation (7.7). If

E(x|y = Y ) > Y for Y1, . . . , Y8, (7.9)

the forecasts Y1, . . . , Y8 suffer from an unconditional (or a systematic or an
overall) bias and the forecasts, Y1, . . . , Y10, are not completely reliable —
again with reference to equation 7.7. That is, either unconditional biases or
conditional biases lead to forecasts that are not completely reliable.
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Forecast Observation p(y|x = X)

2.0 1.0 p(y = 2.0|x = 1.0) = 0.25
2.0 3.0 p(y = 2.0|x = 3.0) = 0.25
2.0 0.0 p(y = 2.0|x = 0.0) = 0.25
2.0 4.0 p(y = 2.0|x = 4.0) = 0.25

Table 7.2: A simple example illustrating completely reliable forecasts with no
discriminative power and no sharpness; the values could be mm of
rain.

Sharpness

Forecast sharpness, or refinement, is an attribute of the forecasts and is
a characteristic of the marginal distribution of the forecast values p(y) in
equation (7.5) (Wilks, 2006, Chap 7). The distribution of forecasts indicates
how often different forecast values are issued. A forecasting system that pro-
duces the same forecast on each forecast occasion is not sharp (Murphy et al.,
1989). In table 7.2, the forecasts completely lack sharpness since only one
value, the average of the observations, is forecast at all forecast occasions.
Within the field of meteorology, sharp forecasts can easily be produced. The
challenge is to ensure that these forecast values correspond to the subsequent
observed values (Wilks, 2006, Chap. 7). Except for very simple forecasts as
shown in table 7.1, that contain no variation and completely lack sharpness,
evaluation of sharpness is usually applied to probability forecasts of a di-
chotomous (or binary) event and complete sharpness might be difficult to
define for forecasts of continuous observations (Murphy et al., 1989). How-
ever, for perfectly accurate and reliable forecasts the distribution of forecast
values, p(y), should be identical to the distribution of the observed values,
p(x) (Murphy, 1993; Murphy et al., 1989).

Discrimination

Forecast discrimination measures the ability of the forecasts to discrimi-
nate between observations that differ (Murphy, 1993; Weigel and Manson,
2011) regardless of the actual forecast value. Discrimination is a fundamen-
tal quality attribute since it indicates the usefulness of a set of forecasts
after being appropriately post-processed (Murphy, 1993; Weigel and Man-
son, 2011). Different measures of discrimination exists. Perfectly reliable
forecasts are effectively useless if they lacks discriminative power (Weigel
and Manson, 2011), which is illustrated by the simple example in table 7.2,
which is an extension of table 7.1. The forecasts are completely reliable
since E(x|y = 2.0) = 2.0 for all values of Y (in this case, there is just one
value), but completely lack discriminative power, since the forecasts cannot
discriminate between different observations and cases of rain and no rain.
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Observation 18� [2] Forecast 16� [2] t = 1
Observation 23� [1] Forecast 24� [1] t = 2

Table 7.3: A comparison of two forecast-observations pairs; in square brackets,
the corresponding rank of the observation and of the forecast is seen.

Within the framework of Murphy and Winkler (1987) discrimination is
a characteristic of the conditional distribution of the forecasts for a specific
value of the observations X, that is, p(y|x = X). In table 7.2, the value
of p(y|x = X) is the same (0.25) for all four values of X. That is, a fore-
cast value of 2.0 mm is with equal probability followed by an observation
of either 1.0 mm, 3.0 mm, 0.0m, or 4.0 mm. When p(y|x = X) is the
same for all values of X, the forecasts are not able to discriminate between
the different observations (Murphy et al., 1989). To clarify, an example of
forecasts that are perfectly discriminatory, but not completely reliable is
given in appdendix B. The forecast value is actually never observed. The
forecasts would probably not be considered very informative despite their
complete reliability, since they are all equal to the mean of the observations,
and contain no variation. In real life, deductions about forecasts from only
four forecast-observation pairs is, of course, questionable.

Another measure of discrimination is the generalised discrimination score
proposed by Manson and Weigel (2009) with application to binary, categori-
cal, and continuous observations and based on the joint distribution p(x, y).
In constructing the generalised discrimination score, D, all possible sets of
two forecast-observation pairs are constructed from the verification data.
For each of these sets, the question is asked whether the forecasts can be
used to successfully distinguish (or rank) the observations (Weigel and Man-
son, 2011). In table 7.3, two forecast-observations pairs are compared, and
the forecasts are able to correctly discriminate (or rank) the correspond-
ing observations while in table 7.4, this is not the case. The proportion of
times when two forecasts can be used to correctly rank the corresponding
observations yields the generalised discrimination score, D, given by

D =
1

2
(τ + 1), (7.10)

(Weigel and Manson, 2011), where τ is Kendall’s rank correlation coefficient
(Bhattacharyya and Johnson, 1977, Chap. 15), which measures the degree
of association between two variables. Since discrimination is not concerned
with the forecasts taken at face value, a rank correlation coefficient will
suffice in defining the generalised discrimination score.

By its definition, the generalised discrimination score, D, indicates how
often the forecasts correctly discriminate the observations (Weigel and Man-
son, 2011). If the forecasts do not contain any useful information, the proba-
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Observation 18� [1] Forecast 16� [2] t = 1
Observation 14� [2] Forecast 17� [1] t = 3

Table 7.4: A comparison of two forecast-observations pairs; in square brackets,
the corresponding rank of observations and forecasts is seen.

Continuous case Binary case

Day Observations Forecasts Observations Forecasts

t = July 10 14.00 UTC 22� 23� 1 1
t = July 11 14.00 UTC 23� 21� 1 1

Table 7.5: An example of forecasts and corresponding observations for continuous
and binary observations

bility that the forecasts correctly discriminate two observations is equivalent
to random guessing (which would be equal to 50 %) and one would obtain
D = 0.5 (in this case there is no association between forecasts and obser-
vations, and so τ = 0). The more successfully the forecasts are able to
discriminate the observations, the closer the score is to 1, since a strong
association (or correlation) between forecasts and observations will give τ

close to 1. Forecasts that consistently rank the observations in the wrong
way, will give D = 0 (in this case, a strong negative association between
forecasts and observations will yield τ = −1).

When the number of distinct observations increases — as from binary to
categorical and to continuous observations, the discriminative power usually
decreases (Weigel and Manson, 2011). This can be explained by the addi-
tional precision that is required to discriminate between continuous obser-
vations compared to binary observations (Weigel and Manson, 2011), which
may be defined as observations being above or below some threshold. In
the continuous case, the forecasts will have to successfully discriminate be-
tween values that might differ by only small amounts (Weigel and Manson,
2011). As an example, table 7.5 should illustrate the difference in preci-
sion required for continuous observations compared to binary observations.
The table shows (fictitious) national average of maximum temperatures and
corresponding observed events for two days in July. In creating the binary
events, temperatures above the assumed average for July is 15� make an
event (1) and temperatures below 15� no event (0). In the continuous case,
the forecasts will have to correctly discriminate and therefore correctly fore-
cast, which of the two days is the warmest. In the binary case, the forecasts
will (only) have to discern between days when the national average temper-
ature is above or below 15�, which would (probably) be easier to forecast
correctly.
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7.2 Quality of Ensemble Forecasts

Methods to assess quality of ensemble forecasts exist. Multidimensional
ensemble forecasts of continuous observations can be difficult to verify in
a comprehensive manner (Jolliffe and Stephenson, 2012, Chap. 1). In this
work, reliability and discrimination have been applied to ensemble forecasts
of continuous observations.

7.2.1 Consistency

If the ensemble members can be considered as random samples of the PDF
both at the initial time and at any later forecast time, the true state of the
atmosphere will behave like one more member of the ensemble and the true
atmospheric state will be statistically indistinguishable from the ensemble
members (Gombos and Hansen, 2007; Wilks, 2006, Chap. 7). This condition
is called consistency of the ensemble (Wilks, 2006, Chap. 7).

A common approach to assess the degree of consistency of ensemble
forecasts, that is, to assess whether the ensemble members and the truth
(materialised by the verifying observation) are statistically indistinguishable
is by the shape of a scalar rank histogram (also known as a verification rank
histogram or a Talagrand histogram) (Gombos and Hansen, 2007; Wilks,
2006). From consistent ensemble forecasts, questions like: “What is the
probability that the daily accumulated global radiation tomorrow exceeds
a given threshold?”, or a more distributional question like: “Within what
interval of global radiation values does 90 % of the forecasts lie in 12 hours?”
can be answered. These questions, that is, the forecasts, will be reliable. The
derivation of reliable probability forecasts is central to ensemble forecasting
(Hamil and Colucci, 1997), and evaluation of ensemble consistency has over
the years received special attention (see e.g. Gneiting et al. (2008); Hamill
(2001); Jolliffe and Stephenson (2012); Wilks (2006)).

In the literature, consistency and reliability are used interchangeably to
describe the statistical indistinguishability of the true state of the atmo-
sphere and the ensemble members. Here, consistency describes this condi-
tion, while reliability characterises the reliability of the probability forecasts
derived from the ensemble.

In constructing the scalar rank histogram, consider N ensemble fore-
casts, each of which consists of M ensemble members, and N corresponding
observations (Jolliffe and Stephenson, 2012, Chap. 8). Now, for each of
these N ensemble forecasts with corresponding observation, the value of the
observation is ranked according to the values of the ensemble members. If
the observation is smaller than all M ensemble members, then its rank is 1,
and if the observation is larger than all ensemble members, then its rank is
M+1 (Jolliffe and Stephenson, 2012, Chap. 8). If the M ensemble members
and the verifying observation belong to the same distribution (the PDF),
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that is, if ensemble members and the verifying observation are statistically
indistinguishable, the rank of the observation within the M+1 values would
be equally likely to take on any of the rank values 1, 2, . . . ,M+1 (Jolliffe and
Stephenson, 2012; Wilks, 2006). Determining the rank of the observation
with respect to the ensemble members for N observations and N ensemble
forecasts (of each M forecasts) gives when displayed in a histogram the rank
histogram. If the ensemble forecasts are consistent, the ensemble members
and the observations are statistically indistinguishable (Wilks, 2006, Chap.
7), and the histogram of the N observation ranks will be uniform with an
expected number of N

M+1 counts per rank value apart from deviations due
to sampling variability (Jolliffe and Stephenson, 2012; Wilks, 2006).

A uniform scalar rank histogram implies that the ensemble forecast and
the verifying observation are random samples from the PDF — i.e. they are
statistically indistinguishable. However, sampling the ensemble members
from a distribution different from the PDF, can under special circumstances
result in a uniform rank histogram (Hamill, 2001) and the interpretation of
rank histograms should be treated carefully. Flatness of rank histograms is
a necessary, but not sufficient criterion for ensemble consistency (Feddersen,
2009; Jolliffe and Stephenson, 2012; Wilks, 2006).

Deviations from uniformity of the rank histogram can be used to di-
agnose deficiencies of the ensemble consistency (Hamill, 2001; Jolliffe and
Stephenson, 2012; Wilks, 2006). Bias in the ensemble (or systematic (or
overall) deviations between the ensemble members and the observation) will
result in a sloped rank histogram, since too, often the observation will be on
one side of the ensemble, that is, either too often smaller than or too often
larger than the ensemble forecasts, and this will too often occupy the small-
est or the largest rank values (Hamill, 2001; Wilks, 2006) — see figure 7.1,
where the ensemble forecasts have a tendency to over-forecast leaving the
observations too often at one of the smallest rank values. An under-dis-
persive ensemble, will result in a U-shaped rank histogram, since too often
the ensemble is not able to capture the observation, which will too often
be either smaller than or larger than the ensemble forecasts (Hamill, 2001;
Wilks, 2006) as may be caused by the presence of a conditional forecast
bias among the ensemble members. This under-dispersion will overpopulate
both the smallest and the largest rank values resulting in a rank histogram
with a U-shaped appearance.

7.2.2 Multidimensional Consistency

The scalar rank histogram is in essence a verification tool to assess the
consistency of ensemble forecasts of a scalar variable.

For the data set treated here, a multidimensionality is introduced by
the 24 simultaneous forecasts corresponding to the 24 locations of the ver-
ifying observations (see e.g. section 4.3). To access the consistency of en-
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Figure 7.1: Illustration of a rank histogram when the 8 ensemble members have
been sampled from a distribution, which is biased compared to the
PDF. Here, the ensemble has a tendency to over-forecast, which leaves
the observation too often as one of the smallest rank values.

semble forecasts of multidimensional data, a number of methods have been
proposed. Two such methods are the multivariate rank (MVR) histogram
(Gneiting et al., 2008; Jolliffe and Stephenson, 2012) and the minimum span-
ning tree (MST) histogram (Gneiting et al., 2008; Jolliffe and Stephenson,
2012) described below.

Multivariate Rank Histogram

The multivariate rank (MVR) histogram is a generalisation of the scalar
rank histogram and assess — like their scalar counterpart — how the ob-
servations rank with respect to the individual ensemble members. Being
a generalisation of the scalar rank histogram, the shape of the MVR his-
togram can be interpreted in the same way as the shape of the scalar rank
histogram. In constructing MVR histograms, the challenge is to find a
definition of how to rank multidimensional vectors (Jolliffe and Stephen-
son, 2012). Below, a procedure of determining the rank of a K-dimen-
sional observation with respect to the M K-dimensional ensemble fore-
casts, is suggested (Gneiting et al., 2008; Jolliffe and Stephenson, 2012).
In the K-dimensional space spanned by the K = 24 verifying locations si-
multaneously predicted, the K-dimensional vector, xi,1 . . . , xi,k . . . , xi,K , is
denoted by Xi (with i = 1, . . . , N) and the ensemble forecast Yi,j denote
the K-dimensional vector, yi,j,1, . . . , yi,j,k, . . . , yi,j,K is denoted by Yi,j (with
i = 1, . . . , N). Table 7.6 attempts to illustrate how this work. Here, with
K = 4 and M = 3, the K-dimensional observation vector, Xi would be
equal to (25, 23, 22, 24), and the K-dimensional vector for ensemble member
1, Yi,1, would be (28, 27, 25, 25), and for ensemble member 2, Yi,2, the K-di-
mensional vector would be (25, 22, 20, 25), and for ensemble member 3, Yi,3,
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At time point i: forecast date 2011-08-06, initial time 00, and lead time 6 h

Station Member 1 Member 2 Member 3 Observation

6019 28 25 24 25
6031 27 22 23 23
6041 25 20 21 22
6049 25 25 24 25

V1 V2 V3 V0

Table 7.6: Illustration of the K-dimensional vectors for an ensemble of three
members at a given time point i corresponding to a certain forecast
date, say 20110806, and a certain initial time, say 00, and a certain
lead time, say 6 hours, which corresponds to the time 6 August 2011
06 UTC.

the K-dimensional vector would be (24, 23, 21, 24) for the given combination
of forecast date, initial time, and forecast length, i.

The procedure is then as follows (Jolliffe and Stephenson, 2012, Chap.
8):

1. Define V0 = Xi and Vj = Yi,j with j ∈ 1, . . . ,M . Now, V0,k denotes
the kth dimension of the observations and Vj,k the kth dimension of
the jth ensemble member.

2. Then, determine the “pre-rank”, ρj , of each vector Vj with j ∈ 0, 1, . . . ,M
by

ρj = 1 +

M
∑

l=0
l 6=j

qj,l with qj,l =

{

1 if Vj,k ≥ Vl,k for all k ∈ 1, . . . ,K

0 otherwise

(7.11)
that is, if the K-dimensional ensemble vector Vj is larger than the
K-dimensional ensemble vector Vl for all K-dimensions (in table 7.6
K = 4), the pre-rank, ρj, of ensemble member “j” is increased by
1. In the example illustrated in table 7.6, the pre-rank of ensemble
member 1 is 4, since V1 is clearly larger than any of the other vectors,
the pre-rank of the observations is 3, while the pre-ranks for ensemble
member 2 and 3 are both 1.

3. Finally, the multivariate rank r is determined. If the pre-rank of the
observation, ρ0, is not tied, then r is given by ρ0. If there are ties,
these are solved at random. In the example in table 7.6, the pre-rank
of the observations is in this case not tied, so r = 3.

Repeating these steps for N forecast-observation pairs and displaying the N
multivariate ranks of the observations, r, in a histogram, yields the MVR
histogram.
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Figure 7.2: Illustration of a spanning tree of a data set with K = 2 dimensions
(verifying location (number of pyranometers) 6019 and 6031) and 25
ensemble members (small, full circle); the open circle represents an
observation.

Minimum Spanning Tree Histogram

Another method to evaluate the reliability of multidimensional ensemble
forecasts is the minimum spanning tree (MST) histogram (Gneiting et al.,
2008; Jolliffe and Stephenson, 2012). It is likewise applicable if a number of
locations are simultaneously predicted by ensemble of forecasts.

When plotting a K-dimensional ensemble forecast in a diagram, a span-
ning tree can be constructed by connecting all K forecast points with line
segments without generating any closed loops (Jolliffe and Stephenson, 2012,
Chap. 8). There are several ways of generating a spanning tree (of connect-
ing the points in figure 7.2 without any closed loops), but the one that gives
the smallest sum, when adding the length of all the line segments, defines the
minimum spanning tree (MST). This is best illustrated when the dimension
of the data is 2 as in figure 7.2. Here, K = 2, and M = 25.

For a consistent EPS, the ensemble members should be statistically in-
distinguishable from the verifying observation, which according to Jolliffe
and Stephenson (2012, Chap. 8) implies that the K dimensional distance
of the observation from any of the ensemble members, should on average
be similar to the average mutual distance of the ensemble members from
each other. This relation is tested by the MST histogram. The statistical
indistinguishability implies that the MST lengths should — on average —
not be significantly affected if a random ensemble member is replaced by
the verifying observation (Jolliffe and Stephenson, 2012). In figure 7.2, the
distance of the observation from any of the ensemble members seems, on
average, to exceed the average mutual distance of the ensemble members.
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The procedure for generating MST is according to Jolliffe and Stephen-
son (2012, Chap. 8): the total length, l0, of this minimum spanning tree
spanned by the M = 25 ensemble members in the K = 24-dimensional
space, is generated. Now, replacing the jth ensemble member by the ver-
ifying observation gives another total MST length, lj . For consistent en-
semble forecasts, l0 should not be systematically larger or smaller than any
lj ∈ {l1, . . . , lM}, that is, replacing any one of the ensemble members by
the verifying observation should not affect the associated total MST length.
Ranking l0 within the set of MST lengths {l0, l1, . . . , lM}, it should be equally
likely for the rank of l0, which is denoted by r, to take on any of the values
{1, . . . ,M + 1}. Whether this is the case can be assessed by determining r

for all forecast-observation pairs and then displaying the values obtained in
a histogram — the MST-histogram. If the forecasts are reliable, the MST
histogram should be uniform (Jolliffe and Stephenson, 2012, Chap. 8).

MST histograms can generally not be considered as a multidimensional
generalization of rank histograms, as is the case of the multivariable rank his-
togram, and they need to be interpreted differently (Jolliffe and Stephenson,
2012). Under-dispersive ensemble forecasts, which are often associated with
U-shaped rank histograms, often yield negatively sloped MST histograms
(Jolliffe and Stephenson, 2012).

7.2.3 Discrimination

Discrimination of ensemble forecast has often been accessed probabilistically,
that is, after the ensemble has been transformed into probability forecasts
(Weigel and Manson, 2011). A generalised discrimination score, D, applica-
ble to ensemble forecasts of continuous observations has been proposed by
Weigel and Manson (2011) as an expansion of the generalised discrimination
score proposed by Manson and Weigel (2009) and described in section 7.1.2.

The construction of a generalised discrimination score, D, applicable to
ensemble forecasts of a continuous observation, requires a definition of how to
discriminate, or rank, two ensemble forecasts. For single deterministic fore-
casts, it is trivial to decide which one of two forecasts is larger and should (if
the forecasts possess discriminative power) be associated with the larger one
of the two corresponding observations (see e.g. table 7.3 and 7.4). This de-
cision is less obvious for ensemble forecasts. Weigel and Manson (2011) con-
sider 3 hypothetical 5-member ensemble forecasts of temperature (�) with
y1 = (22, 23, 26, 27, 32), y2 = (28, 31, 33, 24, 36), and y3 = (24, 25, 26, 27, 28)
(from Weigel and Manson (2011)). Most people would intuitive label y2

larger than both y1 and y3. The situation is less obvious when comparing
y1 and y3. A method of ranking ensemble forecasts proposed by Weigel
and Manson (2011) is described in appendix C, and makes the generalised
discrimination score applicable to ensemble forecasts.

556



48

7.2.4 Summary of Aspects of Forecast Quality

In table 7.7, a summary of the aspects of forecasts quality described in
this chapter can be found. A possibility of the quality aspect to handle
multidimensional forecasts is indicated in the fourth and the fifth column
for single forecast and ensemble forecasts, respectively.
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Aspect Measure Definition Multidimensionality
single forecasts ensemble forecasts

Bias ME Describes the difference
between mean forecast
and mean observation

yes*

Accuracy MSE,
RMSE

Describes the average cor-
respondence between indi-
vidual pairs of forecasts
and observations

yes*

Skill SS Describes the accuracy of
forecasts relative to the
accuracy of unskillful ref-
erence forecasts

yes*

Reliability** Describes the correspon-
dence between the mean
observation associated
with a particular forecast
and that forecast

no yes

Discrimination D Describes the ability of
the forecasts to discrimi-
nate between different ob-
servations

no no

Sharpness Describes the variability
of the forecasts

yes*

Table 7.7: Aspects of forecast quality with short definitions from Murphy (1993);
the aspect of forecast quality is shown in column one, a typical measure
of this quality aspect is shown in column two, a short definition of the
aspect is given in column three, and in the fourth and fifth column,
the application of the forecast aspect to multidimensional data sets
is indicated for single forecasts in column four (single forecasts) and to
ensemble forecasts in column five (ensemble forecasts). Here, an asterisk (*)
indicates that the forecast aspect can handle multidimensional data,
but only implicitly, that is, in the way the given measure or aspect
of forecast quality is defined here. This is the case for the ME, MSE,
and RMSE. A double asterisk (**) indicates that concerning ensemble
forecasts, consistency (rather than reliability) of the ensemble, from
which reliable probability forecasts can be derived (Wilks, 2006, Chap.
7), is evaluated.
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8 Verification of Global Ra-
diation from DMI-EPS

To comply with accuracy requirements to solar radiation forecasts arisen
from the development of a smart solar heating unit, DMI-EPS has since
August 2011 made hourly calculations of global, direct and diffuse radiation.
With the aim of assessing the possibility of complementing forecasts of global
radiation with uncertainty estimates as derived from ensemble forecasts of
DMI-EPS, this chapter is devoted to verifying these ensemble forecasts.

8.1 The Data

The period of verfication is from August 5 2011 to November 14 2011, which
amounts to 102 days and the ensemble forecasts are verified against global
radiation measurements at the 24 DMI pyranometers.

8.1.1 Ensemble Calculations of Global Radiation

The data set consists of 100 days of forecasts (from August 5 2011 to Novem-
ber 12 2011) with 4 forecasts per day each consisting of 54 hourly values.
This gives N = 21600 forecast occasions with corresponding observations
within the period of verification from August 5 to November 14 2011. In
verifying the S05 ensemble forecasts of global radiation against DMI’s 24
observation stations, the forecasts have been downscaled by bilinear inter-
polation (see e.g. section 4.3) to the locations of the 24 verifying observations
(that is, the 24 pyranometers shown in figure 4.1), which gives a data set of
24 simultaneous ensemble forecasts. The number of ensemble forecasts, M ,
is 25 (see e.g. table 6.2).

In generating ASCII files from the GRIB format of the DMI-EPS cal-
culations, discontinuities in the data series have been introduced due to
occasional storage problems. For all included time points, action has been
taken to ensure that data for all 25 ensemble members exist, which makes
N = 19002.

50
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8.1.2 The Observations

Inspection of the observations covering the period of verification have re-
vealed a few obviously incorrect values: i) night values of a few W

m2 over
long periods of time and ii) individual values that are unrealistically high,
and which for some reason slipped through the data control — described in
section 4.1. To compensate for the type i) errors, night values above zero
have simply been set equal to zero and concerning errors of type ii), the
“top of the atmosphere radiation” global radiation, F↓(toa), has been used
to evaluate the ground measurements, and all values above F↓(toa) have
been marked as invalid.

8.1.3 The Clearness Index

Global radiation reaching the surface of the Earth consists of a part gov-
erned by astronomical parameters giving rise to diurnal and seasonal vari-
ations and another part governed by short-term weather parameters such
as frequency and height of clouds and their optical properties, atmospheric
aerosols, atmospheric water vapour, and ground albedo (Badescu, 2008).
The global radiation reaching the ground can be considered as a sum of two
components — a deterministic (or astronomical) component and a stochas-
tic (or meteorological) component. This meteorological or stochastic com-
ponent can be isolated by introducing the clearness index defined by

Kc =
F↓(surface)

F↓(toa)
, (8.1)

where F↓(toa) is the extraterrestrial horizontal solar radiation (see e.g. equa-
tion (3.2)). F↓(surface) is the global radiation received at the surface of the
Earth (Badescu, 2008). The clearness index Kc then accounts for all mete-
orological influences on the global radiation (Badescu, 2008) and has been
calcualted in addition to the global radiation.

With this definition of the clearness index, it cannot be defined at night
times, when F↓(toa) is zero. To eliminate any possible problems with model
calculations for very high zenith angles (or for very low solar elevations),
these invalid night values are expanded to zenith angles greater than 88°.

To avoid having night values — when the global radiation is zero for both
observations and model calculations (i.e. a trivial forecast difference of zero)
— influence the verification of global radiation from DMI-EPS, the undefined
night values of the clearness index have been used to determine undefined
night values of the global radiation, and, except if otherwise stated, these
undefined night values are excluded from the verification.

In validating global radiation calculations from DMI-EPS, the clearness
index data have been applied, when the elimination of the astronomical
signal in the data was important.
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Figure 8.1: Illustration of the time evolution in a two-dimensional phase space.
The full line illustrates the trajectory of the forecast initiated with
the best estimate of the initial conditions. Dashed lines illustrates
ensemble trajectories. From Wilks (2006, FIGURE 6.24)

8.2 Assessing the Performance of the Ensemble
Mean

By averaging the ensemble members, some of the errors present in the in-
dividual forecasts should cancel, and the ensemble mean should, in general,
provide an improved forecast compared to a traditional forecast (Toth and
Kalnay, 1993; Wilks, 2006). Hence, the performance of the ensemble mean
has been investigated.

In phase space, the ensemble mean will be the center of the distribution
of all the ensemble members — at least until at clustering of the ensem-
ble members appear (Wilks, 2006, Chap. 6), which is the case at the final
forecast time in figure 8.1. In case of clustering, the ensemble mean will in
phase space not be near any of the ensemble members (Wilks, 2006, Chap.
6), that is, the atmospheric state represented by the ensemble mean might
be far from any predicted states. Being a more robust measure of centre, the
ensemble median might in case of clustering do better compared to the en-
semble mean. Depending on the distribution of the ensemble forecasts, the
ensemble median is therefore speculated to be able to surpass the ensemble
mean. Hence, both are calculated and together with the control forecast
subjected to verification methods with the aim of investigating and compar-
ing the performance of the three forecasts. Of course, the ensemble mean is
not a real forecast, but a quantity derived from the ensemble. When sorting
the 25 ensemble members, the ensemble median will be equal to the 13th
member with 12 members above and 12 members below. In investigating the
three forecasts, both the more traditional measures of forecast performance
such as ME, RMSE, and skill score as well as aspects of forecast performance
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such as sharpness, reliability, and discrimination are addressed.

8.2.1 Sharpness

Recall from section 7.1.2 that for continuous observations, complete sharp-
ness of the forecasts is difficult to define, but that for completely accurate
and reliable forecasts, the distribution of the forecasts p(y) should be iden-
tical to the distribution of the observations p(x) (Murphy et al., 1989).

In figure 8.2, the relative frequency distribution of the observations, p(x)
is seen in (a), and the relative frequency distribution, p(y), of the control
forecast is seen in (b), the ensemble mean in (c), and the ensemble median
in (d). Here, the clearness index has been used to emphasize features in
the distributions by a change of both the distribution and the scale of data.
Although not identical, the distributions of clearness indices, bear an overall
resemblance. However, the distribution of the ensemble mean, the control
forecast, and the ensemble median are all characterized by a higher degree of
symmetry as opposed to the corresponding distribution of the observations.
High values of clearness index (greater than ≈0.8) found in the observations,
are not seen in either of the three forecasts: the control forecast, the ensem-
ble mean, and the ensemble median — best illustrated in the boxplot in
figure 8.3. A more uniform distribution is exhibited by the ensemble mean
and to some degree also by the ensemble median compared to the other two
distributions. Smoothing by taking means and medians (not so pronounced
for the ensemble median) seems to reduce the variability found in the ob-
servations and better captured by the control forecast. All three forecasts
seem relatively broad and covers most values of the observations, but not
values above ≈ 0.8. The distributions of the control forecast resembles the
distribution of the observations more compared to the other two distribu-
tions, and therefore seems more sharp than both the ensemble mean and
the ensemble median.

8.2.2 Bias, MSE, RMSE, and Skill Score

The more common measures of forecast quality as ME, MSE, and RMSE,
are defined as

ME =
1

n

n
∑

n=1
n∈N

(yn − xn) (8.2)

MSE =
1

n

n
∑

n=1
n∈N

(yn − xn)
2 (8.3)

RMSE =
√
MSE (8.4)
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(a) Observations

0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

Clearness index

R
el

at
iv

e 
fr

eq
ue

nc
y

(b) Control forecast
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(c) Ensemble mean
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(d) Ensemble median

Figure 8.2: Distribution of the clearness index for the observations (a), the con-
trol forecast (b), the ensemble mean (c), and the ensemble median
(d) for the N forecast occasions and the K locations of the verifying
observations; the distributions have been normalized.
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Figure 8.3: Distribution of the clearness index for ensemble mean (mean), the
control forecast (control), the ensemble median (median), and the
observations (obs) for all N forecast occasions and at all K verifying
locations; in each box, the length of the box shows the interquartile
range — i.e. values between the 25 % and the 75 % percentile of the
distribution — bottom and top of the box, respectively; the thick
horizontal line marks the median of the distribution; the ends of the
whiskers mark the minimum and the maximum value.

according to equation (7.1) and (7.2), but here n is the number in the total
number of N = N · K time and space combinations in the data set over
which to average — in figure 8.4, this is determined by the forecast lead
time —, and yn and xn are the forecast and the observation, respectively, at
time-space point n. Both the measure of forecast bias (ME), the measure of
forecast accuracy (MSE and RMSE), (and forecast skill score) are applicable
to scalar forecasts (Wilks, 2006, Chap. 7) (see e.g. chapter 7). They are
all here defined to incorporate the multidimensionality of the data set by
averaging over a pooled data (sub)set consisting of both time and space
points.

In generating the ME and the RMSE, illustrated in figure 8.4, the follow-
ing procedure has been applied — here illustrated for the ensemble mean:

1. the ensemble mean is calculated for all N time-space combinations,
and

2. for the ME the difference, and for the MSE the squared difference
between the ensemble mean and the matching observation is calculated
at each of the N time-space combinations, and

3. the average of this quantity is calculated for each lead time, that is,
over n time-space combinations.

Taking the square root of the MSE gives the root mean squared error, RMSE.
In calculating the bias and the MSE for the ensemble median, the median is
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calculated in point 1 above instead of the ensemble mean and in calculating
the bias and the MSE for the control forecast, point 1 is skipped. Note that
in squaring the deviation between a forecast and the corresponding observa-
tion, the MSE and the RMSE become highly sensitive to large deviations in
the data set. In forecasting accurately the global radiation received at solar
collector, penalising large deviation between a forecast and a corresponding
observation is desirable.

In general, the biases in figure 8.4(a) are modest. A strong declining
trend is seen in the first ≈12 hours of the forecast lead time. This is re-
lated to spin-up effects1, which might appear in the first hours of an NWP
forecast as, for instance, clouds build up. From a turning point occurring
at a forecast lead time of about 16 hours for the control forecast and 24
hours for the ensemble mean and the ensemble median an increasing trend
is seen. The control forecast with its much faster rise towards zero performs
better compared to both the ensemble mean and the control forecast. Over
forecast lead times of 6 – 48 hours, the biases are negative with the ensemble
mean displaying the largest absolute bias. This suggest a degree of, although
modest, overall or systematic under-forecasting for all three forecasts, but
most pronounced for the ensemble mean and the ensemble median. This
corresponds with the figures in the “ME” column of table 8.1.

Values of RMSE found in this study and displayed in figure 8.4(b) are
comparable with values reported in Dı́az et al. (2012), in Lorenz et al. (2011)
for single deterministic forecasts (compare for example with the high-resolu-
tion bias-corrected HIRLAM-CI data, the pixel-averaged WRF-MT data, or
the direct model output WRF-UJAEN data), and in (Lorenz et al., 2012).
This lends support to the three forecasts: the control, the ensemble mean,
and the ensemble median from DMI-EPS. From the figure, accuracy is seen
to decrease with lead time. The control forecast shows a larger RMSE for all
lead times compared to both the ensemble median and the ensemble mean,
which has the lowest RMSE. The overall values are shown in the “RMSE”
column in table 8.1.

The strong diurnal variation in the squared forecast deviation symmetric
around 12 UTC in figure 8.5 combined with the 6 hour interval between two
consecutive forecasts (issued at 00, 06, 12, 18 UTC every day), causes the
6 hour variation in RMSE (thin dotted lines) seen in figure 8.4(b). A given

1The equation governing the state of the atmosphere are differential equations de-
scribing changes within the atmosphere. To use these equations in NWP forecasts, an
initial state of the atmosphere must be specified. Typically, this initial state is based on
observations, which compared with the NWP grid are sparse in coverage and must be
interpolated to the forecast grid. This introduces errors in the initial state of the NWP
forecast and initially the NWP model might predict large changes of the atmospheric
state. This is referred to as spin-up effects and these are illustrated by the strongly declin-
ing bias in figure 8.4(a). As the effects of this initial state disappear, the changes of the
atmospheric state reach a certain level. Information from http:www.drjack.info/INFO/

model-basics.html
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Figure 8.4: Bias (a) and RMSE (b) of global radiation calculated as an average
per lead times; a Loess smoothing has been applied to emphasize
trends.

566



58

ME (bias) RMSE

Ensemble mean −5.7 92
Control forecast −2.9 110
Ensemble median −4.2 97

Table 8.1: An average over all N time space combinations of ME and RMSE in
W

m2
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Figure 8.5: Mean of the squared forecast deviation as a function of time of day
(UTC) for the ensemble mean; the squared forecast deviation enters
into the calculation of both the MSE and the RMSE.

lead time (of say 3 hours) will with four forecasts per day (00, 06, 12, and
18 UTC) result in four different times of the day (03, 09, 15, and 21 UTC).
The complete data set for a given lead time consists exclusively of those four
times of the day. How these four distinct times are distributed in figure 8.5,
affects the value of the MSE (and of the RMSE) according to the generation
of them (equation (8.3) and (8.4)). With the 6 hour cycle in the forecasts,
two lead times with a 6 hour interval result in the same four hours of the
day (that is, a lead time of 9 hours result in 09, 15, 21, and 03 UTC), which
are equal to the times of the 3 hour lead time. On average and according to
figure 8.5, the same squared deviations enters the calculation of the RMSE,
and this induces the 6 hour variation in the RMSE seen in figure 8.4(b).

In this work, the accuracy measure used in calculating the skill score
is the MSE defined in equation (8.3). The sample climatology2 , or sample

2The climatology is estimated by the mean of the observations (or a set of observations),
which is called the sample climatology (Wilks, 2006, Chap. 7).
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mean, defined as

x̄ =
1

n

n
∑

n=1
n∈N

xn

is used as the references forecast and n is the number in the N time-space
combinations matching a given lead time. This gives the following accuracy
measure for the unskillful reference forecasts

MSEref = MSEclima =
1

n

n
∑

n=1
n∈N

(x̄− xn)
2 (8.5)

(Wilks, 2006, Chap. 7), and the following skill score

SS =

(

1− MSE

MSEclima

)

· 100 % (8.6)

according to equation (7.4).
For MSEclima , it is implied that the climatology, estimated by x̄, does not

change in the course of the n forecast occasions (i.e. during either space or
time of the n forecasts) (Wilks, 2006, Chap. 7). Failing to account for a time
varying climatology can according to equation 8.5 produce an unrealistically
large MSEclima (Wilks, 2006, Chap. 7). During the verification period of
several months, the true climatology (or level) of global radiation is expected
to change3 as illustrated in figure 8.6(a). To reduce the effects of a changing
climatology in the course of the verification period (August 5 to November
14), the clearness index is used in calculating skill scores. Despite a changing
clearness index throughout this period, a clear and unambiguous trend is not
seen in figure 8.6(b). The clearness index seems to more fluctuate around a
mean value compared to the global radiation in figure 8.6(a).

Figure 8.7 displays the skill score as a function of lead time. With
increasing lead time, the skill score is seen to decrease. Table 8.2 shows a
selection of values found in figure 8.7. It is seen that the ensemble mean
performs better in skill score (based on MSE with climatological values as
the reference forecasts) compared to the control forecast. A value of 0.461 in
skill score is interpreted as a 46.1 % increase in performance of the ensemble
mean compared to the unskillful climatology, x̄. For the control forecast,
this value is 27 %. The decreasing trend in skill score with lead time is
highly expected. It is more surprising that the 48 hour horizon skill score
for the ensemble mean (0.380) corresponds to the 6 hour horizon for the
control forecast (0.382). The modest skill scores — especially pronounced

3The annual period in the global radiation caused by astronomical constellations gives,
in the course of the verification period, a gradual change in the climatology of the global
radiation.
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Figure 8.6: Time evolution in the observed global radiation (a) and from this the
computed clearness index (b) for verification station 6135; a moving
average has been applied (red curve) to underline the variability of
the climatology.
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Figure 8.7: Skill score as a function of lead time; the MSEs, on which the skill
score is based, is averaged over a data set defined by the lead time (see
e.g. section 8.2.2). A Loess smoothing has been applied to emphasize
trends.
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Lead time(s) Ensemble mean Control forecast

All (n = N ) 0.461 0.270
6 hours 0.530 0.382
24 hours 0.478 0.292
48 hours 0.380 0.143

Table 8.2: Overall skill score (SS) for the ensemble mean and the control forecast
for different lead times; the MSEs that form the basis of the skill scores
are calculated as described in section 8.2.2 as an average in a data set
consisting of N = N ·K time-space combinations over all data points
(All), and over a data set consistent with a lead time of 6 hours, of 24
hours, and of 48 hours.

for the control forecast — might be related to the use of the clearness index
for which the highly predictable astronomical signal present in the global
radiation is eliminated leaving a “pure” weather signal.

8.2.3 Reliability

Recall from section 7.1.2 that a set of forecasts is said to be completely
reliable if E(x|y = Y ) = Y for all forecast values Y , where E(x|y = Y )
is the mean value of the observations associated with a particular forecast
value Y (Murphy et al., 1989). The conditional distribution p(x|y = Y ) of
observations for a given forecast value Y together with the marginal dis-
tribution of forecasts p(y = Y ) for selected or binned values of Y provide
information about unconditional as well as conditional biases in the fore-
casts — information that becomes available in the graphical representations
in figure 8.8.

Within the distribution of observations associated with (or conditional
on) a forecast value Y , p(x|y = Y ), displayed in figure 8.8, the thick line
shows the median of this distribution, the two dashed lines the 25th and
75th percentiles, and the two dotted lines the 10th and the 90th percentile.
The blue histograms displayed in figure 8.8(b) illustrates the distribution of
forecasts p(y = Y ) also found in figure 8.2(b). The diagonal line in both
figure 8.8(a) and 8.8(b) is the line of perfect correspondence between fore-
casts and observations (Murphy et al., 1989), that is, of completely reliable
forecasts, is included to compare with the median values of the observations.
Deviations of the conditional medians from this diagonal line are assumed
to indicate that the forecasts contain bias (Murphy et al., 1989) either con-
ditionally or unconditionally, and, hence, that they not completely reliable.

Inspecting the conditional quantile plots in figure 8.8, reveals both a
presence of a condition bias, that is, a forecast bias that depends on the
forecast value and an absence of unconditional biases, that is a systematic
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Figure 8.8: The conditional distribution p(x|y) of the control forecast for global
radiation (a) and the clearness index (b) calculated for all N fore-
cast occasions at each of the K verifying locations. The “conditional
quantile plots” of quantiles of the conditional distribution p(x|y) are
inspired by Murphy et al. (1989).
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bias irrespective of the forecast value that is appearent in figure 8.4(a). An
unconditional bias in the forecasts would in figure 8.8 appear as a line of
the observation medians entirely to one side of the diagonal line — above
the line in case of systematic under-forecasting and below the line in case
of systematic over-forecasting. For the control forecast in figure 8.8(a), the
median lies along the diagonal line of perfect correspondence a least below a
forecast value of about 500 W

m2 . A value of global radiation below ≈ 150 W
m2 is

associated with some degree of under-forecasting and a value above ≈ 150 W
m2

(most pronounced for forecast values from about 500 to about 800 W
m2 ) with

over-forecasting, which agrees with HIRLAM’s tendency to underestimate
the cloud cover (Bent Hansen Sass, personal communication) and thereby
over-estimating the amount of global radiation reaching the surface. From
this plot, an area of focus could be to reduce high values (in the interval from
500 to 800 W

m2 ) of global radiation caused by the underestimate of clouds
— a problem that is not easily alleviated in NWP models because of the
difficulties in forecasting the exact timing and location of small-scale clouds,
some of which appear on a scale too small to be resolved by the grid of the
NWP model.

A change of variable to the clearness index reveals a strong conditional
bias with under-forecasting for small values of the clearness index and a sim-
ilar degree of over-forecasting for high values of the clearness index. A value
of ≈ 0.4 — the central value in the distribution of forecasts of clearness index
— separates under-forecasting (for values below ≈ 0.4) from over-forecasting
(for values above ≈ 0.4). In a situation of light cloud cover corresponding
to a high clearness index, the forecasts over-estimate the clearness index in
correspondence with HIRLAM’s tendency to under-estimate clouds. Con-
versely, in a situation of heavy cloud cover corresponding to a low clearness
index, the forecasts seem to overestimate the cloud cover and hence un-
derestimate the clearness index (observed values are higher than forecasted
values). The focus area from this figure would probably be more evenly
distributed over both low values and high values of the clearness index and,
hence, more evenly distributed between situations of a low to modest cloud
cover associated with over-forecasting of the clearness index and thereby
under-forecasting of the cloud cover and situations of a modest to an ex-
tended cloud cover associated with under-forecasting of the clearness index
and thereby over-forecasting of the cloud cover.

While the conditional biases in figure 8.8(a) are modest at least until a
forecast value of about 500 W

m2 — indicating relatively unbiased forecasts in

the range 0 – 500 W
m

—, the picture is different for the clearness index in
figure 8.8(b). Here, the slope of the median values is different from the line of
perfect correspondence between forecasts and observations. This deteriorate
appearance is believed to be caused by a combination of the rearrangement
of data using the clearness index instead of the measured values of global
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radiation and by the resulting change of scale.
Similar “conditional quantile” plots of the ensemble mean and the ensem-

ble median as well as individual ensemble members correspond qualitatively
to the plots for the control forecasts and are therefore not shown. However,
the ensemble mean displays somewhat less conditional bias compared to the
control forecast.

8.2.4 Discrimination

To investigate the ability of a set of forecasts to discriminate between obser-
vations, both the approach of Murphy et al. (1989) based on the conditional
distribution p(y|x) and the approach of Manson and Weigel (2009) based on
the general discrimination score, D, (described in section 7.1.2) have been
applied.

Assessed by the conditional distribution p(y|x)
In figure 8.9(a) and 8.9(b), the conditional distribution, p(y|x), is plotted
for three different values of the observation, X: the lower quartile (25 %),
the median (50 %), and the upper quartile (75 %) of the distribution of
the observations. For the data subset corresponding to the 12 UTC global
radiation, these are 73 W

m2 , 320
W
m2 , and 589 W

m2 , respectively. To reduce
sampling variability, only forecasts associated with an observation within
a 5 % interval of the observed value are considered. The number of fore-
casts used to estimate the conditional distribution p(y|x) is between 350
and 1000 depending on the value of the observation and is a combination
of time and space points. In figure 8.9, data for the ensemble mean (a)
and for the control forecast (b) is seen. For each of the three observation
values, the distributions of the corresponding forecasts have distinct peaks
(modes) at values matching the observations for both the ensemble mean in
figure 8.9(a) and the control forecast in figure 8.9(b). The distributions of
forecasts associated with observations of 73 W

m2 and 589 W
m2 , respectively, are

well separated for both the ensemble mean in figure 8.9(a) and the control
forecast in figure 8.9(b).

According to Murphy et al. (1989), a forecast Y is perfectly discrimina-
tory if p(y = Y |x) = 0 for all values of X except one, that is, for perfect
discrimination, all observations associated with a given forecast Y , should
be equal to a given observation X. In figure 8.9(a), this is equivalent to
requiring that for a given forecast, say Y = 100, the relative frequencies
p(y = 100|x = 320) and p(y = 100|x = 589) both be equal to zero and
p(y = 100|x = 73) different from zero. This is nearly the case here for fore-
cast in the range 0-150 W

m2 . The relative frequencies of p(y = 100|x = 320)
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Murphy et al. (1989, Fig. 8).
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and p(y = 100|x = 589) are both close to zero, while p(y = 100|x = 73) is
well above. However, this is not the case from values of about 300 to 500 W

m2 ,
where both figures reveal some overlap between the forecasts distributions
corresponding to observations of 320 W

m2 and 589 W
m2 . For those values, both

forecasts distributions, p(y|x = 320) and p(y|x = 589), contain relative fre-
quencies above zero and display a modest ability of both the ensemble mean
and the control forecast to discriminate between those two well separated
observation values.

From the two plots in figure 8.9, the assessment of which, the ensemble
mean or the control forecast, is best at discriminating is not obvious. The
modes of the three forecast distributions correspond better with the obser-
vations for the control forecast compared to the ensemble mean, for which
the forecast distributions tend to be more peaked — at least for the two
forecast distributions corresponding to x = 73 and x = 320 W

m2 .

Assessed by the generalised discrimination score

To avoid having trivial discriminations — for example a forecasting sys-
tem being able to discriminate between global radiation in the morning
and at midday or to discriminate between the global radiation in different
parts of the country at a given time — influencing the evaluation of the
discriminative power of global radiation, the calculation of the generalised
discrimination score, D, is based on the clearness index, which allows the
inclusion of the K = 24 verifying locations. The reason for this is that by
using the clearness index, time, date and location are eliminated leaving
only a weather component.

The generalised discrimination score, D, is in essence a scalar verification
score, but by using the clearness index, the N forecast-observation pairs at
each of the K verifying locations are included in the calculation of D.

Eliminating night values, leaves for each lead time between ≈ 3500 and ≈
4500 data points (including theK verifying locations) for which any forecast-
observation pair must be compared with any other forecast-observation pair.

The generalised discrimination score is seen to decrease with lead time.
For all lead times, both the ensemble mean and the ensemble median score
higher in the generalised discrimination score compared to the control fore-
cast. Both the ensemble mean and the control forecast show a strong resem-
blance in the value of D, which decreases from about 78 % to 72 % for the
ensemble mean and the ensemble median and from about 77 % to 70 % for
the control forecast. Compared to the control forecast, the ensemble mean
(and the ensemble median) scores about 3 % higher in discrimination score,
D.

Each lead time is associated with between 3500 and 4500 forecast-ob-
servation pairs. Of these observations, nearly just as many are distinct
corresponding to weather situations that might be very similar, but seldom
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Figure 8.10: The generalised discrimination score as defined by Manson and
Weigel (2009); a Loess smoothing has been applied to emphasize
trends.

identical. This results in observations that might differ by tiny amounts.
This might explain the somewhat modest discrimination score seen in fig-
ure 8.10. A higher precision of the forecasts is required to discriminate be-
tween continuous observations that differ by only small amounts. Another
reason for the modest discrimination score might be related to the data set
consisting of the clearness index for which the highly predictable astronom-
ical signal present in the global radiation is eliminated leaving the more
stochastic weather component. This might imply a conservative estimate of
the discriminative power of the forecasts.

The two different ways of assessing the discriminative power of the en-
semble mean and the control forecast have resulted in different outcomes.
Using the generalised discrimination score, the ensemble mean performs bet-
ter compared to the control forecast. This is, however, not evident using the
conditional distribution p(y|x) to assess the discriminative power.
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8.3 Assessing the Performance of DMI-EPS

A central aspect of ensemble forecasting is its capacity to give information
about the uncertainty in a forecast (Wilks, 2006, Chap. 6). The second part
of this chapter is devoted to assessing the quality of DMI-EPS’ ensemble
forecasts of global radiation.

8.3.1 Application of quality measures applicable to single
forecasts

Treating each ensemble member as an individual deterministic forecast,
the deviation yi − xi for each forecast-observation pair i = 1, . . . , N , with
N = 19, 002, is computed at each of the K = 24 verifying locations and this
is generated for each of the M = 25 ensemble forecasts. The resulting distri-
bution of this pooled data set is divided after the hour of the day (UTC), and
the result can be seen in figure 8.11. For each hour, the forecast deviations
are generally distributed around zero with no forecast deviation at night —
when both observations and model calculations are zero. Despite large de-
viations between forecasts and observations, no deviations seem physically
impossible. A strong symmetry is present in the distributions in figure 8.11.
Around 12 UTC, the distributions broaden and at 12 UTC, the distribution
contains the largest absolute forecast deviations. A prevailing small negative
forecast deviation is seen indicating a modest degree of under-forecasting.
However, as suggested by figure 8.8, this picture might be more complicated
with a presence of conditional bias.

Two quality measures of deterministic forecasts are applied to all 25
ensemble members. In figure 8.12, the forecast accuracy measure, the RMSE
(see e.g. section 8.2.2), is seen, and in figure 8.13, the measure of forecast
skill, the skill score is seen. The ensemble members are grouped according to
the applied cloud scheme (STRACO and KF/RK), to “stochastic physics”
and “no stochastic physics” of applied stochastic physics and no applied
stochastic physics, respectively, and to their initial conditions (IC1 - IC5)
(see e.g. table 6.2).

In general, the RMSE in figure 8.12 increases with lead time (this was
also the case for the RMSEs of the control forecast, of the ensemble mean,
and of the ensemble median in figure 8.4(b)). In using no stochastic physics
(lower panels in figure 8.12), the two cloud schemes have different impacts
on the RMSE with a high degree of clustering and little mixing and with
the STRACO scheme in general superior to KF/RK. Without the applica-
tion of stochastic physics, the RMSE for the two cloud scheme are slightly
more adjacent for IC2 and IC4 compared to IC1, IC3, and IC5. In applying
stochastic physics (upper panels), a considerable degree of overlap between
the two cloud schemes is seen. In this case, however, the KF/RK scheme
performs somewhat better with lower RMSEs. Differences in RMSE between
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Figure 8.11: The distribution of the forecast deviations — difference between a
forecast and the corresponding observation, yi − xi , for each i fore-
cast occasion with i = 1, . . . , N . The deviations are calculated for
each j = 1, . . . ,M ensemble forecast and for each location of the ver-
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are included; in each panel, the mean of the corresponding distribu-
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(simultaneously predicted locations) x 25 (ensemble forecasts)/24
(hours) = 475, 050 values.

578



70

Forecast lead time (h)

R
M

S
E

 (
W

/m
²)

90

100

110

120

130

0 10 20 30 40 50

IC 1
no stochastic physics

IC 2
no stochastic physics

0 10 20 30 40 50

IC 3
no stochastic physics

IC 4
no stochastic physics

0 10 20 30 40 50

IC 5
no stochastic physics

IC 1
stochastic physics

0 10 20 30 40 50

IC 2
stochastic physics

IC 3
stochastic physics

0 10 20 30 40 50

IC 4
stochastic physics

90

100

110

120

130

IC 5
stochastic physics

KF/RK
STRACO

Figure 8.12: RMSE as a function of lead time calculated for each of the M = 25
ensemble members; the data set consists of all N forecast-obser-
vation pairs at each of the K = 24 verifying locations match-
ing a given lead time. The RMSE for the ensemble members are
grouped according to applied cloud scheme (the “STRACO” cloud
scheme and the “ KF/RK” cloud scheme), no application of stochas-
tic physics (“no stochastic physics”) and application of stochastic
physics (“stochastic physics”), and initial conditions (see e.g. table
6.2); note that in the upper panel, two ensemble members fulfill
the requirements of application of stochastic physics and STRACO
cloud scheme for each initial condition, and this results in twice as
many points for the STRACO scheme (purple ”+”) compared to
the KF/RK scheme (cyan “x”) — for IC1 ensemble members 6 and
21 contribute and for IC2 ensemble members 7 and 22 contribute,
etc. (consult e.g. table 6.2).
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the initial conditions are not pronounced for either cloud scheme. From the
above analysis of RMSE, the application of stochastic physics seems to be
able to convert groups of ensemble members into a more unified distribu-
tion, in which one cannot tell from the group of ensembles (I to V — see e.g.
table 6.2), the value of the RMSE (for a given value of the lead time). With-
out stochastic physics, the different cloud schemes result in some clustering
of the RMSEs with distinct relationships between RMSE and lead time.

Figure 8.13 shows a decreasing trend in the skill score, SS, with lead
time (which was also the case for the skill scores for the control forecast
and the ensemble mean in figure 8.7). Here, only the part of the data set
corresponding to 12 UTC is included, which gives the following lead times:
0, 6, 18, 24, 30, 36, 42, 48, 54. In general, the conclusions of the figure
resembles the conclusions of figure 8.12, but the limited data set emphasizes
features of the ensemble forecasts somewhat more concealed in figure 8.12.
A clear distinction in the skill scores of the two cloud schemes between ap-
plying stochastic physics (upper panel) and not applying stochastic (lower
panel) exists. The application of stochastic physics brings the two cloud
schemes closer regarding the skill score as defined here. With no application
of stochastic physics, there is little mixing in skill scores between the two
cloud schemes. The STRACO cloud scheme performs better (with higher
skill score) than the KF/RK cloud scheme, but the closeness in skill score
between the two cloud schemes depends, to some degree, on the initial con-
dition perturbations. At the 54 hour lead time, the difference in skill score
between the two cloud schemes is, for the initial conditions IC1, IC3, and
IC5, substantial with no application of stochastic physics.

Considering the ensemble as reliable and the ensemble members as a
random sample from the PDF, both the RMSE and its associated skill score
(here based on MSE with climatology as the unskillful reference forecast)
will deviate from one ensemble member to the next, but supposedly more
in a statistical sense — in line with the upper panels in figure 8.12 and 8.13
— and probably less in line with the lower panels of these figures.

Among ensemble members with no application of stochastic physics in
figure 8.12 and 8.13, a clear pattern in the different initial conditions is seen
in both figure 8.12 and 8.13. The quality measure (RMSE or SS) of the
two cloud schemes resembles each other more for IC2 and IC4 compared
with IC3 and IC5. With respect to both RMSE and SS, using a 6 hour old
forecast to generate the ensemble members gives the same pattern as using
a 12 hour old forecast. Rather, the similarity in performance of the two
cloud schemes seems to be related more to the sign of the perturbation in
generating the initial conditions (see e.g. table 6.2 and equation (6.8)).

Values of RMSE of the individual ensemble members are comparable
with values reported in Dı́az et al. (2012), Lorenz et al. (2011) and Lorenz
et al. (2012), which lends support to the individual forecasts of DMI-EPS.
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Figure 8.13: Skill scores (based on MSEclima) as a function of lead time cal-
culated for each of the M = 25 ensemble members; the data set
consists of 12 UTC data at all K verifying locations matching a
given lead time. The skill scores are grouped according to applied
cloud schemes (STRACO and KF/RK), no application of stochas-
tic physics (“no stochastic physics”) and application of stochastic
physics (“stochastic physics”), and initial conditions (see e.g. ta-
ble 6.2); note that in the upper panel, two ensemble members fulfill
the requirements of application of stochastic physics and STRACO
cloud scheme for each initial condition, and this results in twice as
many points for the STRACO scheme (purple “+”) compared to
the KF/RK scheme (cyan “x”) — for IC1, ensemble members 6 and
21 contribute and for IC2, ensemble members 7 and 22 contribute,
etc. (consult e.g. table 6.2).
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8.3.2 Application of quality measures applicable to ensemble
forecasts

For EPSs, the future state of a meteorological parameter should ideally fall
within the ensemble spread, or the ensemble range or the ensemble disper-
sion, and the amount of spread should ideally be related to the uncertainty
of the forecast (Toth and Kalnay, 1993). A small ensemble spread, that is, a
high degree of agreement between the individual ensemble members, would
intuitively imply a high confidence in the forecasts.

In figure 8.14(a), the capture rate is shown as a function of forecast lead
time both excluding and including uncertainties on the observations. Due
to sampling variability, the expected capture rate for a reliable ensemble of
size M is M−1

M+1 (Feddersen, 2009; Jolliffe and Stephenson, 2012) — less than
100 %. Including 10 % uncertainty on the observations, increases the cap-
ture rate, but it is about 10 % off compared to the expected capture rate of
M−1
M+1 , which is about 92 %. Both curves (of including and not including ob-
servational uncertainties), increase with lead time until a lead time of about
18 hours. From then on, the curves increase only slightly. In figure 8.14(b),
the spread of, or the dispersion of, the ensemble, here expressed as one stan-
dard deviation, is plotted against lead time. The ensemble spread increases
until a lead time of about 42 hours, whereafter the ensemble spread seems to
stabilise. Beyond a lead time of about 18 hours, the further divergence of the
ensemble members, that is, the increase in ensemble spread (figure 8.14(b))
seems to be able to ensure that the capture rate is kept at a certain level
throughout the forecast period despite the typical deterioration of forecasts
with increasing lead time as illustrated in figure 8.4(b) and 8.12 for the
RMSE and in figure 8.7 and 8.13 for the skill score.

Scalar Reliability

According to Jolliffe and Stephenson (2012, Chap. 8) and Bowler (2008), the
RMSE of the ensemble mean should in case of consistency of the ensemble
match the mean of the standard deviation of the ensemble — apart from

a factor
√

M+1
M

that depends on the size of the ensemble. In figure 8.15,

the RMSE as defined by equation (7.2) is plotted as a function of the mean
ensemble standard deviation. The multidimensionality is here eliminated by
averaging over the N time points in calculating the RMSE and the mean
ensemble standard deviation. This gives a pair of values for each of the 24
verifying locations.

The ensemble standard deviation is about 20 % lower than the RMSE.
Complete consistency of the ensemble forecasts of global radiation is not
evident from the “RMSE versus ensemble spread”-relation.
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Figure 8.14: The capture rate (a) and ensemble spread (b) — expressed by one
standard deviation from mean — as an average per lead time in
a data set consisting of global radiation for N forecast-observation
pairs; a Loess smoothing has been applied to emphasize trends.
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Multidimensional Reliability

Multivariate Rank Histogram To evaluate the multidimensional reli-
ability of the K = 24 simultaneously ensemble predictions each consisting
of N ensemble forecasts with matching observations (see e.g. section 8.1),
a multivariate rank (MVR) histogram has been constructed according to
Gneiting et al. (2008); Jolliffe and Stephenson (2012) and is displayed in
figure 8.16.

From the MVR histogram, both a slight tendency of the ensemble fore-
casts to over-forecast and a number of events, where the observation is ex-
ceeded by all ensemble members is seen. The highly overpopulated rank,
r = 1, together with the slightly negative slope in the distribution suggests
a degree of over-forecasting of the ensemble (see e.g. Gneiting et al. (2008,
Figure 3)), which corresponds with HIRLAM’s tendency to underestimate
the cloud extent (Bent Hansen Sass, personal communication).

In the MVR histogram (figure 8.16), all rank values — except rank 1 —
are close to being equally populated. One could argue that the requirement
that for any two ensemble “vectors” Vj and Vl, Vj must exceed Vl for all
K dimensions for the coefficient qj,l to be different from zero (and for the
pre-rank, ρj , to be different from 1), is in this case difficult to fulfil for
K = 24 dimensions. This would imply that most “pre-ranks”, ρj with
j ∈ {0, 1, . . . ,M} will be equal to 1 according to equation (7.11). The “pre-

584



76

Rank

F
re

qu
en

cy

0 5 10 15 20 25

0
50

0
10

00
15

00

Figure 8.16: MVR rank histograms for all N forecast-observation pairs; the
dashed line indicates the expected population of the rank values.

rank” of the observation, ρ0, will then often be tied and its multivariate rank,
r, solved at random. This will tend to populate all rank values, 1, . . . , 26,
equally, which will result in a uniform multivariate rank histogram.

Minimum Spanning Tree Histogram The other method to evaluate
the reliability of multidimensional ensemble forecasts is the minimum span-
ning tree (MST) histogram (Jolliffe and Stephenson, 2012, Chap. 8). It
is applicable if a number of locations are simultaneously predicted (Jolliffe
and Stephenson, 2012), which is the situation in this work with K = 24
simultaneously predicted ensemble forecasts (see e.g. section 8.1).

The distances of the spanning tree can be calculated in several ways ap-
plicable to different characteristics of the data set. In this case, the minimum
spanning trees have been calculated using a Euclidean distance in a K = 24
dimensional space. The Euclidean distance might not be appropriate if the
variances in the data set are different for some of the K dimensions4, and
if further a covariance between (some of) the K dimensions exists (Gombos
and Hansen, 2007). The K dimensions of the data consist of the 24 locations
measuring the same quantity, and it is therefore assumed that the variances
of the data in different dimensions on average are similar. The use of the
clearness index should reduce some of the covariance between dimensions5.

4The situation is different if the K dimensions consists of K = 2 meteorological vari-
ables — like temperature and precipitation at the same location, since temperature and
precipitation might not have the same variance.

5Concerning global radiation, a covariance between the K verifying locations exists due
to the latitude and longitude dependence of the solar radiation. By use of the clearness
index, this is eliminated, but a covariance due to a similar weather situation at two or
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Figure 8.17: MST histograms for all N forecast-observation pairs; the dashed line
indicates the expected population of rank values.

With the large number of forecast realizations, N, available here, it is be-
lieved that the similarity of the two distributions — the distribution at a
certain forecast time of the ensemble forecasts and of the observation (con-
sidered as a random sample) — will not be sensitive to the choice of norm
(Gombos and Hansen, 2007). From those considerations, the Euclidean dis-
tance has been applied in the minimum spanning tree.

The strong negative slope (see e.g. section 7.2) suggests an under-disper-
sive ensemble. Of the rank values {1, . . . ,M + 1}, the smallest rank value,
that is, r = 1, is highly overpopulated as seen in figure 8.17 indicating that
the inclusion of the verifying observation increases the total length of the
MST and hence that the notion of the ensemble members and the verifying
observation being statistically indistinguishable is not evident.

Discrimination

To avoid having trivial discriminations — for example a forecasting system
being able to discriminate between the 12 UTC global radiation on August
23 and on November 12 — influencing the evaluation of the discriminative
power of global radiation from DMI-EPS, the calculation of the generalised
discrimination score, D, is based on the clearness index, which allows the in-
clusion of the K = 24 verifying locations, since the clearness is a normalised
quantity sensitive to only the weather situation — for example the amount
of and distribution of clouds.

The generalised discrimination score, D, is a scalar verification score,
but by using the clearness index, the N forecast-observation pairs at each

more neighbouring locations will still be present.

586



78

0.75

0.80

0.85

0.90

0 6 12 18 24 30 36 42 48 54

Lead time (h)

G
en

er
al

is
ed

 D
is

cr
im

in
at

io
n 

S
co

re
 (

%
) continuous obs. and continuous ensemble forecasts

binary obs. and binary ensemble forecasts

Figure 8.18: The generalised discrimination score as a function of lead time; a
Loess smoothing has been applied; the binary events are generated
by setting valued above or equal to the observational mean equal to
1 and values below the observational mean equal to 0.

of the K verifying locations are included in the calculation of D.
Eliminating night values, leaves for each lead time between ≈3500 and

≈4500 data points (including K verifying locations) from which any fore-
cast-observation pair must be compared with any other forecast-observation
pair. With ≈4000 values for each lead time, the process of ranking ensemble
forecasts (described in section C)) is quite time-consuming. To reduce com-
putational time, a sample of 1000 randomly selected data points is generated
for each lead time, and from those values, the generalised discrimination
score is calculated

As the number of distinct observations increases, the discriminative
power of forecasts usually decreases because of the higher precision required
in the continuous case to discriminate between a large number of observa-
tions that may differ by only small amounts (Weigel and Manson, 2011).
To compare with ensemble forecasts of continuous observations, binary ob-
servations are generated by discerning between observations above or below
the observation mean.

In figure 8.18, the generalised discrimination score is seen to decrease
with lead time for both the continuous and the binary observations as ex-
pected. For the continuous observations the generalised discrimination score
decreases from about 78 % and ends at about 72 % at a 54 hour forecast
lead time. In the case of binary observations, the generalised discrimina-
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tion score is about 8 % high throughout the forecast period. It decreases
from about 86 % to about 85 % in the first 24 hours of the forecast. From
then on, a faster decrease is seen, and at a 54 hour forecast lead time, the
generalised discrimination score has dropped to about 80 %, which is highly
comparable with D calculated for the ensemble mean and the ensemble me-
dian in figure 8.10. In this case, the sample of 1000 values corresponds to
1000 (or just below) discrete observations, so here, the forecasts have to
discriminate between observations that may differ by only tiny amounts,
which might explain the generally modest discrimination score, D. From
figure 8.18, the generalised discrimination score for binary observations is
for all lead times above the score for the continuous observations as a result
of the higher precision required for the forecasts to discriminate between
observations that differ by only small amounts in the continuous case com-
pared to the binary case with only two observation values. Another reason
for the modest discrimination score for both the continuous and the binary
observations might be related to the use of the clearness index for which
the highly predictable astronomical signal present in the global radiation is
eliminated leaving only a weather component. This might give a modest
estimate of the discriminative power of the forecasts.
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9 Discussion

9.1 Verification of Global Radiation from DMI-

EPS

An important goal in ensemble prediction is to approximate by the ensem-
ble members the forecast PDF, which contains information on the forecast
uncertainty. Through verification techniques, the consistency, or reliability,
of the ensemble forecasts of global radiation has been investigated.

9.1.1 Assessing the Performance of DMI-EPS

Generating an EPS that takes into account both the uncertainty in the
analysis, which is unknown, and the imperfections of the NWP model, which
might be difficult to assess, poses a challenge to ensemble prediction.

Consistency of DMI-EPS forecasts of global radiation

The immediate conclusion on the ensemble consistency, or the ensemble
reliability, of DMI-EPS global radiation forecasts is somewhat ambiguous.

However, the strong negative slope in the MST histogram in figure 8.17
and the values of the “RMSE versus ensemble spread”-relation shown in
figure 8.15 both suggest an under-dispersive ensemble as caused by a con-
ditional forecast bias. Under-dispersion is not evident from the MVR his-
togram in figure 8.16. One could in case of the the MVR histogram argue
that the requirement that for any two ensemble “vectors” Vj and Vl, Vj must
exceed Vl for all K dimensions for the coefficient qj,l to be different from zero
(and for the pre-rank, ρj , to be different from 1 — see e.g. equation (7.11)),
is in this case difficult to fulfil for K = 24 dimensions. Most “pre-ranks”,
ρj would then be equal to 1 according to equation (7.11). The “pre-rank”
of the observation, ρ0, will then often be tied and its multivariate rank,
r, solved at random. This will tend to populate all rank values, 1, . . . , 26,
equally, which will result in a uniform multivariate rank histogram.

The under-dispersiveness derived from the MST histogram and the “RMSE
versus ensemble spread”-relation corresponds with the too low capture rate
seen in figure 8.14(a). In DMI-EPS, the capture rate is about 20 % off the
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expected rate excluding uncertainties on the observations. This number is
reduced to about 10 % including observational uncertainty. This illustrates
the importance of including uncertainties on observations in all kind of veri-
fication. These capture rates correspond to figures reported in Bowler (2008)
for the MOGREPS (Bowler et al., 2008) limited area ensemble prediction
system of 24 ensemble members. Under-dispersion is ensemble forecasts is a
common problem in ensemble prediction (Bowler, 2008; Buizza, 1997; Wilks,
2006), and how to alleviate it is not straightforward as it necessitates a bet-
ter simulation of the uncertainty in the analysis and/or of the uncertainties
relating to deficiencies in the NWP model formulation.

On those occasions when the observation lies just outside the ensemble
range, the effect of excluding or including uncertainties on observations in
evaluating ensemble dispersion either through rank histograms or through
capture rates may be considerable (Bowler, 2008).

Except in a few cases, observational uncertainties have not been ad-
dressed, and this might permeate most results. Whether the inclusion of
uncertainties on observations alone will increase the dispersion is yet to be
investigated, but the results obtained here point toward an under-dispersive
ensemble and ensemble forecasts that will give too little uncertainty on the
forecast values.

Over-forecasting or under-forecasting

The MVR histogram in figure 8.16 suggests a strong degree of over-fore-
casting (from the highly over-populated lowest rank value, r = 1, indicating
that the observation is too often exceeded by all ensemble members), which
by comparing with Gneiting et al. (2008, Figure 4), seems to be the case in
the MST histogram in figure 8.17. A tendency of the ensemble to over-fore-
cast corresponds with HIRLAM’s tendency to under-forecast clouds (Bent
Hansen Sass, personal communication) and, hence, over-forecast global ra-
diation at the surface. However, the slight under-forecasting evident from
figure 8.11 and the over-forecasting established from figure 8.16 and 8.17
might seem contradictive. This difference in over-all bias is related to the
difference between real values — as used in figure 8.11 and rank values —
as used in figure 8.16 and 8.17 — for which information on the distance of
the ensemble members to the observation is lost. To illustrate this, consider
table 9.1. At time point “a”, the contribution to the deviation between
the ensemble members and the observation amounts to 2 − 18 + 1 = −15,
while the observation only exceeds one ensemble member resulting in rank
2 of the observation. At time point “b”, the contribution to the deviation
between ensemble members and observation is 1 + 1 + 1 = 3 with all en-
semble members exceeding the observation, which then has rank 1. The
difference between rank 1 and rank 2 of the observation, might therefore
contribute significantly to the difference between the ensemble forecasts and

590



82

Ensemble member

Time mbr1 mbr2 mbr3 observation

t = a 32 (4) 12 (1) 31 (3) 30 (2)

ya − xa 2 −18 1

t = b 21 21 21 20 (1)

yb − xb 1 1 1

Table 9.1: An example illustrating how a low rank value of the observation can
be associated with a large negative difference between a forecast and
the matching observation; in parentheses, the rank value is shown.

the observation.
On those occasions, when all ensemble members exceed the observation,

the contribution to the forecast deviation in figure 8.11 will be positive, but
on those occasions when the observation exceed one or more of the ensemble
members, the contribution to the forecast deviation in figure 8.11 might be
considerable negative as illustrated in table 9.1. It is therefore possible to
establish over-forecasting from the rank histograms in figure 8.16 and 8.17
and under-forecasting looking at the deviation between a given ensemble
member and the observation.

As opposed to the rank histograms, the distributions shown in figure 8.11
are more sensitive to the actual values of the ensemble members. However,
dispersion of the ensemble members is a necessary condition for ensemble
consistency, and if the ensemble members were to be sampled from the PDF,
all values would be valid, but, of course, not equally likely. From these
considerations, I have most faith in the results from the MVR histogram
with the reservations that all rank histograms should be interpreted with
care and that despite searching the literature, a similar shape of a MVR
histogram has not been found, which further complicates interpretation.

Initial Condition Perturbations

Several ways of generating initial condition perturbations simulating the
uncertainty in the analysis exist. These methods differ in approach and
complexity. In DMI-EPS, a SLAF method to generate ensemble pertur-
bations is applied. Despite Boeing a simple way of generating the initial
condition perturbations, results endorsing the SLAF method have been re-
ported (Feddersen, 2009). Feddersen (2009) speculates, however, that a way
of increasing the ensemble spread and thereby improve DMI-EPS forecasts
could be to use a different method to perturb the initial conditions — for
example, a breeding method (described in Toth and Kalnay (1993)).

Among ensemble members with no application of stochastic physics, two
distinct patterns in the different initial conditions are seen in both figure 8.12
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and 8.13 with a common pattern between IC3 and IC5, and a common
pattern for IC2 and IC4. An explanation for this distinct pattern in terms
of the generation of the initial conditions using a 6 hour and a 12 hour old
forecast is not evident. These distinct patterns might suggest a degree of
clustering of the ensemble members. However, by application of stochastic
physics this apparent clustering seems to disappear.

Accessing model deficiency by use of multiple models

The use of multiple models beside the initial condition perturbations in gen-
erating ensemble members is reported to both cluster the ensemble members
by model with a PDF dictated more by parametrisation scheme and less by
the forecast uncertainty (Bowler et al., 2008) and improve the ensemble fore-
casts by increasing the ensemble dispersion (Wilks, 2006, Chap. 6). From
figure 8.12 and 8.13, the use of multiple models in terms of cloud schemes
seems to cluster the ensemble members by model. However, application of
stochastic physics seems to alleviate this clustering. Whether the use of
multiple cloud schemes improves the ensemble forecasts by increasing the
ensemble dispersion is not easily assessed by the results obtained here, but
the RMSE in figure 8.12 and the skill score in figure 8.13, might be dis-
tributed over a larger span of values compared to corresponding values with
an application of stochastic physics in both figures. This is most pronounced
for IC1, IC3, and IC5.

9.1.2 Assessing the Performance of the Ensemble Mean

An early goal of ensemble prediction was to obtain a forecast superior to a
traditional forecast by averaging the ensemble members. In averaging, some
of the errors present in a traditional forecast should cancel and, in general,
provide an improved forecast (Tracton and Kalnay, 1993). However, this will
only be the case if initially the ensemble members represent the PDF of the
analysis and if the NWP model is perfect (Toth and Kalnay, 1993; Tracton
and Kalnay, 1993). Imperfect NWP models and imperfect representations
of the analysis PDF have shown to limit the effect of cancelling the errors
(Tracton and Kalnay, 1993), and, averaging the ensemble members is now
considered to be a simple application of ensemble forecasts (Wilks, 2006,
Chap. 6).

Within the task of assessing the full potential of DMI-EPS, the ensem-
ble mean has, nevertheless, been computed to be compared with the control
forecast. Being a more robust measure of centre, the ensemble median has, in
addition, been computed. However, the ensemble median does not, as spec-
ulated, perform better than — but highly comparable to — the ensemble
mean. Concerning RMSE (figure 8.4(b)), skill score (table 8.2), reliability
(assessed by the conditional quantile plots (illustrated in figure 8.8 for the
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control forecast)), and discrimination as measured by the general discrimi-
nation score, D, (figure 8.10), the ensemble mean performs better than the
control forecast. The superiority of the ensemble mean compared to the
control forecast might be an effect of reducing by averaging some of the
errors present in the control forecast. From the conditional quantile plots in
figure 8.8, the character of the forecast bias has been revealed.

A source of the modest skill score, SS, of the control forecast might be
related to the use of the clearness index in calculating the score. By use of the
clearness index, the highly predictable signals relating to astronomical effects
present in the global radiation is eliminated leaving the more stochastic
weather component, which might give a conservative estimate of the forecast
skills score. Another source of the modest skill score might be related to the
limited time (5 August 2011 - 14 November 2011) over which the sample
climatology (or observation mean) used as the unskillful reference forecast in
computing the skill score is estimated (Jolliffe and Stephenson, 2012, Chap.
1).

Discrimination

The somewhat modest generalised discrimination score evident from fig-
ure 8.10 might be related to i) the vast amount of distinct observations
for the forecasts to discriminate between and to ii) the use of the clearness
index in estimating the discriminative power by the generalised discrimina-
tion score. By use of the clearness index, the highly predictable astronomical
signal is eliminated leaving only a weather component. This might imply a
highly cautions estimate of the discriminative power of the forecasts.

In general, the discrimination score, D, is about 3 % higher for the
ensemble mean compared to the control forecast. This number might not be
exceptional, but I find it nevertheless surprising. I would have expected that
the smoothing by averaging introduced by the ensemble mean would imply
a loss of discriminative power compared to the control forecasts. However, a
clear distinction in the discriminative power between the ensemble mean and
the control forecast using the conditional distribution p(y|x) in figure 8.9
is not seen. The difference between the two methods in evaluating the
discriminative power of the ensemble mean and the control forecast might
be explained by the different approaches based on each their distribution:
the conditional distribution p(y|x) in figure 8.9 and the joint distribution
p(x, y) in figure 8.10.

9.2 Performance of Global Radiation Forecasts

Evaluation of single forecasts of global radiation has led to a revision of
the HIRLAM shortwave parametrisations, which consists of simple, yet suc-
cessful, parametrisation of the transmission of solar radiaiton through the
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atmosphere. Concerning direct radiation, the revised parametrisations per-
forms most satisfying compared with a highly detailed model describing
transfer of radiation within the atmosphere.

9.3 High-Resolution, Limited-Area Models

With increased resolution in limited area NWP models, more details on
the atmospheric state can be resolved including small-scale clouds, which
might not appear in a model of lower resolution. If, however, one of these
small-scale clouds were to be forecasted at one grid point, but show up at
a neighbouring grid point, both grid points are forecasted wrong in terms
of cloud cover. In this way, high-resolution models might because of their
degree of detail suffer a double penalty compared to lower resolution models.
The high-resolution limited area ensemble prediction system at DMI may,
as a high-resolution model, in some cases suffer from this double penalty,
which might reduce the quality of forecasts of global radiation.

9.4 The Solar Heating Unit

The full implementation of the advanced control system making use of all
state-of-the-art forecast models developed within the project “Solar/electric
heating systems in the future energy system” has not been feasible. It is
planned, in a highly desirable prolongation of the project, to extend the
advanced control system to make use of all developed forecast methods and
available information.
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10 Conclusion & Outlook

DMI-EPS

For most considered aspects of forecast quality, DMI-EPS is documented to
perform better than or comparable to the global ensemble prediction system
at ECMWF (Feddersen, 2009) and is a highly valuable forecast tool at the
weather service at DMI.

From the investigation of the consistency of the ensemble forecasts of
global radiation, there seems to be evidence of some under-dispersiveness.
Whether the inclusion of uncertainties on the observations will reduce this
under-dispersiveness is still an open question, but the ensemble memebers
will tend to express too little uncertainty on forecast values (Wilks, 2006,
Chap. 6). Often in EPSs, the ensemble dispersion will be too small to cap-
ture the observation at the expectable fraction (Bowler, 2008; Buizza, 1997;
Wilks, 2006). How to alleviate this under-dispersiveness is not straightfor-
ward as it requires better simulation of the uncertainty in the analysis and,
maybe, better simulation of the uncertainties relating to deficiencies in the
NWP model formulation.

Concerning global radiation forecasts, the effect of simulating model de-
ficiencies by use of multiple cloud schemes seems modest, and in a future
revision of DMI-EPS, simulating model deficiencies by the application of
two cloud schemes might be reconsidered and compared to the effect on
ensemble dispersion of using a more complex way of generating the initial
condition perturbations.

In DMI-EPS, the tendencies of temperature, wind speed, humidity, and
cloud condensate are subjected to stochastic perturbations, which is a com-
bination of meteorological variables of the primitive equations and variables
of high impact and interest to common users of meteorological forecasts. A
vast number of meteorological variables and parameters exist, each of which
can be perturb stochastically. Bowler et al. (2008) apply stochastic pertur-
bation to adjustable parameters in the physical parametrisations necessary
in NWP models and introducing uncertainties in the NWP model. However,
the stochastic perturbations applied in DMI-EPS seem highly successful as
they are able to make ensemble members clustered by either model or initial
condition un-clustered. Alternative, or additional, meteorological variables
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to subject to stochastic perturbations could still be considered in a revi-
sion of DMI-EPS. Inspired by (Bowler et al., 2008), these could be poorly
know parameters in some of the parametrisations. Which parametrisations
to select for stochastic perturbations should be deliberated.

Application of statistical post-processing might be a way to improve the
ensemble forecasts of global radiation. However, more research into the
character of the bias and its variation with weather patterns is necessary.

DMI-EPS — The Ensemble Mean

From the superiority of the ensemble mean compared to the control forecast,
the value of the operational forecast might, maybe also for other parame-
ters, benefit from complementing it with the value of the ensemble mean.
A cluster analysis may, in addition to providing valuable information on
the distribution of the ensemble members, also provide information on the
appropriateness of the ensemble mean as characterising the ensemble.

Revision of the Radiation Scheme

In consequence of the evaluation of global radiation from DMI’s operational
HIRLAM model, revisions of the radiation scheme have been implemented.
The implementation has resulted in a radiation scheme that concerning di-
rect radiation performs most satisfying compared to a detailed model de-
scribing the transmission of radiation through the atmosphere.
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A Derivation of Beer’s Law

When radiation enters a medium containing optically active matter, inter-
actions between the radiation and the matter will weaken or attenuate the
radiation traversing the medium by either absorbing or scatter the radiation.
This attenuation or extinction depends on the optical characteristic of the
medium (Thomas and Stamnes, 1999, Chap. 2) and is described by Beer’s
law the derivation of which is found below.

In figure A.1(a) a small slap of volume dV , thickness ds and surface
area dA. The slap contains matter of dN particles that are all optically
active, that is, they interact with radiation passing through dV . A beam
of radiation of a given wavelength λ is incident normally to the slap — as
illustrated to the left in figure A.1 (a). As the beam of radiation passes
through the slap, it interacts with the particles through either absorption or
scattering and less radiation escapes at the opposite site of the slap (Thomas
and Stamnes, 1999, Chap. 2) — the right side in figure A.1 (a). The beam
of radiation has been subjected to attenuation (or to extinction).

It has been found experimentally that the weakening or attenuation of a
radiation beam depends linearly upon both the incident radiation and the
amount of optically active matter along the beam direction (Thomas and
Stamnes, 1999, Chap. 2). This amount must be proportional to the length
ds. That is, the amount of optically active matter along the beam direction
is proportional to the distance within the medium traversed by the beam,
which in figure A.1 (a) is ds. This gives

dIλ ∝ −Iλds

with the change in radiation to the left of the proportionality sign and the
dependent quantities to the right. The constant of proportionality is denoted
by kλ and called the extinction coefficient. It is a characteristic of the matter
and might vary with wavelength. The above equation then becomes

dIλ = −kλIλds, (A.1)

which is known as Beer’s law. By integrating equation (A.1) over a finite
path from 0 to S along the beam direction (figure A.1 (b)), the more common
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Figure A.1: (a) Radiation passing through a thin slab; (b) Radiation passing
through a medium. The figure is inspired by Thomas and Stamnes
(1999, Figure 2.4)

form of Beer’s law is obtained

Iλ(S, Ω̂) = Iλ(0, Ω̂) · exp (−
∫ S

0
kλds). (A.2)

This form gives the radiation leaving the medium, Iλ(S, Ω̂), as a function of
the radiation entering the medium Iλ(0, Ω̂), where Ω̂ is direction of propa-
gation of the beam — which can be determined by a zenith and an azimuth
angle. In an inhomogeneous medium, the extinction coefficient, kλ, might
change along the beam direction.

Defining an optical path τλ results in the following expression of Beer’s
law

Iλ(S, Ω̂) = Iλ(0, Ω̂) · exp (−τλ).

(Paltridge and Platt, 1976; Thomas and Stamnes, 1999), where τλ, is a
measure of the strength and number of optically active particles (that scatter
or absorb radiation) along the beam of radiation, and the radiation is seen to
decay exponentially with τλ along the beam direction (Thomas and Stamnes,
1999, Chap. 2). Note that τλ may change along the path of the beam.

Iλ is the spectral radiance, which is the energy with wavelengths in the
interval {λ, λ+ dλ} that in the time interval dt passes the area element dA
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and flows into a solid angle dω centered on the direction Ω̂

Iλ =
d4E

dA · cos θ · dt · dλ · dω (A.3)

where θ is the angle between the normal to the area dA and Ω̂. The quantity
dA ·cos θ is the projection of dA onto the direction Ω̂ (Thomas and Stamnes,
1999, Chap. 2) (see e.g. figure A.2).

The spectral irradiance, Fλ, expresses the energy with wavelengths in the
interval {λ, λ + dλ} that crosses an area dA in the time interval {t, t+ dt}

Fλ =
d3E

dA · dt · dλ, (A.4)

(Thomas and Stamnes, 1999, Chap. 2). Combining equation (A.4) and
(A.3), the following relation between spectral radiance and spectral irradi-
ance is obtained

Fλ =

∫

4π
Iλ cos θdω. (A.5)

From integrating the spectral radiance, Iλ, times cos θ over all 4π solid
angles, the total (or net) spectral irradiance Fλ is obtained.

The total downward irradiance (that is, the global radiation), F↓, is
obtained by integrating the spectral irradiance, Fλ, over a hemisphere.

F↓ =

∫ ∞

0

∫

2π
Iλ cos θ dωdλ (A.6)

The inner integral (
∫

2π Iλ cos θdω) is the downward spectral irradiance ac-
cording to equation (A.5), which is then integrated over all wavelengths.

Integrating both the spectral radiance, Iλ, and the spectral irradiance,
Fλ, over wavelengths gives the radiance I and the irradiance F, respectively,
with units of W

m2·sr and W
m2 , respectively (Thomas and Stamnes, 1999; Wal-

lace and Hobbs, 2006). Equation (A.5) then becomes

F =

∫ ∞

0
Fλdλ (A.7)

=

∫ ∞

0

∫

4π
Iλ cos θdωdλ (A.8)

=

∫

4π
I cos θ (A.9)

This equation illustrates the relation between radiance and irradiance with
unit of W

m2sr
and W

m2 , respectively. The irradiance, F , is the radiance in-
tegrated over some solid angle — for example a hemisphere as in equa-
tion (A.6), or, to obtain the net irradiance, over all solid angles as in equa-
tion (A.7).
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(a) (b)

Figure A.2: In (a), the irradiance (in W

m
), F , would be all radiant energy passing

through the area dA per second. The radiance I(Ω) (in W

m·sr
) in (a)

is the radiant energy passing through an area dAcos θ in the direction
Ω (or into an infinitesimal cone centered at Ω) per second. Because of
the lack of perspective in (a), the projection in one dimension of dA
onto the direction of Ω, which is at an angle θ with n, is illustrated
in (b). The projection of dA onto the direction Ω becomes dAcos θ.
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B Discrimination

Consider the set of forecast-observation pairs in table B.1.

Forecast Observation

2.0 1.0
2.0 1.0
2.0 1.0
5.0 3.0
5.0 3.0
8.0 9.0

Table B.1: A simple example illustrating forecasts that are not completely reli-
able, but possess discrimination. The values could be mm of rain.

Because that neither

E(x|y = 2.0) = 1.0 6= 2.0

nor

E(x|y = 5.0) = 3.0 6= 5.0

nor

E(x|y = 8.0) = 9.0 6= 8.0,

the requirements to complete reliability are not fulfilled (see e.g. equation
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(7.7)). The conditional distributions p(y|x) become

p(y = 2.0|x = 1.0) = 1.0

p(y = 2.0|x = 3.0) = 0.0

p(y = 2.0|x = 9.0) = 0.0

p(y = 5.0|x = 1.0) = 0.0

p(y = 5.0|x = 3.0) = 1.0

p(y = 5.0|x = 9.0 = 0.0

p(y = 8.0|x = 1.0) = 0.0

p(y = 8.0|x = 3.0) = 0.0

p(y = 8.0|x = 9.0) = 1.0

For each forecast value Y , p(y = Y |x) equals zero for all values of X except
for one, and Y is therefore perfect discriminatory (Murphy et al., 1989),
which should become clear from the following consideration: a forecast value
of 2.0 mm is always followed by an observation of 1.0 mm, and a forecast
of 5.0 mm is always followed by an observation of 3.0 mm, and a forecast
of 8.0 mm is always followed by an observation of 9.0 mm. Although the
forecasts are not reliable, each forecast Y is able to discriminate between
the three different events of 1.0 mm, 3.0 mm, and 9.0 mm.
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C Generalized Discrimination
Score

For two ensemble forecasts ys and yt of size M (i.e. ys = (ys,1, . . . , ys,M) and
yt = (yt,1, . . . , yt,M )), the following value is constructed:

Fs,t =

∑M
j=1 rs,t,j −

M(M+1)
2

M2
, (C.1)

with rs,t,j begin the rank of ys,j with respect to the set of pooled ensemble
members ys,1, ys,2, . . . , ys,M , yt,1, yt,2, . . . , yt,M , if sorted in ascending order
(Weigel and Manson, 2011).

)
If in the pooled sample of 2M ensemble members, the ensemble mem-

bers of ys occupy the M smallest ranks (1, . . . ,M) — which will sum to
M
2 (M + 1)1, all ensemble members of ys are exceeded by those of yt and
the numerator will be 0, which corresponds to the intuitive. If the converse
is true (if all ensemble members of ys exceeds those of yt), the first term
of the numerator will be equal to M

2 (2M + (M + 1)) (M ranks occupying
ranks from M +1 to 2M) and so Fs,t will be 1. If every second of the ranks
from 1 to 2M is occupied by ys (the others occupied by yt), Fs,t = 0.5. In
such a situation, it cannot be determine which ensemble forecast ys or yt is
greater. If more than half of the ensemble members of ys (yt) exceeds those
of yt (ys), Fs,t > (<)0.5.

Determining the rank of ys, Rs, within the set of N ensemble forecasts
y1,y2, . . . ,yN

Rs = 1 +

N
∑

t=1
t6=s

us,t with (C.2)

us,t =





1 if Fs,t > 0.5
0.5 if Fs,t = 0.5
0 if Fs,t < 0.5.





1A sum of integers is the number of integers in the sum (n− k + 1) times the sum of
the last term in the sum (n) and the first term (k), and then this number is divided by 2.

The sum of integers from k to n,
∑n

i=k
i is (n−k+1)(n+k)

2
.

VIII

604



IX

The rank of ys When all ensemble members of yt exceeds those of ys and
Fs,t = 0, us,t = 0. Comparing the two ensemble forecasts ys and yt will
in this case not increase the rank, Rs, of ensemble forecast ys. In a case
when it cannot be determined if ys > yt or vice verse, Fs,t = 0.5 and the
contribution to Rs is 0.5.

With N observations (x = x1, . . . , xN ) and N ensemble ranks (R =
R1, . . . , RN ), the following generalized discrimination score is obtained

D =
1

2
(τR,x + 1) (C.3)

as defined in equation (C.2).
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Summary

To comply with an increasing demand for sustainable energy sources, a solar
heating unit is being developed at the Technical University of Denmark.
To make optimal use — environmentally and economically —, this heating
unit is equipped with an intelligent control system using forecasts of the
heat consumption of the house and the amount of available solar energy.
In order to best make use of this solar heat unit, accurate forecasts of the
available solar radiation are esstential. However, because of its sensitivity to
local meteorological conditions, the solar radiation received at the surface of
the Earth can be highly fluctuating and challenging to forecast accurately.

Within the project on developing a solar heating unit, it is the role of
the Danish Meteorological Institute (DMI) — and thus of my Ph.D. project
— to deliver accurate forecasts of the global, direct, and diffuse radiation.
An evaluation of these forecasts has revealed shortcomings in the radiation
scheme of DMI’s HIRLAM models, which has subsequently been revised
adjusting the ratio of direct to diffuse radiation penetrating a cloud layer
and reaching the surface of the Earth.

As a mean of complying with the accuracy requirements to forecasts of
global, direct, and diffuse radiation, the uncertainty of these forecasts is of
interest. Forecasts uncertainties become accessible by running an ensemble
of forecasts. To this end, global, direct, and diffuse radiation have sine
August 2011 been output parameters from DMI’s high-resolution ensemble
prediction system — aimed at capturing small-scale weather features of
which a solar heating unit can be expected to be sensitive.

From the investigation of the degree to which the ensemble members and
the truth — here materialised by the verifying observation — are statistically
indistinguishable, the appropriateness of complementing forecast values with
uncertainty estimates derived from the ensemble forecasts has been assessed.
A degree of under-dispersion of the ensemble members is evident, and the
ensemble forecasts will tend to express too little uncertainty in the forecast
values of global radiation. Under-dispersiveness of ensemble forecasts is a
familiar problem in ensemble prediction. Some of the under-dispersiveness
might be attributed to uncertainties on the observations.

Concerning RMSE, skill score, and discrimination, the ensemble mean is

X
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seen to perform well compared to the control forecasts. It might be valuable,
also for other parameters, to somehow complement the operational forecast
with the value of the ensemble mean.
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Norrköping, 1994.

Hannu Savijärvi. Fast Radiation Parameterization Schemes for Mesoscale
and Short-Range Forecast Models. Journal of Applied Meteorology, 29,
1990.

Knut Stamnes, S-Chee Tsay, Warren Wiscombe, and Kolf Jayaweera. Nu-
merically stable algorithm for discrete-ordinate-method radiative transfer
in multiple scattering and emitting layered media. Applied Optics, 27(12),
1988.

Graeme L. Stephens. The Parametrization of Radiation for Numerical
Weather Prediction and Climate Models. Monthly Weather Review, 112,
1984.

611

http://www.R-project.org/


XVI

John R. Taylor. Error Analysis: The study of uncertainties in physical

measurements. Univerisity Science Books, Sausalito, California, second
edition, 1997.

Gary E. Thomas and Knut Stamnes. Radiative Transfer in the Atmosphere

and Ocean. Cambridge University Press, 1999.

Zoltan Toth and Eugenia Kalnay. Ensemble Forecasting at NMC: The Gen-
eration of Perturbations. Bulletin of the American Meteorological Society,
74(12), 1993.

M. Steven Tracton and Eugenia Kalnay. Operational Ensemble Prediction
at the National Meteorological Center: Practical Aspects. Weather and

Forecasting, 8:379–398, 1993.

John M. Wallace and Peter V. Hobbs. Atmospheric Science An Introductory

Survey. Academic Press, second edition, 2006.

Andreas Weigel. afc: Calculate afc, 2010. URL http://CRAN.R-project.

org/package=afc. R package version 1.03.

Andreas P. Weigel and Simon J. Manson. The Generalized Discrimination
Score for Ensemble Forecasts. Monthly Weather Review, 139, 2011.

D. S. Wilks, editor. Statistical Methods in the Atmospheric Sciences. Else-
vier, second edition, 2006.

Klaus Wyser, Laura Rontu, and Hannu Savijärvi. Introducing the Effective
Radius into Fast Radiation Scheme of a Mesoscale Model. Contributions
to Atmospheric Physics, 72(3), 1999.

612

http://CRAN.R-project.org/package=afc
http://CRAN.R-project.org/package=afc


DTU Civil Engineering
Department of Civil Engineering
Technical University of Denmark 

Brovej, Building 118
2800 Kgs. Lyngby
Telephone  45 25 17 00

www.byg.dtu.dk

ISBN 9788778773739


	1. Introduction
	1.1 Background

	2. Prognoses
	2.1 Introduction
	2.2 Solar power forecasting
	2.3 Flexible heating with thermal storage devices in buildings and solar collectors
	2.4 Flexible heating with thermal storage in building structures
	2.5 Modeling for solar energy applications

	3. Weather forecast
	4. Smart heat storages
	4.1. Introduction
	4.2. Experimental and Theoretical Investigations
	4.3. Results and Discussion
	4.4. Conclusions

	5. Experimental investigations of solar/electric heating systems
	5.1 Design of three laboratory test systems
	5.2 Control system
	5.3 Monitoring system for the test systems
	5.4 Operation conditions
	5.5 Weather data
	5.5.1 Test results
	5.6 Conclusions and discussion

	6. Theoretical investigations
	6.1 Simplified simulations
	6.2 TRNSYS simulations
	6.3 Summary and conclusions

	7. Socio-economic benefits by implementation of the energy unit in large numbers
	7.1 Methodology for analysing socio-economic benefit
	7.2 General assumptions
	Wind power
	Geographical scope
	Fuel prices
	CO2-costs
	Time resolution

	7.3 Approach to scenario analyses
	7.4 Specific assumptions in the scenario analyses
	7.5 Results of scenario analyses
	7.6 Summary and conclusions

	8. Evaluation of different energy unit designs
	9 Conclusions, recommendations and outlook
	References
	Appendix
	A non-parametric method for correction of global radiation observations.pdf
	A non-parametric method for correction of global  radiation observations
	1 Introduction
	2 Data: observations and numerical weather predictions of global radiation
	2.1 Observations
	2.2 Numerical weather predictions
	2.3 Systematic errors in Sønderborg observations

	3 Statistical clear-sky model
	4 Correction of observations
	4.1 On-line operation

	5 Discussion
	6 Conclusion
	Acknowledgments
	Appendix A Two-dimensional local statistical clear-sky model
	References


	Identifying suitable models for the heat dynamics of buildings.pdf
	Identifying suitable models for the heat dynamics of buildings
	1 Introduction
	2 Grey-box models of a dynamic system
	2.1 Maximum likelihood estimation of parameters

	3 A statistical test for model selection
	3.1 Likelihood ratio tests
	3.2 Forward selection

	4 Model selection procedure
	4.1 Model selection
	4.2 Model evaluation

	5 Case study: model identification for a building
	5.1 Description of the building and measurement equipment
	5.2 Data
	5.3 Applied models
	5.3.1 The full model TiTmTeThTsAeRia
	5.3.2 The simplest model Ti

	5.4 Model identification
	5.5 Model evaluation
	5.5.1 Residuals
	5.5.2 Parameter estimates


	6 Applications
	7 Conclusion
	Appendix A RC-networks of applied models
	References


	Models for efficient integration of solar energy.pdf
	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	List of publications
	1 Introduction
	1.1 Solar energy
	1.2 Buildings and energy
	2 Methods for solar energy applications
	2.1 Statistical clear-sky model
	2.1.1 Correction of global radiation observations
	2.2 Solar power forecasting
	2.2.1 Two-stage method based on the statistical clear-sky model
	2.2.2 Solar power forecasting with a conditional parametric model
	2.2.3 Probabilistic solar power forecasting

	2.3 Modelling the heat dynamics of solar thermal collectors
	2.4 Discussion
	3 Methods for building energy applications
	3.1 Heat load forecasting
	3.2 Models for the heat dynamics of buildings
	3.3 Discussion
	4 Discussion and conclusion
	4.1 General discussion
	4.2 Conclusion

	Bibliography


	A A non-parametric method for correction of global radiation observations
	A.1 Introduction
	A.2 Data: Observations and numerical weather predictions of global radiation
	A.2.1 Observations
	A.2.2 Numerical weather predictions
	A.2.3 Systematic errors in Sønderborg observations

	A.3 Statistical clear-sky model
	A.4 Correction of observations
	A.4.1 On-line operation


	A.5 Discussion
	A.6 Conclusion
	A.7 Two-dimensional local statistical clear-skymodel
	B Online Short-term Solar Power Forecasting
	B.1 Introduction
	B.2 Data
	B.3 Clear sky model
	B.4 Prediction models
	B.4.1 Transformation of NWPs into predictions of normalized solar power
	B.4.2 AR model identification
	B.4.3 LMnwp model identification
	B.4.4 ARX model identification
	B.4.5 Adaptive coefficient estimates

	B.5 Uncertainty modelling
	B.6 Evaluation
	B.6.1 Error measures
	B.6.2 Reference model
	B.6.3 Results

	B.7 Conclusions
	B.8 Weighted quantile regression
	B.9 Recursive least squares

	C Online Short-term Solar Power Forecasting
	C.1 Introduction
	C.2 Data
	C.2.1 Pre-processing


	C.3 Clear sky model
	C.3.1 Statistically estimated clear sky solar power

	C.4 Forecasting models
	C.4.1 Reference model
	C.4.2 Autoregressive models
	C.4.3 Conditional parametric models
	C.4.4 Autoregressive model with exogenous input
	C.5 Evaluation
	C.5.1 Error measures
	C.5.2 Completeness

	C.6 Results


	C.7 Discussion and applications
	C.8 Conclusion
	D Short-term solar collector power forecasting
	D.1 Introduction
	D.2 Data
	D.2.1 Solar power
	D.2.2 Numerical weather predictions
	D.2.3 Pre-processing
	D.3 Clear sky model
	D.3.1 Statistically estimated clear sky solar power
	D.4 Forecasting models
	D.4.1 Reference model
	D.4.2 Autoregressive models
	D.4.3 Conditional parametric models with NWPs as input
	D.4.4 Autoregressive model with exogenous input
	D.4.5 Combined model
	D.5 Evaluation
	D.5.1 Error measures
	D.5.2 Completeness

	D.6 Results

	D.7 Discussion and applications

	D.8 Conclusion

	E Models of the heat dynamics of solar collectors for performance testing
	E.1 Introduction
	E.2 Grey-box models of a dynamic system
	E.2.1 Maximum likelihood estimation of parameters

	E.3 Experimental setup and data
	E.4 Multiple linear regression models
	E.5 Applied grey-box models
	E.5.1 Models with multiple compartments in the flow direction
	E.5.2 Models divided into a collector and a fluid part

	E.6 Results
	E.6.1 MLR models
	E.6.2 ToComp1 fitted to 10 minutes values
	E.6.3 Grey-box models fitted to 30 seconds values


	E.7 Discussion and applications
	E.7.1 Applications

	E.8 Conclusion
	F Short-term heat load forecasting for single family houses
	F.1 Introduction
	F.2 Data
	F.2.1 Heat load measurements
	F.2.2 Local climate observations
	F.2.3 Numerical weather predictions
	F.2.4 Combining local observations with NWPs
	F.3 Models
	F.3.1 Time adaptive models
	F.3.2 Diurnal curve
	F.3.3 Low-pass filtering for modelling of building dynamics
	F.3.4 Parameter optimization
	F.4 Model identification
	F.4.1 First step in model selection
	F.4.2 Second step in model selection
	F.4.3 Step three: Inclusion of wind speed in the model
	F.4.4 Step four: Enhancement of the solar model part

	F.5 Noise model
	F.6 Results
	F.6.1 Model parameters
	F.6.2 Forecasting performance

	F.7 Discussion

	F.8 Conclusion
	G Identifying suitable models for the heat dynamics of buildings
	G.1 Introduction
	G.2 Grey-box models of a dynamic system
	G.2.1 Maximum likelihood estimation of parameters
	G.3 A statistical test for model selection
	G.3.1 Likelihood ratio tests
	G.3.2 Forward selection
	G.4 Model selection procedure
	G.4.1 Model selection
	G.4.2 Model evaluation
	G.5 Case study: model identification for a building
	G.5.1 Description of the building and measurement equipment
	G.5.2 Data
	G.5.3 Applied models
	G.5.4 Model identification
	G.5.5 Model evaluation

	G.6 Applications
	G.7 Conclusion
	G.8 RC-networks of applied models
	G.9 Estimates of system and observation noise parameters
































	MODELS OF THE HEAT DYNAMICS OF SOLAR COLLECTORS FOR PERFORMANCE TESTING.pdf
	Introduction
	Grey-box models of a dynamic system
	Maximum likelihood estimation of parameters

	Experimental setup and data
	Multiple linear regression models
	Applied grey-box models
	Models with multiple compartments in the flow direction
	Models divided into a collector and a fluid part

	Results
	MLR models
	ToComp1 fitted to 10 minutes values
	Grey-box models fitted to 30 seconds values

	Discussion and applications
	Applications

	Conclusion

	Online short-term solar power forecasting_Solar Energy.pdf
	Online Short-term Solar Power Forecastingshort-term solar power forecasting
	Introduction
	Data
	Clear sky model
	Prediction models
	Transformation of NWPs into predictions of normalized solar power
	AR model identification
	LMnwp model identification
	ARX model identification
	Adaptive coefficient estimates

	Uncertainty modelling
	Evaluation
	Error measures
	Reference model
	Results

	Conclusions
	Weighted quantile regression
	Recursive least squares
	References


	Short-term heat load forecasting for single family houses.pdf
	Introduction
	Data
	Heat load measurements
	Local climate observations
	Numerical weather predictions
	Combining local observations with NWPs

	Models
	Time adaptive models
	Diurnal curve
	Low-pass filtering for modeling of building heat dynamics
	Parameter optimization

	Model identification
	First step in model selection
	Root mean square error evaluation

	Second step in model selection
	Step three: Inclusion of wind speed in the model
	Step four: Enhancement of the solar model part

	Noise model
	Results
	Model parameters
	Forecasting performance

	Discussion
	Conclusion

	Short-term solar collector power forecasting.pdf
	Introduction
	Data
	Solar power
	Numerical weather predictions
	Pre-processing

	Clear sky model
	Statistically estimated clear sky solar power

	Forecasting models
	Reference model
	Autoregressive models
	Conditional parametric models with NWPs as input
	Autoregressive model with exogenous input
	Combined model

	Evaluation
	Error measures
	Completeness

	Results
	Discussion and applications
	Conclusion

	Verification of global radiation forecasts from the ensemble prediction system at DMI, Ph.D. Thesis, 2013 .pdf
	Introduction
	Ensemble Prediction
	Organisation of the Thesis

	Prelude: The Smart Solar Heating Unit
	Global Radiation
	Definitions
	Shortwave Radiation in DMI's HIRLAM models

	Data
	Observations
	Matching Observations with Model Calculations
	Model calculations
	Multidimensional Data

	Performance of Global Radiation Forecasts
	Data
	Observations
	Model Calculations of Global Radiation

	Comparison of Model Calculations with Observations
	Comparing Model Calculations with DTU Observations
	A Revision of the Radiation Scheme in DMI's HIRLAM models

	DMI's Ensemble Prediction System
	Ensemble Prediction
	Initial Condition Perturbations
	Model Perturbations

	Construction of DMI-EPS
	Initial Condition Perturbations
	Model perturbations


	A Framework for Forecast Verification
	Aspects of Forecast Quality
	Traditional Measures of Forecast Quality
	General approach to Forecast Verification

	Quality of Ensemble Forecasts
	Consistency
	Multidimensional Consistency
	Discrimination
	Summary of Aspects of Forecast Quality


	Verification of Global Radiation from DMI-EPS
	The Data
	Ensemble Calculations of Global Radiation
	The Observations
	The Clearness Index

	Assessing the Performance of the Ensemble Mean
	Sharpness
	Bias, MSE, RMSE, and Skill Score
	Reliability
	Discrimination

	Assessing the Performance of DMI-EPS
	Application of quality measures of single forecasts
	Application of quality measures of ensemble forecasts


	Discussion
	Verification of Global Radiation from DMI-EPS
	Assessing the Performance of DMI-EPS
	Assessing the Performance of the Ensemble Mean

	Performance of Global Radiation Forecasts
	High-Resolution, Limited-Area Models
	The Solar Heating Unit

	Conclusion & Outlook
	Appendices
	Derivation of Beer's Law
	Discrimination
	Generalized Discrimination Score
	Summary
	Bibliography




