Extended coherence lifetimes in microcavities under angle-resonant pumping conditions

Østergaard, John Erland; Birkedal, Dan; Mizeikis, V.; Jensen, Jacob Riis; Hvam, Jørn Märcher

Published in:
Technical Digest. Quantum Electronics and Laser Science Conference.

Link to article, DOI:
10.1109/QELS.2001.962147

Publication date:
2001

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The cavity resonance is tuned to the exciton resonance (1.552 eV). The linear reflectivity spectrum designated in the order (pump, probe, signal). The abscissa is the beam frequency (for both pump and probe). The beam polarizations are solid theory (exact exciton-exciton scattering is also shown). The linear reflectivity spectrum is also shown.

Quantum Correlations in a Semiconductor Microcavity

P. Brick, C. Ell, M. Hübnner, E.S. Lee, O. Lyngnes, J.P. Prineas, G. Khitrova, H.M. Gibbs, Optical Sciences Center, University of Arizona, Tucson, AZ 85721; Email: brick@optics.arizona.edu
M. Kira, F. Jahnke, S.W. Koch, Department of Physics and Materials Science Center, Philipps University, Renthof 5, D-35032 Marburg, Germany
D.G. Deppe and D.L. Huffaker, Microelectronics Research Center, University of Texas at Austin, Austin, TX 78758

The nonlinear optical response of semiconductor microcavities in the nonperturbative regime has been the subject of many recent experiments. Contrary to clear demonstrations of the quantized nature of the vacuum-field Rabi splitting of a single atom, most of the experiments on semiconductor microcavities could be explained in terms of a classical light field. Only recently, quantized light field effects have been reported in a coherent control experiment and theoretically investigated in secondary emission. Here, results are presented that display a pronounced third transmission maximum lying energetically between the two normal modes. The third peak can be observed in resonant femtosecond single-beam as well as picosecond pump-probe experiments under various excitation conditions. This finding is strikingly different from the, in general, double-peak transmission in the nonperturbative regime of a semiconductor microcavity. It is even more in contrast to the case of nonresonant excitation, where at most two peaks can be observed. In the latter case, the two normal-mode peaks broaden with increasing pump-intensity and finally collapse into a single peak indicating the onset of the weak coupling regime.

The origin of this distinct effect is analyzed using a fully quantum mechanical approach that combines the semiconductor luminescence equations and the semiconductor Bloch equations formulated for a quantized light field. In particular, the equation of motion for the interband polarization is modified if the quantization of the light field is taken into account. These quantum corrections include contributions due to the emission into guided modes. Consequently, the polarization in the normal direction, thus the transmission, is influenced by intraband correlations with photons propagating in all other directions.

Figure 1 shows the calculated and measured transmission spectra under the influence of a resonant pump beam. Both theory and experiment reveal that the third peak follows the low energy side of the pump pulse and shifts little with pump intensity. Here, the quantum corrections create in the probe spectrum a weak coupling component that has similar characteristics as the pump pulse.

Even more intriguing is the dependence of the transmission spectrum on the probe intensity itself at constant pump intensity; see Fig. 2. Because the quantum corrections are mainly created by the pump pulse, the relative effect on the probe dynamics increases with decreasing probe intensities. In good agreement with the theoretical prediction the experimentally observed third peak becomes more pronounced for smaller probe intensities.
pumping conditions.\(^5\) Energy and wave vector are conserved in the angle-resonant process by scattering of two \(k_1 = k_{\text{res}}\) polaritons into \(2k_2\) states, respectively, the latter resulting in the strong secondary emission that is studied in this work.

In the 5K experiments, the time-resolved secondary emission, from a microcavity with a 10 nm single quantum well, is selected around \(k_1 = 0\) (Fig. 1(a)) after angle-resonant pulse excitation (see Fig. 1(b)).\(^3\) The angle-resonance illustrated in Fig. 1(b) is achieved at zero detuning in this work. At the lowest density, a long single exponential decay is observed, that evolves into a much faster excitation-dependent emission transient for higher densities. The turnover corresponds to a final-state density with more than 1 polariton per \(k\)-state resulting in the faster emission dynamics due to the final-state stimulation.\(^4\)

In the work presented here we are interested in probing the coherences involved in the bosonic enhancement of the polariton-polariton scattering process. As illustrated in Fig. 1(b) we probe the coherences in the final-state with a four-wave mixing (FWM) experiment without or with simultaneous pumping at the angle-resonance as sketched in Fig. 1(a). From the experiments without pumping (dashed curve in Fig. 2), a FWM decay time of 9 ps \((T_2 = 18\ \text{ps})\) results in a line width of 75 \(\mu\text{eV}\) consistent with spectral analysis of the secondary emission. Measuring the FWM, as a function of time-delay between the two pulses, probes the decay of the polarization induced by the first pulse. Thus, any coherent process that adds coherently to that polarization will directly be reflected in the time-delay dependence in the FWM experiment. In our preliminary FWM data with the angle-resonant pump present we indeed find strongly modified time-delay dependences as a result of the final-state stimulated polariton-polariton scattering. As seen in Fig. 2 for moderate intensities (0.2 mW and 0.4 mW as indicated by the arrow) and longer delays, we obtain a balance between the loss of coherence, due to the polariton lifetime in the cavity, and the stimulated polariton-polariton scattering that maintains the coherence for longer times. Thus, the time duration of the polarization induced by the first pulse is extended, however, with a complicated transient behaviour. This is furthermore a direct measurement of the coherent nature of the final-state stimulated scattering process. For higher intensities, the extension is limited because of the stronger stimulated dynamics just as in the time-resolved secondary emission presented in Fig. 1(a).

These preliminary FWM data thus demonstrates that the stimulated polariton-polariton scattering in microcavities builds up a coherence in the final-state or gives the possibility of extending the coherence lifetime of an induced polarisation. Further studies will include dependences on e.g. temperature and detuning and will in greater detail explore the possibilities with these coherence-maintaining processes in semiconductor microcavities.

References

QThL5

Fig. 1. a) Time-resolved secondary emission detected at a zero in-plane wave-vector showing a fast emission transient after angle-resonant single pump pulse excitation for polariton-polariton scattering shown in b). Also indicated is the configuration for the FWM experiment (see results in Fig. 2) with two incident laser pulses at small \(k_0\). A clear excitation density dependence of the emission dynamics in a) from \(5 \times 10^{-5}\) cm\(^{-2}\) to \(2 \times 10^{-5}\) cm\(^{-2}\) is observed.

QThL5

Fig. 2. FWM-intensity versus time-delay with simultaneous non-delayed pumping at the angle-resonant conditions sketched in Fig. 1(b). Compared to no pumping, an extended coherence lifetime is observed for longer delays as indicated by the arrow with the average intensities shown in the inset.

QThL6

Fig. 1. Spectrally resolved four-wave mixing for co-circular \((\sigma^+ \sigma^+\), dashed line\) co-linear \((\uparrow \uparrow \), bold dotted line\) and cross-linear \((\downarrow \uparrow\), bold line\) polarizations. The spectrum of the \(k_b\) pulse is also shown (dotted line).