Building a Multilevel Modeling Network for Lipid Processing Systems

Carlos Axel Diaz-Tovar¹, Azizul Azri Mustaffa¹, Amol Hukkerikar¹, Alberto Quaglia¹, Gürkan Sin¹, Georgios Kontogeorgis², Bent Sarup³, Rafiqul Gani*¹

¹ CAPEC, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
² CERE, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
³ Vegetable Oil Technology Business Unit, Alfa Laval Copenhagen A/S, 2860, Denmark

Abstract:

The world’s fats and oils production has been growing rapidly over the past few decades, exceeding the need for human nutrition. This overproduction combined with the increasing interest among the consumers for healthier food products and bio-fuels, has led the oleo chemical industry to face in the upcoming years major challenges in terms of design and development of better products and more sustainable processes. Although the oleo chemical industry is mature and based on well established processes, the complex systems that lipid compounds form, the lack of accurate predictive models for their physical properties and unit operation models for their processing have limited computer-aided methods and tools for process synthesis, modeling and simulation to be widely used for design, analysis, and optimization of these processes.

The objective of this paper is to present the development of a computer aided multilevel modeling network consisting a collection of new and adopted models, methods and tools for the systematic design and analysis of processes employing lipid technology. This is achieved by decomposing the problem into four levels of modeling: i) pure component property modeling and a lipid-database of collected experimental data from industry and generated data from validated predictive property models, as well as modeling tools for fast adoption-analysis of property prediction models; ii) modeling of phase behavior of relevant lipid mixtures using the UNIFACCI model, development of a master parameter table; iii) development of a model library consisting of new and adopted process models of unit operations involved in lipid processing technologies, validation of the developed models using operating data collected from existing process plants, and application of validated models in design and analysis of unit operations; iv) the information and models developed are used as building blocks in the development of methods and tools for computer-aided synthesis and design of process flowsheets (CAFD). The applicability of this methodology is highlighted in each level of modeling through the analysis of a lipid process that has significant relevance in the edible oil and biodiesel industries since it determines the quality of the final oil product, the physical refining process of oils and fats.

Keywords: Lipid Technology, Multilevel Modeling, Property Prediction Models, Process Design, Computer Aided Flowsheet Design

* Corresponding author: E-mail: rag@kt.dtu.dk, Tel.: +45 4525 2882, Fax: +45 4593 2906