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1 Introduction

As part of the EUDP-founded project ‘Low Noise Airfoil’, this report presents

the results obtained during an experimental campaign that was conducted in the

wind tunnel at LM Wind Power in Lunderskov from August 16th to 26th, 2010.

The goal of this study is to validate the so-called TNO trailing edge noise model

through measurements of the boundary layer turbulence characteristics and the

far-field noise generated by the acoustic scattering of the turbulent boundary layer

vorticies as they convect past the trailing edge.

This campaign was conducted with a NACA0015 airfoil section that was placed

in the wind tunnel section. It is equipped with high-frequency microphones be-

neath its surface so that surface pressure fluctuations generated by the boundary

layer turbulence can be measured.

Hot-wire anemometry was used to measure mean flow velocities and turbulent

fluctuations inside the boundary layer. For this, a traverse system was developped

so that the hot-wire probes could be moved with a step motor perpendicularly to

the airfoil chord in order to perform measurements across the boundary layer. The

probes could be moved manually back and forth relatively to the inflow velocity

and along the trailing edge in order to investigate several locations in the flow

field.

As a second part of the experiment, the previous traverse system was removed

and two airfoil-shaped probe-holders were installed instead. These were designed

to hold in place two hot-wire sensors, one on each side of the trailing edge (below

and above the plane spanned by the airfoil trailing edge and the inflow velocity) in

an attempt to measure the velocity fluctuations associated to the pressure waves

originating from the acoustic scattering at the trailing edge, which should behave

as a dipole.

The next section describes the experimental set-up and gives an overview of

the measurement data. Turbulent boundary layer measurements are presented in

Section 3. These measurements are confronted in Section 4 to CFD calculations

as well as to the TNO model that can be used to calculate the airfoil surface

pressure fluctuations spectrum. Some of the experimental data measured in the

Laminar Wind Tunnel at Stuttgart University are used to complete this study. The

previous comparisons are used in order to improve the TNO model predictions.

Section 5 gives a short presentation of the attempt to measure trailing edge noise

with hot-wire anemometry and the associated results.
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2 Experimental Set-up

2.1 LM Wind Power Wind Tunnel

The LM Wind Power wind tunnel is designed for the testing of wind turbine air-

foils [19]. The actual test section dimensions are 1.35m in width, 2.70m in height,

and 7m in length. A NACA0015 airfoil section with a 0.9m chord was placed

across the width of the tunnel. During this study, three inflow velocities were in-

vestigated: U∞ = 30, 40 and 50m/s, as well as four angles of attack: α= 0, 4, 8

and 12o. Note that the flow temperature was oscillating between approximately

20 and 26oC during the experiment.

A previous study [19] showed that the inflow turbulence (without turbulence

grid in the tunnel as it is the case here) was roughly of the order of I =0.1% in

all velocity directions at all wind tunnel inflow velocities. A subsequent study [2]

using tri-axial hot-wire anemometry showed higher turbulence intensities of ap-

proximately 1%.

2.2 Hot-Wire Measurements

Both single-wire and bi-axial hot-wire probes from Dantec Dynamics [11] together

with the StreamLine CTA (Constant Temperature Anemometer) measurement

system and the StreamWare software were used for data acquisition and post-

processing. The traverse system used to explore the boundary layer (BL) with

these probes was designed and manufactured at Risø DTU by Andreas Fischer.

The whole system with probes installed in the wind tunnel downstream of the

airfoil trailing edge (TE) is pictured in Figure 1.

Figure 1. Traverse set-up

As for the far-field sound measurements, two slanted hot-wire probes were fixed

at the tip of probe-holders, themselves mounted on the nose of airfoil-shaped

holders spanning the whole tunnel width downstream the airfoil TE. The device

set-up can be seen in Fig. 2.

Details of the calibration of the hot-wire sensors, as well as temperature correc-

tions and velocity coordinates transformations, are provided in Appendix B. The

measurement sampling rate was set to 25 kHz, but a 10kHz low-pass filter was

applied when acquiring the data to avoid aliasing.
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Figure 2. Slanted hot-wire holders set-up

In addition, TE noise measurements with hot-wires were performed both in DC

and AC mode. In the latter case, various amplification gains were used and a

100Hz high-pass filter was applied (see Section 5).

2.3 Airfoil Model and Surface Microphones

The NACA0015 airfoil section with a chord C =0.9m and a spanwise extension

L=1.35m was installed in the wind tunnel. For some cases, a zig-zap (ZZ) tape

was placed at 5% chord from the leading edge on the suction side of the airfoil in

order to trigger transition.

Sennheiser KE 4-211-2 microphones were flush-mounted beneath the airfoil sur-

face in order to measure the pressure fluctuations. These microphones have a po-

tential sampling frequency larger than 50 kHz. However, the actual sampling rate

of the data was set to the same as for the hot-wire probes, i.e. 25 kHz. Note that

the low-pass filter couldn’t be applied to the microphone measurement data since

these were directly acquired through the A/D board and could not be processed

by the StreamLine acquisition system. Consequently, the surface pressure mea-

surements may be polluted by some aliasing effects. However, it is believed that

this effect is small in our case as the energy contained in the signals at frequencies

above 25 kHz is expected to be rather small.

The array of surface microphones consists of 2×38 microphones placed on the

each side of the airfoil. During this campaign only 5 microphones were acquired.

The locations of the corresponding pressure holes are:

- Microphone M28 : X/C=0.833 , z=615mm

- Microphone M29 : X/C=0.894 , z=629mm

- Microphone M30 : X/C=0.950 , z=645mm

- Microphone M29 : X/C=0.978 , z=655mm

- Microphone M36 : X/C=0.019 , z=702mm (on pressure side)

Note that the number N in their designation ‘MN ’ is related to their number in

previous experiments with the same model (see for example [6, 2]). These micro-

phones are all located on the suction side except for the last one located close to

the leading edge. Microphones M29 and M30 are connected to the surface holes

through a tubing system which requires a special calibration (see Fischer [9]).

Risø–R–1761(EN) 7



2.4 Overview of BL Measurement Data

Three different inflow velocities were considered during the campaign and the

respective Reynolds numbers Re based on the airfoil chord are reported in Table 1.

The kinematic viscosity is assumed equal to 1.58×10−5m2/s (air at approximately

23oC).

U∞ [m/s] 30.0 40.0 50.0

Re (×106) 1.71 2.28 2.85

Table 1. Inflow velocities and associated Reynolds numbers

The table in Fig. 3 provides an overview of the different measurement cases

which are organized in ‘series’, each of those characterized by specific experimental

conditions. The series are denoted as ‘ST ’ (see 1st column in the table), where T

is a specific number assigned to each one of them.

For each series, the boundary layer was traversed with the hot-wire probe ac-

cording to a distance to the wall distribution which name is specified in the last

column. The actual positions can be found in Appendix A. The number in paren-

theses refers to the number of measurement points across the BL. Note that the

number of points for the ‘Original’ series S01 and S02 is larger than for S03 as the

two first series include points both on the suction and pressure side of the airfoil,

whereas the third one only includes points on the suction side.

The 5th column ‘Yref’ gives the distance from the airfoil wall surface to the first

measurement point. It is an offset that has to be added to the positions given in

Appendix A.

The 6th column ‘Y-axis’ refers to the X-wires probe (denoted as ‘XN’ in the 2nd

column) being orientated vertically or horizontally. In the former case it measures

both ux and uy, in the latter ux and uz. For series S15, BL denotes the fact that

a boundary layer probe type is used. Its single hot-wire is parallel to the airfoil

surface and perpendicular to the incoming mean flow.

The 4thcolumn ‘X/C’ specifies the position of the probe chordwise, whereas the

7th column specifies its position in the width of the wind tunnel. The microphone

designation in parentheses refers to the one which is directly upstream of the

hot-wire probe.

Figure 3. Series experimental conditions details

The table in Fig. 4 provides the inflow velocities and angles of attack that were

actually measured for each individual series.
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Figure 4. Measured velocities and angles of attack for each series

2.5 Data Post-Processing

The calibration of the hot-wires and calculation of the velocity time-series from

the hot-wire voltage outputs are described in Appendix B.

A brief summary of the theory that is used to analyze the BL flow turbulence

is reported in Appendix C. The theoretical developments are mostly based on the

spectral theory of turbulence. The assumptions of homogeneity and isotropy are

often required to obtain analytical solutions.

In the following of this report, some figures display various quantities as a

function of the distance to the wall/airfoil surface. It should be noted here that

the actual value that is used in the figures is the distance of the hot-wire probe

to the reference point, the latter being located on the wall itself (y=0), but for

an obvious reason it is never visited by the probe. Note that even if the probe

is moving perpendicularly to the airfoil chord, the data have been projected onto

the normal to the wall (see Appendix A for details).

The previous change of coordinates is also taken into account for the velocity

components that are displayed in the figures of this report. As a result, the sub-

scripts x, y, and z of the velocity components refer to the direction parallel to the

airfoil surface and aligned with the main flow direction, the direction perpendic-

ular to the airfoil surface, and the direction along the trailing edge, respectively.

The variable X will refer to the actual chord axis.

Risø–R–1761(EN) 9



3 Turbulent Boundary Layer Mea-
surements

This chapter concentrates on the display and analysis of the velocity measurements

with the X-wires probe in the turbulent boundary layer over the NACA0015 airfoil

section as well as the surface pressure measurements.

Two distinct experimental conditions are studied. In one case, the airfoil surface

is clean. In the second one, a zig-zag (denoted ZZ hereafter) tape was placed at

5% of the airfoil chord (on the suction side only) in order to trigger transition to

turbulence.

3.1 Influence of the ZZ-Tape

Figure 5 show the mean velocity profiles Ux across the BL measured at U∞=40

m/s for the various angles of attack. Each subfigure displays these profiles at three

different locations along the airfoil chord: X/C=0.91, 0.995 and 1.003. It can be

observed that the introduction of the ZZ-tape is slowing down the boundary layer

velocity quite noticeably, though for some unknown reason this is less pronounced

at α=8o. It can also be seen that the velocity profiles remain almost unchanged

between the locations X/C=0.995 and 1.003.

In the same cases as above, Figs. 6(a) and (b) respectively show the turbulent

stresses <uxux> and <uyuy>. It can be observed that the ZZ-tape significantly

increases the turbulence intensities as it could be expected. Again, it seems that

the case α=8 is less subject to this influence.

Figs. 7(a) and (b) respectively show the integral length scales Lx and Ly (see

their definitions in Appendix C) for the same cases as above. It can be seen that

the ZZ-tape has a general tendency to increase these length scales, though it is

not always the rule depending on the position across the BL. It should be noted

that in some cases, the integral length scale is diverging to high values at the

edge of the BL and above (for Lx at α=12o and for Ly at all angles of attack).

This is believed to be non-physical as the turbulence should become insignificant

outside the boundary layer, and it is probably originating from numerical errors

or divergence of the integrals when evaluating these length scales.

As a general conclusion concerning the previous data, it should be noted that

in all cases the BL characteristics evolve significantly from the chord position

X/C = 0.91 as one is getting nearer to the trailing edge (X/C = 0.995, 1.003).

The BL slightly thickens and the mean velocity decreases. At the same time, the

turbulence intensity increases and its peak value location moves away from the

airfoil surface. This should be taken into account, for example if using experimental

data from the upstream position for trailing edge noise modeling which is related

to BL characteristics in the vicinity of the trailing edge.
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3.2 One-Point Velocity Spectra

One-point velocity power spectra for the three velocity components ux, uy and uz

are compared in Fig. 8(a) for the two first components, and in Fig.8(b) for the

first and the third. Note that these spectra are only displayed for three different

measurement points across the BL, involving the point closest to the surface, a

second one a bit further away close to where the turbulent kinetic energy peaks,

and a third one even further away from the surface where the turbulent kinetic

energy is not quite so strong. It turns out that the position closest to the surface

where the probes could be positioned is already quite far away from the surface. As

a consequence, the first measurement point is already close to where the turbulent

kinetic energy peaks for the two first angles of attack α=0 and 4o. At higher angles

of attack, the boundary layer is getting thicker and it is possible to observe more

accurately the turbulent energy peak. In addition, note that the inflow velocity is

equal to 50m/s for the angles of attack α=0 and 12o, and 40m/s for α=4 and

8o. All data were measured at the chord location X/C=0.91.

It can be observed that the isotropic assumption is only valid at higher frequen-

cies (> 2000 to 3000Hz). This may indicate the existence of an isotropic inertial

sub-range at higher frequencies (i.e. at higher wavenumbers). At lower frequencies,

the first component ux is always more energetic than the two others.
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Figure 8. One-point velocity spectra
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3.3 Cross-Spectral Characteristics between Veloc-
ity Components

For the same cases as in the previous section, the cross-spectra, coherence and

phase between the ux and the uy components are displayed in Figs. 9, 10(a) and

10(b), respectively. Those for the ux and uz components are displayed in the same

figures, but using lines with circles (only circles for the phase plots).

It can be seen that the velocity components are correlated at all frequencies,

though the coherence is in general higher at lower frequencies. The ux and uy

components are always more correlated than the ux and uz components. Inter-

estingly, the phase shift between the various components is changing noticeably

as a function of the distance to the wall. This confirms the obvious fact that the

flow is inhomogeneous in that direction, but also indicates that the turbulence

characteristics, in particular with respect to isotropy, are changing across the BL.
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Figure 9. Cross-spectra for ux − uy and ux − uz components
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Figure 10. Coherence/Phase between ux − uy and ux − uz components
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3.4 Coherence/Phase between Surface Pressure
and Velocity

The cross-correlations between the measured surface pressure from microphone

M30 located at X/C=0.894 and the velocity components measured with the hot-

wire probe at X/C=0.91 are calculated. Note that the displayed data originates

from series S04/S05 for which the microphone M30 is directly upstream the hot-

wire probe location. The velocity locations across the BL are the same as in the

two previous sections.

Figs. 11(a) and (b) show the coherence and phase between the surface pressure

and the horizontal component ux, respectively. Figs. 12(a) and (b) show the same

functions for the vertical component uy.

It can be seen that there exists a relatively good correlation between the surface

pressure and the velocity up to at least 2000Hz, higher in some cases in particular

for the uy component. Note that the coherence calculated for the uy component is

always higher than for the ux component. This is in accordance with the fact the

surface pressure fluctuations are determined by the latter component according to

the theory for the flat plate (see Appendix D).

Surprisingly, below 1000Hz and mostly for the uy component, the coherence

increases as the velocity component is measured further away from the airfoil

surface. This is probably due to the fact that the turbulent energy contained in

the velocity component is decreasing as one goes away from the airfoil surface,

while the wall pressure fluctuating energy remains obviously constant.
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Figure 11. Coherence/Phase between surface pressure-ux component
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Figure 12. Coherence/Phase between surface pressure-uy component
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4 Measurement vs. Model Com-
parisons

This section concentrates on comparison between the measured data (i.e. BL ve-

locity components and surface pressure) and numerical modeling.

In a first step, CFD calculations are performed with the two-dimensional Reynolds

Averaged Navier-Stokes solver EllipSys2D [22, 17, 18] using the k−ω SST turbu-

lence model [16]. For comparison with the clean airfoil, the en transition model by

Drela and Giles [8] is used. In the case of a ZZ-tape placed on the airfoil suction

side, transition is fixed at the same location than the tape, i.e. at 5% chord. Mean

velocity profiles and averaged turbulent quantitities are compared with measure-

ments. In addition, the velocity spectra measured in the wind tunnel are compared

with the isotropic theoretical spectra of Von Karman (or other similar derivation)

for which the turbulent kinetic energy (or turbulent stresses) and length scales are

extracted from the CFD calculations or the measurement data.

In a second step, the results from the previous CFD calculations can be used

as input for the TNO model that provides an estimation of the surface pressure

spectra (in addition to the far field noise spectra).

4.1 Comparison with CFD Calculations

CFD results are compared with the clean airfoil experimental results. Note that

the results displayed for α = 0 and 12o were obtained with the inflow velocity

U∞=50m/s, and those for α=4 and 8o with U∞=40m/s.

The mean velocity and turbulent kinetic energy (TKE) profiles are plotted in

Figs. 13 and 14, respectively. The TKE for the experimental results is obtained

by adding the turbulent stresses in all directions and dividing by 2. Although

the computational and experimental mean velocity profiles are quite similar, the

velocity difference at one given BL position can be quite large. This may be caused

by a wrong offset specification of the initial probe position when exploring the BL

(see Section 2.4). As for the TKE, it can be observed that the differences between

computational and experimental results increase with increasing angle of attack.

The turbulent stresses in the three space directions are displayed in Figs. 15(a-

b-c). Isotropy is assumed for the CFD results, that is:

<uiui>=
2

3
kT for i = x, y, z

It is clear that the flow is highly anisotropic. The ux component is noticeably

more energetic than the two others, whereas the uz component is slightly more

energetic than the uy component.

A wind tunnel blockage effect could have explained some discrepancies. However,

it appears that the differences in maximum mean velocity at the top of the BL

between the measurements and the calculations (see Fig. 13) are rather small.

Nevertheless, the measured maximum velocity slowly overtakes the computed one

as the angle of attack increases. This could be expected since the blockage effect

is intensified when the apparent surface of the airfoil relatively to the incoming

flow, which is directly related to the angle of attack, increases.

The integral length scales Lx, Ly and Lz are displayed in Fig. 16(a-b-c), re-

spectively. As for the CFD estimation, the same value is plotted for the three

length scales using Eq. (D.22) (see Appendix D.3). It should be noted here that

L2 is formally defined in Appendix D as the integral length scale of the uy in

the y-direction (but is calculated assuming isotropy), whereas the experimental

value Ly has been evaluated using uy auto-correlation along the local mean flow
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direction x using the frozen turbulence hypothesis (see Appendix C). Therefore,

a perfect agreement between the measured and computed integral length scales

(more precisely between Ly and L2) should not be expected.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  5  10  15  20  25  30  35  40  45  50

D
is

ta
nc

e 
fr

om
 a

ir
fo

il 
[m

]

Ux [m/s]

α = 00 [deg] - U∞=50 [m/s]

Exp. - x/C=0.91
Exp. - x/C=1.044
CFD - x/C=0.91

CFD - x/C=0.995

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  5  10  15  20  25  30  35  40

Ux [m/s]

α = 04 [deg] - U∞=40 [m/s]

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  5  10  15  20  25  30  35  40

D
is

ta
nc

e 
fr

om
 a

ir
fo

il 
[m

]

Ux [m/s]

α = 08 [deg] - U∞=40 [m/s]

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  5  10  15  20  25  30  35  40  45  50  55

Ux [m/s]

α = 12 [deg] - U∞=50 [m/s]
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Figure 15. Turbulent stresses (CFD: <uiui>= 2/3 · kT )
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Figure 16. Integral length scales Lx,y,z (Exp.) and L2 (CFD)
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4.2 Influence of Transition Model on CFD Calcu-
lations

In the previous section, it was observed that the TKE predicted by CFD calcu-

lations was largely underestimating the experimental values, in particular as the

angle of attack increases. A possible explanation for these discrepancies might be

a wrong prediction of the transition location in the CFD calculation. Using the en

transition model by Drela and Giles [8], it is possible to model the turbulence level

in the incoming flow by adjusting the so-called Ncrit factor and thereby modify

the transition location. In the previous section, the standard value Ncrit=9, cor-

responding to a very low turbulence level (I=0.07%), was used. In addition, the

value Ncrit=3 is used here, which corresponds to a quite large inflow turbulence

of I=0.85% (at least larger or equal to the actual background turbulence in the

LM wind tunnel).

The mean velocity and TKE profiles are plotted in Figs. 17 and 18, respectively,

at the chordwise location X/C =0.91. The experimental data are shown for the

clean airfoil.

Looking at the velocity profiles, it can be seen that at low angle of attack, the

CFD calculations with Ncrit=9 are in better agreement with the measurements,

but as the angle increases (in particular at α=12o), the case with Ncrit=3 show a

better agreement. The same conclusion can be drawn for the TKE profiles at the

lower angle of attack α=0 and 4o. However, for the larger angles of attack, the

increase in turbulence intensity (or reduction of the Ncrit factor) can not explain

the measured higher TKE values.

Two possible explanations for the previous results emerge: either the CFD tur-

bulence and/or transition models do not reproduce correctly the measured values

of the TKE (in particular at higher angle of attack), or the measurement technique

is in some way corrupted and overpredict the actual TKE (but this error should

be consistent and not depend of the angle of attack...). In addition, a combination

of the two previous cases is also an option.
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Figure 17. Velocity profile Ux
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4.3 Measured Velocity and Isotropic One-Point
Spectra

For the same cases as in the previous section, the ‘pre-multiplied’ (see definition

below) one-point spectra of the ux and uy components are compared with those

predicted by the theory of Von Karman for which isotropy is assumed. Note that

the spectra displayed in this section are plotted as functions of the wavenumber

k1 which is parallel to the mean flow direction. By assuming frozen turbulence,

the following relationship is used:

k1 = 2πf/Ux

where f is the frequency and Ux is the local mean flow velocity. In addition, all

spectra are ‘pre-multiplied’ by k1 in order to make their peak wavenumber value,

which is characteristics of the integral length scale (see Appendix C), appear more

clearly in the figures.

The definition of the Von Karman spectrum requires the variance of the con-

sidered velocity component, as well as the corresponding integral length scale.

These can be extracted either from the experimental or from the CFD calculation

results. These data (turbulent stress and integral length scale) are displayed in

Section 4.1 for the clean airfoil. As mentioned above, the peak value wavenumber

of the spectra is characteristic of the integral length scale, whereas the amplitude

of the spectra is characteristic of the turbulence intensity (variance) of the specific

velocity component.

Fig. 19(a) shows the spectra for the ux component, and Fig. 19(b) for the uy

component. The Von Karman spectra are evaluated using the experimental turbu-

lent stresses and integral length scales. The agreement between the experimental

and theoretical spectra is very good for the ux component. As for the uy compo-

nent, the figures indicate in most cases a shift of the theoretical spectra toward

higher wavenumbers, indicating that the evaluated integral length scale is too small

or alternatively, that the Von Karman spectrum is not a good approximation for

this component.

Fig. 20(a-b) show the same spectra as above for the ux and uy components,

respectively. However, the Von Karman spectra are now evaluated using the tur-

bulent stresses and integral length scales extracted from the CFD calculations.

It must be noted here that these data were not extracted at the same distance

to the wall for which the measured spectra are shown, but where the mean flow

velocities coincide (The actual BL locations are indicated in the figure’s legends).

This is done because some small errors in the offset defining the initial distance

of the probe to the wall yield large error in the turbulent quantities evaluation,

since these quantities vary very rapidly close to the wall. In addition, the CFD

calculations only give access to the vertical integral length scale L2 (see section D)

and the turbulent kinetic energy. Here, isotropy is assumed and the same values

are used in both x and y-directions . The following computational values are used

as input for the Von Karman one-point spectra definition of Appendix C:

L =
1

0.7468
L2 and σ2

1c =<uiui>=
2

3
kT

The agreement is now much more mitigated than before. As for the ux component,

there exists a noticeable shift of the theoretical spectra toward higher wavenumbers

and the amplitudes of the theoretical spectra seem also to be largely underesti-

mated. As for the uy component, the agreement is slightly better, but a small

shift of the theoretical spectra to the higher wavenumber still exists and this time,

their amplitudes is slightly overestimated. These remarks apply to the two loca-

tions closest to the surface. Conclusions are somehow different for the location

furthest away (but this is less critical, as far as the TNO model is concerned, since
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the influence of this location on the surface pressure is largely reduced due to

its larger distance to the wall and the local turbulence intensity is relatively low

anyway).
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Figure 19. Pre-multiplied one-point spectra (V.K. using experimental data)
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Figure 20. Pre-multiplied one-point spectra (V.K. using CFD data)
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4.4 Comparison with Measurements in the LWT
Wind Tunnel at Stuttgart University

A experimental set-up similar to the present campaign was implemented in the

Laminar Wind Tunnel (LWT) in Stuttgart (see Kamruzzaman et al [12] for de-

tails). Both the NACA0012 airfoil and the VTE kav airfoil were measured at

Reynolds numbers equal to Re = 1.5×106 (U∞ = 57m/s, C = 0.4m) and Re =

3.1×106 (U∞ = 60m/s, C = 0.8 m), respectively. Note that both airfoils were

tripped at x/C=0.05 on both sides of the airfoil and that transition is forced at

that location in the CFD calculations presented in this section.

Comparisons are herein focused on the vertical velocity turbulent stress<uyuy>,

and more importantly since it could not be measured during the present campaign,

the vertical integral length scale for the vertical velocity fluctuations L2, both of

which are main parameters in the TNO model formulation (see Appendix D).

Vertical Velocity Fluctuations

Vertical velocity fluctuations measured for the NACA0012 at angles of attack

α= 0, 2 and 4o are compared with the CFD results in Fig. 21(a). In this figure,

the vertical velocity turbulent stresses are evaluated using the computed TKE kT
and the original TNO model assumption as in Eq. (D.21):

<uyuy> = β kT

where β=0.45 is an experimentally tuned factor (see Appendix D). It is obvious

that this approximation underestimates the measured turbulent stress values. In

Fig.21(b), modified factors different for each angle of attack are used in order to

better fit the measurements, namely β = 0.48, 0.52 and 0.55 for α= 0, 2 and 4o,

respectively.

The vertical turbulent stress measured in the LWT wind tunnel for the VTE kav

airfoil are presented next in Fig. 22. The angle of attack is equal to α=3.3o, which

corresponds to a lift coefficient Cl=0.7. The CFD/TNO results are displayed for

three different values of the factor β: the isotropic case β=2/3, the original TNO

model value β=0.45, and finally β=0.55 which better fits the experimental data.

A similar comparison can be performed for the measurements obtained during

the present campaign with the NACA0015 airfoil. The vertical turbulent stresses

already used in Section 4.1 are displayed in Fig. 23. However, in this figure, the

original TNO model factor β=0.45 is used (instead of the isotropic assumption).

The comparison model vs. measurements shows a different trend from what is

observed in the LWT wind tunnel. It turns out than in the present case, the

original model approximation using the factor β=0.45 yields a good agreeement

at high angles of attack in terms of turbulent stress level, but that this factor

should be slightly reduced at lower angles.
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Figure 21. Turbulent stress <u2u2> near trailing edge - Comparison CFD/TNO

vs. LWT measurements - NACA0012 airfoil
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Figure 23. Turbulent stress <u2u2> near trailing edge - Comparison CFD/TNO

vs. present measurements - NACA0015 airfoil
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Vertical Turbulent Length Scale

The vertical turbulent length scale L2 was also measured in the LWT wind tun-

nel. Results obtained for the NACA0012 airfoil are displayed in Fig. 25, together

with the results from CFD calculations using the original TNO model approxima-

tion from Eq. (D.22) (see Appendix D). It can be observed that the model has a

tendency to underestimate L2 as the wall surface is approached.

To correct this discrepancy, the model equation (D.22) is multiplied by a cor-

rective function depending on the normalized distance to the wall defined as:

fc(y/δ) = 1.0 + 1.3 (y/δ)1/5 e−30 (y/δ)2

where y is the distance to the wall across the BL and δ is the BL thickness.

This function is plotted in Fig. 24. The constants in the above formula have been

tuned so that the resulting integral length scale better fits the measurements. The

corrected formula for the integral length scale then reads:

L2c = 0.387
k
3/2
T

ǫ
fc(y/δ)

The results are displayed in Fig. 25. It can be seen that the rapid growth of the

integral length scale near the wall surface is better captured by the corrected L2c.
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Figure 24. Corrective function for the integral length scale L2c
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Results obtained for the VTE kav airfoil are displayed in Fig. 26. Two sets of

experimental data are plotted: one using two hot-wires for measuring the integral

length scale L2, the other using split-film sensors. The CFD model results include

the original TNO model approximation and the corrected one as described above.

It can be observed that the overall level of the integral length scale across the BL is

underestimated by the model and that the corrective function somehow improves

the results near the wall surface, though this correction is a bit excessive as a

seemingly unphysical large peak occurs around y/δ=0.2.
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Figure 26. Integral length scale L2 near trailing edge - Comparison CFD/TNO vs.

LWT measurements - VTE kav airfoil
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4.5 Surface Pressure and CFD/TNO Model

As described in Appendix D, the TNO model gives access to the surface pressure

fluctuations spectra. These spectra could be reliably measured during the present

campaign. In this section, both sets of data are compared at the chord location

X/C=0.894. Note that all input flow data for the TNO model have been obtained

with CFD calculations (see Appendix D for details). In these calculations, the

transition is determined with the en transition model by Drela and Giles [8] and

the parameter Ncrit is set to 9. Different versions of the TNO model are compared,

including various model parameter values.

Original TNO Model and General Spectral Form

The surface pressure spectra obtained with the original CFD/TNO model are

compared with the measurements at the chord location X/C=0.894 in Fig. 27(a).

Each of the four subfigures corresponds to one of the considered angles of attack

α = 0, 4, 8 and 12o. In each subfigure, results for the three wind tunnel inflow

velocities are plotted. It can be observed that the surface pressure is consistently

underestimated by the model, and that this underestimation is increasing as the

angle of attack increases. However, the form of the measured spectra is quite well

predicted by the model. Indeed, the evolution of the spectra (i.e. the spectrum

slope at higher frequencies and the spectrum peak frequency) as a function of the

angle of attack is very well reproduced by the model, as well as the increasing

spectral intensity as a function of the inflow velocity.

In Appendix C.3, a more general spectral functional form for the TKE spectrum

than the classical Von Karman spectrum is introduced. This more general form

model includes two model parameters nE and cE that can be adjusted.

Fig. 27(b) displays the results obtained with the general form model for which

the parameter nE is set to 2. The results are significantly improved for the lowest

angle of attack α = 0o. However, as the angle of attack increases, the underes-

timation of the pressure spectrum reappears at higher frequencies, though the

model still performs better at lower frequencies (i.e. around the spectrum peak

frequency).

The influence of the parameter cE is investigated next. Setting its value to 0.5

yields somehow the same effects as above for the nE parameter, as it can be seen

in Fig. 27(c).
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(a) Original CFD/TNO model
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(b) CFD/TNO model - General spectral form - nE =2
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(c) CFD/TNO model - General spectral form - cE=0.5

Figure 27. Surface pressure at X/C=0.894 - Comparison CFD/TNO vs. experi-

ment
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Modified Factor β and Modified kT
In Section 4.4, it is shown that the factor β used to evaluate the vertical turbu-

lent stress in Eq. (D.21) should be increased to better fit the data measured in the

LWT wind tunnel. Here, the modified factor β = 0.55 is used in the CFD/TNO

model to calculate this turbulent stress and subsequently the surface pressure

spectra. The results are plotted in Fig. 28(a). It can be seen that there is only a

very little improvement compared to the original model in Fig. 27(a).

A second different modification is now applied to the CFD/TNO model. The

TKE kT computed by the CFD code is multiplied by a factor 1.2 before being used

as an input for the TNO model. The original factor β = 0.45 is used. Note that

the previous modification not only changes the resulting vertical turbulent stress

in the model, but also the calculation of the vertical integral length scale through

Eq. (D.22). As it can be seen in Fig. 28(b), the results are greatly improved for

the lower angles of attack, but the surface pressure underestimation by the model

reappears at α=12o, and to a lesser extent at 8o.
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(a) CFD/TNO model - β=0.55
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(b) CFD/TNO model - kT → 1.2 kT

Figure 28. Surface pressure at X/C=0.894 - Comparison CFD/TNO using mod-

ified β and kT vs. experiment
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Corrected Integral Length Scale

In Section 4.4, a corrected integral length scale L2c is introduced to account for

the discrepancies between the original TNO model approximation of Eq. (D.22)

and the integral length scale L2 measured in the LWT wind tunnel. This corrected

integral length scale is used here to calculate the surface pressure spectrum using

the CFD/TNO model.

The results are displayed in Fig. 29. It can be seen that the results are signif-

icantly improved for the three angles of attack α = 0, 4 and 8o, though a small

overestimation is observed at 0o and an underestimation at 8o. At 12o, the large

underestimation of the measured surface pressure spectrum by the model reap-

pears.
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Figure 29. Surface pressure at X/C=0.894 - Comparison CFD/TNO using cor-

rected L2c vs. experiment
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4.6 Conclusions

The various tests performed in the previous section to evaluate the impact of the

various parameters on the CFD/TNO model prediction of the surface pressure

spectra, together with the comparisons of CFD results with BL measurements

provide some indications on how to improve the TNO model.

It seems clear from Section 4.1 that the CFD calculations underestimate the

TKE in the turbulent BL when the angle of attack is getting large, and that

transition alone cannot explain these discrepancies (Section 4.2). This underesti-

mation is increasing as the angle of attack is increasing, which is correlated to the

fact that the CFD/TNO model underestimates the surface pressure spectra as the

angle of attack increases. However, attempts to increase the TKE (within sensible

limits) were not successfull in reducing the discrepancies between measured and

modeled surface pressure spectra at high angles of attack.

The main unknown in the calculation of the surface pressure remains the eval-

uation of vertical integral length scale. It could not be measured with the present

experimental set-up but measurements performed at Stuttgart [12] were used for

comparison in the present study. Discrepancies could be observed suggesting that

the model used in this work may be improved.
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5 Trailing Edge Noise Measurements

As described in Section 2, two slanted single hot-wire probes were placed in the

wind tunnel near the trailing edge (TE) of the airfoil, one on each side of the TE

relatively to the airfoil chord plane. Both probes were located outside of the BL

and wake generated by the airfoil itself so that BL/wake turbulence will not affect

the measured velocity fluctuations.

The goal is to measure the TE radiated noise that should behave as a dipole and

therefore should be characterized as out of phase pressure/velocity fluctuations

on both sides of the TE. The slanted probes are orientated so that the hot-wires

stand approximately along a line perpendicular to the TE and perpendicular to

the line joining the probe to the closest point on the TE. In this way, the set-up

will significantly filter out waves that are not parallel to TE noise waves, though

waves travelling in the direction parallel to the TE will not be filtered out. One

can therefore expect that the resulting measurements will be contaminated by

spurious sound waves reflecting on the side walls of the wind tunnel. In any case,

it cannot be expected that this set-up will filter out all background noise present

in the wind tunnel as it will become clear in the analysis of the measured data

below.

Various gains were used to amplify the measured signals in an attempt to in-

crease the signal-to-noise ratio. An analysis of the results that is not presented in

this report showed that no significant improvement were obtained by using higher

gain values. Results shown in this section are obtained with a gain factor equal

to 64. As already mentioned in Section 2, a 100Hz high-pass filter was applied

in order to remove spurious low-frequency fluctuations, together with a 10 kHz

low-pass filter to avoid aliasing.

In order to evaluate this measurement technique, three different configurations

are investigated here. In the two first ones, the probes are located at approximately

9 cms below and above the plane described by the mean inflow velocity and the

TE, and at a distance approximately equal to 13 cms from the TE perpendicularly

to the TE direction. In the first case, the angle of attack of the airfoil is equal

to α= 8o, and 12o in the second. As for the third configuration, the probes are

located at the same relative locations in the wind tunnel but the airfoil is removed

from the wind tunnel.

5.1 Angle of Attack α=8
o

The coherence and phase between the velocities measured by the two hot-wires

are plotted in Figs. 30(a) and (b), respectively, for an angle of attack α=8o and

for the empty wind tunnel at all considered inflow wind speeds U∞ =30, 40 and

50m/s. It can be observed that there is no significant difference between the wind

tunnel being empty and when the airfoil is present, except at lower frequencies

(f <600Hz) where there exist strong correlated signals captured by the two hot-

wires. However, the phase behaviour does not indicate that it is related to TE noise

(which should be characterized by a ±π phase shift), but rather that it behaves

more like the phase shift of sensors measuring the same traveling wave at different

locations (i.e. characterized by a linear variation of the phase as a function of

frequency). This latter behaviour could be the result of the two hot-wire probes

being located not exactly at the same distance from the acoustic source.

A small frequency range for which the two velocities measured by the hot-wires

are out of phase can be observed around 1500<f < 2100Hz. However, it is also

observed when the wind tunnel is empty excluding that this could be related to

TE noise. In addition, sharp large coherence peaks can be observed above 2000Hz.
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Their frequency locations increase with increasing inflow speed. These are most

certainly caused by the wind tunnel fan noise.

The large coherence between the hot-wire signals observed at frequencies lower

than approximately 600Hz is investigated in more detail. The cross-spectra of

the two signals are displayed in Fig. 31(a). It is important to note here that,

for a sound wave emitted by a dipole source, the velocity is linearly related to

the time derivative of the pressure field. Therefore, the velocity amplitude should

scale as the pressure amplitude. In addition, the sound wave intensity (propor-

tional to the pressure amplitude squared) of trailing edge noise should scale as

U 5
∞ at higher frequencies, i.e. f ≫ c0/C where C is the airfoil chord and c0 the

speed of sound (see Blake [3], Vol.II, p.732), and as U 6
∞ at lower frequencies, i.e.

f ≪ c0/C. The cross-spectra non-dimensionalized using the two scaling laws are

displayed in Figs. 31(b) and (c), respectively. It can be observed that the two scal-

ings give similar results, and that in both cases, the cross-spectra seem to merge

into a common curve. In addition, note that the intermediate scaling frequency

c0/C is approximately equal to 380Hz in our case. This might indicate that the

highly correlated signals at low frequencies may originate from a compact acoustic

source (low wavenumber acoustic waves relatively to the airfoil chord) due to the

interaction of the airfoil with either inflow turbulence or turbulent boundary layer

vortices convecting above the trailing edge.
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Figure 30. Coherence/Phase between slanted hot-wire measured velocities - α=8o

vs. empty wind tunnel
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Figure 31. Cross-spectra between slanted hot-wire measured velocities - α=8o vs.

empty wind tunnel
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5.2 Angle of Attack α=12
o

The same data as above are displayed for an angle of attack equal to α=12o (and

the empty tunnel) in Figs. 32(a-b) for the coherence and phase of the two hot-wire

measured velocities, and in Figs. 33(a-c) for the cross-spectra. The conclusions are

very similar to those of the previous case at α = 8o. However, in the frequency

range 2200-3000Hz, a ±π phase difference can be observed for the inflow velocity

U∞ = 30m/s. It disappears when the wind tunnel is empty, but also when the

inflow velocity is increased.
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Figure 32. Coherence/Phase between slanted hot-wire measured velocities - α=12o

vs. empty wind tunnel
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Figure 33. Cross-spectra between slanted hot-wire measured velocities - α=12o vs.

empty wind tunnel
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5.3 Conclusions

As a conclusion for this section, it seems that measuring trailing edge noise with

the present set-up is not feasible. Some noise related to the presence of the airfoil

could be measured at lower frequencies, however, it remains uncertain what its

origin is. The main reason for these inconclusive results is most probably the

presence of intense background noise which overwhelms the TE noise that we are

trying to measure.
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6 Conclusion

Hot-wires and surface pressure measurements of the NACA0015 airfoil that were

performed in the LM wind tunnel provide a detailed description of the BL mean

velocity profiles as well as BL turbulent velocity fluctuations and the associated

surface pressure fluctuations. These measurements are intended to validate both

the CFD calculations using the RANS code EllipSys2D and the TNO model which

uses the previous calculations as an input for the evaluation of the surface pres-

sure spectrum, and subsequently the trailing edge far-field noise. There is a relative

quite good agreement between the CFD results and the measurements. Some dis-

crepancies were observed for the turbulent kinetic energy and integral length scale

distributions across the boundary layer. The TNO model predicts the qualitative

features of the surface pressure as a function of inflow velocity and angle of attack

quite well. However, discrepancies exists concerning the quantitative results. In

particular, the modeled surface pressure spectra largely underestimate the mea-

surements. Some corrections based on the discrepancies observed between the CFD

results and the measured turbulent boundary layer quantities were implemented

to improve the model. However, it proved unable to eliminate the surface pressure

spectra underestimation at high angles of attack.

The second part of the experiment intended to measure trailing edge noise with

hot-wire anemometry. It turns out that the background noise present in the wind

tunnel (originating from the fan, boundary layer along the walls of the wind tun-

nel, reflecting sound waves on these walls, etc...) seems to dominate the whole fre-

quency range where trailing edge noise should be observed. These spurious sound

waves could not be filtered out. Nevertheless, sound waves related to the presence

of the airfoil could be observed in the frequency range 100-600Hz. However, their

origin could not be clearly identified.

As a final conclusion, it seems that the LM wind tunnel is not adapted to

measure trailing edge noise using hot-wire anemometry due to the high background

noise present in the tunnel. However, the relative good agreement between the

TNO modeled and the measured surface pressure using the flush-mounted airfoil

microphones can indirectly give access the radiated trailing edge noise using the

TNO model theory.

Acknowledgments

The work presented in this report is funded by the Danish Energy Agency (En-

ergistyrelsen) through the EUDP-project ‘Low Noise Airfoil’, Journalnr.: 64009-

0272.

This experimental campaign would not have been possible without the wind

tunnel facility provided by LM Wind Power and its Senior Manager Aerodynamics

Peter Fuglsang, as well as the help of Olaf, Kenny and Hans.

The measurements were performed using a traverse system and probe holders

that were designed and which manufacturing was supervised by Andreas Fischer.

Therefore, even if he could not be present during the campaign, it is mainly thanks

to him that the hot-wire measurements could be performed successfully.

Finally, the author would like to thank DTU-MEK/Robert Michelsen for pro-

viding access to the jet facility that was used to calibrate the hot-wire sensors.
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A Boundary Layer Measurement
Points Distributions

During the measurement campaign, different types of measurement ‘series’ were

performed (see Section 2.4). In addition to their respective experimental condi-

tions, each series differs by the number of points measured across the boundary

layer (BL) when the hot-wire probe is translated perpendicularly to the airfoil

chord, as well as by the distribution of these points across the BL. Furthermore,

this distribution is different for each considered angle of attack considered in order

to account for the thickening of the turbulent BL as the angle of attack increases.

There exists three types of such distributions denoted as:

- ‘Original’: contains 24 points - 16/8 points on the suction/pressure side

(see table in Fig. 34)

- ‘Extended’: contains 16 points - all on the suction side

(see table in Fig. 35)

- ‘DBL’: contains 10 points - all on the suction side

(see table in Fig. 36)

Note that the series S03 is using the ‘Original’ distribution set, but only the 16

points on the suction are actually measured. This is due to the fact that for

this series, the probe is located upstream of the trailing edge and measuring on

the pressure side as well would have required to manually change the set-up at

each measured velocity and angle of attack or alternatively perform each case at

different times, which is cumbersome.

In the above-mentioned figures, the first column in the tables provides a record

number. Each record corresponds to a time-series acquired at a specific location

across the BL and those are stored consecutively in a file of the database. Note that

when both the pressure and suction sides are explored, which only occur for the

‘Original’ distribution set, the hot-wire probe is first positioned at the point the

furthest away on the pressure side (Record No.24 in the table) and moved step

by step towards the airfoil trailing edge (Record No.17). Then, it is going over

to the suction side at the level of the trailing edge (Record No.1) and continues

away from the airfoil towards the point with Record No.16. When only the suction

side is explored, the hot-wire probe is moved from the point closest to the airfoil

(Record No.1) towards the one the furthest away (Record No.16 or No.10 for the

‘DBL’ distribution set).

The second column gives the actual distance travelled by the hot-wire probe

from its initial location (i.e. record No.1). Note that in the figures displayed in

this report, firstly an offset (see below) has been added to this value, secondly it

has been multiplied by cos(θ), θ being the angle between the normal to the wall

and the normal to the airfoil chord axis (or equivalently between the airfoil surface

and the airfoil chord axis), so that the resulting plotted value is approximately the

distance from the probe to the airfoil surface along the normal to the wall. The

angles that are used at the various chordwise locations where data are displayed in

this report are given in Table 2. Note that when displaying profiles downstream of

the trailing edge, the same angle as for the last chordwise position (X/C=0.995)

is used. The second of the above manipulations is due to the fact that the traverse

system holding the probe is moving along the normal to the chord axis, but results

from CFD calculations are obtained as a function of the distance to the wall along

the surface normal. Indeed, the CFD results are subsequently used in the TNO

noise model which is based on the flow above a flat plate, and it is therefore more

natural to project the results on the normal to the airfoil surface.
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X/C θ [ o]

0.91 8.997

0.97 9.617

0.995 9.895

Table 2. Angle between chord axis and airfoil surface

The third column is the step motor position (in number of rotation steps) and

should be of no use for the reader.

Above the tables, the distances from the initial point (Record No.1) to the

point furthest away from the airfoil are provided, both in meter and normalized

by the airfoil chord. Note that for measurements performed directly above the

airfoil (i.e. not in the wake: X/C< 1), an offset (denoted ‘Yref’ and given in the

table in Fig. 3, Section 2.4) has to be added to the distances specified in the tables

presented in this section in order to account for the initial position of the probe

(which is obviously slightly above the airfoil wall).
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(a) α=0o (b) α=4o

(c) α=8o (d) α=12o

Figure 34. Distribution type ‘Original’
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(a) α=0o (b) α=4o

(c) α=8o (d) α=12o

Figure 35. Distribution type ‘Extended’

(a) α=0o (b) α=4o

(c) α=8o (d) α=12o

Figure 36. Distribution type ‘DBL’
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B Hot-Wire Calibration and Volt-
age to Velocity Transformation

Various single-wire and bi-axial sensor probes designed for the measurements of

turbulent velocity components were purchased from Dantec Dynamics for this

campaign (see the user guide for details about the probes, their calibration and

voltage to velocity transformation [11]).

Although the accompanying acquisition software StreamWare also performs cal-

ibration and analysis of the raw measurements data, it is decided here to imple-

ment the calibration and analysis with an in-house Fortran code. Indeed, some

bugs or misuse of the software lead to corrupted results in some cases. The details

of the code implementation are reported here.

Temperature Correction

As mentioned in Section 2, the temperature in the wind tunnel was not kept

constant. Before any further treament of the measured voltages, a temperature

correction is applied to the data. If E is a raw voltage and T the temperature at

which it was measured, the raw voltage is corrected by a multiplicative factor as:

Ec = E ·
(
Tw − Tref

Tw − T

)m∗

where the exponent m∗ is calculated as:

m∗ =

{
(1 +m)/2 if T > Tref

(1−m)/2 otherwise

The loading factor m is characteristic of the fluid and is here taken as m= 0.2.

In the above formula, Tref is the reference temperature at which the hot-wire was

calibrated. Tw is the sensor hot-temperature which is calculated as:

Tw = Tref +
R

Tcr20/
(
1 + Tcr20(Tref − 20)

)

where R is the overheat ratio of the resistance bridge controlling the hot-wire and

Tcr20 is the sensor temperature coefficient of resistance at 20oC. These values are

given by the manufacturer:

R = 0.8 and Tcr20 = 0.36%

Note that the temperature correction has rather small effects on the results in our

case.

Calibration

Measurements for each of the wires/sensors (3, 2 or 1 depending on the probe

type) provide a voltage E (in Volts) that can be related to a calibration inflow

velocity Ucal (in m/s) through the following 4th order polynomial approximation:

Ucal = C0 + C1 ·E + C2 ·E2 + C3 · E3 + C4 · E4

where the Ci coefficients are calibration constants to be defined. In our case,

these coefficients are optimized to best fit a series of calibration velocities/voltages

obtained in a jet. The resulting calibration polynomial should not be used outside

of this velocity range as it may oscillate. Note that the calibration voltages have

to be corrected for temperature before determining the calibration coefficients.

For velocities outside the calibration range, it is safer to use King’s law:

Ucal = (A0 +A1 ·E2)A3

where the Ai coefficients are optimized to best fit the lower or higher part of the

calibration curve. A3 should be close to 1/2.
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A smooth interpolation is used as transition between the two previous approx-

imations.

The previous analysis is performed for each of the probe sensors and results

in one set of calibration constants for each wire of the probe. This yields three

calibration velocities {Ucal1, Ucal2, Ucal3} for any set of measured raw voltages for

a three-wires probe, only two for a X-wires probe, and one for a single-wire probe.

In the latter case (single-wire), not further transformation is needed.

Coordinates Transformation for Tri-axial Probe

In the case of a three-wires probe, the wind speed velocities in the wire-coordinates

system {U1, U2, U3} are then calculated by inverting the following 3×3 matrix:

k21 ·U2
1 + U2

2 +h2
1·U2

3 = (1 + k21 + h2
1) · cos2(54.74o) · U2

cal1

h2
2·U2

1 + k22 ·U2
2 + U2

3 = (1 + k22 + h2
2) · cos2(54.74o) · U2

cal2

U2
1 +h2

3·U2
2 + k23 ·U2

3 = (1 + k23 + h2
3) · cos2(54.74o) · U2

cal3

Note that there is a typing error in the formula given in the user guide report

provided by Dantec Dynamics [11], p.31. The conductivity-related coefficients are

provided by the manufacturer:

k2i = k2 = 0.04 and h2
i = h2 = 1.20 (i = 1, 2, 3)

Finally, the velocity components in the probe-coordinates system {U, V,W} can

be deduced from the previously calculated values as:

U = +cos(54.74o) · U1 +cos(54.74o) · U2+cos(54.74o) · U3

V = − cos(45.0o) · U1 − cos(135.0o) · U2 +cos(90.0o) · U3

W =− cos(114.09o) · U1− cos(114.09o) · U2− cos(35.26o) · U3

These components are readily the velocity components in the wind tunnel coor-

dinates system for which U corresponds to the streamwise direction (assuming

the probe was aligned with the main flow direction when mounted in the wind

tunnel).

Coordinates Transformation for Bi-axial Probe

In the case of a X-wires probe, the velocity components in the wire-coordinates

system {U1, U2} are given as (after inversion of the corresponding 2×2 matrix):

U1 =

√
2

2

√
(1 + k2) · U2

cal2 − k2 · U2
cal1

U2 =

√
2

2

√
(1 + k2) · U2

cal1 − k2 · U2
cal2

where k2 has the same value as above (k2=0.04). The velocity components in the

probe-coordinates system {U, V } read:

U =

√
2

2

(
U1 + U2

)

V =

√
2

2

(
U1 − U2

)

Note that in this report these components are further rotated so that the first

component U is parallel to the airfoil surface and the second one V perpendicular

to it (see Section 2.5). The third component is kept unchanged and is parallel

to the trailing edge. The third component is actually measured by rotating the

X-wire probe and is still obtained by using the latter coordinates transformation

for bi-axial probe.
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C Turbulence Theory Reminder

This appendix is a short reminder on turbulence theory that indicates how some

of the results presented in this report are obtained.

The subscripts x, y and z refer to the streamwise and the two transversal flow

directions, respectively. However, the indices 1, 2 and 3 are used interchangeably.

C.1 Correlation and Integral Length Scale

An integral scale can be defined as a measure of the longest correlation distance

between two points in the flow that are separated either by space or time. In the

present experimental set-up, the hot-wire measurements are performed at a single

point in space during a given period of time. However, assuming Taylor hypothesis

of frozen turbulence, an integral length scale can be evaluated.

For a given velocity component ui (i = x, y or z), the corresponding integral

length scale is defined by:

Li =
1

σ2
i

∫ +∞

0

Rii(r) dr (C.1)

The auto-correlation function is given as:

Rii(r) =<ui(x+ r, t)ui(x, t)>

where r is the norm of the separation vector r, x is an arbitrary space location,

and the operator < · > denotes the ensemble average. Note that isotropy and

stationarity were assumed here, such that the correlation tensor is a function of r

only. The variance σ2
i is the mean square value of the velocity component ui and

is also given as:

σ2
i = Rii(0)

In practice, the integral in Eq. (C.1) is evaluated on a finite interval [0, r0], where

r0 denotes the distance at which the correlation function first cancels. Indeed,

integrating over the whole spatial domain would yield numerical inaccuracies that

corrupt the results. It should be also noted that in the case of measured velocity

time-series, the integration interval will necessarily be finite.

Using the Wiener-Khinchin theorem, the auto-correlation function can be de-

fined as the Fourier transform of the velocity power spectrum as:

Rii(r) =
1

2π

∫ +∞

−∞

Sii(k) e
ikrdk

where k is the wavenumber and Sii(k) is the wavenumber power spectral density of

the velocity ui. The frequency power spectral density is obtained from the velocity

time-series ui(t) as:

Sii(ω) = ûi(ω) ûi
∗(ω)

where the upper star ∗ indicates the complex conjugation and ûi is the Fourier

transform of the time-series. In the previous formula, the angular frequency ω is

related to the wavenumber as:

k = ω/Uc

according to the frozen turbulence hypothesis. The convective velocity Uc denotes

the velocity at which turbulence is convected by the flow. In our case, the local

averaged streamwise velocity is used. The wavenumber power spectral density is

related to the frequency power spectral density as:

Sii(k) = Sii(ω)Uc
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Because of the isotropy assumption, the spectrum Sii is related to the turbulent

velocity spectral tensor Φ as:

Sii(k) = Φii(k)

where k is the norm of the wavenumber vector k.

Note that an integral length scale Lij based on two distinct velocity components

ui and uj (i 6= j) can also be defined. In this case, the auto-correlation function

has to be replaced by the cross-correlation Rij(r), and the power spectral density

by the cross-spectral density of the two components.

C.2 Isotropic Turbulent Flow and Spectra

The so-called Von Karman spectrum for the turbulent kinetic energy (TKE) has

the following form:

E(k) = α ǫ2/3L5/3 (Lk)4

(1 + (Lk)2)17/6
(C.2)

where E(k) dk is half the variance of the wind velocity fluctuations in the range

[k, k + dk], that is:
∫ ∞

0

E(k) dk = kT (C.3)

where ǫ is the viscous dissipation rate of TKE kT , L is the so-called outer integral

scale (that defines the transition between the energy and the inertial subranges),

and the scalar k is the norm of the wavenumber vector k = (k1, k2, k3). Experi-

mental measurements of atmospheric boundary layer turbulence suggest that the

empirical constant α can be approximated by α≈1.7. In some other cases [1] and

in this report, the value 1.4528 is used as it ensures that the equality in Eq. (C.3)

is readily satisfied when approximating the dissipation as a function of the velocity

scale and integral length scale (see below).

Assuming that the energy-containing eddies break up at a time scale equal to

their turn-over time, the dissipation can be approximated as:

ǫ ≈ u3
0

L
(C.4)

where u0 is the characteristic velocity of the large energy-containing eddies. It

is related to the variance σ2
1c of one of the fluid flow velocity components as

σ2
1c = u2

0 = σ2/3, where σ2 stands for the total variance of the turbulent velocity

assuming isotropy (i.e. σ2=2 kT ).

The one-point spectra of the velocity components, which are measured in prac-

tice (at one fixed point in space during a given time period - see above for the

transformation from the frequency to the wavenumber spectra assuming frozen

turbulence), are defined as a function of the spectral tensor as:

Fi(k1) =

∫∫ +∞

−∞

Φii(k) dk2dk3 (C.5)

for the three components (i.e. i=1, 2 or 3).

The turbulent velocity spectral tensorΦ takes the following form for an isotropic

incompressible flow:

Φij(k) =
E(k)

4πk4
(k2δij − kikj) (C.6)

Using this expression, combining with the Von Karman spectrum definition in

Eq. (C.2) and approximation (C.4), and integrating over the k2−k3 wavenum-

ber space (see for example Lumley [13] for details) finally yield to the following

expressions for the one-point spectra:

F1(k1) =
9ασ2

1c

55
· L · 1

(
1 + (Lk1)2

)5/6 (C.7)
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and:

F2(k1) = F3(k1) =
3ασ2

1c

110
· L · 3 + 8(Lk1)

2

(
1 + (Lk1)2

)11/6 (C.8)

These functions, pre-multiplied by k1, reach their respective maximum at the

following values:

k1|max(k1F1) ≈ 1.2247/L and k1|max(k1F2,3) ≈ 1.7824/L

Having measured the one-point spectra with the hot-wire device placed in the wind

tunnel (and pre-multiplied with the streamwise wavenumber k1), their maximum

value can be located yielding estimated numerical values for the outer integral

scale L using the relationships defined above. Note that it is here assumed that

such a length scale can be independently defined for each of the three components

components.

The outer integral scale L is defined as the inverse of the wavenumber of the

energy-containing eddies ke, that is:

L = 1/ke

In addition, for isotropic turbulence, the integral length scale Li (i=x, y or z) can

be related to the previous wavenumber as [15]:

Li ≈ 0.7468/ke = 0.7468L (C.9)

Combining the previous equations, three alternative definitions of the integral

length scales can be obtained using the respective wavenumbers defining the max-

ima of the pre-multiplied one-point spectra as:

L̃x ≈ 0.9147/k1|max(k1F1) and L̃y,z ≈ 1.3312/k1|max(k1F2,3) (C.10)

C.3 General Spectral Form and Parameter Study

In the previous section, the so-called Von Karman spectrum was used as a model

for the TKE spectrum. However, the low-wavenumber part of this spectrum is

rather arbitrary since it may vary significantly from one particular flow condition

to another. Indeed, the large turbulent structures are mainly determined by the

actual flow boundaries and the turbulence generation mechanism. It seems that

the spectrum proposed by Von Karman was primarily chosen on mathematical

considerations as it provides analytical solutions for many integrals in the theory

yielding concise theoretical results (see for example previous section).

Let now assume a more general form for the TKE spectrum:

E(k) = α
3

2
σ2
1c Lf(ξ) (C.11)

where ξ = kL =
√
k21 + k22 + k23 L is the non-dimensional wavenumber, and the

spectral functional form is given by the function:

f(ξ) =
ξnE

(
cE + ξ2

)(3nE+5)/6
(C.12)

where the parameters nE and cE can be arbitrarily chosen. The exponent (3nE +

5)/6 in the denominator ensures that the spectrum presents a −5/3 slope decay

at high wavenumbers in agreement with the existence of an inertial sub-range for

the small scales of turbulence. The Von Karman spectrum is recovered with the

following choice for the model parameters:

nE = 4 and cE = 1
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To ensure that the energy contained is this spectrum is equal to the total TKE

of the flow kT , and assuming isotropy (i.e. kT = 3
2 σ

2
1c), the constant α is given as:

α = 1/
(∫ +∞

0

f(ξ) dξ
)

(C.13)

Parameters Influence on TKE spectrum

In order to evaluate the influence of the different parameters on the model, the

following parametric study is performed. All parameters are varied around the

following reference values:

nE = 4 , cE = 1 , σ2
1c = 1 [(m/s)2] , L = 10−3 [m]

The results are shown in Fig. 37. It is important to note here that when modifying

the nE or the cE parameter, the factor α is recalculated according to Eqs. (C.12)-

(C.13) for each new case.
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Figure 37. Parameter study for the TKE spectrum E(k)

It can be seen that decreasing the parameter cE has an identical effect as in-

creasing the outer integral scale L, namely shifting the spectrum peak wavenumber

to lower values and increasing the associated spectrum peak value. Decreasing the

parameter nE has a similar effect on the high-wavenumber part of the spectrum.

However, it also induces an increase of the energy contained at wavenumbers lower

than the peak wavenumber by decreasing the local spectrum slope. Increasing the

variance σ2
1c is merely shifting the spectrum upward.

Parameters Influence on Vertical Velocity Component Energy Spec-

trum

The spectrum of interest for the TNO model is the second diagonal component

of the turbulent velocity spectral tensor Φ22(k) which is obtained using Eq. (C.6)

assuming isotropy:

Φ22(k) =
α 3

2 σ
2
1c

4 π
L3 ξ21 + ξ23(

cE + ξ2
)aE

(
ξ2
)bE

where ξi=kiL (i = 1, 2 or 3) and the exponents aE and bE read:

aE =
3nE + 5

6
and bE =

4− nE

2
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However, before being used in the TNO model (see Appendix D), the previous

spectrum has to be integrated with respect to k2 as:

Φ̃22(k‖) =

∫ +∞

−∞

Φ22(k) dk2

=
α 3

2 σ
2
1c

4 π
L2

∫ +∞

−∞

ξ21 + ξ23(
cE + ξ21 + ξ22 + ξ23

)aE
(
ξ21 + ξ22 + ξ23

)bE dξ2

where k‖=(k1, k3) is the wavenumber projected on the plane parallel to the wall

surface. This integration can be performed analytically if nE = 4 (i.e. aE = 17/6

and bE=0). In the general case, it has to be performed numerically.

The influence of the general model parameters on Φ̃22 is displayed in Fig. 38.

Note that the spectra are plotted as a function of k‖=
√
k21 + k23 since the spectrum

is symmetric with respect to k1 and k3. The conclusions concerning the influence

of the parameters are the same as for the spectrum E(k) above.
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Figure 38. Parameter study for the vertical velocity energy spectrum Φ̃22(k‖)

Parameters Influence on One-Point Spectrum

Finally, the model parameter study is performed for the pre-multiplied one-

point spectrum F2(k1) defined in Eq. (C.5). The results are displayed in Fig. 39.

Again, varying the parameters cE and L has identical effects, but now only the

peak wavenumber is shifted. A similar effect is observed for the parameter nE

together with a slight reduction of the spectrum peak value when this parameter

is decreased. The vertical shift of the spectrum observed earlier for the parameter

σ2
1c is preserved.
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Figure 39. Parameter study for the pre-multiplied one-point spectrum F2(k1)
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D TNO Trailing Edge Noise Model

This model which was originally proposed by Parchen [20] is gathering several from

the previous results. These are used to formulate a far field noise level expression as

a function of turbulent boundary layer quantities. These data can be collected from

any fluid flow solver which includes a description of the turbulent boundary layer.

For example, a panel method coupled to an integral boundary layer formulation

as in the software XFOIL [7] can be used. Alternatively, any CFD code including

a turbulence model for the boundary layer can be considered.

D.1 Model Formulation

The first part of the model is based on a formula expressing the contribution of

the mean-shear/turbulence interaction in the boundary layer and which relates the

turbulent boundary layer characteristic data to the fluctuating surface pressure

(see Blake [3], Vol.II, p.513, p.524). Using the fact that the wavenumber-frequency

spectrum of the wall pressure fluctuations is related to the modulus of its Fourier

transform and manipulating, Parchen [20] arrived to the following result for the

wavenumber-frequency surface pressure spectrum:

Φp(k‖, ω) = 4 ρ20
k21

k21 + k23

∫ +∞

0

L2(y2)

(
∂U1

∂y2
(y2)

)2

u 2
2 (y2) Φ̃22(k‖)

× Φm(ω − Uc(y2)k1) e
−2 k‖y2 dy2 (D.14)

where k‖ is the norm of the wavenumber k‖=(k1, k3) spanning the plane parallel to

the wall surface, L2 is the vertical integral length which characterizes the vertical

extent of the turbulent eddies, u 2
2 is the mean squared value of the vertical velocity

fluctuations, U1 is the streamwise mean velocity (its derivative, the mean shear,

actually appears in the integral), Φ̃22 is the normalized spectrum of the vertical

velocity fluctuations integrated over k2, Φm is the so-called moving axis spectrum

which describes how Φ̃22 is distorted by the generation and destruction of eddies

during their convection past the trailing edge, and Uc is the convection velocity

of these eddies. It should be noted that Φ̃22 depends on the outer integral scale

L (see below) and thereby is also a function of y2. In addition, remind that in

the present section Φ̃22 is normalized, the spectrum amplitude being explicitly

introduced in the integral (D.14) through the u 2
2 factor in contrast to Appendix C

where the amplitude factor is integrated into Φ̃22.

Before relating this wavenumber-frequency spectrum to the far field noise, the

two spectra Φ̃22 and Φm present in the integral across the boundary layer in

Eq. (D.14) are expressed using results from turbulence theory.

The moving axis spectrum is assumed to be gaussian and takes the following

form:

Φm(ω − Uck1) =
1

αGauss
√
π
e−[(ω−Uck1)/αGauss]

2

where the gaussian constant αGauss is a function of the eddy convection velocity

and turbulent length scale:

αGauss = 0.05Uc/L2

The convection velocity is itself a function of the local boundary layer velocity as:

Uc(y2) = ccv U1(y2)

where the constant ccv is set equal to 0.7.
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The Karman three-dimensional turbulent kinetic energy spectrum for isotropic

turbulence reads:

E(k) =
110 Γ(5/6)

27
√
π Γ(1/3)

kT
ke

(k/ke)
4

[1 + (k/ke)2]17/6
(D.15)

where ke=1/L is the wavenumber of energy containing eddies, kT the turbulent

kinetic energy, and k the norm of the wavenumber k= (k1, k2, k3) spanning the

whole wavenumber space. From this equation, the energy density spectrum for the

vertical fluctuations in the k1−k3 plane can be expressed, again assuming isotropy,

as:

Φ̃22(k‖) =
4

9πk2e

(k1/ke)
2 + (k3/ke)

2

[1 + (k1/ke)2 + (k3/ke)2]7/3
(D.16)

after integration along k2 (see Appendix C for more details).

The second part of the model consists in expressing the far field noise as a

function of the previous wavenumber-frequency spectrum of the surface pressure

fluctuations defined by Parchen [20]. Using the results of Chase [5] and Brooks

and Hodgson [4], the far field pressure spectrum density can be expressed as an

integral of the wall pressure spectrum over the wavenumber component in the flow

direction:

S(ω) =
D

4πR2

∫ +∞

−∞

ω

c0 k1
Φp(k‖, ω)|k3=0 dk1 (D.17)

where R denotes the distance of the observer to the trailing edge, D the span

extent of the trailing edge, and c0 is the speed of sound.

The surface pressure frequency-spectrum is obtained by integrating Eq. (D.14)

over the surface wavenumber space:

Pwall(ω) =

∫∫ +∞

−∞

Φp(k‖, ω) dk1dk3

At this point, the integral length scale L2, the mean shear ∂U1/∂y2, the wavenum-

ber ke, and the turbulent shear stress u 2
2 still need to be specified in order to close

the model. The specification of these quantities depends on the methodology that

is used to calculate the flow field. Two approaches are considered: the integral

boundary layer panel code XFOIL [7], and a Reynolds-Average Navier-Stokes

solver (in our case EllipSys2D [17, 18, 22]).

D.2 Input from Integral Boundary Layer Method

In the case of a XFOIL calculation, boundary layer equations are solved in order

to determine its development along the airfoil chord. This calculation is coupled

to a panel method used to compute the inviscid flow outside the boundary layer.

The data of interest that are given as an output from XFOIL are: the skin friction

coefficient at the wall Cf , the momentum thickness θ, the displacement thickness

δ∗, the velocity at the edge of the boundary layer U0.

The missing data needed for the model proposed in the previous section are

obtained using results from classical turbulent boundary layer theory, as well as

isotropic turbulence.

The boundary layer thickness δ can be related to the momentum thickness and

the displacement thickness by using the relation by Drela and Giles [8]:

δ = θ
(
3.15 +

1.72

Hk − 1

)
+ δ∗
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where Hk=δ∗/θ is the kinematic shape factor which is also given as an output of

XFOIL. The velocity profile can then be approximated in the boundary layer by

using Cole’s law of the wall/law of the wake [10] as:

U1(y2) = u∗

(
1

κ
ln
(u∗y2

ν

)
+B +

1

2
W (y2)

(U0

u∗
− 1

κ
ln
(u∗δ

ν

)
−B

))

where κ=0.41 is the Karman constant, B=5.5, and u∗=U0

√
Cf/2 is the friction

velocity. The wake function is defined as:

W (y2) = 1− cos(πy2/δ)

The velocity profile formula can easily be derived with respect to y2 to obtain the

mean shear.

The next quantity to be defined is the integral length scale L2. In a first step,

the mixing length scale expression proposed by Schlichting [21] is used:

lm = 0.085 δ tanh
( κ y2
0.085 δ

)

Then, the integral length is approximated as:

L2 =
lm
κ

(D.18)

In the case of isotropic turbulence (such an assumption is here needed in order

to get the following approximation), the integral length is well defined and related

to the wavenumber of the energy-bearing eddies as:

L2 =

√
π Γ(5/6)

Γ(1/3)

1

ke
(D.19)

yielding:

ke ≈ 0.7468/L2

which can be used for evaluating the normal velocity fluctuations spectrum Φ̃22

in Eq. (D.16).

The last quantity to be defined is the turbulent shear stress. Prandtl’s mixing

length hypothesis assumes that the turbulent viscosity νt is related to the mixing

length and the mean shear as:

µt = ρ l2m

∣∣∣
∂U1

∂y2

∣∣∣

Then, the turbulent kinetic energy kT is given by:

kT =

√(
µt

∂U1

∂y2

)2

/Cµ (D.20)

where Cµ =0.09. The turbulent shear stress is then assumed proportional to the

turbulent kinetic energy as:

u 2
2 = β kT (D.21)

where the constant β = 0.45 on the suction side, and β = 0.3 on the pressure

side of an airfoil. Note that this factor has been tuned to fit some experimental

results [20].

D.3 Input from RANS Calculation

In the case of a RANS code is used, many of the previous model input data are

directly accessible from the computed quantities. In particular, the velocity profile,

and thereby the mean shear, accross the boundary layer can be extracted from

the velocity field at the trailing edge. Similarly, the turbulent kinetic energy kT
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(as well as its dissipation rate ǫ) can be interpolated along the same boundary

layer path. Eq. (D.21) is then used to obtain the turbulent shear stress u 2
2 .

The integral length scale is the last remaining quantity to be defined. Wag-

ner et al [23] used the simple assumption that the vertical correlation length is

proportional to the mixing length scale as in Eq. (D.18).

Lutz et al [14] argues that the determination of the vertical length scale is most

crucial for the consistency of the noise prediction. Therefore, a more elaborate

approach to evaluate L2 is proposed. In the case of isotropic turbulence, the inte-

gral length is well defined as a function of the wavenumber of the energy-bearing

eddies as:

L2 =

√
π Γ(5/6)

Γ(1/3)

1

ke
≈ 0.7468

1

ke

The Kolmogorov spectrum in the inertial subrange reads:

E(k) = C
ǫ2/3

k
5/3
T

where the constant C≈1.5 was experimentally determined, and ǫ is the turbulent

energy dissipation rate. By comparing the previous spectrum with the asymptotic

behavior of the Karman spectrum in Eq. (D.15), the wavenumber of the energy

bearing eddies ke can be deduced:

ke ≈ 1.9275
ǫ

k
3/2
T

Combining this equation with the above equation relating the wavenumber ke and

the integral length L2 in the case of isotropic turbulence, the following result can

be established:

L2 ≈ 0.387
k
3/2
T

ǫ
(D.22)

This latter approach is used in the present report for calculations based on RANS

computational results (instead of using Eq. (D.18)).

Note that in the original model proposed by Parchen [20], an alternative approx-

imation for the vertical integral length scale that can be employed in conjunction

with a Reynolds-Averaged Navier-Stokes solution method was proposed. The mix-

ing length is first approximated by:

lm =
C

3/4
µ k

3/2
T

ǫ

Then, combining with Eq. (D.18) relating the mixing length scale to the integral

length scale yields:

L2 ≈ 0.401
k
3/2
T

ǫ

which is very similar to Eq. (D.22).
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