

## A Copper(II) Thiolate from Reductive Cleavage of an S-Nitrosothiol

Melzer, M. M.; Mossin, Susanne; Cardenas, A. J. P.; Williams, K. D.; Zhang, S.; Meyer, K.; Warren, T. H.

Published in: Inorganic Chemistry

*Link to article, DOI:* 10.1021/ic301356h

Publication date: 2012

Document Version Publisher's PDF, also known as Version of record

### Link back to DTU Orbit

*Citation (APA):* Melzer, M. M., Mossin, S., Cardenas, A. J. P., Williams, K. D., Zhang, S., Meyer, K., & Warren, T. H. (2012). A Copper(II) Thiolate from Reductive Cleavage of an S-Nitrosothiol. *Inorganic Chemistry*, *51*(16), 8658-8660. https://doi.org/10.1021/ic301356h

#### **General rights**

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

# **Inorganic Chemistry**

# A Copper(II) Thiolate from Reductive Cleavage of an S-Nitrosothiol

Marie M. Melzer,<sup>†</sup> Susanne Mossin,<sup>§</sup> Allan Jay P. Cardenas,<sup>†</sup> Kamille D. Williams,<sup>†</sup> Shiyu Zhang,<sup>†</sup> Karsten Meyer,<sup>§</sup> and Timothy H. Warren<sup>\*,†</sup>

<sup>†</sup>Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D.C. 20057, United States

<sup>§</sup>Department of Chemistry and Pharmacy, Friedrich-Alexander-University, Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany

**Supporting Information** 

**ABSTRACT:** S-Nitrosothiols RSNO represent circulating reservoirs of nitric oxide activity in the plasma and play intricate roles in protein function control in health and disease. While nitric oxide has been shown to reductively nitrosylate copper(II) centers to form copper(I) complexes and ENO species (E = R<sub>2</sub>N, RO), wellcharacterized examples of the reverse reaction are rare. Employing the copper(I)  $\beta$ -diketiminate [Me<sub>2</sub>NN]Cu, we illustrate a clear example in which an RS–NO bond is cleaved to release NO<sub>gas</sub> with formation of a discrete copper(II) thiolate. The addition of Ph<sub>3</sub>CSNO to [Me<sub>2</sub>NN]Cu generates the three-coordinate copper(II) thiolate [Me<sub>2</sub>NN]CuSCPh<sub>3</sub>, which is unstable toward free NO.

S-Nitrosothiols RSNO play an intricate role in the control of protein function in health and disease through the post-translational modification of cysteine SH residues.<sup>1</sup> Low-molecular-weight S-nitrosothiols such as S-nitrosoglutathione (GSNO) represent circulating reservoirs of nitric oxide activity typically present at submicromolar concentrations in the plasma,<sup>2</sup> which have protective effects against myocardial<sup>3</sup> and lung/airway<sup>3</sup> injuries among other functions.<sup>1</sup> RSNO compounds are prone to homolytic loss of NO due to the relative weakness of the RS–NO bond (20–32 kcal/mol)<sup>4</sup> and the strength of the RS–SR bond (65–66 kcal/mol).<sup>5</sup>

Trace amounts of copper ions serve as efficient catalysts for RSNO decomposition to form  $NO_{gas}$  and RSSR (Scheme 1).<sup>6</sup>

Scheme 1. Copper-Catalyzed Release of NO from RSNO Compounds

CuZnSOD is the most abundant source of copper in red blood cells and is effective at releasing NO from GSNO.<sup>7</sup> It may be inhibited with neocuproine, a copper(+) chelator, suggesting copper(I) as an active oxidation state for NO loss.<sup>7</sup> Moreover, medical polymers with imbedded copper(2+) ions serve as long-lived NO-generating devices via the copper-catalyzed decomposition of endogenous *S*-nitrosothiols.<sup>8</sup>

Copper enzymes also generate RS–NO bonds from NO via reductive nitrosylation (Scheme 2).<sup>9</sup> CuZnSOD has been shown to specifically S-nitrosylate  $\beta$ -Cys93 of hemoglobin.<sup>10</sup>

| Scheme | 2. | Redox | Interconversion | of | RSNO | and | NO |
|--------|----|-------|-----------------|----|------|-----|----|
|--------|----|-------|-----------------|----|------|-----|----|

 $[Cu^{II}]-SR + NO_{gas} \longrightarrow [Cu^{I}](RS-NO) \longrightarrow [Cu^{I}] + RS-NO$   $\overrightarrow{reductive E-NO cleavage}$ (metal oxidized)

Ceruloplasmin, the enzyme carrying ca. 95% of all copper in the plasma,<sup>11</sup> generates GSNO from NO.<sup>12</sup> In other environments, NO reduces copper(2+) in cytochrome *c* oxidase<sup>13</sup> and laccase<sup>14</sup> with concomitant N–O bond formation to give nitrite upon the formal attack of water on NO<sup>+</sup>. In a related fashion, Cu(dmp)<sub>2</sub>(H<sub>2</sub>O)<sup>2+</sup> reacts with NO in MeOH to give Cu(dmp)<sub>2</sub><sup>+</sup> and MeONO.<sup>15</sup> Intramolecular nitrosylation of a coordinated amine ligand bound to copper(2+) upon exposure of NO<sub>gas</sub><sup>16</sup> represents a chemical trigger in turn-on fluorescence-based approaches to sense NO.<sup>17</sup>

We recently reported the microscopic reverse of this process in the reductive cleavage of the N–NO bond in the nitrosamine Ph<sub>2</sub>NNO by an electron-rich  $\beta$ -diketiminato copper(I) complex to give the copper(II) amide [Me<sub>2</sub>NN]-CuNPh<sub>2</sub>.<sup>18</sup> We describe herein cleavage of the RS–NO bond of a synthetic S-nitrosothiol by copper(I) to form a discrete copper(II) thiolate connected to the copper-promoted generation of NO from this important class of NO donors.

The addition of 2 equiv of Ph<sub>3</sub>CSNO to {[Me<sub>2</sub>NN]Cu}<sub>2</sub> (1) in toluene (ca. 0.1 M) at 0 °C results in the rapid (ca. 10 s) formation of a new blue species, [Me<sub>2</sub>NN]CuSCPh (2), with  $\lambda_{max} = 731$  nm that is unstable under the reaction conditions. Over the course of ca. 30 min, the solution turns green because of the final major product [Me<sub>2</sub>NN]Cu(ON[Me<sub>2</sub>NN]) (3) with  $\lambda_{max} = 647$  nm.

Crystallization of the reaction mixture involving 1 and Ph<sub>3</sub>CSNO allows for identification of the final green species 3. The highly soluble 3 [ $\lambda_{max} = 647 \text{ nm} (1700 \text{ M}^{-1}\text{cm}^{-1})$ ] is isolated in 70% yield as green crystals from ether/hexamethyldisiloxane (Scheme 3). X-ray characterization of 3 (Figure 1) reveals a distorted square-planar copper(II) species with one "normal" and one nitrosated anionic  $\beta$ -diketiminate ligand in which the backbone methine hydrogen atom has undergone formal substitution by NO.<sup>18,19</sup> The  $\pi$ -delocalized nitrosated ligand coordinates through two different types of

**Received:** June 25, 2012 **Published:** August 7, 2012 Scheme 3. Reactivity of Ph<sub>3</sub>CSNO with 1



nitrogen atoms, including the nitrogen derived from NO [Cu–N3 = 2.037(3) Å; Cu–N5 = 1.962(3) Å], while the "normal"  $\beta$ -diketiminate coordination is unremarkable [Cu–N1 = 1.940(3) Å; Cu–N2 = 1.928(3) Å]. The square-planar structure is maintained in a toluene solution as judged by the large isotropic copper hyperfine  $A_{iso}$  = 223(5) MHz, which largely results from the high value of the axial parameter in the pseudoaxial frozen glass spectrum of 3 [ $g_1$  = 2.192(3);  $A_1$ (Cu) = 567(5) MHz].

Because we anticipated the formation of 2 in the reaction of 1 with Ph<sub>3</sub>CSNO, we sought a convenient route for its independent synthesis. The addition of 1 equiv of <sup>t</sup>BuOO<sup>t</sup>Bu to 1 in toluene allows for the isolation of [Me<sub>2</sub>NN]CuO<sup>t</sup>Bu (4) on a preparative scale in 86% yield (Scheme 3) as red crystals from pentane [ $\lambda_{max}$  = 409 nm (1500 M<sup>-1</sup>cm<sup>-1</sup>) in toluene]. The X-ray crystal structure of 4 (Figure 1) reveals a planar, three-coordinate copper center due to the steric bulk of the tertbutoxy ligand. Related to Tolman's  $\beta$ -diketiminato copper(II) phenoxides<sup>20</sup> and our [Cl<sub>2</sub>NN]CuO<sup>t</sup>Bu,<sup>21</sup> 4 possesses particularly short Cu–O [1.788(2) Å] and Cu–N<sub> $\beta$ -dik</sub> [1.879(2) and 1.890(2) Å] distances with a Cu-O-C22 angle of  $123.82(12)^{\circ}$ . The reaction of 4 with HSCPh<sub>3</sub> in toluene provides a smooth, quantitative conversion to 2 [ $\lambda_{max} = 731$  nm  $(5800 \text{ M}^{-1}\text{cm}^{-1})$ ]. Crystals of thermally sensitive 2 may be obtained from ether at -35 °C. The X-ray structure of 2 (Figure 1) features a trigonally coordinated copper center with Cu–S [2.137(1) Å] and Cu–N<sub> $\beta$ -dik</sub> distances [1.896(2) and 1.907(2) Å] along with a Cu–S–C angle of 116.80(7)° closely related to metrical parameters in Tolman's [Cu<sup>II</sup>]SCPh<sub>3</sub> complex employing an *o*-isopropyl-*N*-aryl variant of the  $\beta$ diketiminate ligand.<sup>22a</sup>

Conceptually related, the tertiary thiolate 2 and alkoxide 4 possess subtle but important differences in their electronic structure. Each exhibits a nearly axial frozen-glass electron

paramagnetic resonance (EPR) spectrum  $[2, g_1 = 2.165(3), g_2 = 2.039(8), g_3 = 2.031(8); 4, g_1 = 2.233(5), g_2 = 2.06(1), g_3 = 2.04(1);$  Figures S15 and S17 in the Supporting Information, SI]. The pseudoaxial hyperfine contribution from copper in alkoxide 4  $[A_1(Cu) = 372(5) \text{ MHz}]$ , however, is greater than that in thiolate 2  $[A_1(Cu) = 332(5) \text{ MHz}]$ , suggesting greater delocalization of the unpaired electron away from copper in the case of thiolate 2. Density functional theory calculations corroborate this picture, indicating that thiolate 2 possesses greater spin density on the sulfur atom (Cu, 0.31 e<sup>-</sup>; S, 0.39 e<sup>-</sup>) than on the oxygen atom in alkoxide 4 (Cu, 0.40 e<sup>-</sup>; O, 0.28 e<sup>-</sup>). These trends may be rationalized by the higher orbital energies of sulfur versus oxygen that result in greater covalency in the Cu–SR interaction (Figures 2 and S12 and S13 in the



Figure 2. Orbital interactions in trigonal  $\operatorname{copper}(\operatorname{II})$  thiolates and alkoxides.

SI).<sup>23,24</sup> Quasi-reversible cyclic voltammetry of **2** and **4** in tetrahydrofuran reveals that thiolate **2** is considerably easier to reduce ( $E_{1/2} = -0.18$  V vs NHE) than alkoxide **4** ( $E_{1/2} = -0.52$  V; Figures S10 and S11 in the SI).

The rapid conversion of **2** to other species under its synthesis conditions from  $Ph_3CSNO$  that leads to  $NO_{gas}$  formation suggests that **2** is unstable toward NO (Scheme 3). We find that when the addition of 2 equiv of  $Ph_3CSNO$  to **1** at 0 °C in toluene is followed by the immediate flushing of the solution with  $N_2$  to remove all  $NO_{gas}$  formed in the reaction, **2** may be observed in 73% spectroscopic yield (Scheme 4). Importantly, the addition of 2 equiv of NO to pure **2** leads to **3** (79% yield) and  $Ph_3CSSCPh_3$  (83% yield) (Scheme 4). We have not detected any intermediates by UV–vis spectroscopy at -80 °C in toluene during the addition of  $Ph_3CSNO$  to **1**.

In conclusion, an electron-rich copper(I) complex reacts with RSNO species to give a well-defined  $[Cu^{II}]SR$  complex with the



Figure 1. X-ray structures of 3, 2, and 4.

Scheme 4. Reaction of 1 with  $Ph_3CSNO(N_2 Flush)$  To Give 2 and Its Conversion to 3 with  $NO_{gas}$ 

| $\frac{[Cu]_2}{1} \frac{2 \operatorname{Ph_3CSNO}}{-2 \operatorname{NO}_{gas}}$ | 2 [Cu]-SCPh <sub>3</sub><br>( <b>2</b> , 73 % yield) | 4 NO <sub>gas</sub> | [Cu](ON[Me <sub>2</sub> NN]) 3<br>+ Ph <sub>3</sub> CSSCPh <sub>3</sub> |
|---------------------------------------------------------------------------------|------------------------------------------------------|---------------------|-------------------------------------------------------------------------|
| N <sub>2</sub> flush to remo                                                    | ve NO <sub>gas</sub>                                 |                     |                                                                         |

loss of  $\mathrm{NO}_{\mathrm{gas}}$ . This reaction represents the microscopic reverse of reductive nitrosylation commonly observed at copper(II) species upon the addition of  $\mathrm{NO}_{\mathrm{gas}}$  and sheds light on mechanistic possibilities in the copper-catalyzed interconversion of NO and RSNO species (Scheme 2). We note that NO reacts reversibly with oxidized type 1 copper sites in ceruloplasmin<sup>25</sup> and ascorbate oxidase,<sup>26</sup> returning to their oxidized (blue) states upon flushing with dinitrogen or argon, a coordination motif to which copper(II) thiolate **2** bears significant semblance.<sup>22,24</sup> Unfortunately, our copper(II) thiolate is subject to nitrosation at the central position of the  $\beta$ -diketiminato supporting ligand, which prevents observation of clean CuSR reductive nitrosylation with NOgas. We are actively pursuing coordination environments resistant to functionalization by NO<sup>27</sup> to allow observation of both RSNO reductive cleavage and reductive nitrosylation at a common copper center.

#### ASSOCIATED CONTENT

#### **S** Supporting Information

Experimental, characterization, and calculational details and Xray crystallographic data in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

#### AUTHOR INFORMATION

#### **Corresponding Author**

\*E-mail: thw@georgetown.edu.

#### Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

T.H.W. thanks the NSF (Grant CHE-0957606) and K.M. acknowledges the DFG (Grant SFB-583) for funding. George-town University thanks the NSF (Grant CHE-0840453) for an EPR spectrometer.

#### REFERENCES

(1) Foster, M. W.; Hess, D. T.; Stamler, J. S. Trends Mol. Med. 2009, 15, 391-404.

(2) (a) Stamler, J. S. Circ. Res. 2004, 94, 414–417. (b) Giustarini, D.; Milzani, A.; Colombo, R.; Dalle-Donne, I.; Rossi, R. Clin. Chim. Acta 2003, 330, 85–98.

(3) Lima, B.; Lam, G. K. W.; Xie, L.; Diesen, D. L.; Villamizar, N.; Nienaber, J.; Messina, E.; Bowles, D.; Kontos, C. D.; Hare, J. M.; Stamler, J. S.; Rockman, H. A. *Proc. Natl. Acad. Sci. U.S.A.* **2009**, *106*, 6297–6302.

(4) (a) Lü, J.-M.; Wittbrodt, J. M.; Wang, K.; Wen, Z.; Schlegel, H. B.; Wang, P. G.; Cheng, J.-P. J. Am. Chem. Soc. 2001, 123, 2903–2904.
(b) Bartberger, M. D.; Mannion, J. D.; Powell, S. C.; Stamler, J. S.; Houk, K. N.; Toone, E. J. J. Am. Chem. Soc. 2001, 123, 8868–8869.
(c) Stamler, J. S.; Toone, E. J. Curr. Opin. Chem. Biol. 2002, 6, 779–785.

(5) Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds; CRC Press: Boca Raton, FL, 2002.

(6) Williams, D. L. H. Acc. Chem. Res. 1999, 32, 869-876.

(7) Jourd'heuil, D.; Laroux, F. S.; Miles, A. M.; Wink, D. A.; Grisham, M. B. Arch. Biochem. Biophys. **1999**, 361, 323–330.

(8) (a) Oh, B. K.; Meyeroff, M. E. J. Am. Chem. Soc. 2003, 125, 9552–9553. (b) Hwang, S.; Cha, W.; Meyeroff, M. E. Angew. Chem., Int. Ed. 2006, 45, 2745–2748.

(9) Ford, P. C.; Fernandez, B. O.; Lim, M. P. Chem. Rev. 2005, 105, 2439-2455.

(10) (a) Romeo, A. A.; Capobianco, J. A.; English, A. M. J. Am. Chem. Soc. 2003, 125, 14370–14378. (b) Romeo, A. A.; Filosa, A.; Capobianco, J. A.; English, A. M. J. Am. Chem. Soc. 2001, 123, 1782–1783.

(11) (a) Bielli, P.; Calabrese, L. Cell. Mol. Life Sci. 2002, 59, 1413–1427. (b) Hellman, N. E.; Gitlin, J. D. Annu. Rev. Nutr. 2002, 22, 439–458.

(12) Inoue, K.; Akaike, T.; Miyamoto, Y.; Okamoto, T.; Sawa, T.; Otagiri, M.; Suzuki, S.; Yoshimura, T.; Maeda, H. *J. Biol. Chem.* **1999**, 274, 27069–27075.

(13) Torres, J.; Cooper, C. E.; Wilson, M. T. J. Biol. Chem. 1998, 273, 8756-8766.

(14) Torres, J.; Svistunenko, D.; Karlsson, B.; Cooper, C. E.; Wilson, M. T. J. Am. Chem. Soc. **2002**, 124, 963–967.

(15) (a) Tran, D.; Ford, P. C. Inorg. Chem. 1996, 35, 2411-2412.
(b) Tran, D.; Skeleton, B. W.; White, A. H.; Laverman, L. E.; Ford, P. C. Inorg. Chem. 1998, 37, 2505-2511.

(16) (a) Sarma, M.; Kalita, A.; Kumar, P.; Singh, A.; Mondal, B. J. Am. Chem. Soc. 2010, 132, 7846–7847. (b) Sarma, M.; Mondal, B. Inorg. Chem. 2011, 50, 3206–3212.

(17) (a) Lim, M. H.; Lippard, S. J. Acc. Chem. Res. 2007, 40, 41-51.
(b) Tsuge, K.; DeRosa, F.; Lim, M. D.; Ford, P. C. J. Am. Chem. Soc. 2004, 126, 6564-6565. (c) Lim, M. H.; Lippard, S. J. J. Am. Chem. Soc. 2005, 127, 12170-12171. (d) Lim, M. H.; Wong, B. A.; Pitcock, W. H. J.; Mokshagundam, D.; Baik, M.-H.; Lippard, S. J. J. Am. Chem. Soc. 2006, 128, 14364-14373. (e) Lim, M. H.; Xu, D.; Lippard, S. J. Nat. Chem. Biol. 2006, 2, 375-380. (f) Mondal, B.; Kumar, P.; Ghosh, P.; Kalita, A. Chem. Commun. 2011, 47, 2964-2966.

(18) Melzer, M. M.; Mossin, S.; Dai, X.; Bartell, A. M.; Kapoor, P.; Meyer, K.; Warren, T. H. *Angew. Chem., Int. Ed.* **2010**, *49*, 904–907. (19) Closely related ligand nitrosylations have been previously observed at a copper(II)  $\beta$ -diketiminate complex (ref 18) as well as at Pd(acac)<sub>2</sub> (a) and Co(acac)<sub>3</sub> (b): (a) White, D. A. *J. Chem. Soc. A* **1971**, 233–243. (b) Herberhold, M.; Kratzer, H. *Z. Naturforsch., Teil B* **1977**, 32B, 1263–1267.

(20) Jazdzewski, B. A.; Holland, P. L.; Pink, M.; Young, V. G., Jr.; Spencer, D. J. E.; Tolman, W. B. *Inorg. Chem.* **2001**, 40, 6097–6107.

(21) Wiese, S.; Badiei, Y. M.; Gephart, R. T.; Mossin, S.; Varonka, M. S.; Melzer, M. M.; Meyer, K.; Cundari, T. R.; Warren, T. H. *Angew. Chem., Int. Ed.* **2010**, *49*, 8850–8855.

(22) (a) Holland, P. L.; Tolman, W. B. J. Am. Chem. Soc. 1999, 121, 7270–7271. (b) Holland, P. L.; Tolman, W. B. J. Am. Chem. Soc. 2000, 122, 6331–6332.

(23) (a) Solomon, E. I.; Szilagyi, R. K.; DeBeer George, S.; Basumallick, L. Chem. Rev. 2004, 104, 419–458. (b) Randall, D. W.; DeBeer George, S.; Hedman, B.; Hodgson, K. O.; Fujisawa, K.; Solomon, E. I. J. Am. Chem. Soc. 2000, 122, 11620–11631.
(c) Gorelsky, S. I.; Basumallick, L.; Vura-Weis, J.; Sarangiqq, R.; Hodgson, K. O.; Hedman, B.; Fujisawa, K.; Solomon, E. I. Inorg. Chem. 2005, 44, 4947–4960.

(24) Randall, D. W.; DeBeer George, S.; Holland, P. L.; Hedman, B.; Hodgson, K. O.; Tolman, W. B.; Solomon, E. I. *J. Am. Chem. Soc.* **2000**, *122*, 11632–11648.

(25) (a) Wever, R.; Van Leeuwen, F. X. R.; Van Gelder, B. F. *Biochim. Biophys. Acta* **1973**, 302, 236–239. (b) Musci, G.; Di Marco, S.; Bonaccorsi di Patti, M. C.; Calabrese, L. *Biochemistry* **1991**, 30, 9866–9872.

(26) Van Leeuwen, F. X. R.; Wever, R.; Van Gelder, B. F.; Avigliano, L.; Mondovi, B. *Biochim. Biophys. Acta* **1975**, 403, 285–291.

(27) Melzer, M. M.; Li, E.; Warren, T. H. Chem. Commun. 2009, 5847-5849.