Nonlinear Gain Saturation in Active Slow Light Photonic Crystal Waveguides

Chen, Yaohui; Mørk, Jesper

Published in: Nonlinear Optics Technical Digest

Publication date: 2013

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Nonlinear Gain Saturation in Active Slow Light Photonic Crystal Waveguides

Yaohui Chen and Jesper Mørk
DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
yach@fotonik.dtu.dk

Abstract: We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguide. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated.

© 2013 Optical Society of America
OCIS codes: (250.5980) Semiconductor optical amplifiers, (130.5296) Photonic crystal waveguides.

A major advantage in combining photonic crystal (PhC) waveguides and active III-V semiconductors is the possibility to drastically decrease the component length via enhanced light-matter interaction enabled by slow-light (SL) propagation [1]. The investigation of group velocity related gain enhancement was initiated in Bragg slabs [2]. It is natural to extend such ideas to PhC line defect waveguides with guided modes within the bandgap [3]. Comparing with the successful demonstrations of PhC Lasers [4], the attempts of realizing PhC travelling wave semiconductor optical amplifiers (SOAs) [5] are confronted by various challenges, e.g. excessive propagation losses due to mode leakage into substrate as well as heating issues.

From the simulation perspective, the finite-difference time-domain (FDTD) method has been used to simulate the properties of an active material, often described by Maxwell-Bloch equations, embedded in a photonic crystal waveguide [6] and fiber bragg gratings [7]. However, this is a computationally demanding task and not suitable for systematically investigating, e.g., the dynamical saturation properties. Thus what is missing is an effective model equivalent to the traveling wave model of an active Bragg gratings [7]. However, this is a computationally demanding task and not suitable for systematically investigating, e.g., the nonlinear gain saturation of the device is investigated.

In the weak perturbation limit, we approximate the exact solution of Maxwell equations as a principal TE-like guided Bloch wave, \(\frac{1}{2} [\psi(r), h(r)] \exp(i \beta z - i \omega t) \), multiplied with a forward amplitude \(\psi(z) \) along propagation direction \(z \). \(\psi(r) \) and \(h(r) \) are the the normalized electric and magnetic fields of the periodic Bloch mode of passive structure. For simplicity, we only consider the carrier-induced material gain, as the product of maximum material gain \(g_{mat} \), active material distribution function \(F(r) \) and distributed population inversion factor \(f_{inv}(r) \). We only investigate the stationary quasi-equilibrium solution of carrier dynamics by introducing a distributed balance equation of carrier density \(N(r) \) in the active region:

\[
0 = R_p(r) - R_{st}(r) - \frac{F(r) N(r)}{\tau_c}, \quad R_p(r) = \frac{\Gamma_{gmat} a}{\hbar \omega} n_g \frac{\epsilon_0 n_b^2}{\epsilon_b} F(r) \left| \psi(r) \right|^2 f_{inv}(r) \left| \psi(z) \right|^2 P_z, \quad \Gamma = \frac{n_b^2}{\epsilon_b} \left(\epsilon_0 n_b^2 \left| \psi(r) \right|^2 \right)
\]

Fig. 1: Slow-light enhanced small-signal modal gain in a W1-defect PhC membrane with a single QW layer \(g_{mat} = 1000 \text{cm}^{-1} \).

Here, \(\tau_c \) is carrier lifetime, \(R_p \) is the injection rate of carriers by optical/electrical pumping, \(R_{st} \) is the SL-enhanced stimulated emission rate based on principal guided Bloch wave expansion. \(n_g \) is the group index, \(n_b \) is background refractive index, \(\epsilon_0 \) electric permittivity. \(\langle \rangle \) is a volume-integral operator over a supercell. \(a \) is the lattice constant, \(P_z \) is the unit rms power flux over the transverse section. \(\Gamma \) is a confinement factor for stored electric energy inside the active region. Based on the slowly-varying envelope assumption, \(\psi(z) \) is considered constant over the period of PhC structure \(a \). The modal gain per unit length is

\[
\frac{\epsilon_0 n_b^2 \left| \psi(r) \right|^2 \psi(z)}{\epsilon_b n_g^2 F(r) \left| \psi(r) \right|^2}
\]
In a supercell: V_act between full and effective model determined by Eq. (1) & (2).

Fig. 2: SL-enhanced modal gain saturation in a W1-defect PhC membrane. (a) Comparison of modal gain as a function of input power between full and effective model determined by Eq. (1) & (2). $V_\text{act} = (3\sqrt{3}a^2 - \pi a^2)h_{\text{QW}}V_{\text{act}} = (3\sqrt{3}a^2 - \pi a^2)h_{\text{QW}}$. (b) Gain saturation with different QW layer numbers based on full model. (c) 3dB saturation power as a function of frequency based on full model.

In the saturation regime, $f_{\text{inv}}(r)$ and $N(r)$ in the active material are implicitly determined by a Fermi-Dirac integral under quasi-equilibrium condition. Based on Eq. (1), we might still derive a balance equation for averaged carrier density $\langle N \rangle / V_{\text{act}}$ in a supercell:

$$0 = \frac{\langle R_p \rangle}{V_{\text{act}}} \frac{\langle R_a \rangle}{V_{\text{act}}} \frac{\langle F(r)N \rangle}{V_{\text{act}} \tau_a} = \frac{\langle R_a \rangle}{V_{\text{act}}} = \frac{g_{\text{mat}}}{h\omega} \frac{\Gamma}{V_{\text{act}}} n_p \bar{f}_{\text{inv}} |\psi(z)|^2 P_2 = g_{\text{mat}} \frac{c}{n_p} \frac{\Gamma_{\text{opt}}}{V_{\text{act}}} |\psi(z)|^2 N_p$$

Here V_{act} and V_{opt} is the active material and optical mode volume. c is the speed of light in vacuum. $N_p = \frac{n_p \bar{f}_{\text{inv}}}{c / h \omega |\psi(z)|^2}$ is the averaged photon density corresponding to the unit rms power flux P_2. Eq. (2) is equivalent to the stationary form of conventional laser dynamics rate equation analysis. The confinement factor in the stimulated emission term as a function of photon density [5] is corrected by $\frac{\Gamma_{\text{opt}}}{V_{\text{act}}}$. Fig. 2 quantitatively illustrates the SL-enhanced modal gain saturation in PhC waveguides. In comparison with the full model results based on Eq. (1) in Fig. 2(a), the effective model results based on Eq. (2) display qualitatively similar gain saturation as a function of input power. However, different active materials volumes lead to deviations at either low or high input power region, as it is difficult to characterize the highly non-uniformly depleted carrier density with a universal active material volume and averaged carrier density. Fig. 2(b) illustrates the gain saturation with different QW layers. By increasing the QW layer numbers, the confinement factor is increased proportionally. Hence, larger modal gain is provided for traveling wave amplification. On the other hand, the corresponding 3dB saturation power shown in Fig. 2(c) has negligible dependence on QW layer numbers. As V_{act} is also proportional to QW layers, the factors $\frac{\Gamma_{\text{opt}}}{V_{\text{act}}}$ and $\frac{\Gamma_{\text{opt}}}{V_{\text{act}}}$ are hardly changed. As the operation frequency moves deeper into the slow-light region, the saturation power further decreases. Considering such low saturation power, PhC SOAs with SL enhancement appears attractive for nonlinear signal processing, e.g., four-wave mixing, rather than linear optical amplification [5].

In conclusion, we compared rigorous three-dimensional simulations of gain saturation in photonic crystal active waveguides to the predictions of an effective rate-equation-based model. The simple rate equation model is shown to provide good quantitative results as long as the parameters entering the model are carefully evaluated. Simulations indicate that a SL-enhanced PhC traveling-wave amplifier has a high small-signal modal gain at the expense of low saturation power, making it promising for nonlinear optical signal processing.

References