
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 10, 2024

An IP Framework for the Crew Pairing Problem Using Subsequence Generation

Rasmussen, Matias Sevel; Lusby, Richard Martin; Ryan, David; Larsen, Jesper

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Rasmussen, M. S., Lusby, R. M., Ryan, D., & Larsen, J. (2011). An IP Framework for the Crew Pairing Problem
Using Subsequence Generation. DTU Management. DTU Management 2011 No. 10
http://www.man.dtu.dk/Om_instituttet/Rapporter/2011.aspx

https://orbit.dtu.dk/en/publications/c9daadb0-5f1c-4383-858d-13d22cf27bd2
http://www.man.dtu.dk/Om_instituttet/Rapporter/2011.aspx


Matias Sevel Rasmussen
Richard M. Lusby 
David M. Ryan
Jesper Larsen

June 2011

Report 10 2011

DTU Management Engineering

An IP Framework for the Crew Pair-
ing Problem using Subsequence 
Generation



An IP Framework for the Crew Pairing Problem

using Subsequence Generation

Matias Sevel Rasmussen1, Richard M. Lusby1, David M. Ryan2, and
Jesper Larsen∗,1

1Department of Management Engineering, Technical University of
Denmark, Denmark

2Department of Engineering Science, The University of Auckland,
New Zealand

June, 2011

Abstract

In this paper we consider an important problem for the airline
industry. The widely studied crew pairing problem is typically for-
mulated as a set partitioning problem and solved using the branch-
and-price methodology. Here we develop a new integer programming
framework, based on the concept of subsequence generation, for solv-
ing the set partitioning formulation. In subsequence generation one
restricts the number of permitted subsequent flights, that a crew mem-
ber can turn to after completing any particular flight. By restricting
the number of subsequences, the number of pairings in the problem de-
creases. The aim is then to dynamically add attractive subsequences
to the problem, thereby increasing the number of possible pairings and
improving the solution quality. Encouraging results are obtained on
19 real-life instances supplied by Air New Zealand and show that the
described methodology is a viable alternative to column generation.

Keywords: Airline crew pairing, Subsequence generation, Set partition-
ing, Integer programming

1 Introduction

For an airline company crew costs can be identified as the second largest
expense, typically only fuel costs are higher. In 1991 it was reported that

∗Corresponding author: E-mail: jesla@man.dtu.dk. Address: Department of Man-
agement Engineering, Technical University of Denmark, Produktionstorvet, Building 424,
DK-2800 Kgs. Lyngby, Denmark. Tel.: +45-45253385. Fax: +45-45933435.

1



Figure 1: The airline crew scheduling process. The times are for Air New
Zealand’s domestic scheduling.

American Airlines spent USD 1.3 billion on crew (see Gopalakrishnan and
Johnson (2005)). Unlike fuel costs, crew costs can in some sense be con-
trolled by an airline. The inefficient use of crew may lead to unnecessary
expenditure. As a result, finding the optimal use of an airline’s crew is a
topic that has received significant attention in the literature, and now, as a
result, optimisation tools are heavily used by airlines in their planning opera-
tions. Due to the high cost associated with crews, even minor improvements
in the schedules can result in significant savings.

The focus of this paper is on the so-called airline crew pairing problem.
This problem is one of the core optimisation problems encountered by an
airline company. It’s position in the planning horizon, as well as the other
main optimisation problems can be seen in Figure 1. While the airline crew
pairing problem will be discussed in more detail in Section 2, it essentially
requires one to find sequences of flights that crew members will fly, at mini-
mum cost. The sequences of flights are termed pairings and are anonymous.
The pairing problem succeeds the flight timetabling step. Here, a schedule of
all flights that will be flown by the airline must be constructed. This is then
followed by fleet assignment, which requires one to assign an aircraft type
to each of the flights. Finally, as a last step from an aircraft perspective,
one must determine aircraft routes, termed the aircraft routing problem. A
solution to the flight timetabling phase is required as input for the pairing
problem; however, one can solve the pairing problem separately for cock-
pit and cabin crew, or even separately for each aircraft type. For example,
here we consider the domestic Boeing 737 fleet for Air New Zealand. The
final step in the planning horizon is crew rostering. Here, pairings, train-
ing, and vacation are combined to form actual rosters for individual crew
member. The crew pairing and the crew rostering steps are together called
airline crew scheduling The steps for airline crew scheduling can be seen in
Figure 1.

A recent survey on airline crew scheduling can be found in Gopalakrish-
nan and Johnson (2005). The authors provide an overview of the different
approaches that have been used over the last two decades to solve this prob-

2



lem. In addition to this, some promising directions for future work are
described. The crew pairing problem has also been treated separately and
in detail. Barnhart et al. (2003) give a text book description of airline crew
scheduling and also have a detailed section on crew pairing with examples.
The crew pairing problem is formulated as a set partitioning problem and
the authors describe how the problem can be solved as a weekly problem or
a dated problem. In the weekly problem approach, one exploits repetitive
patterns of flights over the weekdays, and can thus break the problem into
smaller parts, which are then combined. This division of the problem is, of
course, a trade-off against optimality. The dated problem approach, on the
other hand, solves the problem directly, and is necessary for flight timetables
where flights are not repeated several times a week. The complex cost struc-
tures for pairings are described by Gopalakrishnan and Johnson (2005) and
Barnhart et al. (2003). Andersson et al. (1998) describe different approaches
to crew pairing and give a detailed introduction to the Carmen (now Jeppe-
sen) system for solving the crew pairing problem. The Carmen system uses
a priori column generation; however, it has separated the checking of the
pairing requirements into a special rules language. The Carmen system uses
the optimisation approach described by Wedelin (1995). Desaulniers et al.
(1998) present the crew pairing model as a special case of a generic air
crew scheduling model that also covers, for instance, rostering. The crew
pairing problem is solved by column generation. AhmadBeygi et al. (2009)
develop an integer programming model for generating pairings. The model
can be used, especially in research, to overcome the time-consuming task
of implementing a pairing generator. Butchers et al. (2001) describe airline
optimisation problems in general and the crew pairing problem in particular
for Air New Zealand’s domestic and international schedule. The authors also
formulate the crew pairing problem as a set partitioning problem. Lavoie
et al. (1988) use a set covering formulation and perform column generation
on a duty period network. Graves et al. (1993) use a set partitioning formu-
lation and do column generation on a network of flights. Vance et al. (1997)
use a two-stage approach. First flights are combined to form duty periods,
and next duty periods are combined to form pairings. Using dynamic con-
straint aggregation crew scheduling can be solved in an integrated approach,
see Saddoune et al. (2011). In this way all constraints are virtually present
in the master problem, but in an aggregated form, where constraints belong-
ing to the same pairing are just represented by one active constraint. The
update of these active constraints leads to a complex setup in the interplay
with the column generator. This, though, does at present remain a very
complex and time-consuming approach limited to academic environments
only.

In this paper we extend the work of Rasmussen et al. (2011), where the
idea of using subsequence generation for solving the pairing problem was first
proposed. Given the encouraging results from a linear programming (LP)

3



perspective, here we extend this methodology to a full integer programming
framework. The framework itself is similar to that of the well known branch-
and-price approach for solving large scale optimisation problems; however, it
does possess certain key differences. In particular, pairings found during the
pricing phase of the algorithm are not directly added to the master problem,
but instead are analysed in order to identify attractive subsequences. This
is then followed by an enumeration step in which all pairings containing the
identified subsequence(s) are enumerated and simultaneously added to the
master problem.

The paper is organized as follows. In Section 2 we provide a definition of
the airline crew pairing problem and present the conventional generalised set
partitioning formulation of it. Section 3 describes a subsequence generation
based solution approach for solving the linear programming model. This
methodology is built into an integer programming framework in Section 4
and computational results for the complete algorithm are presented in Sec-
tion 5. The main conclusions and directions for future work are summarised
in Section 6.

2 Problem formulation

In this section we formally define the airline crew pairing problem and
present a mathematical formulation of it. We begin by introducing the
required terminology and sets.

The flight schedule of an airline consists of a set of flights, F . A duty
period is a sequence of flights in F that can be flown by a crew member.
Any duty period must adhere to several rules and regulations in order to be
feasible. A crew member can either be operating or passengering (sometimes
called deadheading) on a flight. Passengering allows crew members to be
repositioned in order to operate other flights. A duty period consists of
flying time, where the crew member is operating the flight, and idle time,
which together give the elapsed time. Each duty period has a maximum
flying time and a maximum elapsed time, as well as a maximum number
of flights that can be operated. Duty periods must also respect meal break
regulations. Consecutive duty periods are separated by a rest period, which
must have a minimum duration. Finally, a so-called sign-on (sign-off ) time,
is imposed when starting (respectively, terminating) a duty period.

A pairing (sometimes called a tour-of-duty) is a sequence of duty periods
and rest periods. Every airline has a set of crew bases, i.e. airports from
where crew can start working. A feasible pairing must start and end at
the same crew base. Pairings can only contain up to a maximum number
of duties, and a pairing is only allowed to stretch over a certain number of
mandays (where one manday is equivalent to the amount of work one person
can produce in a day). The manday count is increased every time midnight

4



is passed in the time zone where the pairing originates. Different airlines
use different and quite complex ways of calculating the cost of a pairing,
for examples of this see Gopalakrishnan and Johnson (2005) and Barnhart
et al. (2003). For the research described in this paper, the pairing’s idle
time is used as the cost of a pairing. This simple measure ensures the crew
utilization is maximized. An illustration of a pairing can be seen on Figure 2.

Base Base

Duty period Duty periodRest period Operated f l ight

Deadheading

Rest

Figure 2: Illustration of a pairing.

The airline crew pairing problem entails finding a set of pairings that
covers all flights exactly once at minimum cost. Let P be the set of feasible
pairings. The problem is modelled as a set partitioning problem. Each row
corresponds to a flight f ∈ F and each column corresponds to a pairing
p ∈ P. Let m̄ = |F| be the number of flights and n = |P| be the number of
pairings. Now, the pairings can be represented by a binary m̄×n matrix A,
where the entries are defined by aij = 1 if flight i ∈ {1, . . . , m̄} is contained
in pairing j ∈ {1, . . . , n}, and aij = 0 otherwise. Let cj denote the cost of
pairing j ∈ {1, . . . , n}.

In addition to the flight partitioning constraints, most airlines include so-
called base constraints. Such constraints are necessary in order to distribute
the pairings across the crew bases in such a way that is consistent with where
the actual crew are located. In other words, a base constraint is associated
with a set of crew bases and puts a lower limit and/or an upper limit on the
number of mandays that can be worked out of the associated bases over a
given time horizon. A pairing contributes to a base constraint if the pairing
originates, in the specified time horizon, from one of the bases associated
with the constraint. The pairing’s contribution to the base constraint is
the manday count of the pairing and given as dj , where j ∈ {1, . . . , n}.
Here we denote the set of base constraints that enforce an upper limit on
manday count as B1, while those that enforce a lower limit are given by
the set B2. The two matrices B1 and B2, with dimension |B1| × n and
|B2| × n, respectively, reflect the manday coverage of each pairing for each

type of base constraint. Finally, vectors b1 ∈ N|B1|0 and b2 ∈ N|B2|0 give the
corresponding upper and lower limits on manday count.

The decision variables xj for j ∈ {1, . . . , n} govern the inclusion of pair-

5



ing j in the solution and are binary. We also allow the possibility for leaving
flights uncovered. The decision variables si for i ∈ {1, . . . ,m} give the pos-
sibility of leaving flight i ∈ F uncovered. Such variables are necessary to
ensure feasibility and to reflect their unattractiveness each is assigned a high
objective coefficient, M . In a similar way we also allow the base constraints
to be violated. In reality one would prefer to violate the base constraints in
preference to cancelling some of the flights. The decision variables uk where
k = 1, . . . , |B1| and ok where k = 1, . . . , |B2| give the number of mandays one
violates the respective base constraints by. Again, such decision variables
are assigned a high cost, p (where p < M), to make them unattractive. The
mathematical programme can then be written as follows:

minimise c>x + ps + Mu + Mo (1)

subject to Ax + Is = 1 (2)

B1x + I1u = b1 (3)

B2x− I2o = b2 (4)

x ∈ {0, 1}n (5)

s ∈ Rn (6)

u ∈ R|B1|+ (7)

o ∈ R|B2|+ . (8)

where I, I1 and I2 are identity matrices of appropriate size.
The number of possible pairings in the set partitioning formulation is

very large and the above model is typically only solved using branch-and-
price methodology. In what follow, however, we will present a new integer
programming framework for efficiently solving this problem based on the
subsequence methodology described in Rasmussen et al. (2011).

3 Subsequence methodology

The idea of using subsequence generation to solve the airline crew pairing
problem was first proposed in Rasmussen et al. (2011). The fundamental
idea with this approach is to cleverly limit the number of subsequent flights
that can feasibly follow any flight f ∈ F and then dynamically introduce at-
tractive so-called subsequences during the solution process. Formally stated,
the subsequences of a particular flight f ∈ F are the set of pairs (f, g) ∈ F2,
where g ∈ F is a feasible subsequent flight of f . Figure 3 illustrates this
concept. We denote the set of subsequences of any flight f ∈ F as S(f). The
subsequence count of any flight f ∈ F is then given as |S(f)| and the term
unique subsequence refers to the situation in which the subsequence count

6



of all flights f ∈ F is at most one. We denote the set of all subsequences as
S =

⋃
f∈F S(f), and O is used to refer to a set of optimal subsequences.

The premise is that by considering a limited subsequence set, one can
reduce the complexity of the mathematical model and, if done in an intel-
ligent manner, the approach should not reduce the quality of the solution.
Due to the set partitioning constraints of the model, one can observe that
an optimal integer solution must have unique subsequence. In what follows,
we discuss how one first limits the number of subsequences and then how
one identifies attractive subsequences to add to the problem.

Airport
Time

Ingoing flight

Outgoing flight

Figure 3: Subsequences.

3.1 Subsequence limitation

Limiting the number of possible subsequences for each flight in the problem
is beneficial from a computational perspective. Naturally it reduces the total
number of pairings that must be considered. In addition to this, however,
from a graph theoretical perspective problems with a limited subsequence
set produce more balanced constraint matrices. That is, the constraint
matrix defines a polytope that has integral or near integral vertices (see
Ryan and Falkner (1988) and Conforti et al. (2001) for details). Figure 4
provides an example of a limited subsequence set for an incoming flight
f ∈ F . The set L(f) ⊆ S(f) is used to denote the limited subsequence set
for flight f ∈ F . The set L =

⋃
f∈F L(f) contains all limited subsequences

for all flights. In the example |L(f)| = 2 and |S(f)| = 6. Being able to

Airport
Time

Ingoing flight

Outgoing flight

Disallowed flight

Figure 4: Limited subsequences.

accurately identify which subsequences to include in L(f) for every flight

7



f ∈ F is of crucial importance with this approach. Obviously, one must
determine which subsequences to initially include. However, the limited
subsequence set for each flight is a dynamic set in the sense that one can add
attractive subsequences during the solution process. Here, attractive refers
to a subsequence’s ability to reduce the objective function of the relaxed
master problem. The relaxed master problem is problem of the form of
Model (1)–(8) that contains only a subset of all pairings and has no integral
restrictions. The overall aim of the subsequence approach is to be able
to identify a set of optimal subsequences without considering all possible
subsequences in the pairing construction.

3.2 Subsequence generation

The purpose of subsequence generation is to use successive solutions to the
relaxed master problem to identify an attractive subsequence (or possibly
more than one) to add to the respective limited subsequence sets in order
to enrich the set of possible pairings in the problem. Given the nature of
the objective function it is unlikely that many deep subsequences will be
in an optimal solution. A deep subsequence is one with a lengthy duration
between the incoming and subsequent outbound flight. Therefore, we begin
by defining candidate subsequence sets C(f) for each flight f ∈ F . Again
we define C =

⋃
f∈F C(f). We have L(f) ⊆ C(f) ⊆ S(f) for all f ∈ F and

L ⊆ C ⊆ S. The relationship between these sets can be seen in Figure 5.
Ideally we would like O ⊂ C. Subsequence generation is an iterative proce-

All subsequences

Limited subsequence set

Optimal subsequences

Candidate subsequence set

Figure 5: The relations between the set of all subsequences S, the limited
subsequence set L, the candidate subsequence set C, and an optimal subse-
quence set O.

dure noticeably similar to column generation. At every iteration the relaxed
master problem is solved and the dual vector is used to identify negative re-
duced cost pairings. Finding a negative reduced cost pairing entails solving
a resource constrained shortest path problem on a connection network, see
Clausen et al. (2010). Each node of this network corresponds to a particular
flight f ∈ F , while an arc between any two nodes indicates that it is possible

8



for one flight to follow the other feasibly in a pairing. Unlike column genera-
tion, however, the aim is not to return a pairing from the pairing generation
step, but rather to identify a good subsequence that should be contained in
a pairing. For this reason we set up a number of sparse networks specifi-
cally designed to identify particular subsequences. The following classes of
subsequences are important to recognise in crew pairing:

1. Follow-the-aircraft

2. Robust

3. Meal break

4. Overnight

For any flight f ∈ F , the follow-the-aircraft subsequence is the one where
the crew flies out on the same aircraft as they flew in with. This type of
subsequence is very robust with respect to delays, because if crew is delayed
on the ingoing flight that can still operate the outgoing flight. Expectations
and data from Air New Zealand show that the majority of the optimal
subsequences are of this type. A robust subsequence is one in which the
time difference between the arrival of the incoming flight and departure
of the subsequent flight exceeds the minimum sit time for the crew plus
a certain degree of buffer time. Robust subsequences guard against delay
propagation just as follow-the-aircraft subsequences. All crew members are
entitled to meal breaks at certain time intervals. A meal break subsequence
is one which provides crew with the possibility of taking a meal (either in
the air or on the ground). Finally, since we typically construct pairings that
are longer than three days in generation, it is inevitable that crew will have
to overnight somewhere (base or non-base) during this time interval. An
overnight subsequence is one in which the crew’s idle time on the ground
exceeds the minimum rest time.

The above classes of subsequences collectively give the candidate set of
subsequences C. We combine the follow-the-aircraft subsequences with each
of the other three classes to give three subsets of the candidate set in order
to construct networks that allow us to search specifically for robust, meal
break, and overnight subsequences. The set C1 contains subsequence classes
1 and 2, C2 contains classes 1 and 3, and C3 consists of classes 1 and 4. We
note for completeness that

⋃3
k=1 C3 = C. To ensure that the shortest path

solve on each of the networks is quick, we restrict the number of subsequences
for each flight in each of the subsets. That is |Ck(f)| ≤ nk, where nk is a
small integer less than, say, five. The set C1 is used as the initial limited
subsequence set L.

While the pairing generation mirrors what is done in column generation
(albeit on slightly different networks), unlike column generation the pair-
ings are not returned directly to the relaxed master problem. Instead, all

9



negative reduced cost columns are passed through a subsequence analysis
phase. For each subsequence s ∈ C the analyser maintains four measures
that are accumulated over all iterations and updated after analysis of the set
of negative reduced cost columns returned by the pairing generators. These
statistics are:

1. Count of columns containing s.

2. Count of different dual vectors that have produced columns containing
s.

3. Sum of the reduced cost of columns that contain s.

4. Sum of the contribution from s to the negative reduced cost of columns
containing s.

The measures are correlated, so a high rank in one measure could also give a
high rank in some of the other measures. In fact, three out of the four mea-
sures utilise the dual information of the relaxed master problem. Utilising
dual information to identify favourable flights is also the topic of Barnhart
et al. (1995). Here the authors limit the search to deadhead flights only and
incorporate it into a standard column generation procedure.

At each iteration some subsequences are identified as attractive based
on these four measures and added to the set L. Once a subsequence s
has been identified as an attractive subsequence, an enumeration procedure
is performed to generate a whole set of new pairings, which all contain
the identified subsequence. All enumerated pairings are then added to the
relaxed master problem. The enumeration returns feasible pairings in L
containing s. The reason why a relatively large set of columns is added to
the LP model, is, that whenever a subsequence is identified as attractive, it
is believed that it is likely to end up in an optimal solution. That is, the
optimal solution should contain one of the enumerated columns.

4 Integer programming framework

Given the preceding section on subsequence generation, one can obtain a
high quality solution to the relaxed master problem as shown by Rasmussen
et al. (2011). Since only a subset of the subsequences are considered this ap-
proach cannot provide a certificate of optimality. In order to solve the airline
crew pairing problem we need a solution that satisfies the integral restric-
tions of Model (1)–(8). In this section we present an integer programming
framework, which utilises follow-on branching, to force the xj variables to as-
sume integer values. In Section 4.1 we formalize the methodology of Section
3.2 via a flow-chart, before introducing the idea of constraint branching in
Section 4.2. Finally, in Section 4.3, we provide an overview of the complete
integer programming approach.

10



Initial subsequence set

LP solver

Subsequence generator

Duals

Pairing generator(s)

DualsPairings

Set of

enumerated

pairings

Figure 6: Subsequence generation.

4.1 Solving the LP relaxation

Figure 6 provides a schematic view of how the subsequence generation pro-
cedure solves an instance of the relaxed master problem. To initialise the
algorithm all possible pairings from the subsequence set C1 are enumerated
and given to the LP solver to obtain an initial solution. The dual solution
to this problem is then passed to the subsequence generation routine, which
executes a series of pairing generators. Each pairing generator returns a set
of negative reduced cost pairings which are then analysed in order to identify
one or more attractive subsequences. Upon identifying such a subsequence
an enumeration procedure is performed to generate all pairings that con-
tain the specified subsequence. Again, the enumeration is done only with
subsequences from the limited set L. The relaxed master problem is then
re-optimised with the additional set of pairings. One iterates in this fashion
until one of the following situations occurs:

1. No significant improvement in the objective function for a specified
number of iterations.

2. No negative reduced cost pairings are returned from the pairing gen-
erators.

It can be observed that the process is quite similar to column generation.
However, with column generation, the dual solution is passed to the pairing
generators and any negative reduced cost pairings are added directly to the
relaxed master problem.

4.2 Follow-on branching

Fractional solutions to the relaxed master problem arise when two or more
pairings compete to cover the same flight(s). Due to the set partitioning

11



structure of the model, one knows that in any optimal solution at most
one pairing can cover any flight. In most airline crew pairing applications
the branching method of choice is the so-called follow-on branching rule.
This rule is a variation of the constraint branching technique developed by
Ryan and Foster (1981) and is also what is implemented in this paper. In
follow-on branching one must identify two flights that are flown consecu-
tively and contained in a pairing that is covered fractionally (i.e. at a value
greater than zero, but strictly less than one) in a solution to the relaxed
master problem. This branching strategy partitions the solution space into
two disjoint subspaces (or branches). The first ensures that the two flights
are flown consecutively, while the second ensures that they are covered by
different pairings. Since one is branching on consecutive flights, this rule is
particularly easy to incorporate in the pairing generators as it only requires
the modification of arcs associated with two flights in the network. Further-
more, the follow-on branching concept is closely related to the notion of a
subsequence—identifying two flights to be flown consecutively amounts to
identifying a subsequence.

To identify the subsequence to branch on given a fractional solution
to a relaxed master problem we simply find the subsequence that is covered
fractionally at maximum value (i.e. at a value greater than zero, but strictly
less than one) and create two new nodes to be solved, as outlined above.
Imposition of a branch requires one to first remove those pairings that violate
the branch from the relaxed master problem. Here, we simply bound all such
variables to zero. As we mentioned in Section 2, we allow the partitioning
flight constraints and base constraints to be violated, with an appropriate
penalty. The artificial variables are never bounded to zero and ensure we
always have a starting basis after this bounding step. By retaining the
artificial variables, we do not need to implement a time consuming phase
1/phase 2 approach.

Through modifications to the pairing generators, any pairing that vi-
olates the branch is prevented from entering the problem. If the branch
states that the subsequence should not be contained in any pairing (i.e. the
two flights cannot be flown consecutively), then the corresponding arc is
removed from any pairing generators it appears in. If, on the other hand,
one is forcing a subsequence to be contained in a pairing, then one must
ensure that the corresponding arc is contained in the solutions to the re-
spective resource constrained shortest paths. Here, to enforce a particular
subsequence, we remove all other conflicting subsequences from the relevant
networks. This ensures that the desired subsequence is contained and pre-
vents us from having to introduce a new resource in the shortest path solve.
A conflicting subsequence is one in which either the inbound or outbound
flight is different to that stated in the subsequence to branch on. Figure 7
illustrates how a subsequence (consisting of flights one and two) is enforced.
The arcs given in red are all subsequences that must be removed in order to

12



Flight 2Flight 1

Figure 7: Forcing a subsequence.

ensure that flight 1 and flight 2 are flown consecutively (or not flown at all)
in a pairing.

4.3 Solving the integer programme

To produce a high quality solution to Model (1)–(8), we combine the follow-
on branching strategy of the preceding section with the subsequence gener-
ation methodology of Section 4.1 to implement a kind of branch-and-price
algorithm. Branch-and-price is a well-known technique, which utilises col-
umn generation, for solving the crew pairing problem (see Barnhart et al.
(1998) for details). Due to the fact that we identify, and add dynamically,
new subsequences to the problem as we proceed, even during the branching
phase of the approach, the integer programming framework we propose does
not strictly adhere to traditional branch-and-bound principles. In particu-
lar, one cannot guarantee that a child node will have an objective function
value that is at least that of its parent. We are prepared to make this sac-
rifice, since as it is hoped that by identifying good subsequences at the root
node high quality integer solutions can be obtained quickly (without too
much branching).

When solving nodes of the branch-and-bound tree we adopt a depth-first
strategy, each time enforcing the identified subsequence, since this often
produces a good integer solution quickly. Upon finding the first integer
solution, however, we switch to a best-first search. That is, we evaluate
the unexplored nodes in increasing order of their parent’s objective value.
Figure 6, with two modifications, can be considered the solution procedure
for any node. When initialising the algorithm all pairings that do not satisfy
the branch to enforce must be removed. Furthermore, all networks must
be modified to ensure only feasible pairings (i.e. all necessary branches
are enforced) are generated. The branch-and-bound procedure terminates
when all nodes have been evaluated or the incumbent integer solution is
within a degree of tolerance of the best, unexplored node. While this integer
programming approach does not provide valid lower bounds, the idea of
subsequence generation is to provide a good integer solution quickly. In the
computational results of Section 5 we compare our integer solutions to the

13



w
0
8
r0
1
a

w
0
8
r0
1
b

w
0
8
r0
1
c

w
0
8
r0
1
d

w
0
8
r0
1
e

w
0
8
r0
2
a

w
0
8
r0
2
b

w
0
8
r0
2
c

w
0
8
r0
2
d

w
0
8
r0
2
e

w
0
8
r0
3
a

w
0
8
r0
3
b

w
0
8
r0
3
c

w
0
8
r0
3
d

w
0
8
r0
3
e

w
0
8
r0
4
a

w
0
8
r0
4
b

w
0
8
r0
4
c

w
0
8
r0
4
d

|F| 450 430 430 370 400 380 400 320 450 350 320 420 420 450 320 400 400 350 320
|B1|+ |B2| 5 5 5 5 4 5 5 5 5 4 5 5 5 5 4 5 5 5 5

Table 1: Characteristics for the test instances.

optimal solution of the relaxed master problem.

5 Computational results

In this section we analyse the performance of the proposed solution ap-
proach on 19 real-life data instances that were made available to us by Air
New Zealand. The data sets are taken from Air New Zealand’s domestic
timetable. The does, however, also include destinations in Australia and
the Pacific Islands. To perform the computational analysis we restrict the
number of flights in each of the instances. This is done to ensure that they
terminate in reasonable time. Table 1 states the number of flights (|F|) and
the total number of base constraints for each instance (|B1|+ |B2|).

There are a number of parameters one must determine when implement-
ing the subsequence generation. These include the following:

1. Which criterion does one use to identify a subsequence to add to the
problem?

2. How many subsequences should be contained in each of the sets C1,
C2, and C3?

Based on the results of Rasmussen et al. (2011), the selection strategy that
is used to identify an entering subsequence is a round-robin procedure which
loops over the four measures described in Section 3.2. At each iteration the
subsequence which has the highest score in the measure under consideration
is added to the problem. Enumeration is then performed. Here, we test and
compare the impact on solution time and quality by increasing the number
of subsequences that can be contained in the sets C1, C2, and C3. In the
first case we restrict the sets to contain at most three subsequences, while
in the second this limit is set to four. The branching routine terminates
when the incumbent integer solution is within 1% of the “best” unexplored
node. We impose a time limit of 3600 seconds on the complete algorithm.
The penalties associated with not covering a flight and violating a base
constraint are 108 and 106, respectively. All tests are run on 2.67 GHz Intel
Xeon X5550 CPUs with 23.5 GB of memory. The algorithm is implemented
in C++ and compiled with g++ 4.4.0 on a Linux computer. LP relaxations
are solved with the LP solver from MOSEK 6.0 using an academic license.

14



Best Integer Statistics
instance obj time (s) root LP cg LP gap (%) UF nodes time (s)
w08r01a 6.12041e+08 323.53 6.13042e+08 6.02042e+08 1.66 6 105 323.54
w08r01b 3.07034e+08 246.09 3.07598e+08 3.00034e+08 2.33 3 13 246.09
w08r01c 3.05040e+08 634.48 5.06037e+08 3.00031e+08 1.67 3 195 634.55
w08r01d 2.10030e+08 117.34 2.10785e+08 2.03031e+08 3.45 2 5 117.34
w08r01e 8.21038e+08 280.26 8.22034e+08 6.05033e+08 35.70 8 49 280.27
w08r02a 5.00023e+08 19.67 5.00023e+08 5.00021e+08 0.00 5 3 19.67
w08r02b 3.00023e+08 249.96 3.00023e+08 3.00023e+08 0.00 3 47 249.96
w08r02c 8.00019e+08 202.31 8.00521e+08 4.00019e+08 100.00 8 35 202.31
w08r02d 3.00029e+08 468.04 3.00030e+08 3.00025e+08 0.00 3 87 468.06
w08r02e 5.18034e+08 281.61 5.17605e+08 5.12029e+08 1.17 5 41 281.62
w08r03a 8.01024e+08 241.71 8.01023e+08 4.00020e+08 100.25 8 79 241.73
w08r03b 2.11028e+08 184.79 2.12027e+08 2.00034e+08 5.50 2 15 184.79
w08r03c 2.12030e+08 360.95 2.14029e+08 2.02035e+08 4.95 2 77 360.97
w08r03d 3.12030e+08 435.32 3.11531e+08 3.00038e+08 4.00 3 69 435.34
w08r03e 8.19022e+08 102.97 8.19023e+08 4.11028e+08 99.26 8 13 102.97
w08r04a 4.09027e+08 12.69 4.09027e+08 4.01031e+08 1.99 4 1 12.69
w08r04b 4.17025e+08 345.34 4.17026e+08 4.07032e+08 2.46 4 29 345.34
w08r04c 3.16025e+08 8.22 3.16025e+08 3.05033e+08 3.60 3 1 8.22
w08r04d 8.09021e+08 16.29 8.10021e+08 4.00023e+08 102.24 8 3 16.29

Table 2: Classes C1, C2, and C3 have at most three subsequences.

Table 2 gives the results for the case in which each of the subsequence
classes C1, C2, and C3 contains at most three subsequences. For each in-
stance we state the instance name, the objective value of the best integer
solution, and the time at which this solution was obtained. Furthermore, we
provide an indication of the quality of this solution through a comparison
with objective function value of the relaxed master problem (root LP) as
well as the objective function value of the relaxed master problem obtained
using a conventional column generation procedure. The column generation
procedure has no restrictions on the number of subsequences each flight can
have and is also given a time limit of 3600 seconds. For a fair comparison,
we also hot start this procedure with an enumeration of pairings on the C1
subsequence class. On all instances the column generation procedure timed
out and what is given in the table is the objective function value of the root
node at termination (cg LP). We also provide the percentage gap between
the objective value of our integer solution and the solution obtained using
column generation, the number of uncovered flights in our solution (UF),
the number of nodes explored in the branching phase of the algorithm, and
the time required for the algorithm to execute. The subsequence generation
procedure terminates when the incumbent integer solution is within 1% of
the “best” unexplored. That is, within 1% of objective value of the best
node’s parent.

One can observe from the table that the subsequence generation proce-
dure provides, with a few exceptions, good quality integer solutions (within
a few percent of the objective value obtained using column generation) given

15



the one hour time limit. In all cases an integer solution is obtained within
11 minutes of computation time. The column generation procedure, on the
other hand, does not converge within the same time frame. It is encouraging
to see that for some instances (i.e. w08r02a and w08r04a) we are within 2%
of the column generation approach extremely quickly. However, instances
w08r01e, w08r02c, w08r03a, w08r03e, and w08r04d show that there is room
for improvement in the subsequence identification phase of the algorithm
The large percentage gaps can be explained by the fact that we have more
uncovered flights than the column generation procedure. For example, for
instance w08r03a we have twice as many uncovered flights. However, to put
this in perspective, w08r03a is a flight schedule containing 320 flights and
we uncover eight of them. Comparing the time at which the best integer
solution was found with the time it took the algorithm to conclude, we note
that all instances terminated upon finding the first integer solution. One
can also see that in several cases the integer solution obtained has a better
objective function value than the root node. As we mentioned in Section 4.3,
this is possible as subsequences are dynamically added during the branching
phase of the algorithm.

Table 3 gives the results for the case in which each of the subsequence
classes C1, C2, and C3 contains at most four subsequences. While this table
reinforces many of the conclusions from Table 2, one can also observe that
the integer solutions are slightly better than those obtained in Table 2. In-
creasing the class sizes does, however, slow the method down. This can be
explained by the following. A larger candidate set of subsequences creates
larger networks for the pairing generators and in doing so creates more fea-
sible pairings. As a result, the enumeration procedure not only takes longer,
but there are also more pairings in the relaxed master problem making the
optimisation slower. Interestingly, instance w08r04d is the only instance
for which we uncover fewer flights by increasing the candidate subsequence
set size. This could be a result of increased flexibility given the additional
flights or a result of the subsequence generation taking a different path in
the execution of the algorithm. That is, subsequences are identified in a
different order, prompting a different sequence of events in the algorithm.
Finally, the fact that in some cases we undercover more flights than would
appear necessary would suggest that a more sophisticated process of includ-
ing subsequences in the candidate set might be required.

6 Conclusion and future work

In this paper we have described a new integer programming framework for
solving the well-known airline crew pairing problem. At the core of the
methodology is subsequence generation. This approach limits the number of
subsequences in the problem and dynamically adds attractive subsequences

16



Best Integer Statistics
instance obj time (s) root LP cg LP gap (%) UF nodes time (s)
w08r01a 6.10039e+08 234.22 6.13038e+08 6.02042e+08 1.33 6 15 234.22
w08r01b 3.04036e+08 75.48 3.05202e+08 3.00034e+08 1.33 3 3 75.48
w08r01c 3.02037e+08 1107.07 3.04541e+08 3.00031e+08 0.67 3 25 1107.09
w08r01d 2.09031e+08 1371.26 2.08913e+08 2.03031e+08 2.96 2 115 1371.43
w08r01e 8.19041e+08 295.70 8.21035e+08 6.05033e+08 35.37 8 15 295.71
w08r02a 5.00022e+08 59.37 5.00022e+08 5.00021e+08 0.00 5 7 59.37
w08r02b 3.00023e+08 307.40 3.00023e+08 3.00023e+08 0.00 3 23 307.40
w08r02c 8.00018e+08 48.34 8.00018e+08 4.00019e+08 100.00 8 5 48.35
w08r02d 3.00026e+08 1207.20 3.00026e+08 3.00025e+08 0.00 3 33 1207.22
w08r02e 5.17030e+08 699.73 5.18198e+08 5.12029e+08 0.98 5 23 699.74
w08r03a 8.00021e+08 14.55 8.00021e+08 4.00020e+08 100.00 8 1 14.55
w08r03b 2.06033e+08 1343.80 2.09529e+08 2.00034e+08 3.00 2 171 1344.01
w08r03c 2.08033e+08 1080.62 2.10031e+08 2.02035e+08 2.97 2 71 1080.66
w08r03d 3.11031e+08 19.50 3.11031e+08 3.00038e+08 3.66 3 1 19.50
w08r03e 8.15024e+08 574.02 8.16523e+08 4.11028e+08 98.29 8 41 574.05
w08r04a 4.07028e+08 1333.81 4.07196e+08 4.01031e+08 1.50 4 147 1349.18
w08r04b 4.14028e+08 183.32 4.14029e+08 4.07032e+08 1.72 4 11 183.32
w08r04c 3.13027e+08 12.62 3.13027e+08 3.05033e+08 2.62 3 1 12.62
w08r04d 7.05023e+08 159.30 8.08021e+08 4.00023e+08 76.25 7 15 159.31

Table 3: Classes C1, C2, and C3 have at most four subsequences.

as needed. A follow-on branching strategy is described for obtaining integer
solutions. Encouraging results are presented for 19 real-life instances sup-
plied by Air New Zealand. In comparison to a column generation procedure
that fails to converge to the optimal solution of the relaxed master problem
within in an hour of computation time, the methodology presented in this
paper produces good quality integer solutions well within the same time
limit. This indicates the method could potentially be a viable alternative to
the conventional column generation approach to this problem.

While the results are encouraging, they also suggest that improvements
are necessary. For instance, as it is now, the candidate set of subsequences
C is a static set. If this does not contain the optimal subsequences (or at
least a close to optimal set), then it is unlikely the method will do well. One
promising improvement would be to be make this set dynamic so that one
could add new candidate subsequences during the solution process, or even
remove some unpromising ones. In this way one can keep a good, small
set of subsequences. Furthermore, one can also improve the subsequence
identification step. This is the core process in the approach and dictates
how many pairings will be added to the problem. Improvements here will
positively impact the run time of the approach.

Acknowledgements: The authors would like to thank Paul Keating from
Air New Zealand for providing the data instances used in this paper.

17



References

S. AhmadBeygi, A. Cohn, and M. Weir. An integer programming approach
to generating airline crew pairings. Computers & Operations Research, 36
(4):1284–1298, 2009.

E. Andersson, E. Housos, N. Kohl, and D. Wedelin. Crew pairing opti-
mization. In G. Yu, editor, Operations Research in the Airline Industry,
chapter 8, pages 228–258. Kluwer Academic Publishers, 1998.

C. Barnhart, L. Hatay, and E. L. Johnson. Deadhead selection for the long-
haul crew pairing problem. Operations Research, 43(3):491–499, 1995.

C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh, and P. Vance.
Branch-and-price: Column generation for solving huge integer programs.
Operations Research, 46(3):316–329, 1998.

C. Barnhart, A. M. Cohn, E. J. Johnson, D. Klabjan, G. L. Nemhauser, and
P. H. Vance. Airline crew scheduling. In R. W. Hall, editor, Handbook
of Transportation Science, chapter 14, pages 517–560. Kluwer Academic
Publishers, Norwell, MA, 2nd edition, 2003.

E. R. Butchers, P. R. Day, A. P. Goldie, S. Miller, J. A. Meyer, D. M. Ryan,
A. C. Scott, and C. A. Wallace. Optimized crew scheduling at air new
zealand. Interfaces, 31(1):30–56, 2001.

J. Clausen, A. Larsen, J. Larsen, and N. J. Rezanova. Disruption manage-
ment in the airline industry—concepts, models and methods. Computers
& Operations Research, 37(5):809–821, 2010. Disruption Management.

M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vuskovic. Perfect, ideal
and balanced matrices. European Journal of Operational Research, 133
(3):455–461, 2001.

G. Desaulniers, J. Desrosiers, M. Gamache, and F. Soumis. Crew scheduling
in air transportation. In T. G. Crainic and G. Laporte, editors, Fleet
Management and Logistics, pages 169–185. Kluwer Academic Publishers,
Boston, 1998.

B. Gopalakrishnan and E. L. Johnson. Airline crew scheduling: State-of-
the-art. Annals of Operations Research, 140(1):305–337, 2005.

G. W. Graves, R. D. McBride, I. Gershkoff, D. Anderson, and D. Mahidhara.
Flight crew scheduling. Management Science, 39(6):736–745, 1993.

S. Lavoie, M. Minoux, and E. Odier. A new approach for crew pairing
problems by column generation with an application to air transportation.
European Journal of Operational Research, 35(1):45–58, 1988.

18



M. S. Rasmussen, R. M. Lusby, D. M. Ryan, and J. Larsen. Subsequence
generation for the airline crew pairing problem. Technical report, De-
partment of Management Engineering, Technical University of Denmark,
2011.

D. M. Ryan and J. C. Falkner. On the integer properties of scheduling set
partitioning models. European Journal of Operational Research, 35(3):
442–456, 1988.

D. M. Ryan and B. Foster. An integer programming approach to scheduling.
Computer Scheduling of Public Transport. Urban Passenger Vehicle and
Crew Scheduling. Proceedings of an International Workshop, pages 269–
280, 1981.

M. Saddoune, G. Desaulniers, I. Elhallaoui, and F. Soumis. Integrated air-
line crew scheduling: A bi-dynamic constraint aggregation method using
neighborhoods. European Journal of Operational Research, 212(3):445–
454, 2011.

P. H. Vance, C. Barnhart, E. L. Johnson, and G. L. Nemhauser. Airline crew
scheduling: A new formulation and decomposition algorithm. Operations
Research, 45(2):188–200, 1997.

D. Wedelin. An algorithm for large scale 0-1 integer programming with
application to airline crew scheduling. Annals of Operations Research, 57:
283–301, 1995.

19



In this paper we consider an important problem for the airline industry. The widely studied crew pair-
ing problem is typically formulated as a set partitioning problem and solved using the branch-and-
price methodology. Here we develop a new integer programming framework, based on the concept 
of subsequence generation, for solving the set partitioning formulation. In subsequence generation 
one restricts the number of permitted subsequent flights that a crew member can turn to after 
completing any particular flight.
By restricting the number of subsequences, the number of pairings in the problem decreases. The 
aim is then to dynamically add attractive subsequences to the problem, thereby increasing the 
number of possible pairings and improving the solution quality. Encouraging results are obtained on 
19 real-life instances supplied by Air New Zealand and show that the described methodology is a 
viable alternative to column generation.

DTU Management Engineering

Department of Management Engineering

Technical University of Denmark

Produktionstorvet

Building 424

DK-2800 Kongens Lyngby

Denmark

Tel. +45 45 25 48 00

Fax +45 45 93 34 35

www.man.dtu.dk


	slsip.pdf
	Introduction
	Problem formulation
	Subsequence methodology
	Subsequence limitation
	Subsequence generation

	Integer programming framework
	Solving the LP relaxation
	Follow-on branching
	Solving the integer programme

	Computational results
	Conclusion and future work

	Rapport 10(2) 2011

