

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 09, 2024

A High Performance GPU-based Framework for PDE Prototyping

Glimberg, Stefan Lemvig

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Glimberg, S. L. (Author). (2011). A High Performance GPU-based Framework for PDE Prototyping.
Sound/Visual production (digital) http://gpulab.imm.dtu.dk/courses.html

https://orbit.dtu.dk/en/publications/01b26f20-6604-4d1a-b7ce-02b61b5367af
http://gpulab.imm.dtu.dk/courses.html

Introduction GPUlab Library Finite Difference Example Present Work

A High Performance GPU-based Framework for PDE Prototyping

Stefan L. Glimberg

Section of Scientific Computing
Department of Informatics and Mathematical Modelling

Technical University of Denmark

GPU Computing Today and Tomorrow
August 18th

A High Performance GPU-based Framework for PDE Prototyping Technical University of Denmark

Introduction GPUlab Library Finite Difference Example Present Work

Outline

1 Introduction

2 GPUlab Library

3 Finite Difference Example

4 Present Work

A High Performance GPU-based Framework for PDE Prototyping Technical University of Denmark

Introduction GPUlab Library Finite Difference Example Present Work

Who am I?

Stefan L. Glimberg - Part of GPUlab

Master degree in Computer Science 2009 - University of Copenhagen
Thesis: Smoke Simulation for Fire Engineering using CUDA

PhD student, started 2010, DTU - Section of Scientific Computing
Project: Scientific GPU Computing for PDE Solvers

A High Performance GPU-based Framework for PDE Prototyping Technical University of Denmark

Introduction GPUlab Library Finite Difference Example Present Work

CUDA Implementation

Implementing a simple CUDA program is not very difficult.

1 Read the CUDA Programming Guide

2 Localize parts in the code that can be parallelized

3 Execute a lot of threads, each processing one element

BLAS1 Example: y = ax + y

Host (CPU):

1 void

2 axpy_host(float a, float* x, float

* y, int N)

3 {

4 for(int i=0; i<N; ++i)

5 {

6 y[i] = a*x[i] + y[i];

7 }

8 }

However, converting entire solvers for engineering applications is difficult, and
it is even more difficult to get the best possible performance.

A High Performance GPU-based Framework for PDE Prototyping Technical University of Denmark

Introduction GPUlab Library Finite Difference Example Present Work

CUDA Implementation

Implementing a simple CUDA program is not very difficult.

1 Read the CUDA Programming Guide

2 Localize parts in the code that can be parallelized

3 Execute a lot of threads, each processing one element

BLAS1 Example: y = ax + y

Host (CPU):

1 void

2 axpy_host(float a, float* x, float

* y, int N)

3 {

4 for(int i=0; i<N; ++i)

5 {

6 y[i] = a*x[i] + y[i];

7 }

8 }

However, converting entire solvers for engineering applications is difficult, and
it is even more difficult to get the best possible performance.

A High Performance GPU-based Framework for PDE Prototyping Technical University of Denmark

Introduction GPUlab Library Finite Difference Example Present Work

CUDA Implementation

Implementing a simple CUDA program is not very difficult.

1 Read the CUDA Programming Guide

2 Localize parts in the code that can be parallelized

3 Execute a lot of threads, each processing one element

BLAS1 Example: y = ax + y

Host (CPU):

1 void

2 axpy_host(float a, float* x, float

* y, int N)

3 {

4 for(int i=0; i<N; ++i)

5 {

6 y[i] = a*x[i] + y[i];

7 }

8 }

Device (GPU):

1 __global__ void

2 axpy_device(float a, float* x,

float* y, int N)

3 {

4 int i = blockDim.x*blockIdx.x+

threadIdx.x;

5 y[i] = a*x[i] + y[i];

6 }

However, converting entire solvers for engineering applications is difficult, and
it is even more difficult to get the best possible performance.

A High Performance GPU-based Framework for PDE Prototyping Technical University of Denmark

Introduction GPUlab Library Finite Difference Example Present Work

CUDA Implementation

Implementing a simple CUDA program is not very difficult.

1 Read the CUDA Programming Guide

2 Localize parts in the code that can be parallelized

3 Execute a lot of threads, each processing one element

BLAS1 Example: y = ax + y

Host (CPU):

1 void

2 axpy_host(float a, float* x, float

* y, int N)

3 {

4 for(int i=0; i<N; ++i)

5 {

6 y[i] = a*x[i] + y[i];

7 }

8 }

Better one:

1 template <typename T>

2 __global__ void

3 axpy_device(T a, T* x, T* y, int N

)

4 {

5 int i = blockDim.x*blockIdx.x+

threadIdx.x;

6 y[i] = a*x[i] + y[i];

7 }

However, converting entire solvers for engineering applications is difficult, and
it is even more difficult to get the best possible performance.

A High Performance GPU-based Framework for PDE Prototyping Technical University of Denmark

Introduction GPUlab Library Finite Difference Example Present Work

CUDA Implementation

Implementing a simple CUDA program is not very difficult.

1 Read the CUDA Programming Guide

2 Localize parts in the code that can be parallelized

3 Execute a lot of threads, each processing one element

BLAS1 Example: y = ax + y

Host (CPU):

1 void

2 axpy_host(float a, float* x, float

* y, int N)

3 {

4 for(int i=0; i<N; ++i)

5 {

6 y[i] = a*x[i] + y[i];

7 }

8 }

Better one:

1 template <typename T>

2 __global__ void

3 axpy_device(T a, T* x, T* y, int N

)

4 {

5 int i = blockDim.x*blockIdx.x+

threadIdx.x;

6 y[i] = a*x[i] + y[i];

7 }

However, converting entire solvers for engineering applications is difficult, and
it is even more difficult to get the best possible performance.

A High Performance GPU-based Framework for PDE Prototyping Technical University of Denmark

Introduction GPUlab Library Finite Difference Example Present Work

A GPU-based Framework for PDE Solvers

Why not put all this into a framework
→ The GPULab library

Objective

Remove all nonsense for the non GPU expert programmer - put it into a highly
generic framework.
Avoid wrapping GPU codes onto an existing CPU solver! Instead, use an
existing GPU framework to solve the same problem.

Key components for our High-Performance PDE library

Compact stencil-based flexible order FD operations

Iterative methods for solving large systems of eqs. (mixed precision)

Domain decomposition methods

A High Performance GPU-based Framework for PDE Prototyping Technical University of Denmark

Introduction GPUlab Library Finite Difference Example Present Work

Framework Outline

Generic vector and matrix classes is the backbone for most of our algorithms.
Template specializations take care of dispatching.
Examples:

1 const int I = 100;

2 gpulab ::vector <float ,host_memory > x_h(I,3.f); // Create host vector x

3 gpulab ::vector <float ,host_memory > y_h(I,2.f); // Create host vector y

4 y_h.axpy (4.f,x_h); // Do y = a*x+y on the host

5
6 gpulab ::vector <float ,device_memory > x_d(x_h); // Create device vector x (from host)

7 gpulab ::vector <float ,device_memory > y_d(y_h); // Create device vector y (from host)

8 y_d.axpy (4.f,x_d); // Do y = a*x+y on the device

9
10 gpulab ::matrix <float ,device_memory > A_d(I,I); // Create a dense matrix

11 A_d.diag (2.f); // Set diagonal elements

12 A_d(2,3) = 3.f; // Set specific element

13
14 gpulab :: solvers ::cg(A_d ,x_d ,b_d); // Solve Ax = y using Conjugate Gradient

15 gpulab :: solvers ::gmres(A_d ,x_d ,b_d); // Solve Ax = y using GMRES

16
17 gpulab ::io::print(x_d ,gpulab ::io:: TO_TEXT_FILE);// Print result

Ideas are based on the C++ standard library, Thrust, and CUSP that exists for
GPUs.

A High Performance GPU-based Framework for PDE Prototyping Technical University of Denmark

Introduction GPUlab Library Finite Difference Example Present Work

Framework Outline (II)

Assembling a linear equation solver from a textbook recipe:

Defect Correction algorithm

Algorithm: Defect Correction Method for approximate solution of Ax = b

1 Choose x [0] /* initial guess */

2 k = 0
3 Repeat

4 r [k] = b − Ax [k] /* high order defect */

5 Solve Mδ[k] = r [k] /* preconditioner */

6 x [k+1] = x [k] + δ[k] /* defect correction */

7 k = k + 1
8 Until convergence or k > kmax

The Defect Correction method with a multigrid preconditioner is the backbone
of our free surface solver.

A High Performance GPU-based Framework for PDE Prototyping Technical University of Denmark

Introduction GPUlab Library Finite Difference Example Present Work

Framework Outline (III)

The implementation is generic and simple!

1 template <typename V, typename M, typename P>

2 void defect_correction(M const& A, V& x, V const& b, P& precond , monitor <typename V:: value_type >

& m)

3 {

4 m.reset_iteration_count ();

5 // Allocate space for residual and delta

6 V r(x.size());

7 V d(x.size());

8 while (1)

9 {

10 A.mult(x,r);

11 r.axpby(1, -1, b);

12 // Close enough to stop

13 if(m.finished(r))

14 break;

15 // Solve using pre -conditioner

16 precond(A,d,r);

17 // Update solution

18 x.axpy(1,d);

19 // Next iteration

20 ++m;

21 }

22 }

A High Performance GPU-based Framework for PDE Prototyping Technical University of Denmark

Introduction GPUlab Library Finite Difference Example Present Work

Framework Outline (IV)

Defect correction results for 100 iterations with a Jacobi preconditioner. It is
easy to compare host/device code.

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

100 DC iterations, Jacobi preconditioner

N

T
im

e
[s

]

Host
Device

Figure: N = 10,000: 2 sec vs 2 min. NVIDIA Quadro FX 880M vs Intel i7 @1.73GHz.

A High Performance GPU-based Framework for PDE Prototyping Technical University of Denmark

Introduction GPUlab Library Finite Difference Example Present Work

A Finite Difference Example

Based on Taylor series expansion we can derive a set of coefficients for
calculating the derivative of u:

∂u(xi)

∂x
≈

β∑
n=−α

cnu(xi+n)

If we set up a matrix based on finite difference coefficients we get

c00 c01 c02 0 0 0 0 0
c10 c11 c12 0 0 0 0 0
0 c10 c11 c12 0 0 0 0
0 0 c10 c11 c12 0 0 0
0 0 0 c10 c11 c12 0 0
0 0 0 0 c10 c11 c12 0
0 0 0 0 0 c10 c11 c12

0 0 0 0 0 c20 c21 c22

u0

u1

u2

u3

u4

u5

u6

u7

≈

u′0
u′1
u′2
u′3
u′4
u′5
u′6
u′7

but there is a lot of repetitions in the matrix and it is very sparse.

A High Performance GPU-based Framework for PDE Prototyping Technical University of Denmark

Introduction GPUlab Library Finite Difference Example Present Work

A Finite Difference Example (II)

So in compact form we only need

c =

 c11 c12 c13

c21 c22 c23

c31 c32 c33

 . (1)

We call this the stencil.

It is parallelizable!
These stencil operations are implemented into matrix-like classes.

A High Performance GPU-based Framework for PDE Prototyping Technical University of Denmark

Introduction GPUlab Library Finite Difference Example Present Work

2D Poisson Problem

We implemented these stencil operations into matrix-like classes. Here is an
example of a 2D Poisson equation and a possible solution:

0

10

20

30

0

10

20

30
−0.2

0

0.2

0.4

0.6

0.8

1

u

∂xxu + ∂yyu = f , (x , y) ∈ Ω([0, 1]2) (2)

u = 0, (x , y) ∈ ∂Ω (3)

A High Performance GPU-based Framework for PDE Prototyping Technical University of Denmark

Introduction GPUlab Library Finite Difference Example Present Work

2D Poisson Problem (II)

1 typedef gpulab :: device_memory memory_space; // Use host/device memory

2
3 // Setup grid and domain

4 gpulab ::grid_dim <int > dim (100 ,100); // 100 x100 grid

5 gpulab ::grid_dim <double > phys0 (0. ,0.); // Domain starts in x=0, y=0

6 gpulab ::grid_dim <double > phys1 (1. ,1.); // Domain end in x=1, y=1

7 gpulab :: grid_properties <int ,double > props(dim , phys0 , phys1);

8
9 gpulab ::grid <double ,memory_space > u(props); // Create u

10 gpulab ::grid <double ,memory_space > f(props); // Create f

11
12 // Create the stencil operator (implicit matrix)

13 gpulab ::FD::stencil_2d <double > A(2,4); // Second order derivative , fouth order accuracy

14
15 A.mult(u,f); // Calculate f = du/dxx + du/dyy

16
17 gpulab :: monitor m(iter ,rtol ,atol); // Stopping criteria

18 gpulab :: solvers ::cg(A,u,f,m); // Solve Au = f using Conjugate Gradient

19
20 // Test for convergence

21 if(m.converged ())

22 printf("Converged in %d iterations\n", m.iteration_count ());

A High Performance GPU-based Framework for PDE Prototyping Technical University of Denmark

Introduction GPUlab Library Finite Difference Example Present Work

Stencil Performance

Performance results for computing ∂xu on the CPU and GPU.

1 2 3 4
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Alpha

T
im

e
(s

)

Stencil size vs time

Shared memory

Constant stencil

Naive GPU

CPU

1 2 3 4
0

5

10

15

20

25

30

35

40

45

Alpha
G

F
lo

ps

Stencil size vs GFlops

Shared memory
Constant stencil
Naive GPU
CPU

Figure: Timings for 1,000,000 elements. Tesla C1070 GPU and an Intel Core i7 @
1.73GHz CPU.

A High Performance GPU-based Framework for PDE Prototyping Technical University of Denmark

Introduction GPUlab Library Finite Difference Example Present Work

PDE Assembling - Work in Progress

We want to assemble the PDE solvers from building blocks (components), such
that it is easy to change parts, employ mixed precision etc.

1 typedef gpulab ::grid <float ,device_memory > vector_type;

2 typedef gpulab ::FD::stencil_2d <float > matrix_type;

3
4 typedef gpulab :: solvers :: multigrid_types <

5 , vector_type // Vector type

6 , matrix_type // Matrix type

7 , gpulab :: solvers :: jacobi_2d // Preconditioner

8 , gpulab :: solvers :: grid_handler_3d // Grid handler

9 > mg_types;

10
11 typedef gpulab :: solvers ::dc_types <

12 , vector_type // Vector type

13 , matrix_type // Matrix type

14 , gpulab :: solvers ::multigrid <mg_types > // Preconditioner

15 > dc_types;

16
17 typedef gpulab :: solvers :: free_surface_solver_types <

18 , vector_type // Vector type

19 , matrix_type // Matrix type

20 , gpulab :: solvers ::dc<dc_types > // Solver

21 , gpulab :: integration ::ERK4 // Time integrator

22 > solver_types;

23
24 // In our program we write

25 gpulab :: solvers :: free_surface_solver <solver_types > s(...); // Init solver

26 s.take_step(dt); // Take time step

A High Performance GPU-based Framework for PDE Prototyping Technical University of Denmark

Introduction GPUlab Library Finite Difference Example Present Work

That’s it ...

Thank you !

A High Performance GPU-based Framework for PDE Prototyping Technical University of Denmark

	Introduction
	GPUlab Library
	Finite Difference Example
	Present Work

