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Who am I?

Stefan L. Glimberg - Part of GPUlab

Master degree in Computer Science 2009 - University of Copenhagen
Thesis: Smoke Simulation for Fire Engineering using CUDA

PhD student, started 2010, DTU - Section of Scientific Computing
Project: Scientific GPU Computing for PDE Solvers
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CUDA Implementation

Implementing a simple CUDA program is not very difficult.

1 Read the CUDA Programming Guide

2 Localize parts in the code that can be parallelized

3 Execute a lot of threads, each processing one element

BLAS1 Example: y = ax + y

Host (CPU):

1 void

2 axpy_host(float a, float* x, float

* y, int N)

3 {

4 for(int i=0; i<N; ++i)

5 {

6 y[i] = a*x[i] + y[i];

7 }

8 }

However, converting entire solvers for engineering applications is difficult, and
it is even more difficult to get the best possible performance.
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A GPU-based Framework for PDE Solvers

Why not put all this into a framework
→ The GPULab library

Objective

Remove all nonsense for the non GPU expert programmer - put it into a highly
generic framework.
Avoid wrapping GPU codes onto an existing CPU solver! Instead, use an
existing GPU framework to solve the same problem.

Key components for our High-Performance PDE library

Compact stencil-based flexible order FD operations

Iterative methods for solving large systems of eqs. (mixed precision)

Domain decomposition methods
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Framework Outline

Generic vector and matrix classes is the backbone for most of our algorithms.
Template specializations take care of dispatching.
Examples:

1 const int I = 100;

2 gpulab ::vector <float ,host_memory > x_h(I,3.f); // Create host vector x

3 gpulab ::vector <float ,host_memory > y_h(I,2.f); // Create host vector y

4 y_h.axpy (4.f,x_h); // Do y = a*x+y on the host

5
6 gpulab ::vector <float ,device_memory > x_d(x_h); // Create device vector x (from host)

7 gpulab ::vector <float ,device_memory > y_d(y_h); // Create device vector y (from host)

8 y_d.axpy (4.f,x_d); // Do y = a*x+y on the device

9
10 gpulab ::matrix <float ,device_memory > A_d(I,I); // Create a dense matrix

11 A_d.diag (2.f); // Set diagonal elements

12 A_d(2,3) = 3.f; // Set specific element

13
14 gpulab :: solvers ::cg(A_d ,x_d ,b_d); // Solve Ax = y using Conjugate Gradient

15 gpulab :: solvers ::gmres(A_d ,x_d ,b_d); // Solve Ax = y using GMRES

16
17 gpulab ::io::print(x_d ,gpulab ::io:: TO_TEXT_FILE);// Print result

Ideas are based on the C++ standard library, Thrust, and CUSP that exists for
GPUs.
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Framework Outline (II)

Assembling a linear equation solver from a textbook recipe:

Defect Correction algorithm

Algorithm: Defect Correction Method for approximate solution of Ax = b

1 Choose x [0] /* initial guess */

2 k = 0
3 Repeat

4 r [k] = b − Ax [k] /* high order defect */

5 Solve Mδ[k] = r [k] /* preconditioner */

6 x [k+1] = x [k] + δ[k] /* defect correction */

7 k = k + 1
8 Until convergence or k > kmax

The Defect Correction method with a multigrid preconditioner is the backbone
of our free surface solver.
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Framework Outline (III)

The implementation is generic and simple!

1 template <typename V, typename M, typename P>

2 void defect_correction(M const& A, V& x, V const& b, P& precond , monitor <typename V:: value_type >

& m)

3 {

4 m.reset_iteration_count ();

5 // Allocate space for residual and delta

6 V r(x.size());

7 V d(x.size());

8 while (1)

9 {

10 A.mult(x,r);

11 r.axpby(1, -1, b);

12 // Close enough to stop

13 if(m.finished(r))

14 break;

15 // Solve using pre -conditioner

16 precond(A,d,r);

17 // Update solution

18 x.axpy(1,d);

19 // Next iteration

20 ++m;

21 }

22 }
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Framework Outline (IV)

Defect correction results for 100 iterations with a Jacobi preconditioner. It is
easy to compare host/device code.
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Figure: N = 10,000: 2 sec vs 2 min. NVIDIA Quadro FX 880M vs Intel i7 @1.73GHz.
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A Finite Difference Example

Based on Taylor series expansion we can derive a set of coefficients for
calculating the derivative of u:

∂u(xi )

∂x
≈

β∑
n=−α

cnu(xi+n)

If we set up a matrix based on finite difference coefficients we get

c00 c01 c02 0 0 0 0 0
c10 c11 c12 0 0 0 0 0
0 c10 c11 c12 0 0 0 0
0 0 c10 c11 c12 0 0 0
0 0 0 c10 c11 c12 0 0
0 0 0 0 c10 c11 c12 0
0 0 0 0 0 c10 c11 c12

0 0 0 0 0 c20 c21 c22





u0

u1

u2

u3

u4

u5

u6

u7


≈



u′0
u′1
u′2
u′3
u′4
u′5
u′6
u′7


but there is a lot of repetitions in the matrix and it is very sparse.
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A Finite Difference Example (II)

So in compact form we only need

c =

 c11 c12 c13

c21 c22 c23

c31 c32 c33

 . (1)

We call this the stencil.

It is parallelizable!
These stencil operations are implemented into matrix-like classes.
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2D Poisson Problem

We implemented these stencil operations into matrix-like classes. Here is an
example of a 2D Poisson equation and a possible solution:
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∂xxu + ∂yyu = f , (x , y) ∈ Ω([0, 1]2) (2)

u = 0, (x , y) ∈ ∂Ω (3)
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2D Poisson Problem (II)

1 typedef gpulab :: device_memory memory_space; // Use host/device memory

2
3 // Setup grid and domain

4 gpulab ::grid_dim <int > dim (100 ,100); // 100 x100 grid

5 gpulab ::grid_dim <double > phys0 (0. ,0.); // Domain starts in x=0, y=0

6 gpulab ::grid_dim <double > phys1 (1. ,1.); // Domain end in x=1, y=1

7 gpulab :: grid_properties <int ,double > props(dim , phys0 , phys1);

8
9 gpulab ::grid <double ,memory_space > u(props); // Create u

10 gpulab ::grid <double ,memory_space > f(props); // Create f

11
12 // Create the stencil operator (implicit matrix)

13 gpulab ::FD::stencil_2d <double > A(2,4); // Second order derivative , fouth order accuracy

14
15 A.mult(u,f); // Calculate f = du/dxx + du/dyy

16
17 gpulab :: monitor m(iter ,rtol ,atol); // Stopping criteria

18 gpulab :: solvers ::cg(A,u,f,m); // Solve Au = f using Conjugate Gradient

19
20 // Test for convergence

21 if(m.converged ())

22 printf("Converged in %d iterations\n", m.iteration_count ());
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Stencil Performance

Performance results for computing ∂xu on the CPU and GPU.
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Figure: Timings for 1,000,000 elements. Tesla C1070 GPU and an Intel Core i7 @
1.73GHz CPU.
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PDE Assembling - Work in Progress

We want to assemble the PDE solvers from building blocks (components), such
that it is easy to change parts, employ mixed precision etc.

1 typedef gpulab ::grid <float ,device_memory > vector_type;

2 typedef gpulab ::FD::stencil_2d <float > matrix_type;

3
4 typedef gpulab :: solvers :: multigrid_types <

5 , vector_type // Vector type

6 , matrix_type // Matrix type

7 , gpulab :: solvers :: jacobi_2d // Preconditioner

8 , gpulab :: solvers :: grid_handler_3d // Grid handler

9 > mg_types;

10
11 typedef gpulab :: solvers ::dc_types <

12 , vector_type // Vector type

13 , matrix_type // Matrix type

14 , gpulab :: solvers ::multigrid <mg_types > // Preconditioner

15 > dc_types;

16
17 typedef gpulab :: solvers :: free_surface_solver_types <

18 , vector_type // Vector type

19 , matrix_type // Matrix type

20 , gpulab :: solvers ::dc<dc_types > // Solver

21 , gpulab :: integration ::ERK4 // Time integrator

22 > solver_types;

23
24 // In our program we write

25 gpulab :: solvers :: free_surface_solver <solver_types > s(...); // Init solver

26 s.take_step(dt); // Take time step
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That’s it ...

Thank you !
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