

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 28, 2024

Diffie-Hellman without Difficulty (Extended Version)

Mödersheim, Sebastian Alexander

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Mödersheim, S. A. (2011). Diffie-Hellman without Difficulty (Extended Version). Technical University of Denmark.
IMM-Technical Report-2011 No. 13

https://orbit.dtu.dk/en/publications/97804c8a-9650-4a64-a983-f2ad5cd7d9f0

Diffie-Hellman without Difficulty
(Extended Version)?

Sebastian Mödersheim

DTU Informatics
samo@imm.dtu.dk

Abstract. An excellent way for a protocol to obtain shared keys is
Diffie-Hellman. For the automated verification of security protocols, the
use of Diffie-Hellman poses a certain amount of difficulty, because it
requires algebraic reasoning. Several tools work in the free algebra and
even for tools that do support Diffie-Hellman, the algebraic reasoning
becomes a bottleneck.
We provide a new relative-soundness result: for a large class of protocols,
significantly restricting the abilities of the intruder is without loss of
attacks. We also show the soundness of a very restrictive encoding of
Diffie-Hellman proposed by Millen and how to obtain a problem that
can be answered in the free algebra without increasing its size upon
encoding. This enables the efficient use of free-algebra verification tools
for Diffie-Hellman based protocols and significantly reduces search-spaces
for tools that do support algebraic reasoning.

1 Introduction

Many modern security protocols like IKE/IPSec [11] employ the Diffie-Hellman
key exchange [9] to obtain a shared key between two parties. The reason that
Diffie-Hellman is so popular is that it is a simple mechanism with excellent prop-
erties. The main problem for the verification of Diffie-Hellman based protocols is
that they rely on an algebraic property of modular exponentiation (we omit the
modulus in our notation): exp(exp(B,X), Y) ≈ exp(exp(B, Y), X). Interpreting
the message terms of a protocol in a free algebra (ignoring said property) gives
a nonsensical model where agents can never arrive at a shared key.

However, a number of successful protocol verification methods do not support
algebraic reasoning at all, for instance ProVerif [5], SATMC [3], and Scyther [7].
Also for tools that do support algebraic reasoning like OFMC [4], CL-AtSe [22],
MaudeNPA [10], and an extension of ProVerif [13], the algebraic reasoning means
an extra burden, in particular as it affects the most basic components of a
verification tool, namely unification and intruder deduction.

This paper is based on the observation that much of the algebraic reasoning
related to Diffie-Hellman is actually not very “interesting”. Consider the situ-
ation that an honest agent a wants to start an exchange with the dishonest
? The author thanks Luca Viganò and the anonymous reviewers for helpful comments.

intruder i.1 Then a first generates a secret x and sends the half-key exp(g, x).
The intruder can now choose a half-key of his own, but it does not necessarily
have the form exp(g, ·) because a will not be able to check that. The intruder
could thus choose any term t, and the resulting full-key will be exp(t, x). Not
knowing x, the intruder can obtain this full-key only for certain choices of t. The
“well-typed” choice (as the protocol intends it) is t = exp(g, y) for a value y that
he knows. However there is also an infinite number of “ill-typed” choices: t = g,
t = exp(exp(g, y1), y2), etc. The intuition is now that the ill-typed choices are
just slight variations that are not particularly interesting, because that they do
not enable attacks that are impossible using well-typed choices. This intuition
is however not correct for all protocols in general. In a badly designed proto-
col, confusion may arise which messages or message parts are actually meant as
Diffie-Hellman half-keys. Consider for instance the protocol:

A→ B : sign(inv(pk(a)), g)
A→ B : sign(inv(pk(a)), exp(g,X))
B → A : sign(inv(pk(b)), exp(g, Y))

Here, A acknowledges the group g in the first message. Since B will construct
the full key as exp(t, Y) for whatever value he receives from A as a half-key in
the second step, the intruder could replay the first message from A as the second
message to achieve t = g (i.e. an ill-typed solution) and thus know the key that
B believes to have with A. The problem with this protocol is of course that the
first and second message are similar enough to allow for a confusion. Our result
will only apply to protocols that in some way exclude such confusions.

Contributions This paper establishes sufficient conditions for Diffie-Hellman
based protocols under which we can restrict the intruder choices for all exponen-
tiations to well-typed ones. This is a relative soundness result in the style of [12,
18, 15, 14, 2]: if a given protocol has an attack in the unrestricted model, then it
also has an attack in the restricted model. It is thus without loss of generality
to employ the restricted model in verification tools.

Further, with this result, we can justify a very restrictive model of Diffie-
Hellman proposed by Millen [8, 17]. This model handles Diffie-Hellman more
abstractly, reducing the amount of algebraic reasoning necessary and allows also
for a free algebra encoding as we briefly sketch. Therefore these results are ben-
eficial both to tools that do employ algebraic reasoning and those that do not.

Main Argument Like [2], we use as a main argument a constraint reduction
technique [19, 21, 6, 4]. While this technique is normally used for verification,
we use it in this paper as a proof technique. Roughly speaking, the technique
consists of collecting constraints about what messages the intruder must be
1 It is of course good practice in protocol verification to allow the intruder to play

under his real name in any of the protocol roles (except trusted third parties) in
order to model dishonest or compromised participants.

able to construct from what knowledge, and a sound and complete reduction
procedure for these constraints. Since this technique avoids exploring the entire
space of possible intruder messages and rather works in a demand driven way,
we like to refer to this technique as the lazy intruder.

The use of the lazy intruder in this paper is based on the idea that every
attack to a protocol is a solution of a well-formed lazy intruder constraint: it
represents symbolically the requirements that the exchanged messages have to
fulfill and thus an entire class of attacks, including possibly both well-typed and
ill-typed ones (with respect to the Diffie-Hellman exponentiations). We show that
the constraint reduction of the lazy intruder never makes an ill-typed choice and
eventually arrives at simple form that supports at least one well-typed attack.
From the completeness of the lazy intruder then follows that if there is an attack
then there is also a well-typed one.

We note that while the lazy intruder is normally used as a verification tech-
nique for a bounded number of session, our result is neither a verification tech-
nique itself nor is it limited to a bounded number of sessions. Also, our modifi-
cations of the lazy intruder technique for Diffie-Hellman are orthogonal to those
of [6] which aim for a verification technique.

Plan The rest of this paper is organized as follows. § 2 introduces the message
and intruder model. § 3 reviews the lazy intruder technique for the free algebra.
§ 4 adapts the lazy intruder to Diffie-Hellman and proves the main completeness
result. § 5 uses our result to justify Millen’s restricted model and briefly discusses
how to encode things into a free algebra model. In § 6 we conclude with a
discussion of the related work.

2 Preliminaries

2.1 Messages

Following the line of black-box cryptography models, we employ a term algebra
to model the messages that participants exchange. Let Σ be countable signature
and V be a countable set of variable symbols disjoint from Σ. As a convention,
constants and function symbols are denoted using identifiers that start with a
lower-case letter and variables using upper-case letters. The signature is parti-
tioned into the set Σ0 of constants, the set of Σp of (“public”) operations, and
the set Σm of (“private”) mappings (explained below). We use standard no-
tions about terms such as ground (without variables), subterm (denoted s v t),
substitutions (denoted with σ, τ), set of most general unifiers (denoted mgu).

The constants represent agents, keys, nonces, and the like. The function
symbols of Σp represent operations on messages that every agent can perform.
In this paper we use the following function symbols Σp:

– crypt(k,m) represents the asymmetric encryption of message m with public
key k.

– scrypt(k,m) represents the symmetric encryption of message m with sym-
metric key k; we assume that this primitive includes also integrity protection
such as a MAC.

– [m1, . . . ,mn]n (for every n ≥ 2) representing the concatenation of n messages
m1, . . . ,mn. We use this family of operators to abstract from the details of
structuring messages in the implementation. This model of concatenation is
helpful for handling of the context around Diffie-Hellman half-keys in $ 4.1:
using a conventional nested binary concatenation operator instead, would
make the argumentation significantly more complex.

– sign(k,m) represents the signature of message m with private key k.

– exp(B,X) represents a modular exponentiation where B is the basis, and X
is the exponent (and we omit the modulus in the abstract term here).

Mappings The symbols of Σm represent mappings such as inv(k) that yields
the private key of public key k and that is obviously not a “public” operation.
Such mappings are also convenient to specify key infrastructures, e.g., pk(a)
denoting the public key of agent a. When dealing with only ground terms, one
may regard these mappings directly as operations on Σ0 rather than as function
symbols of the term algebra. However, as we are using symbolic terms like pk(A)
(in a description that is parametrized over a variable A), we need to include these
symbols in the term algebra. Terms like inv(pk(A)) that do not contain public
function symbols of Σp will actually be regarded as “atomic” terms.

Algebraic Equations We interpret terms in the quotient algebra under the
equation exp(exp(B,X),Y) ≈ exp(exp(B,Y),X) . Thus, two terms are interpreted
as equal iff they are syntactically equal modulo application of this equation. This
property of exponentiation is in a sense the “minimal” algebraic theory that is
necessary for considering Diffie-Hellman-based protocols: without it, even the
“legal” execution of the protocol by honest agents is impossible.

Intruder Deduction Informally, the intruder can compose new terms applying
public functions of Σp to terms he knows, and he can decompose terms when
he knows the necessary keys. The latter formalized by a function ana(·) that
takes as argument a message m and returns a set of potential ways to extract
information from m. Each way to extract information has the form (K,P) where
P (“plaintexts”) is a set of messages that can be extracted when the messages

K (“keys”) are known.2 In this paper we use:

ana(m) =

{({inv(k)}, {p})} m = crypt(k, p)
{({k}, {p})} m = scrypt(k, p)
{(∅, {p1, . . . , pn})} m = [p1, . . . , pn]n
{(∅, {p})} m = sign(inv(k), p)
∅ otherwise

Definition 1. We denote with M Bm that the intruder can derive the ground
message m when knowing the set of ground messages M . We define B as the
least relation that satisfies the following rules:

(D) M Bm for all m ∈M ,
(G) if M B t1, . . . ,M B tn, then also M B f(t1, . . . , tn) for all f ∈ Σn

p ,
(A) if M Bm and (K,P) ∈ ana(m) and M B k for all k ∈ K, then also M B p

for all p ∈ P .

Here, all terms here are interpreted w.r.t. their algebraic properties without an
explicit rule.

Example 1. Consider the knowledgeM = {scrypt(exp(exp(g, x), y),m), exp(g, y), x}.
Then it holds that M Bm, as can be represented by the following proof tree:

M B scrypt(exp(exp(g, x), y),m)
(D)

M B exp(g, y)
(D)

M B x
(D)

M B exp(exp(g, x), y)
(G)

M Bm
(A)

While this definition is given only for ground m and M , we will in the next
section use the symbol B in constraints that contain variables.

3 The Lazy Intruder—Revisited

We now review the constraint reduction technique of [19, 21, 6, 4] that we refer
to as the lazy intruder, and that we will use as a convenient way in our argu-
mentation. Throughout the paper we will take for granted that every trace, in
particular every attack trace, can be represented by lazy intruder constraints,
even if one may be interested in a completely different verification technique.

2 For the purpose of automated analysis methods, it is usually necessary to require
that for every (K,P) ∈ ana(m), K and P are subterms of m modulo bounded
application of mapping symbols (e.g. allowing inv(k) where k is subterm of m) to
prevent looping during analysis; we do not need to make this restriction here, because
non-termination is never a problem in our arguments.

φτ

φ ∧ ({s} ∪M B t)
Unify (τ ∈ mgu({s, t}), s, t /∈ V, admitted(s), admitted(t))

φ ∧ (M B t1) ∧ . . . ∧ (M B tn)
φ ∧ (M B f(t1, . . . , tn))

Generate, f ∈ Σp \ {exp}

φ ∧ ({s} ∪ P ∪M B t) ∧
∧

k∈K
{s} ∪M B k

φ ∧ ({s} ∪M B t)
Ana ((K,P) ∈ ana(s), s /∈ V)

Fig. 1. The lazy intruder reduction rules.

Semantics of Constraints We consider constraints which are conjunctions
of M Bm statements where both M and m may contain variables. An inter-
pretation I assigns a ground term to every variable; we write I(v) to denote
the interpretation of a variable v and extend this notation to messages, sets of
messages, and constraints as expected. We inductively define the relation I |= φ
to formalize that interpretation I is a model of constraint φ:

I |= M Bm iff I(M) B I(m)
I |= φ ∧ ψ iff I |= φ and I |= ψ

A constraint is satisfiable if it has at least one model.

Constraint Reduction The core of the lazy intruder is a set of reduction rules
based on which we can check in finitely many steps whether a given constraint
is satisfiable. Before we discuss the rules shown in Fig. 1, let us first review
the idea of constraint reduction in a conceptual way. The reduction rules work
similar to the rules of a proof calculus in several regards. A rule of the form
φ′

φ
tells us that, in order to show the satisfiability of constraint φ (the proof

goal), it suffices to show the satisfiability of constraint φ′ (the sub goal). So we
apply the rules in a backward fashion in the search for a satisfiability proof.
This process succeeds once we find a simple constraint which is one that consists
only of conjuncts of the form M B v where v is a variable. A simple constraint
is obviously satisfiable: the intruder can choose for each variable an arbitrary
message that he can construct. In fact, the laziness of the intruder manifests
itself exactly here in avoiding the exploration of choices that do not matter.

Comparing to a proof calculus, one could call the simple constraints the “ax-
ioms” and we check whether for a given constraint φ any proof can be constructed
using the reduction rules that has φ as a root and only simple constraints (“ax-
ioms”) as leaves. Soundness of such a calculus of reduction rules means that we
never obtain a “proof” for an unsatisfiable constraint, and completeness means
that every satisfiable constraint has a proof. There are further relevant proper-
ties such as finiteness of the set of reachable proof states, and the completeness
of certain proof strategies. These play a minor role in this paper because we do

not use the lazy intruder to implement an efficient model checker, but rather use
the existence or non-existence of certain reduction as a proof argument in the
proof of our main theorems.

Unify Let us now consider the details of the rules in Fig. 1. The Unify rule says
that one way for the intruder to produce a term t is to use any term s in his
knowledge that can be unified with t. Here, mgu({s, t}) means the set of most
general unifiers between s and t (note that there can be several in unification
modulo the property of exponentiation). In case τ is such a unifier, we have
solved the constraint {s} ∪M B t and apply τ to the remaining constraint φ to
be solved. We make here also an essential restriction: neither s nor t shall be
variables. If t is a variable, then the constraint {s}∪M B t is already simple and
should not be reduced to achieve the laziness. The case that s is a variable is
more involved. Roughly speaking, such a variable will represent a value chosen by
the intruder “earlier” and so whatever it is, he can also generate the same value
from M already. This will be made precise below with the notion of well-formed
constraints and in the completeness proof. The admitted(·) side conditions of
the rule are related to our way of handling the exponentiations; for now let us
assume they are simply true for all terms.

Generate The Generate rule tells us that the intruder can generate the term
f(t1, . . . , tn) if f is a public symbol of Σp and if the intruder can generate all
the subterms t1, . . . , tn. So this simply represents the intruder applying a public
function (such as encryption) to a set of terms he already knows. We exclude
here the exp symbol because we will treat exponentiation in a special way below.

Ana The Ana rule represents the intruder trying to decompose messages in his
knowledge such as decrypting with known keys. Given the intruder knows a
message m from which he can learn P provided he knows K, we can go to a new
constraint where the knowledge is augmented with the messages of P and where
we have the additional constraints that the intruder can generate every k ∈ K.
In fact, in actual implementations this rule must be carefully implemented to
avoid non-termination of the search. For the same reason as in the case of the
Unify rule, we do not analyze s if it is a variable, because then–the way we use
it–it represents a message created earlier by the intruder.

Example 2. Consider the constraint

φ = M0 B [A,B,N]3 ∧ M B [scrypt(k, [A,B,K ′]3), scrypt(K ′, N)]2

where M0 = {i, a, b, k} and M = M0 ∪{scrypt(k, [A,B,N]3)}. This constraint is
satisfiable as the following reduction shows:

M0 BA ∧M0 BB ∧M0 BN ∧M BN
(Simple Constraint)

M0 BA ∧M0 BB ∧M0 BN ∧M B scrypt(N,N) Generate

M0 BA ∧M0 BB ∧M0 BN ∧M B scrypt(k, [A,B,K ′]3) ∧M B scrypt(K ′, N)
Unify(K ′ = N)

φ
Generate∗

Lemma 1. All rules of the calculus are sound.

Proof. Unify Rule: Given an interpretation I0 such that I0 |= φτ . Then there
is an interpretation I such that I |= φ and I(v) = I(vτ) for every v ∈ dom(τ).
Moreover, I(s) = I(t) and thus I |= {s} ∪M B t. Thus also φ ∧ ({s} ∪M B t)
is satisfiable.

Generate Rule: Straightforward.
Ana Rule: Given I |= φ ∧ ({s} ∪ P ∪M B t) ∧

∧
k∈K{s} ∪M |= Bk and

(K,P) ∈ ana(s). Let M0 = I{s} ∪M ; then M0 B I(k) for every k ∈ K, and
since I(s) ∈M0, then also M0BI(p) for every p ∈ P . Since I |= {s}∪P ∪MB t,
we have thus also I |= {s} ∪M B t. ut

3.1 Well-Formedness

We can define an order on the conjuncts of constraints, talking about earlier/later
constraints. This order is essential for the constraint reduction. The idea is that
the intruder does a sequence of actions during an attack and his knowledge
monotonically grows with every message he learns. Also variables that occur in
messages sent by honest agents must have appeared in previous messages and
thus represent values that depend on the choice of the intruder (though they
might not be chosen by the intruder himself).

Definition 2. We say a constraint φ is well-formed if it has the form (modulo
reordering conjuncts)

φ =
n∧

i=1
Mi B ti

such that for i ≤ j, Mi ⊆ Mj—expressing that the intruder never forgets—and
vars(Mi) ⊆

⋃i−1
j=1 vars(tj)—all variables arise from intruder choices.

For the free algebra without exponentiation, the calculus is already complete
on well-formed constraints [19]. We show such a completeness result in Theorem 1
for a modification of the lazy intruder that supports exponentiation in the way
it is used by Diffie-Hellman-based protocols.

3.2 Symbolic Transition Systems

Throughout this paper, we always argue in terms of lazy intruder constraints,
taking for granted that the behavior of a protocol can always be described in
terms of symbolic transitions. In fact, as argued in [20], we can see all standard
protocol description languages such as (multi)-set rewriting, process calculi, Horn
clauses, or strand/bundles as giving rise to symbolic transition systems: the ac-
ceptable messages of honest agents can be characterized by terms with variables
where the variables represent subterms for which the agent does not expect a
concrete particular value; the behavior of the agent depends on such variables
(the variables can occur in subsequent outgoing messages). The lazy intruder
technique then represents executing steps in a transition system without ever

instantiating variables with concrete values and just retaining constraints about
them (that are then checked for satisfiability). So in principle the lazy intruder
is compatible with many formalisms to describe the behavior of honest agents
(although extensions need to be made when considering for instance negation
of predicates). We do not discuss this here further and refer to [20]. Again we
emphasize that our approach uses the lazy intruder only as a proof argument
and the result can be applied for any kind of protocol verification technique.

4 Handling Diffie-Hellman Exponentiation

4.1 Context for Half-Keys

For our result, we need that the exchange of Diffie-Hellman half-keys exp(g, x)
and exp(g, y) is clearly distinguished from other parts of the protocol. We do
not prescribe how this is done, e.g., one may be using a unique tag. Formally,
we require that all half-keys that are exchanged are embedded into a context
C[ti] = f(t1, . . . , tn) for some 1 ≤ i ≤ n and some f ∈ Σp \{exp}. For instance a
context may be C[·] = [dh, B, ·]3, i.e., a triple that identifies by the tag dh that
this message is meant as a Diffie-Hellman key, that the intended recipient is B.
Here, the variable B is a parameter of the context that will be instantiated in
concrete protocol runs. For simplicity, we do not bother with instantiation of
contexts, and suppose in the following that C[t] is ground if t is; the extension
to parametrized contexts is as expected. Our main requirement on contexts is
that the context C[v] for a fresh variable v cannot be unified with any other non-
variable subterm of a message of the protocol. Intuitively, no message part that
is meant for a different purpose can be mistaken as a Diffie-Hellman half-key.

4.2 An Extended Notion of Simplicity

In all lazy intruder approaches so far, the notion of simplicity is M B v for a
variable v, while any other, non-variable, term is considered as not being simple.
The key to a “very lazy” approach to Diffie-Hellman exponentiation is to use
the following extended notion of simplicity.

Definition 3. We define simplicity of a constraint φ, and write simple(φ), as
the least relation satisfying:

– simple(M B v) if v ∈ V,
– simple(φ1) and simple(φ2) implies simple(φ1 ∧ φ2)
– simple(φ) implies simple(φ ∧ (M0 B v) ∧ (M B exp(v, c))), provided that v is

a variable, c is a constant, M0 ⊆M , and exp(g, c) ∈M .

The last closure property of the simplicity relation is actually the key idea: if the
intruder has to generate an exponentiation exp(v, c) and v is a value that he can
choose himself earlier (at knowing M0), and he knows the public value exp(g, c)
then he has infinitely many choices for v that work. (We require below that the
intruder knows g.) The “well-typed” ones (in the sense that we pursue in this

work) would be v = exp(g, z) for some nonce z that he chooses. He may also
choose “ill-typed” ones like v = g or v = exp(exp(g, z1), z2) etc. Our definition
of simplicity allows the intruder to be lazy at this point and not choose v; we
thus broaden the cases where the intruder may stop working and thus make him
lazier. Still, it is ensured that every simple constraint is satisfiable (i.e. there is
at least one solution).

We also define the restriction on the admissible terms for the Unify rule:

Definition 4. We say a term t is admitted for reduction, written admitted(t),
if the following two conditions hold:

– t is not a variable and
– if t = exp(t1, t2) then t1 is neither a variable nor an exponentiation.

Example 3. The constraint M0 B scrypt(k,GX)∧M B scrypt(exp(GX, y), P) for
M0 = {g, k} and M = M0 ∪ {scrypt(k, exp(g, y))} can be reduced (using rule
Generate) to M0 B GX ∧ M B exp(GX, y) ∧ M B P . This constraint is still
not simple, because the second conjunct is an exponentiation exp(GX, y) and
exp(g, y) /∈M . The Generate rule cannot be applied (because the top symbol is
exp) and the Unify rule cannot be applied (because exp(GX, y) is not admissible
and there is no unifiable term in M). However we can apply the Ana rule to de-
crypt scrypt(k, exp(g, y)); after resolving the new conjunct M Bk, the constraint
is simple.

4.3 Well-formedness for Diffie-Hellman

So far, our model is completely untyped. In fact we will in the following label a
subset of the variables and constants with the types xp (for exponent) and hk
(for half-key). These reflect only the intentions of the protocol, without excluding
ill-typed assignments.

Definition 5. Consider that k is a subterm of t at position p. Then we say that
p is a symmetric encryption position, if p = p′ ·0 and the subterm of t at position
p′ is scrypt(k, ·). We say that p is the root position of t if p = ε.

We say a constraint φ is well-formed for Diffie-Hellman w.r.t. a half-key
context C[·], if it is both well-formed in the sense of Definition 2, and every
occurrence of exp and terms of type xp, hk, and the context C[·] is in one of the
following forms:

– C[exp(g, x)] for a constant x : xp; this represents a concrete half-key gener-
ated by an honest agent (with secret exponent x).

– C[v] for a variable v : hk; this represents that an agent receives some ar-
bitrary value v as a Diffie-Hellman half-key (and our theorems below will
imply that we can make the type restrictions here).

– exp(g, x) for constant x : xp without the surrounding context C[·] may only
occur on the top, i.e., as t or as an element of M in the constraint M B t.

– v for a constant v : hk without the surrounding context C[·] may again only
occur on the top.

– exp(exp(g, x), y) for constants x, y : xp; this may only occur in a key position
or in the form M B exp(exp(g, x), y) (when the intruder attempts to generate
the key). It represents a concrete Diffie-Hellman key generated by two honest
agents.

– exp(v, y) for variable v : hk and constant y : xp. Again this may only occur
in a key position or as M B exp(v, y).

– The generator g is part of the intruder knowledge in every conjunct.

Moreover, the entire constraint may not contain any non-variable subterm other
than of form C[exp(g, x)] or C[v] for v : hk that can be unified with C[z] for a
fresh variable z.

Finally, we also assume that an agent cannot be “told” a symmetric key, i.e.
we never have scrypt(k,m) for a variable k.

Example 4. The constraint of the previous example is well-formed for Diffie-
Hellman. Here, the context is C[·] = scrypt(k, ·), and note that there is no other
non-variable subterm of the constraint that can be unified with C[z] for a fresh
variable z. Suppose, however, the protocol would also contain another message
encrypted with k, say scrypt(k, [A,B]2), then there is a unifier with C[·], so
[A,B]2 could potentially be mistaken by an honest agent as a Diffie-Hellman
half-key. In most cases such a type-confusion cannot be exploited by the intruder.
In general, however, such type-confusions can be the cause of attacks that do not
have a well-typed counterpart (e.g. think of scrypt(k, g)). For our result it is thus
necessary to exclude at least the type-confusions about half-keys. In general, a
good strategy is some unique identifier (tag) into messages to avoid confusion,
for instance C[·] = scrypt(k, [hk, ·]2) for a constant hk. Which of the many ways
to distinguish half-keys from other messages is however not prescribed by our
approach.

The well-formedness constraints are an important step towards our result,
requiring that all exponents can only occur in a way this would done for Diffie-
Hellman, in particular the only form in which the secret exponents of honest
agents “get” into a message is for the half-keys of form exp(g, x) and for full-
keys exp(v, x) as an encryption key. We can immediately derive an important
semantic property from this, namely that the intruder cannot ever derive any
secret exponent of an honest agent, or an exponentiation where more than one
exponent is from an honest agent:

Lemma 2. Consider a constraint φ that is well-formed for Diffie-Hellman and
where X is the set of all constants of type xp (i.e. all constants that honest
agents have generated). Consider any model I of φ, and any set M that occurs
as intruder knowledge in φ. Then I(M) 6Bx for any x ∈ X; moreover, for any
term b,

I(M)6Bexp(. . . (exp(b, x1), . . .), xn)

whenever more than one xi ∈ X.

Proof. The first part of the statement follows from the fact that we do not have
any analysis rule for exp: from the (ground) initial intruder knowledge, thus no
element of X can be derived, and it follows for every larger extension of the
intruder knowledge, because the interpretation of variables cannot contain any
element of X other than as the second argument of an exp.

The second part stems from the fact that the only ways an honest agent
transmits messages containing a secret exponent x is

– exp(g, x) which contains only one secret exponent and
– scrypt(exp(v, x),m) from which the exp(v, x) cannot be obtained, because a

key cannot be learned from an encryption that uses that key.

Note that for the exp(g, x) case, the intruder may apply exp to such the term
with self-generated exponents as much as he likes, and by the algebraic property,
these exponents can be commuted.

Again this is immediate for the ground initial intruder knowledge, and carries
over to later constraints, because all occurring variables are interpreted by a term
generated from a previous knowledge. ut

The analysis rules can destroy the well-formedness property: when applying
analysis to the first conjunct of

{[m1,m2]}Bm1 ∧ {[m1,m2],m3}Bm2

we obtain
{[m1,m2],m1,m2}Bm1 ∧ {[m1,m2],m3}Bm2

which is not well-formed. This can be avoided by applying analysis steps for a
message s to all constraints that contain s in the knowledge, starting with the
largest knowledge. We call this the analyze-all strategy (and we later show that
constraint reduction is complete under this strategy).

Lemma 3. Under the analyze-all strategy, backwards applying rules preserves
well-formedness for Diffie-Hellman.

Proof. The standard well-formedness (as of Definition 2) is straightforward ex-
cept for the analyze-all strategy: here we just need to ensure that analysis is
applied to the last constraint that first (the one with the largest knowledge).

For the exponentiation/Diffie-Hellman related properties, we need to consider
the rules individually.

Unify Consider the unification of two terms s and t where one contains one
of the critical subterms:

– C[exp(g, x)]. This only works if the other term has at the corresponding posi-
tion a subterm u that can be unified with C[exp(g, x)]. If u is a variable, so if
the unifier maps u to C[exp(g, x)], still all “new” occurrences of C[exp(g, x)]
satisfy the property. Otherwise, u is a non-variable subterm that unifies with
C[·] and thus has to be itself of the form C[z]. Thus, z can only be exp(g, x)
or a variable of type hk (so hk is matched with exp(g, x)). In both cases the
well-formedness is preserved.

– C[v]. This case is similar to the previous.
– v : hk without context: can only occur in a top position, which is excluded

from unification by the admitted(·) predicate.
– exp(g, x), x : xp without context: can only occur in a top position. Again due

to admittance, the only other term that can be unified has to be of the form
exp(t1, t2) and t1 can neither be a variable or an exponentiation. Thus t1 = g
and t2 = x is the only case that can occur, which preserves well-formedness.

– exp(exp(g, x), y). When appearing in a key-position, then the matching oc-
currence in the other term–because that cannot be a variable–also has to
be an exponentiation, and then it can only be of the form exp(exp(g, u), v)
or exp(u, z) with appropriate types, so the result is still well-formed. When
it appears on top level as M B exp(exp(g, u), v), then by well-formedness,
there cannot be a term s ∈ M that can be unified with our rule (s variable
excluded, exponentiation exp(g, z) does not unify).

– exp(v, x). The case for a key-position is similar as in the previous item, and
for M ` exp(v, x), unification is not admitted.

Generate cannot be applied to a variable or a term that has exp as root
symbol; applying it to C[m] yields m (which is well-formed both possible cases
m = exp(g, x) and m = v).

Analyze can be used to decipher a term encrypted with a Diffie-Hellman key
exp(exp(g, x), y) or exp(v, x), which in both cases leaves a well-formed constraint
(for the key derivation). ut

4.4 Completeness

We now have everything in place to show that our reduction procedure will find
an attack if there is one, given a constraint that is well-formed for Diffie-Hellman.

Theorem 1. Given a satisfiable constraint φ that is well-formed for Diffie-
Hellman, then a simple constraint is reachable from φ using the constraint re-
duction rules, proving that φ is satisfiable.

Proof. Since the given constraint φ is satisfiable, exists a model I such that for
every conjunct M B m of φ it holds that I(M) B I(m). We can easily regard
the derivation of I(m) as a “proof tree” with I(m) as a root, the inductive rules
of B (Definition 1) as construction steps, and messages from I(M) as leaves. In
the following we thus assume that every term m to derive in φ is appropriately
labeled with such a tree. The proof argument is now that either φ is simple
or there is at least one constraint reduction step we can do that is compatible
with interpretation I. Since we have not made any particular assumptions about
I, every satisfiable constraint must therefore allow for a reduction to a simple
constraint. The reduction of φ to a simple constraints proves the satisfiability of
φ since the rules are sound (Lemma 1) and a simple constraint is satisfiable.

So if φ is simple, we are already done. So assume φ is not simple. Let M B t
be the “first non-simple” conjunct of φ, i.e., one such t is not a variable and if
t = exp(v, x) for a variable v, then exp(g, x) /∈M . Considering the first operation
of the derivation tree for I(t), we choose what to do next:

– Generate step and top symbol of t is not an exponentiation: use the generate
rule of the lazy intruder and label the constraints for the subterms of t with
the appropriate subtrees of t’s derivation tree.

– Generate step and t = exp(g, x) or cannot occur: this would mean the in-
truder can generate x, then φ cannot be satisfiable by Lemma 2.

– Generate step and t = exp(exp(g, x), y) similar to previous step.
– Generate step and t = exp(v, x) for a variable v : xp. The syntactical de-

composition (i.e. the intruder knowing both v and x and applying exp) is
again absurd as in the previous cases. Thus I(v) ≈ exp(t1, t2) and the in-
truder can generate both exp(t1, x) and t2. (Note that t1 should be g in a
“well-typed” attack, but the intruder may have applied his exponentiations
to an initially given exp(g, x) so that we get a more complex term that has
x in the exponents.) By Lemma 2 we can conclude that t1 cannot contain
any secret exponents. Moreover exp(t1, x) is derivable from I(M). We can
also conclude that this derivation of exp(t1, x) contains as a node the term
exp(g, x), because (again by Lemma 2) this is the only way the intruder can
get hold of a term that contains a secret exponent. We now look at the
derivation of this exp(g, x).
If the derivation of this exp(g, x) is a leaf node, then there is a term t0 ∈M
such that I(t0) = exp(g, x). If t0 = exp(g, x), this conjunct is already simple
(in contrast to our assumption). The cases t0 = exp(v, x) and t0 = exp(g, v)
for a variable v cannot occur thanks to well-formedness. The remaining case
that t0 itself is a variable means, by well-formedness, that there is an earlier
constraint (with smaller intruder-knowledge) where t0 could be derived, and
we can just proceed with the labeling of that occurrence of t (which puts us
into one of the other cases).
If the derivation of this exp(g, x) is an analysis node, then we perform use
the Ana rule of the constraint reduction for this constraints and all other
constraints that have at least knowledge M . We discuss the case of analysis
steps below in detail and this case works exactly as those. The result of the
analysis step preserves the I and gets us closer to a simple constraint.

– This case care of the generate case, since we have handled all possible oc-
currences of exponentiations for generate.

– The derivation tree is a leaf node (so I(t) ∈ I(M)) and top symbol is not
exp. There must be an s ∈ M such that I(s) = I(t). If s is not a variable,
we can thus apply the Unify rule and have successfully showed that there is
a reduction step we can make that preserves I. If s is a variable, then by
well-formedness and the fact that we picked the first non-simple constraint,
there is an earlier constraint M0 Bs (for some M0 ⊆M) and we can proceed
with the derivation tree that labels the derivation of s here (and obtain one
of the other cases).

– The derivation tree is a leaf node and t = exp(g, x). Again, there is a term
s ∈ M such that I(s) = t. If s = exp(g, x) the Unify rule can be applied
(and we are done). The cases s = exp(g, v) and s = exp(v, x) for a variable v
are excluded by well-formedness. In the case that s is a variable itself, again

by well-formedness and picking the first non-simple constraint means that
there is an earlier constraint upon which we can follow.

– The derivation tree is a leaf node and t = exp(v, x). This case is similar to
the previous one, only if the unifiable term s = exp(g, x) ∈ M is ground,
then this constraint is simple (because exp(g, x) ∈ M), in contrast to our
assumption, the other cases are already absurd.

– The derivation tree is a leaf node and t = exp(exp(g, x), y) would mean the
constraint is not satisfiable (by Lemma 2).

– The derivation tree has an analysis node at the top. We follow the analyzed
term in the derivation tree:

• if that is itself an analysis step, we recursively proceed with that analysis
step, until we find either a generate or leaf.

• if we reach a generate step, then we have a redundancy in the proof tree:
the intruder first composed a term and then decomposed it again. We
can simplify the proof tree in this case obviously, and arrive at some
other case.

• if we reach a leaf, we can analyze the respective term using the Ana
reduction rule.

So we have to now perform an analysis step of a message in I(M), let s ∈M
be the respective symbolic message. If s is a variable, then by well-formedness
we know s occurs in an earlier constraint that must be simple (because we
picked the first non-simple constraint). In this case, we can simply replace
the leaf node for I(s) with the respective derivation tree of s in the earlier
constraint and end up in any of the other cases.
If s is thus not a variable, then the Ana reduction rule can be applied, and
the constraints for the key terms are labeled with the respective sibling trees
of s in the derivation tree.

We have thus shown that every satisfiable well-formed non-simple constraint
admits the application of a reduction rule that preserves its satisfiability. (Tech-
nically, the proof often referred to other cases, when there are redundancies like
decomposition of a self-composed term, but that is only an intermediate step in
the search for a reduction step.)

It remains to show that our reductions will eventually reach a simple con-
straint. We do not need to show the general termination of the procedure (as
it would be necessary when using the lazy intruder as an analysis technique),
but it suffices to show only that the reductions that our proof will use do not
go into an infinite loop. This follows immediately from the construction that
we assume the constraint to be labeled with the Dolev-Yao deduction trees for
one ground solution. Every node of this tree will lead to at most one reduction
in our argument, and thus this is finite. This concludes that every well-formed,
satisfiable constraint admits reduction to a simple satisfiable form, and thus the
reduction is complete. ut

5 Millen’s Minimal Diffie-Hellman Theory

We now apply the result of Theorem 1 and illustrate how drastically we can
limit the intruder without losing completeness. Millen [8, 17] introduced a simple
theory for modeling Diffie-Hellman using two new function symbols kap and kas
to abstract the two Diffie-Hellman related operations, namely constructing the
half key kap(x) from secret x and constructing the full key kas(t, y) from half-key
t and secret y, along with the algebraic property:

kas(kap(X), Y) ≈ kas(kap(Y), X) .

While this is just an approximation that is not complete in general, we can
show it is complete for protocols that produce only well-formed constraints. To
that end, we define a translation from our well-formed constraints using exp to
analogous constraints using kap and kas and give an adaption of the notions of
admissibility, simplicity, and well-formedness for the new variant.

Definition 6. Define the translation α that maps a constraint that is well-
formed for Diffie-Hellman to a corresponding one using kap and kas by the
following replacements:

– Replace every occurrence of exp(g, x) (for a constant x : xp) with kap(x).
– Every occurrence of a variable v : hk with a kap(v′) where v′ : xp is a new

variable (the same v′ for every occurrence of the same v).
– Every occurrence of exp(kap(x), y) with kas(kap(x), y).

We can define an adapted notion of well-formedness for Diffie-Hellman in
the kap-kas-representation simply as the α-image of well-formed constraints for
Diffie-Hellman in the exp representation. This is equivalent to the following ex-
plicit definition on the kap-kas-representation:

Definition 7. We say a constraint φ is well-formed for Diffie-Hellman in kap-
kas-representation w.r.t. a half-key context C[·], if it is both well-formed in the
sense of Definition 2, it does not contain exp, and every occurrence of kas and
kap, of terms of type xp, hk, and of the context C[·] is in one of the following
forms:

– C[kap(x)] for a constant x : xp; this represents a concrete half-key generated
by an honest agent (with secret exponent x).

– C[kap(v′)] for a variable v′ : xp; this represents that an agent receives kap(v′)
as a Diffie-Hellman half-key.

– kap(x) for constant x : xp without the surrounding context C[·] may only
occur on the top, i.e., as t or as an element of M in the constraint M B t.

– kap(v′) for a constant v′ : xp without the surrounding context C[·] may again
only occur on the top.

– kas(kap(x), y) for constants x, y : xp; this may only occur in a key position
or in the form M B kas(kap(x), y) (when the intruder attempts to generate
the key). It represents a concrete Diffie-Hellman key generated by two honest
agents.

– kas(kap(v′), y) for variable v′ : xp and constant y : xp. Again this may only
occur in a key position or as M B kas(kap(v′), y).

Moreover, the entire constraint may not contain any non-variable subterm other
than of form C[kap(x)] or C[kap(v′)] for x, v :′ xp that can be unified with C[z]
for a fresh variable z.

Definition 8. Similarly we can carry over the notion of simplicity using α;
explicitly that is the least relation simpleM (·) such that:

– simpleM (M B v) if v ∈ V
– simpleM (M B kap(v′)) if v′ ∈ V (and v′ : xp)
– simpleM (φ1) and simpleM (φ2) implies simpleM (φ1 ∧ φ2).
– simpleM (φ) implies simpleM (φ ∧ (M0 B kap(v′)) ∧ (M B kas(kap(v′), c)))

provided that v′ ∈ V, c is a constant, and kap(c) ∈M .

Similarly adapting the admissibility predicate, we get admittedM (t) if t /∈ V and
t 6= kas(·, ·).

Theorem 2. Consider a satisfiable constraint φ that is well-formed for Diffie-
Hellman. Then also α(φ) is satisfiable (considering kap and kas as public sym-
bols of Σp). Also, there exists a solution where all variables v′ : xp are substituted
for constants of type xp.

With the adapted notions of well-formedness, simplicity and admissibility for
kap and kas, also the constraint reduction procedure is still complete.

Proof. Observe that α is a homomorphism on the constraint reduction: Given
a constraint φ that is well-formed for Diffie-Hellman; if we can derive φ′ from φ
with one reduction, then we can derive α(φ′) from α(φ) with one reduction.

This in particular means that if from φ we can derive a simple constraint
φ′ then we can derive the simple α(φ′) from α(φ). This gives us that α(φ)
is satisfiable, and that every v′ : xp can be instantiated arbitrarily with an
intruder-known term, in particular type-correctly with an (intruder-generated)
c : xp. (Note that of course the intruder can generate constants of type xp, but
they never appear in the constraint reduction due to laziness.) Moreover, the
adapted constraint reduction is thus correct on the Millen-variant of constraints
that are well-formed for Diffie-Hellman. ut

Note that this replacement is more restrictive than originally used in CAPSL
and in the notion of well-formedness of the previous section: honest agents will
only accept messages of the form kap(x) or kap(v′) as half-keys—i.e. as if they
can check this is indeed the result of an exponentiation. This is in fact a strong
typing result.

5.1 Freedom of Diffie-Hellman

Using this restricted model of kas and kap and the “atomic arguments” of ex-
ponentiation, there is just one form of algebraic reasoning left, namely that

kas(kap(t1), t2) ≈ kas(kap(t2), t1) where t1 and t2 are either constants of type
xp or variables which can only be instantiated with constants of type xp, but not
with composed terms.

A first idea to avoid algebraic reasoning entirely, based on this restrictive
model, is to rewrite a protocol description as follows. For every message that an
honest agent can receive and that contains a Diffie-Hellman key kas(kap(t1), t2),
we add the variant of this message where the ti are swapped, i.e. kas(kap(t2), t1),
so that the agent can accept either form. 3 This basically allows for performing
unification of messages in the free algebra, instead of unification modulo the
kas/kap-property. There a few examples that require some more care, namely
when third parties are involved that do not know the key and therefore are
“blind” for the format kas(kap(·), ·). We only stipulate here that these protocols
can either be handled using more typing results or by making restrictions on the
form of protocols considered.

This idea has the disadvantage that it blows up the descriptions, essentially
making all potential alternatives of the algebraic reasoning explicit in the proto-
col description. We now show that we can do better for a large class of protocols.
The idea is a normalized representation of Diffie-Hellman keys in the sense that
we choose one of the two representations once and for all. More precisely, in the
protocol description we will always order keys as kas(kap(X), Y) where X is
a variable that represents the secret of the initiator role and Y represents the
secret of the responder role. Thus, even though the initiator would actually con-
struct the Diffie-Hellman key as kas(kap(Y), X), the protocol description uses
the kas(kap(X), Y) representation on his side. However, interpreting such a pro-
tocol representation in the free algebra can exclude attacks in general, because
the concrete Diffie-Hellman half-keys alone do not tell whether they belong to
the initiator or the responder role. Consider the exchange protocol:

A→ B : m1, sign(inv(pk(A)), [B, kap(X)]2)
B → A : m2, sign(inv(pk(B)), [A, kap(Y)]2)

where mi are (commonly known) tags, and consider the trace:

a→ b(i) : m1, sign(inv(pk(a)), [b, kap(x1)]2)
b→ a(i) : m1, sign(inv(pk(b)), [a, kap(x2)]2)
b(i)→ a : m2, sign(inv(pk(b)), [a, kap(x2)]2)
a(i)→ b : m2, sign(inv(pk(a)), [b, kap(x1)]2)

After this trace, a and b have a shared secret key, but both of them believe
to be playing as the initiator role A. Thus, when we normalize key terms by
the initiator role, a would use the key kas(kap(x1), x2) (because it believes b to
be responder) and vice-versa b would use the key kas(kap(x2), x1). So by the
confusion about the roles, the keys would still syntactically differ and free-algebra
reasoning would not be sound in this case.
3 If there are several occurrences of Diffie-Hellman keys in a message, there is an

exponential number of variants to consider.

5.2 Authenticating the Role

Suppose the tag mi in the above example protocol were part of the signature,
i.e. authenticating not only the half-key and intended recipient itself, but also
the role, then the role confusion can not arise and we can use the free algebra
interpretation of the normalized form.

To formalize this idea, we consider again the concept of a context C[·] that
surrounds every exchange of half-keys of § 4.1. From now on, we use two different
contexts that distinguish initiator and responder role, e.g. in the example:

C1(B)[·] = [m1, B, ·]3
C2(A)[·] = [m2, A, ·]3

Note that here we use as context only the immediate surrounding constructor,
i.e. the concatenation, and not yet the authentication. The reason is that our
previous theorems rely on a one-level context and would not hold for many-level
contexts. The modification from one to two contexts, is not a problem, however,
adapting all definitions to have either C1 or C2 in places where we previously
had only C. The adapted well-formedness for Diffie-Hellman thus in particular
requires that (for any term t) neither C1[t] nor C2[t] can be unified with any
other non-atomic subterm of the protocol messages. Additionally, we require
that for any term s and t, C1[s] has no unifier with C2[t], i.e. the two roles are
always uniquely distinguished.

For the authentication, we consider a further pair of contexts CA
1 [·] and CA

2 [·]
(which we allow to be unifiable with each other and with other message parts);
in our example we have CA

1 (A)[·] = CA
2 (A)[·] = sign(inv(pk(A)), ·) .

In addition to the previous requirements for well-formedness, we now require:

1. For every full-key of the form kas(kap(t1), t2), the half-keys occur in the
constraints as CA

1 [C1[kap(t1)]] and CA
2 [C2[kap(t2)]] and only in this way.

2. Given any occurrence of CA
i [Ci[kas(t)]] where CA

i can be constructed by the
intruder using the generate rule, then t is a variable.

3. An encryption with a Diffie-Hellman key cannot occur as a subterm of an-
other encryption.

Requirement 2 ensures the authentication of the roles: he cannot generate the
term that corresponds to the authenticated half-key (and thereby determine the
role) of an honest agent (where t would be a constant). In our example, we could
define the initial intruder knowledge to contain inv(pk(i)) but no other private
keys, so the intruder can generate the signatures for the Diffie-Hellman half-keys
(and determine the role) iff he is acting under his real name i.

Theorem 3. Given a constraint (for Millen’s theory) that satisfies all said re-
quirements. Then this constraint is satisfiable in Millen’s theory iff it is satisfiable
in the free algebra.

Proof. We show that the reduction of a constraint φ to a simple constraint can
always be achieved without the use of algebraic properties: we never need to

perform a “cross-unification” of two Diffie-Hellman keys kas(kap(t1), t2) and
kas(kap(t3), t4)—i.e. one where we unify t1 with t4 and unify t2 with t3. Such a
“cross-unification” would of course not be found when interpreting terms in the
free algebra.

So consider a Unify-step in the reduction of φ that involves the unification of
two such Diffie-Hellman keys. By the well-formedness conditions for the kap-kas-
representation, all the ti are constants or variables of type xp and, by condition 1,
the original constraint φ must contain the four half-keys and always with their
correct contexts, namely CA

1 [C1[kap(t1)]], CA
2 [C2[kap(t2)]], CA

1 [C1[kap(t3)]], and
CA

2 [C2[kap(t4)]]; the first two belong to the full key kas(kap(t1), t2) and the
second two belong to the full-key kas(kap(t3), t4).

One of the first two represents the half-key generated by an honest agent,
so either t1 or t2 must be a constant, and the other is part of a term that the
intruder has to generate (and that ti may either be a constant or a variable).
The same holds for the other two half-keys.

By condition 2, if the intruder can compose the context CA
i [·] of a half key

kap(tj) (using the Generate rule in the constraint reduction) then the tj must be
a variable (for the original constraint φ; it may be instantiated during reduction).
Thus, if any tj that the intruder has to generate are constants, then the respective
CA

i [Ci[kap(tj)]] can only have been obtained using a Unify step. According to
the well-formedness, they can only belong to the role as which they were meant
by the agent who created them—excluding the “cross-unification” (t1 with t4
and t2 with t3). So the only remaining possibility for a cross-unification is that
both intruder-determined half-keys—say t1 and t3 (the proof is identical for the
other 3 cases)—are variables and the intruder generates the context using the
generate rule.

So the intruder needs to generate a termm that contains scrypt(kas(kap(v), x),m0)
and we have a reduction involving Unification with another message m′ in the in-
truder knowledge that has as the respective subterm scrypt(kas(kap(v′), x′),m′0).
(Again, x and x′ are constants, v and v′ are variables.) The half-key generation
constraints are reduced to the simple constraints M1 B kap(v) and M2 B kap(v′)
during derivation. Now the messages m and m′ can only use tuples as a con-
text of the scrypt(·, ·) message by condition 3. Thus, there exists an alternative
derivation instead of applying the unify rule to m and m′: the intruder can first
analyze m′0 (choosing a known value as v) and then apply the generate rule to
obtain m from m0 (choosing a known value as v′). Intuitively, this case says
that when the intruder runs two sessions with honest agents (the creators of x
and x′) then it is no restriction to assume that the intruder always uses self-
generated half-keys for his part, rather than re-using half-keys (to which he does
not know the secret) from other sessions. This however needs the condition that
Diffie-Hellman encryptions never occur under another encryption to which the
intruder has no access. ut

6 Conclusions and Related Work

Several works consider the integration of algebraic reasoning into protocol veri-
fication, in particular [6] extending the lazy intruder technique [19, 21, 4]. While
[6] presents a verification method for exponentiation-based protocols in general
(for a bounded number of sessions), our paper establishes a completely different
kind of result, namely one that allows to avoid most or all of the algebraic rea-
soning. This result is not linked to a particular verification method, and works
for an unbounded number of sessions. In fact, we use the lazy intruder as a con-
venient way to derive the results and formulating the class of protocols that we
can support.

This paper is in the tradition of a number of relative soundness results which
show that under certain conditions, models can be restricted without losing
attackability, i.e. if there is an attack in the unrestricted model, then so is one in
the restricted model. In particular, [12] justifies a strictly typed model (in the free
algebra), [18, 15] show that one can safely avoid cancellation properties (and use
free-algebra pattern matching), [14] show that one can simplify the algebraic
theories used for Diffie-Hellman. Results like [16] show that the typing result
of [12] can also be established under many algebraic theories and like us also
use the lazy intruder technique for this. Our work compares to these soundness
results by providing the most restrictive version for the Diffie-Hellman protocols
so far, namely establishing the soundness of Millen’s restrictive model for Diffie-
Hellman [8, 17].

This very restrictive theory allows tools that support algebraic reasoning to
avoid many unnecessary reasoning steps. We also sketch how to exploit this in
tools that do not support algebraic reasoning at all. This is similar to the result
of [13] which is however focused on ProVerif and its abstract model (that does
not have fresh nonces).

Like the cited works for relative soundness, our result also relies on making
restrictions on the class of protocols that are supported, in our case that Diffie-
Hellman half-keys can be distinguished from other protocol parts. In fact, it is
good engineering practice [1] that messages somehow identify what they mean,
e.g. by tags. One can thus rephrase this and other works as exploiting properties
of well-designed protocols to simply their verification.

Currently, our result supports only protocols that use Diffie-Hellman in its
classical form and does not cover protocols where for instance the exponents
contain both ephemeral and long-term secrets. We also did not consider the
algebraic properties for the inversion of exponents (because this is irrelevant
for the classical Diffie-Hellman). We believe that the extension of our results to
such broader classes of protocols and algebraic theories is possible and plan to
investigate this in the future.

References

1. M. Abadi and R. M. Needham. Prudent engineering practice for cryptographic
protocols. IEEE Trans. Software Eng., 22(1):6–15, 1996.

2. M. Arapinis and M. Duflot. Bounding messages for free in security protocols.
In V. Arvind and S. Prasad, editors, FSTTCS’07, volume 4855 of LNCS, pages
376–387, New Delhi, India, Dec. 2007. Springer.

3. A. Armando and L. Compagna. SAT-based Model-Checking for Security Protocols
Analysis. Int. J. of Information Security, 6(1):3–32, 2007.

4. D. A. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic model checker
for security protocols. Int. J. Inf. Sec., 4(3):181–208, 2005.

5. B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In 14th IEEE Computer Security Foundations Workshop (CSFW-14), pages 82–96,
Cape Breton, Nova Scotia, Canada, June 2001. IEEE Computer Society.

6. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the security
of protocols with Diffie-Hellman exponentiation and products in exponents. In
P. K. Pandya and J. Radhakrishnan, editors, FSTTCS, volume 2914 of Lecture
Notes in Computer Science, pages 124–135. Springer, 2003.

7. C. J. F. Cremers. The Scyther tool: Verification, falsification, and analysis of
security protocols. In CAV, pages 414–418, 2008.

8. G. Denker and J. Millen. CAPSL and CIL Language Design. Technical Report
SRI-CSL-99-02, SRI, 1999.

9. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

10. S. Escobar, C. Meadows, and J. Meseguer. Maude-NPA: Cryptographic protocol
analysis modulo equational properties. In A. Aldini, G. Barthe, and R. Gorrieri,
editors, FOSAD, volume 5705 of Lecture Notes in Computer Science, pages 1–50.
Springer, 2007.

11. D. Harkins and D. Carrel. The Internet Key Exchange (IKE), 1998. IETF, RFC
2409.

12. J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks on security
protocols. Journal of Computer Security, 11(2):217–244, 2003.

13. R. Küsters and T. Truderung. Using ProVerif to analyze protocols with Diffie-
Hellman exponentiation. In CSF, pages 157–171, 2009.

14. C. Lynch and C. Meadows. Sound approximations to Diffie-Hellman using rewrite
rules. In J. Lopez, S. Qing, and E. Okamoto, editors, ICICS, volume 3269 of
Lecture Notes in Computer Science, pages 262–277. Springer, 2004.

15. C. Lynch and C. Meadows. On the relative soundness of the free algebra model
for public key encryption. Electr. Notes Theor. Comput. Sci., 125(1):43–54, 2005.

16. S. Malladi. Protocol indepedence through disjoint encryption under exclusive-or.
In TOSCA 2011, volume 6993 of LNCS, 2011.

17. J. Millen and F. Muller. Cryptographic Protocol Generation From CAPSL. Tech-
nical Report SRI-CSL-01-07, SRI, 2001.

18. J. K. Millen. On the freedom of decryption. Inf. Process. Lett., 86(6):329–333,
2003.

19. J. K. Millen and V. Shmatikov. Constraint solving for bounded-process crypto-
graphic protocol analysis. In ACM Conference on Computer and Communications
Security, pages 166–175, 2001.

20. S. Mödersheim, L. Viganò, and D. A. Basin. Constraint differentiation: Search-
space reduction for the constraint-based analysis of security protocols. Journal of
Computer Security, 18(4):575–618, 2010.

21. M. Rusinowitch and M. Turuani. Protocol insecurity with a finite number of
sessions, composed keys is NP-complete. Theor. Comput. Sci., 1-3(299):451–475,
2003.

22. M. Turuani. The CL-Atse protocol analyser. In RTA, pages 277–286, 2006.

