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Abstract

Many processes within production scheduling and project management involve the schedul-
ing of a number of activities, each activity having a certain duration and requiring a certain
amount of limited resources. The duration and resource requirements of activities are com-
monly the result of estimations, and thus generally subject to uncertainty. If this uncertainty
is not taken into account the resulting schedules may not be robust in the sense that, when ex-
ecuted, the uncertainty may cause the schedules to take longer than expected, consume more
resources, or be outright infeasible. We propose a new variant of the Multi-mode Resource-
Constrained Project Scheduling Problem, where the nonrenewable resource requirements of
each mode is given by a Gaussian distribution, and the nonrenewable resource constraints
must be satisfied with a certain probability ε. Such constraints are also known as chance con-
straints. We present a Conic Quadratic Integer Program model of the problem, and describe
and experiment with a branch-and-cut algorithm for solving the problem. In each node of the
branch-and-bound tree, the branching decisions are propagated in order to remove variables
from the problem, and thus improve bounds. In addition we experiment with cutting on the
conic quadratic resource constraints. Computational experiments show that the branch-and-
cut algorithm outperforms CPLEX 12.1. We finally examine the “cost of uncertainty” by
investigating the relation between values of ε, the makespan, and the solution time.

1 Introduction

Many processes within production scheduling and project management involve the scheduling of
a number of activities, each activity having a certain duration and requiring a certain amount of
limited resources. Resources could for instance be machines, labor, budget, or stock. Precedence
relations may exist between activities, such that one activity can not start before others are
completed. Typically one wishes to schedule the activities such that the total time taken to
complete them all is minimized. Being models of real-life processes, the duration and resource
requirements of an activity is commonly the result of estimations, and thus generally subject to
uncertainty. If this uncertainty is not taken into account the resulting schedules may not be robust
in the sense that, when executed, the uncertainty may cause the schedules to take longer than
expected, consume more resources, or be outright infeasible. Thus it is of interest to take into
account uncertainty when scheduling such projects.

Disregarding uncertainty, the above described problem may be modeled as a Resource-Con-
strained Project Scheduling Problem (RCPSP), which is a generalization of the well-known Job-
Shop-Scheduling problem. There exists a number of variants of the RCPSP, see for instance
Blażewicz et al. (1983), Brucker et al. (1999), or Hartmann and Briskorn (2010). The Multi-mode
Resource-Constrained Project Scheduling Problem (MRCPSP) is a popular variant, in which each
activity can be performed in a number of different so-called modes, each representing alternative
ways of executing the activity, i.e., different duration and resource requirements. A mode may
for instance model that consuming more resources the activity will be completed faster, or that
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there is an alternative for the choice of resources to be used. For the MRCPSP one distinguishes
between renewable resources and nonrenewable resources: renewable resources are replenished
in each timestep, while this is not the case for nonrenewable resources, here resource usage is
accumulated across the entire project. A renewable resource could be man-hours per day, or the
capacity of a machine, while a nonrenewable resource could be a budget, or some kind of stock.

Much research has focused on extending the RCPSP to the case where the activity durations
are stochastic. There are different approaches: one approach is to construct a so-called policy,
or strategy, which, when executed, will result in the best expected makespan across a number of
scenarios. For policy-related results see Radermacher (1981), Igelmund and Radermacher (1983b),
Möhring et al. (1984), Möhring et al. (1985), Möhring and Radermacher (1985), Radermacher
(1986), Fernandez and Armacost (1996), and Fernandez et al. (1998a,b), and for computational
results see Igelmund and Radermacher (1983a), Golenko-Ginzburg and Gonik (1997), Tsai and
D Gemmill (1998), Valls et al. (1998), and Stork (2001). A different approach focuses on creating
a so-called robust baseline schedule, which has a good probability of coping with uncertainty
in activity durations, see for instance Chtourou and Haouari (2008) where a two-stage heuristic
approach is developed, and Zhu et al. (2007) where a variant where the activities are additionally
subject to due dates is considered, and a two-stage heuristic and an exact solution approach
presented. A third approach focuses on disruption management, see for instance Van de Vonder
et al. (2005), Van de Vonder (2006), Van de Vonder et al. (2006), Van de Vonder et al. (2007a),
and Van de Vonder et al. (2007b, 2008). Uncertainty in the renewable resource requirements and
capacities may also affect the quality of schedules, and some research has considered this case,
see for instance Lambrechts et al. (2008a,b). No research seems to have examined the case of
stochastic nonrenewable resource requirements.

Considering the case of stochastic nonrenewable resource requirements is of interest for at least
two reasons: (1) Ideally one would like to be able to model and solve problems with uncertainty in
activity durations, renewable and nonrenewable resource consumption, and renewable and nonre-
newable resource capacities. The case considered here can be seen as another step in the direction
of achieving this goal. (2) The problem may also be of interest in itself. Many projects span many
years, and for some, uncertainty in cost may be of more interest, than, say, uncertainty in activity
durations. Certainly many large projects are known to run over budget.

We thus consider a new variant of the RCPSP, where the nonrenewable resource require-
ments are stochastic, and where given a so-called risk factor 0 ≤ ε ≤ 1, one wishes to find
a minimum makespan schedule, such that the nonrenewable resource constraints are satisfied
with with probability at least ε. For modelling reason we will assume ε ≥ 0.5, which seems
acceptable, since for practical applications it is hard to image scenarios where one would be
interested in satisfying a budget with a propability less than 50%. We call this problem the Multi-
mode Resource-Constrained Project Scheduling Problem with Stochastic Nonrenewable Resource
Consumption (MRCPSP-SNR).

The contribution of this paper, is the description and modeling (as a Conic Quadratic Integer
Program (CQIP)) of the MRCPSP-SNR. We propose and experiment with a branch-and-cut
algorithm for solving the problem. In each node of the branch-and-bound tree, branching decisions
are propagated, in a way similar to Constraint Programming (CP), in order to fix additional
variables and improve bounds. The propagation is dependent on the variables of the model, and
we experiment with adding additional (but redundant) variables to enable stronger branching.
Computational experiments on a large set of instances, adapted from instances found in the
literature, show that the branch-and-cut algorithm with propagation outperforms ILOG CPLEX
12.1 (CPLEX). We finally examine the “cost of uncertainty”, that is: what is the effect of the risk
factor on the makespan?

In Section 2 a formal description of the MRCPSP-SNR is given, in Section 3 the problem is
modeled as a CQIP, in Section 4 cuts based on the second-order cone constraints are presented,
in Section 5 the developed branch-and-cut procedure is described, includinf bounding arguments,
and propagation rules, and in Section 6 we present the computational results. Finally we present
the conclusion in Section 7.
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2 Problem

We here give a formal description of the MRCPSP-SNR: A project consists of a set A = {1, . . . , n}
of activities to be scheduled. Traditionally, activity 1 and n are so-called dummy activities, which
represent the start and the end of the project. Let A∗ = A\{1, n}. Each activity j can be
performed in a number of different modes Mj = {1, . . . , |Mj |}, each representing a different way
of performing the activity. Let T be the set of time-steps during which the activities must be
performed. There are two sets of resources, (1) renewable resources R = {1, . . . , |R|}, and (2)
nonrenewable resources R̃ = {1, . . . , |R̃|}. A renewable resource k ∈ R, has capacity Rk in each
time step, while a nonrenewable resource k ∈ R̃ has capacity R̃k across all time steps of the
project. When an activity j is scheduled in mode m ∈ Mj , it has a processing time of pjm (non-
preemtible) and requires rjkm ≥ 0 units of renewable resource k ∈ R in each time period and

an amount of nonrenewable for each resource k ∈ R̃ across all time periods. The nonrenewable
resource consumption is for each activity j ∈ A and each mode m ∈ Mj given by a Gaussian
distribution, where r̃jkm is the mean, and σ2

jkm is the variance. There exists precedence relations
between the activities, such that one activity j ∈ A cannot be started before all its predecessors,
Pj , are completed. Symmetrically, Sj denotes the set of successors and Nj = A\(Pj ∪Sj) denotes
the set of activities which can run in parallel with j. Let E = {(i, j) ∈ A×A : i ∈ Pj} be the set of
all precedence relations. In addition to the project a risk factor ε ≥ 0.5 is given, and the objective
is to find a precedence and resource-capacity feasible schedule which minimizes the makespan and
satisfy the nonrenewable resource constraints with probability at least ε. The MRCPSP-SNR may
be formulated as follows:

min σn

s.t. σj ≥ σi + pi,m(i) ∀(i, j) ∈ E (1)∑
j∈A(t)

rj,k,m(j) ≤ Rk ∀k ∈ R,∀t ∈ T (2)

P
({ ∑

j∈A r̃j,k,m(j) ≤ R̃k, ∀k ∈ R̃
})
≥ ε (3)

σj ≥ 0 ∀j ∈ A, (4)

where σj is the starting time of activity j, m(j) is mode chosen for activity j, and A(t) = {j ∈
A|σj ≤ t ≤ σj + πj}, i.e., the activities in progress at time t. Constraints (1) are denoted
the precedence constraints, Constraints (2) are denoted the renewable resource constraints (or re-
source constraints for short), and Constraints (3) are denoted the stochastic nonrenewable resource
constraints. These constraints are so-called chance constraints (see for instance Boyd and Van-
denberghe (2004)), which means that the constraints must be satisfied with a certain probability
ε. As mentioned previously, the RCPSP is a generalization of the Job Shop Scheduling Problem
and is therefore NP-hard (see e.g. Blażewicz et al. (1983)). As the MRCPSP-SNR reduces to the
RCPSP when the variance off all activities are 0, and ε = 1, the MRCPSP-SNR is also NP-hard.

3 Model

In this section we first give a brief description of how a chance constraint may be modelled as a
second-order cone constraint, next we propose how the joint chance constraints of the problem,
i.e., the nonrenewable resource constraints, can be divided into independent chance constraints,
and finally we show how the problem may be formulated as a CQIP.

3.1 Modelling chance constraints

A second-order cone constraint is a constraint of the form

ay + ω‖Dy + d‖2 ≤ b,
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where a ∈ <n, d ∈ <n, b ∈ <, ω ≥ 0 and D ∈ <n×n are constants, y ∈ <n is a decision-variable,
and ‖ · ‖2 is the euclidean norm. A chance constraint of the form

P(ry ≤ s) ≥ ε,

where s ∈ < and 0 ≤ ε ≤ 1 are a constants, and r is a Gaussian random vector, with mean vector
µ and variance vector σ2, may be formulated as the constraint (see e.g. Boyd and Vandenberghe
(2004)):

n∑
i=0

µiyi + Φ−1(ε)
√
σ2
i y

2
i ≤ b, (5)

where where Φ is the cumulative distribution function. If ε ≥ 0.5, and thus Φ−1(ε) ≥ 0, then
Constraint (5) is equivalent to a second-order cone constraint with a = µ, d = 0, ω = Φ−1(ε),
b = s, and Dii = σi, Dij = 0 for i 6= j.

3.2 Separating joint chance constraints

The Constraints (3) are joint chance constraints, meaning that all of them must be satisfied with
probability ε jointly. One can thus not simply reformulate each constraint individually as second-
order cone constraints using the value of ε. Since in many cases |R̃| is a relatively small number,
we propose to separate them into individual chance constraints as follows: Let ε be the given risk
factor: ∀k ∈ R̃ select 0.5 ≤ εk ≤ 1 : Πk∈R̃εk = ε, e.g., εk = |R̃|

√
ε. The joint chance constraints

may now be split into individual chance constraints using the selected values for each εk, and then
formulated as second-order cone constraints.

3.3 Conic Quadratic Integer Program

For some activity i and mode m ∈ Mi, let T eim and T lim be respectively the earliest and latest
possible completion time of i when executed in mode m. T eim and T lim may be calculated given an
upper bound on the makespan, and using any bound argument, such as the well-known critical
path lower bound. Given a risk factor ε ≥ 0.5, the MRCPSP-SNR may be formulated as the
following CQIP:

min
∑

m∈Mn

T l
nm∑

t=T e
nm

t · xntm (6)

s.t.
∑

m∈Mi

T l
im∑

t=T e
im

t · xitm ≤
∑

m∈Mj

T l
jm∑

t=T e
jm

xjtm(t− pjm) ∀(i, j) ∈ E (7)

∑
j∈A

∑
m∈Mj

min{t+pjm−1,T l
jm}∑

t′=max{t,T e
jm}

rjkm · xjt′m ≤ Rk, ∀k ∈ R,∀t ∈ T (8)

∑
j∈A

∑
m∈Mj

µjkm · yjm + Φ−1(εk)

√∑
j∈A

∑
m∈Mj

σ2
jkm · yjm ≤ Rk, ∀k ∈ R̃ (9)

∑
m∈Mj

T l
jm∑

t=T e
jm

xjtm = 1, ∀j ∈ A (10)

xjtm ∈ {0, 1} ∀j ∈ A,∀m ∈Mj (11)

where the binary variable xjtm is 1 if and only if activity j completes at time t using mode m.

For ease of exposition we have introduced artificial variables yjm :=
∑T l

jm

t=T e
jm
xjtm, such that yjm

is 1 if and only if activity j is scheduled using mode m. We will in Section 6 investigate whether

4



it is worth including the y-variables explicitly in the model for the sake of branching. The prece-
dence constraints (7) ensure that no activity is started before its predecessors have completed, the
renewable resource constraints (8) ensure that at no point in time the resource requirements of
the activities in progress exceed the capacity of a renewable resource, the stochastic nonrenewable
resource constraints (9) ensure that the combined nonrenewable resource consumption of all activ-
ities satisfy the capacity of nonrenewable resources with probability at least ε, and the constraints
(10) ensure that each activity is completed only once using exactly one mode. Note, that we have
used the fact that y2jm = yjm since yjm is binary.

4 Conic cover cuts

We will in this section describe a class of cuts, which may be used to strengthen the formulation.
As the proposed algorithm makes use of CPLEX, which is already effective at separating cuts for
linear Mixed Integer Programming (MIP) constraints, we instead focus on cuts for the second-order
cone constraints.

Let N be a finite index set and let Q1, . . . , Q|K| be a division of N into |K| independent sets.
i.e.,

⋃
k∈K Qk = N , and Qi ∩Qj = ∅,∀i, j ∈ K, i 6= j. Consider the following polytope

Z :=

z ∈ {0, 1}|N | :

n∑
i=0

µizi + ω
√
σ2
i zi ≤ b,

∑
i∈Qk

zi ≤ 1,∀k ∈ K

 ,

where b ≥ 0 and ω ≥ 0. If ω = 0, Z can be recognized as the classic knapsack polytope with
Generalized Upper Bound (GUB) constraints. We thus refer to Z (when ω > 0) as a second-order
cone knapsack polytope with GUB constraints.

So-called cover cuts are well-known for the classic knapsack polytope: Given a set C ⊆ N for
which

∑
i∈C µi > b a cover cut has the form:∑

i∈C
µi ≤ |C| − 1. (12)

Given a cover C, the corresponding cover inequality may be strengthened by including additional
variables. When chosen appropriately, these variables will add to the left-hand side of (12) without
raising the right-hand side. The process of adding variables to an existing cover, is called extending
the cover, and can be seen as a lifting procedure, where lifting coefficients may only take values 0
or 1. It is well-known that if GUB constraints are present, these can be used to further strengthen
cover cuts.

When the knapsack constraint is second-order conic, i.e., ω > 0, cover cuts may still be applied.
The process of separation, and extension is in this case however more complicated. Atamtürk and
Narayanan (2009) treat the problem of separating and extending cover constraints for second-
order conic knapsack constraints, where no GUB constraints are present. Atamtürk et al. (2011)
extend this work to the case where GUB constraints are present, and experiment with a number of
separation and extension algorithms. Computational results show, that separation and extension of
cover inequalities (using GUB constraints) can greatly improve the time needed to solve problems
including second-order cone knapsack constraints.

The constraints (9) and (10) define a second-order cone knapsack polytope with the same
structure as Z. We separate the conic cover cuts described above using the best performing
separation and extension algorithm found in Atamtürk et al. (2011).

5 Solution methodology

We propose to solve the MRCPSP-SNR using a branch-and-cut approach using the commer-
cial solver CPLEX, which solves conic quadratic relaxations in each branch-and-bound node. In
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branch-and-cut algorithms, branching typically occurs by fixing a fractional binary variable to 0 in
one branch and to 1 in the other. The information derived from such a branching can be used to
fix additional variables, through bound and feasibility arguments. For example, fixing the variable
yim := 1 for some activity i and mode m ∈ Mi in a node, means that activity i must use mode
m in the sub-tree rooted at that node. Using this information, one may find improved lower and
upper bounds on the completion time of predecessors and successors of i, and thus fix additional
variables. Within the context of CP such a process is known as propagation. In the following we
examine different propagation alternatives.

The bound arguments employed to tighten the upper and lower bounds on completion times are
based on a so-called Finish-to-Start-Distance (FSD)-matrix, which we will introduce in Section 5.1
along with a number of lower bounding methods used to update the entries of the FSD-matrix.

Following the introduction of the FSD-matrix, we will present the different components of the
algorithm: In Section 5.2 we describe a number of preprocessing steps used to reduce the problem
size. In section 5.3 we describe how we find initial upper bounds, and how an upper bound can be
used to further reduce the problem size. In Section 5.4 we describe how the number of variables
of the model may be reduced using lower bound arguments and the FSD-matrix. In Section 5.5,
and Section 5.6 we describe how additional variables may be included in order to create a more
balanced branch-and-bound tree, and how branching on these variables is propagated. Finally in
Section 5.7 and Section 5.8 we describe how additional variables may be fixed, and nodes pruned
based on the FSD-matrix.

The approach presented has similarities with the approach used by Zhu et al. (2006) for the
MRCPSP, and can be placed within the Constraint Integer Programming (CIP) paradigm (see
Achterberg (2007)).

5.1 Finish-to-Start-Distance-matrix and lower bounds

In the following we first give a description of the concept of an FSD-matrix, and then the bounds
used in connection with the FSD-matrix.

Finish-to-Start-Distance (FSD)-matrix We employ a slight modification of the FSD-matrix
of Zhu et al. (2006), which is in itself a modification of the traditional Start-to-Start-Distance
matrix found in the literature, see for instance Bartusch et al. (1988), Brucker and Knust (2000),
or Demassey et al. (2005). An FSD-matrix is an integer matrix, B = (bij)A×A, which satisfies:

σj − τi ≥ bij + 1, ∀(i, j) ∈ A×A

for all feasible schedules, where τi is the completion time of activity i and σj is the starting time
of activity j. That is, bij is a lower bound on the amount of time which must pass between the
completion time of i and the starting time of j. Note that bij may be negative, which means that
activity j must start before the completion of activity i. Define p

i
:= min{pim|m ∈ Mi} and

pi := max{pim|m ∈Mi}. Since the relation (5.1) has the following transitive property:

σj − τi ≥ bij + 1 ∧ σk − τj ≥ bjk + 1⇒ σk − τi ≥ bij + p
j

+ bjk + 1,

the entries of an FSD-matrix may be updated by calculating the transitive closure of B. This can
be done using a variant of the Floyd-Warshall algorithm in O(|A|3) time, see Zhu et al. (2006).
Note that a pair of activities (i, j) must run in parallel if bij ≥ −pi−pj + 1 and bji ≥ −pi−pj + 1.

Given an upper bound, T , on the makespan, the FSD-matrix B may be initialized as follows:

bij =

 −pi if i = j
0 if (i, j) ∈ E
−T otherwise,

The difference between the FSD-matrix considered here, and the one of Zhu et al. (2006) is that
here the FSD-matrix is defined for all pairs of activities, whereas in Zhu et al. (2006) it is defined
only for pairs of activities being related by precedence.
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As will be explained in detail in the following sections, an FSD-matrix may be used to eliminate
modes and variables from consideration. The effectiveness of the methods rely on good bound
arguments for the bij values. The values bij may be calculated by constructing the subproblem
defined by Si∩Pj and then applying any lower bounding technique for the RCPSP on this smaller
instance. A number of such lower bounds exists in the literature. We do not give a description of
these here but instead refer the reader to the excellent work by Klein and Scholl (1999) where 11
such bounds are described and compared. Using the name convention of Klein and Scholl (1999),
the bounds considered here are: LB1, LB6, LB8, LB10, and LB11. LB1 is the well-known critical
path lower bound, LB6 and LB8 are extensions of the so-called weighed node packing bound by
Mingozzi et al. (1998) (see Klein and Scholl (1999)), and LB10 and LB11 are bounds based on
evaluating a lower bound for all possible ways of resolving a resource conflict given respectively
pairs and triples of activities (again see Klein and Scholl (1999)). The bounds LB6, LB10, and
LB11 again use lower bound arguments on subproblems of the problem considered. Note, that
this problem may in itself be a subproblem corresponding to a bij entry. We will refer to the
former as inner subproblems and the latter as subproblems. When calculating bounds on inner
subproblems, one could recursively apply bound arguments, but this can potentially be very time-
consuming, and we thus, like Klein and Scholl (1999), only apply the critical path lower bound
(LB1) and the capacity lower bound (LB2). We additionally include two MRCPSP-specific lower
bounds recently proposed by Muller (2011): The mode-fixed critical path (denoted LBX1 in Muller
(2011)) is based on calculating the critical path for all possible mode-assignments of a subset of
the activities, and the extended capacity bound (denoted LB2X in Muller (2011)) is based on the
Lagrange Relaxation of the problem of calculating the best possible capacity bound (LB2) taking
into account all resources simultaneously.

5.2 Preprocessing

We here describe a number of preprocessing steps, which are applied to the problem initially.

Mode and resource reductions As described by Sprecher et al. (1997) the number of modes
and resources may be reduced by application of the following preprocessing procedure: Define
r̃ik := min{r̃ikm|m ∈ Mi}, and r̃ik := max{r̃ikm|m ∈ Mi}. A mode m ∈ Mi is called non-
executable if either rikm > Rk, for some k ∈ R, or

∑
j∈A\{i} r̃jk + rikm > R̃k, for some k ∈ R̃. A

mode is called inefficient if there exits another mode m′ of Mi, such that rikm ≥ rikm′ ∀k ∈ R,
and r̃ikm ≥ r̃ikm′ ∀k ∈ R̃. A nonrenewable resource k is called redundant if

∑
i∈A r̃ik ≤ R̃k. Non-

executable and inefficient modes, and redundant nonrenewable resources can be removed initially
by the use of the algorithm described in Algorithm 1.

Algorithm 1 Pseudo-code for preprocessing of modes and nonrenewable resources

Remove non-executable modes.
repeat

Remove redundant nonrenewable resources.
Remove inefficient modes.

until No mode removed

Resource strengthening The lower bounds LB2, and LB2X depend upon the resource usages.
If the resource usage of an activity in a certain mode can be increased without changing the
optimal solution, the resulting bounds will be stronger. As in Muller (2011) the following rule is
applied after the initial mode and resource reductions: Let (i, j) ∈ A × A be a pair of activities.
We say that two modes mi ∈Mi and mj ∈Mj are incompatible if they can not be run in parallel,
either because of precedence relations between the activities, or because of resource constraints.
If a mode m ∈ Mi of an activity i ∈ A, is found incompatible with all other modes of all other
activities, then the resource usage is updated as rikm := Rk ,∀k ∈ R.
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5.3 Upper bounds and problem reductions

When solving problems by use of a branch-and-cut approach, good upper bounds are an advan-
tage, as this makes it possible to prune nodes in the search-tree and thus reduce the search space.
Additionally, as the number of variables in the CQIP model (6)–(11) is dependant on the earliest
and latest possible completion time of each activity, and these completion times again are depen-
dant on the upper bound, a good upper bound both reduces the size of the model, and improves
the linear relaxation based lower bound. Further more a good upper bound may be used to deduce
new precedence relations and remove modes. In the following we describe how upper bounds are
found, how new precedence relations are added to the problem, and how modes are removed from
the problem.

Upper bounds To find good upper bounds, we run the Adaptive Large Neighborhood Search
(ALNS) algorithm for the MRCPSP proposed by Muller (2011), having changed the evaluation of
the nonrenewable resource usages to take into account the square-root term in (9). The algorithm
is run using the parameters found in Muller (2011) and with a stopping criteria of 50,000 generated
schedules.

Precedence augmentation When an upper bound, UB, is found, one is only interested in
finding better solutions. Thus, any sequencing of activities which has a lower bound larger than
UB−1 can be forbidden. Let the head, hj , of an activity j ∈ A be the time that must pass before
activity j can be started and let the tail, tj , be the time that must pass from the point where
activity j has completed until the project can be completed. The head and tail of an activity j can
respectively be read from the entries b0j and bjn of the FSD-matrix. Define rik := min{rikm|m ∈
Mi}. We now describe how precedence relations may be deduced on the basis of heads and tails.

The following two rules (13) and (14), are a simple generalization to the multi-mode case of
a subset of the rules employed by Fleszar and Hindi (2004) in their variable neighborhood search
algorithm. Let i, j ∈ A be a pair of activities for which no precedence relations exists. Precedence
relations may be deduced as follows:

hj + ti ≥ UB ⇒ i→ j (13)

∃k ∈ R : rik + rjk > Rk ∧ hj + p
j

+ p
i
+ ti ≥ UB ⇒ i→ j. (14)

We additionally use the following deduction rule also used by Muller (2011): Let i, j, k ∈ A be
a triple of activities for which no precedence relation exists and assume that none of the three can
be run in parallel. We examine all 6 sequencing possibilities of the three activities: (1) i→ j → k,
(2) i → k → j, (3) j → i → k, (4) j → k → i, (5) k → i → j, and (6) k → j → i. Given a
sequencing, a→ b→ c, a lower bound on the makespan is ha+p

a
+p

b
+p

c
+tc. In the following let

LB(1), . . . , LB(6) be such lower bounds corresponding to the sequences (1)–(6). New precedence
relations may be deduced as follows:

LB(1) ≥ UB ∧ LB(2) ≥ UB ∧ LB(5) ≥ UB ⇒ j → i

LB(3) ≥ UB ∧ LB(4) ≥ UB ∧ LB(6) ≥ UB ⇒ i→ j

LB(1) ≥ UB ∧ LB(2) ≥ UB ∧ LB(3) ≥ UB ⇒ k → i

LB(4) ≥ UB ∧ LB(5) ≥ UB ∧ LB(6) ≥ UB ⇒ i→ k

LB(1) ≥ UB ∧ LB(3) ≥ UB ∧ LB(4) ≥ UB ⇒ k → j

LB(2) ≥ UB ∧ LB(5) ≥ UB ∧ LB(6) ≥ UB ⇒ j → k

If new precedence relations have been added to the problem, the ALNS algorithm is repeated,
in order to see if a better upper bound can be found.

Mode diminution As is the case with precedence augmentation, when a new upper bound,
UB, is found, only subsequent improvements are of interest. Thus modes, which lead to a lower
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bound larger than UB − 1 may be removed. When a new UB is found, a mode m ∈ Mi of an
activity i ∈ A is removed if one of the following expressions are true:

1. hi + pim + ti ≥ UB.

2. bii ≥ −pim + 1.

3. The current entries of the FSD-matrix implies that i must run in parallel with some activity
j, and m is incompatible with all modes of j.

The removal of a mode may render other modes non-executable and may render some nonrenewable
resources redundant. Thus the two first steps of Algorithm 1 are repeated if a mode is removed.
As for precedence augmentation, if a mode is removed, the ALNS algorithm is repeated in order
to see if a better upper bound can be found.

5.4 Initial variable reduction

In the branch-and-cut algorithm proposed by Zhu et al. (2006) a so-called variable reduction
technique is applied initially in order to fix variables to zero through bound calculations for the
entries of the FSD-matrix. We apply a procedure almost identical to the one of Zhu et al. (2006),
the only difference being the bound arguments applied. In the variable reduction procedure of
Zhu et al. (2006), for each pair of precedence relations (i, j) ∈ E , the subproject, q, corresponding
to the FSD-matrix entry bij is constructed. Before a potentially time consuming lower bound
argument is applied, a genetic algorithm is run on q to see whether a schedule can be found with
makespan bij , if this is the case the bound cannot be improved. The bound arguments applied to
q by Zhu et al. (2006) is a truncated branch-and-cut procedure, using a bound based on renewable
resources. We instead apply the bound arguments described earlier, i.e., LB1, LB6, LB8, LB10,
LB11, LBX1, and LB2X. To further improve the bounds, we also apply a truncated branch-and-
cut procedure, but rather than applying the procedure only to the subproblem, we apply it to the
complete problem, with the objective of minimizing the term

σi − τj =
∑

m∈Mi

T l
im∑

t=T e
im

xitm(t− pim)−
∑

m∈Mj

T l
jm∑

t=T e
jm

t · xjtm,

Including all activities of the project may produce better bounds, than only considering activities
of the subproject, but as the problem is larger, solving it may also be more time consuming. In
order to save time we, as Zhu et al. (2006), only apply the bound arguments to a subset of the
subprojects. Zhu et al. (2006) only apply the bound arguments if their heuristic can not find a
solution with a makespan equal to the current value of bij , which is sensible since only in this
case may the bound be improved. In our case it may be possible to improve the bound regardless
of such a check, because the truncated branch-and-cut procedure considers all activities of the
project. Even so, we choose to run the truncated branch-and-cut procedure only if the heuristic
(in our case the ALNS algorithm) can not find a solution equal to the current value of bij , as we
deem such a case the most promising for improving the bound bij .

In addition to removing variables before starting the branch-and-cut algorithm, variable reduc-
tion may also improve the bounds of the FSD-matrix (because of the truncated branch-and-cut
procedure), which is a benefit as the FSD-matrix, as we shall see, is used throughout the branch-
and-bound tree.

5.5 Variables and branching

Branching based directly on fractional x-variables has the potential to create an unbalanced search-
tree, as the branch corresponding to xjtm = 0 may not change the value of the LP-relaxation
much. We now describe two methods, which may produce a more balanced search-tree. We will
in Section 6 examine whether it is profitable from a computational point of view to include these
methods.
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Mode-branching (y-variables) One solution for creating a more balanced search-tree is bran-

ching on the modes of an activity, i.e.,
∑T l

jm

t=T e
jm
xjtm = 0 in one branch, and

∑T l
jm

t=T e
jm
xjtm = 1

in the other, for some activity i ∈ A and mode m ∈ Mi. In order to achieve this behavior, we

add the artificial variables yim :=
∑T l

im

t=T e
im
xjtm described earlier explicitly to the model, and let

CPLEX decide when to branch on these variables.

Time-branching (SOS) As described by Zhu et al. (2006), the x-variables, {xjtm : m ∈
Mj , t = T ejm, . . . , T ljm}∀j ∈ A, divide nicely into Special Ordered Sets (SOS) of type 1. Each
variable xjtm is assigned a weight t. Let x∗ be a fractional solution in some branch-node. CPLEX
branches on a SOS, S, of some activity j by dividing the variables of S into two sets: S1 and S2, and
in one branch setting

∑
(t,m)∈S1

xjtm ≤ 0, while in the other branch setting
∑

(t,m)∈S2
xjtm ≤ 0.

The division is such that ∀(t,m) ∈ S1 : tx∗jtm ≤ C and ∀(t,m) ∈ S2 : tx∗jtm ≥ C, where
C =

∑
i∈S tx

∗
jtm. Thus branching on a SOS can be seen as branching on the time-interval, such

that in one branch the activity j must complete no later than bCc, while in the other branch the
activity j may complete no earlier than dCe.

5.6 Variables and propagation

As mentioned earlier, when branching on a variable, additional information may be deduced. This
information may be used to update the FSD-matrix, and subsequent calculation of the closure of
the FSD-matrix may lead to a tightening of the earliest and latest possible completion of some
activities, and the corresponding variables may be fixed to zero. The information contained in
the FSD-matrix of the current branch-and-bound node is passed down to its children nodes, so
information gathered from branching decisions are accumulated as branching progresses. Fixing
variables may result in improved lower bounds, but propagation may be time-consuming and
there is a trade-off between the time spent per branch-and-bound node, and the gain in number
of branch-and-bound nodes having to be considered. We will in Section 6 be examine whether it
is profitable to include propagation. In the following we describe how propagation is performed
for each of the three possible branching types, that is, branching on x-varibles, branching on
y-variables, and branching on Sepcial Ordered Sets.

y-variables When mode-branching occurs, one disallows a mode m, for an activity j in one
branch (yjm = 0), while fixing the activity to run in that mode in the other branch (yjm = 1).
Since some of the bound arguments used to calculate the entries of the FSD-matrix are dependant
on the available modes, reapplying these bound arguments may lead to improvements of some
entries of the FSD-matrix.

SOS When time-branching occurs, depending on the branch, some activity j is fixed to complete
either before or after some point in time τ . This may again be reflected in the entries of the FSD-
matrix: requiring that j completes before time τ the FSD-matrix may be updated as bj0 =
−(τ + 1), while requiring that j completes after time τ the FSD-matrix may be updated as
b0j = τ −max{pjm|m ∈Mj}+ 1.

x-variables When branching on x-variables, in one branch some activity j is fixed to complete
at some point in time τ using some mode m, while in the other branch j may not complete at
time τ using mode m.

In case of the first branch, the FSD-matrix updated firstly in the same manner as for the
y-variables, i.e., reapplying the bound arguments that depend on available modes, and secondly
by setting bj0 = −(τ + 1) and b0j = τ − pjm + 1. This update imply σj + pjm − 1 = τ .

In case of the second branch, i.e, the xjτm = 0 branch, let τ = min{t ∈ T : xjtm = 0,m ∈Mj}
and let τ = max{t ∈ T : xjtm = 0,m ∈Mj}, i.e., the earliest and latest possible completion time
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given the current state of the branch-and-bound tree. The FSD-matrix is then updated by setting
bj0 = −(τ + 1) and b0j = τ −max{pjm|m ∈Mj}+ 1.

5.7 FSD-matrix-based mode removal

Based on the entries of the updated FSD-matrix and the modes disallowed at the current node,
further modes may be removed:

Heads and tails If an activity i ∈ A and mode m ∈Mj exists, such that hi + pim + ti ≥ UB,
the mode may be removed (this check is equivalent to check 1 from mode diminution).

Parallel activities If the current entries of the FSD-matrix implies i must run in parallel with
some activity j, and m is incompatible with all modes of j, then the mode may be removed (this
check is equivalent to check 3 from mode diminution).

Nonrenewable resources If an activity i ∈ A and mode m ∈ Mj exists such that m is
non-executable, then the mode may be removed.

5.8 FSD-matrix-based pruning

The entries of the FSD-matrix and the modes currently disallowed may also be used to prune
search nodes:

Infeasible completion times If through the tightening of bounds on earliest and latest com-
pletion times, a variable, which was earlier fixed to one by a branching, has to be fixed to zero,
the node may be pruned.

Infeasible modes If through the application of the mode removal arguments just described, a
mode, which was earlier fixed to one by a branching, has to be fixed to zero, the node may be
pruned.

Parallel activities If the current entries of the FSD-matrix implies i and j must run in parallel
and no pair of modes is compatible, or if the FSD-matrix implies that the activities i, j, and k
must run in parallel and no triple of modes is compatible, then the node may be pruned.

6 Computational experiments

In this section we describe the computation experiments performed. This includes testing the
effect of the variables included in the model, the effect of cutting, and the effect of branching-based
propagation. We conclude with a study of the effect of the risk factor on the average makespans,
and on the time taken to find solutions. The algorithm has been coded in C++, compiled with gcc
4.4.3 and the experiments have been run on a PC with 2 Intel(R) Xeon(R) CPU X5550 @ 2.67GHz
(16 cores in total, but only a single core is used), with 24 GB of RAM, and running Ubuntu 10.4.
CPLEX is left at its default settings, except for the following parameters: GUB-covers are set to be
separated aggressively, clique-covers are set to be separated very aggressively, the local-branching
heuristic is on and the cutfactor is set to 6. These settings were taken from Zhu et al. (2007).
For the root node, the emphasis is set to best bound, after which it is set to balanced as this
gave the best performance for preliminary tests. Only a single thread is used. For the truncated
branch-and-cut algorithm used in the variable reduction procedure ,CPLEX is left at its default
settings, except for the following parameters: GUB-covers are set to be separated aggressively,
clique-covers are set to be separated very aggressively, the emphasis is set to best bound, repeat
presolve is set to off, the node limit is set to 100, and the time limit is set to 5 seconds. Again
only a single thread is used. The code is available for download at http://diku.dk/~laurent.
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6.1 Benchmark instances

As the Single-mode Resource-Constrained Project Scheduling Problem (SRCPSP) has not been
considered before, there are no benchmark instances available in the literature. There are, however,
a number of benchmark instances for the MRCPSP available from the PSPLIB, which have been
widely used in the literature (see also Kolisch and Sprecher (1997)). The PSPLIB may be found
at http://129.187.106.231/psplib/. It seems natural to extend these benchmark instances to
the problem considered here. We extend the benchmark classes: J10, J12, J14, J16, J18, and
J20. These benchmark classes consists of instances containing respectively 10, 12, 14, 16, 18 and
20 non-dummy activities. Each activity may be performed in up to 3 different modes, there are
two nonrenewable, and two renewable resources. The number of instances in each benchmark
class J10–J20 is respectively 536, 547, 551, 550, 552, and 554. For these, all optimal solutions
are known. The new instances are generated as follows: the mean of the stochastic nonrenewable
resource usage (r̃jkm) is set to the value of the nonrenewable resource usage of the corresponding
deterministic instance, and the standard deviation (σjkm) is chosen at random within the range
[a · r̃jkm; b · r̃jkm], where a = 0, and b = 0.15. The value of the risk factor ε, is not part of the
instance. The instances are available for download at http://diku.dk/~laurent.

6.2 Evaluation of components

We here examine the different components of the algorithm, in order to establish which com-
binations perform the best. As the instances may take a long time to solve, we restrict these
experiments to the same subset of instances from the J20 benchmark class as Zhu et al. (2006):
J2013 containing 10 instances.

Model (no propagation) We first examine the effect of including the redundant y-variables,
and the Special Ordered Sets when solving the model without propagation. All other components
are disabled, i.e., variable reduction, cutting, and propagation. The results can be see in Table 1.
Including y-variables has a slightly positive effect on the integrality gap compared to the model
with no y-variables and SOS. All other combinations are worse.

Table 1: Effect of including the redundant y-variables and the special ordered sets. The column #Opt
is the number of instances solved to optimality within 3600 seconds, the column Dev. Best is average
percentage deviation from the optimal solution for the deterministic case, the column Gap is the average
percentage integrality gap of instances not solved to optimality, the column Nodes is the average number
of nodes in the branch-and-bound tree, and the column Time is the total time used across all 10 instances.
In the Vars. column y means the y-variables are included, y means the y-variables are given priority over
x-variables for branching, and sos means that SOS are included.

Vars. #Opt Dev. Best(%) Gap(%) Nodes Time(s)

6 3.38 6.064 34066 16396
sos 3 3.94 11.721 138742 26543
y 6 2.81 4.289 12816 17391
y 5 3.15 13.645 23437 21302
y,sos 3 4.23 12.205 65189 26784
y, sos 1 4.23 21.014 52707 32434

Variable reduction (no propagation) We next examine the effect of initial variable reduction.
We use the best combination from the previous test, i.e., y-variables are included. Again all other
components are disabled. The results can be seen in Table 2. Variable reduction has a slight
negative effect, and many more branch nodes are examined.
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Table 2: Effect of variable reduction. The column Vars. is the average number of binary variables in the
problem, and the column Rem. is the average number of varibles removed by variable reduction. The
remaning columns are as earlier.

#Opt Dev. Best(%) Gap(%) Nodes Time(s) Vars. Rem.

No Var. Red 6 2.81 4.289 12823 17390 0.00 0.00
Var. Red 6 2.88 5.440 26278 18578 906.25 63.75

Cuts We next examine the effect of cutting on the stochastic nonrenewable resource constraints.
y-variables are included, and variable reduction is disabled, as are the remaining components. The
results can be seen in Table 3. Cutting locally throughout the branch-and-bound tree performs the
best. This agrees with the findings of Atamtürk et al. (2011), where cutting locally throughout the
branch-and-bound tree also showed the best performance. Disappointingly, the effect of cutting
is slight. We beleive the reason for this is, that there are only 2 second-order cone constraints in
the problem, and that these may thus not influence the complete problem structure much.

Table 3: Effect of including cuts for the nonrenewable resources. The columns are as earlier.

#Opt Dev. Best(%) Gap(%) Nodes Time(s)

No cutting 6 2.81 4.289 12825 17389
Root cutting 6 2.88 4.951 14794 18540
Global cutting 6 3.10 6.732 12692 17470
Local cutting 6 2.59 4.618 14314 17867

Model (with propagation) We now turn our attention to propagation. Propagating on a
branching type takes time, and we want to examine, which combination of variables included and
which type of branch propagated leads to the best performance. Recall that we may propagate
on any of the following: x-variables, y-variables, and Special Ordered Sets. For these experiments
cutting is enabled, as is FSD-matrix-based mode removal and pruning, while variable reduction is
disabled. The results can be seen in Table 4. In order to better present the differences between
combinations, the table is sorted with respect to the number of optimal solutions, on ties the
average deviation from the optimal solutions known from the deterministic case, on ties finaly
on the average gap. The combination where branching on y-variables is propagated, and y-
variables are given priority over x-variables for branching gives the best performance solving a
total of 8 instances to optimality, which is better than the 6 instance solved to optimality without
propagation.

Variable reduction (with propagation) As mentioned earlier, variable reduction may im-
prove the bounds of the FSD-matrix and as the FSD-matrix is used as part of the propagation,
it is of interest to examine the effect of enabling variable reduction, when propagation is used.
For these experiments the best propagation strategy from the previous test is used, and some
components are enabled. The results can be seen in Table 5. Variable reduction can be seen to
improve the average deviation from the optimal solutions known from the deterministic case, i.e.,
the average makespan, but the integrality gap is worsened.

Summary Table 6 summarise the improvement of using the best solution strategy found com-
pared to CPLEX.
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Table 4: Performance for different combinations of variables and type of branching propagated. An x, y
and sos in the Prop column means that branching on x-variables, y-variables, and Special Ordered Sets
respectively are propagated. The remaining columns are as earlier.

Vars. Vars. prop. #Opt Dev. Best(%) Gap(%) Nodes Time(s)

y y 8 2.59 4.417 15020 15996
y x,y 8 2.59 4.963 14371 15007
y x,y 7 3.16 7.303 18254 15528
y x 6 3.10 8.959 11275 19137
y x 6 3.16 5.922 20319 17514
y y 6 3.38 6.064 13743 16708
y,sos y,sos 5 3.65 15.080 25406 20497
y,sos y 5 3.65 15.111 27335 22059
y,sos x,y,sos 5 3.65 15.227 24348 21197
y,sos x,y 5 3.65 15.252 24007 20761
y,sos x,y,sos 4 3.65 9.890 43433 25845
y,sos x,sos 4 3.65 10.299 47898 25867
sos x,sos 4 3.65 10.497 30682 25519
y,sos y 4 3.67 10.355 41874 25867

x 4 3.94 7.391 28995 22852
sos x 4 4.00 13.137 31201 25568
y,sos sos 4 4.23 10.832 49584 26229
y,sos sos 3 3.65 17.719 34299 29359
y,sos y,sos 3 3.94 9.164 49029 27308
y,sos x,y 3 3.94 9.513 39935 26958
y,sos x 3 3.94 10.487 43893 26933
sos sos 3 4.23 11.048 37344 26750
y,sos x,sos 2 4.23 18.585 29066 29404
y,sos x 2 4.23 18.690 28547 29416

Table 5: Effect of including variable reduction with propagation. The columns are as earlier.

#Opt Dev. Best(%) Gap(%) Nodes Time(s) Vars. Rem.

No Var. Red. 8 2.59 4.350 15321 15471 0.00 0.00
Var. Red. 8 2.22 5.999 12702 14823 906.25 63.38

6.3 Final results

We here examine the effect of the risk factor ε on the average makespan. We use the best solution
strategy found in the previous experiments, that is, y-variables are included and given priority over
x-variables for branching, cutting is performed locally in each branch-and-bound node, and variable
reduction is used. For these experiments we run on all instances from the J10–J20 benchmark
classes. We remind the reader that the number of instances in each benchmark classes J10–J20
is respectively 536, 547, 551, 550, 552, and 554. We experiment with four values of ε shown in
Table 7. Recall that for the benchmark instances considered |R̃| = 2, and thus εk =

√
ε,∀k ∈ R̃.

Setting ε = 0 corresponds to not taking uncertainty into account. For this case the problem is a
regular MIP rather than a CQIP and corresponds to the deterministic case.

The results from running on the J10–J20 benchmark instances can be seen in Table 8. As
expected the average makespan of the solutions increase as the value of ε increases, illustrating
the trade-off between the length of the makespan and the probability that the project will not
run “over budget”. The increase in makespan is around 7% when requiring the project to stay
on budget with a 99% probability as compared to not taking stochasticity into account. This
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Table 6: Comparison of best solution strategy to CPLEX.

#Opt CP Dev.(%) Gap(%) Nodes Time(s)

CPLEX 6 3.38 6.064 34066 16396
Best 8 2.22 5.999 12702 14823

Table 7: Values of ε used, and the corresponding values of εk and Φ−1(εk)

ε εk Φ−1(εk)

0.99 0.995 2.58
0.95 0.975 1.96
0.85 0.922 1.42
0 0 0

increase seems an acceptable price to pay for robustness. When the value of ε increases, so does
the number of infeasible problem instances, but this number stays relatively low: up to around
2% of the instances for J12–J20, and up to around 10% for J10.

On all instances, when increasing ε to a positive number, i.e., changing the model from being
a regular MIP model to being a CQIP, the computational time increases. The average times per
instance are however relatively small, and using less than 5 minutes to solve a scheduling problem,
which could span days, weeks, or months seems acceptable. When comparing the minimum,
maximum, and average time, one observes that there is a big variance, with some instances taking
almost no time, while others take the full time allotted (the reason why some run times are above
the allotted 3600 seconds, is that the time spend cutting and solving in the root node is not
counted towards the 3600 seconds). This indicates that a few instances are hard taking up a lot
of time, while the remaining are solved relatively fast.

We can consistently solve almost all instances up to J18 (1 is unknown for J16 and ε = 0.95, and
up to 4 are unknown for J18), while for J20 around 20–25 instances are not solved to optimality.
For J20 the average optimality gap is relatively small (below around 8%), while it is somewhat
larger for J18 (below around 16%). The heuristic performs remarkably well and is less than 1%
from the best found solution, and in some cases much closer.

7 Conclusion

We have presented a new variant of the MRCPSP, where nonrenewable resources are stochastic
and described by a mean and a variance, and the nonrenewable resources take the form of chance
constraints. We have shown how the problem can be modelled as a CQIP, where the chance
constraints are modelled as second-order cone constraints. This problem is of interest both in
itself, and as a stepping stone towards a completely stochastic RCPSP model.

In order to solve the problem we have proposed a branch-and-cut algorithm and experimented
with propagation rules based on the branching decisions performed in the branch-and-bound tree,
and with cuts for the nonrenewable resources. These experiments show that the branch-and-cut
algorithm using propagation outperforms CPLEX.

We have further experimented with the branch-and-cut algorithm on a large number of bench-
mark instances found in the literature and adapted to the MRCPSP-SNR. These experiments
show that taking stochasticity into account only results in an increase of around 7% of the average
makespan. Solving a CQIP instead of a MIP as expected results in an increase of the running
time, but on average these running times stay relatively low.

It would be of interest to investigate how to merge stochastic nonrenewable resources, with
stochastic models for the RCPSP such as stochastic activity durations, or renewable resource
consumptions.

15



Table 8: Results from running on the J10–J20 benchmark classes. The column #O is the number of
instances solved to optimality, #I is the number of instances proved to be infeasible, #U is the number
of instances which were neither proved optimal optimal nor infeasible, Mks is the average makespan, ∆H
is the average percentage deviation between the final solution and the solution found by the heuristic,
Gap is the average gap in percent when the algorithm terminated, Avg, Min and Max is respectively
the average, minimum, and maximum time in seconds per instance

ε #O #I #U. Mks ∆H(%) Gap(%) Min(s) Max(s) Avg(s)

J10

0.99 482 54 0 20.39 0.01 0.000 0.00 232.50 3.65
0.95 507 29 0 20.52 0.01 0.000 0.00 124.05 2.78
0.85 526 10 0 20.36 0.03 0.000 0.00 372.57 3.96

0 536 0 0 19.04 0.00 0.000 0.00 63.61 1.53

J12

0.99 536 11 0 22.95 0.16 0.000 0.00 2799.68 16.24
0.95 542 5 0 22.59 0.10 0.000 0.00 1092.07 7.73
0.85 544 3 0 22.24 0.09 0.000 0.00 466.30 6.03

0 547 0 0 21.35 0.03 0.000 0.00 236.34 3.04

J14

0.99 542 9 0 24.95 0.32 0.000 0.00 1825.06 22.67
0.95 546 5 0 24.51 0.29 0.000 0.00 828.58 17.23
0.85 546 5 0 24.08 0.30 0.000 0.00 2248.01 17.91

0 551 0 0 23.23 0.06 0.000 0.00 324.54 4.02

J16

0.99 544 6 0 26.61 0.55 0.000 0.00 3017.48 38.39
0.95 543 6 1 26.09 0.51 5.263 0.00 3769.63 41.63
0.85 545 5 0 25.79 0.46 0.000 0.00 3987.37 32.00

0 550 0 0 25.00 0.14 0.000 0.00 3058.17 13.86

J18

0.99 546 2 4 28.23 0.84 11.420 0.00 4137.56 121.19
0.95 548 2 2 27.79 0.73 13.255 0.00 4170.98 98.67
0.85 549 2 1 27.39 0.67 15.634 0.00 3998.94 77.36

0 552 0 0 26.66 0.29 0.000 0.00 2186.09 26.89

J20

0.99 524 5 25 29.87 0.97 8.432 0.00 4649.16 289.04
0.95 530 3 21 29.31 0.97 8.169 0.01 5171.45 260.19
0.85 530 2 22 28.87 1.04 8.476 0.01 4842.29 253.77

0 548 0 6 27.88 0.43 8.063 0.01 4031.13 95.22
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Möhring, R., Radermacher, F., Weiss, G. Stochastic scheduling problems ii-set strategies. Math-
ematical Methods of Operations Research, 29(3):65–104, 1985.

Muller, L. F. An adaptive large neighborhood search algorithm for the multi-mode resouce-
constrained project scheduling problem. Technical report, Department of Management Engi-
neering, Technical University of Denmark, Denmark, 2011.

Radermacher, F. Cost-dependent essential systems of es-strategies for stochastic scheduling prob-
lems. Methods of Operations Research, 42:17–31, 1981.

Radermacher, F. Analytical vs. combinatorial characterizations of well-behaved strategies in
stochastic scheduling. Methods of Operations Research, 53:467–475, 1986.

Sprecher, A., Hartmann, S., Drexl, A. An exact algorithm for project scheduling with multiple
modes. OR Spectrum, 19(3):195–203, 1997.

Stork, F. Stochastic Resource Constrained Project Scheduling. PhD thesis, TU-Berlin, 2001.

Tsai, Y., D Gemmill, D. Using tabu search to schedule activities of stochastic resource-constrained
projects. European Journal of Operational Research, 111(1):129–141, 1998.
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Many processes within production scheduling and project management involve the scheduling of a 
number of activities, each activity having a certain duration and requiring a certain amount of limited 
resources. The duration and resource requirements of activities are commonly the result of estima-
tions, and thus generally subject to uncertainty. If this uncertainty is not taken into account the 
resulting schedules may not be robust in the sense that, when executed, the uncertainty may cause 
the schedules to take longer than expected, consume moreresources, or be outright infeasible. We 
propose a new variant of the Multi-mode Resource-Constrained Project Scheduling Problem, where 
the nonrenewable resource requirements of each mode is given by a Gaussian distribution, and the 
nonrenewable resource constraints must be satisfied with a certain probability p. Such constraints 
are also known as chance constraints. We present a Conic Quadratic Integer Program model of the 
problem, and describe and experiment with a branch-and-cut algorithm for solving the problem. In 
each node of thebranch-and-bound tree, the branching decisions are propagated in order to remove 
variables from the problem, and thus improve bounds. In addition we experiment with cutting on the
conic quadratic resource constraints. Computational experiments show that the branch-and-cut 
algorithm outperforms CPLEX 12.1. We finally examine the “cost of uncertainty” by investigating the 
relation between values of p, the makespan, and the solution time.
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