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Oscillators - a simple introduction

Erik Lindberg, IEEE Lifemember
Elektro DTU
348 Technical University of Denmark  DK2800 Kongens Lyngby, Denmark

E-mail: el @elektro.dtu.dk

Abstract—Oscillators are kernel components of electrical and
electronic circuits. Discussion of history, mechanisms and design
based on Barkhausens observation. Discussion of a Wien Bridge
oscillator based on the question: Why does this circuit oscillate ?

I. INTRODUCTION

Oscillators are observed every where in the universe on all
levels. Oscillators are defined as subsystems of the universe
which exhibit an oscillating behavior. In connection with an
oscillator there is an energy field which goes from the center to
infinite. Oscillators couple by means of exchange of energy.
All kinds of oscillators may couple. The coupling may take
place over enormous relative distances.

Galaxies are oscillators. They are composed of solar sys-
tems which couple. Solar systems are oscillators composed of
stars and planets. Stars and planets are oscillators. Gravity is
the field mechanism for exchange of energy between oscil-
lators of this kind. Other fields for exchange of energy are
electromagnetism, the strong and the weak nuclear forces [1].
Apparently the coupling of oscillators is the basic principle of
the universe [2].

Electrical circuits are man-made systems for handling and
transport of energy. The electrical world may be coupled to
the mechanical world by means of flux (generators, motors).
The electrical world may be coupled to the chemical world by
means of charge (batteries). Electrical circuits are nonlinear
systems.

Very often design of electrical circuits is based on the
assumption of linear lumped models for the elements in order
to be able to setup analytic expressions for the behavior. An
electrical circuit is a fractal pattern of coupled oscillators e.g.
a resistor may be modeled as a linear damped oscillator if the
parasitic components are taken into account.

Electronic circuits are electrical circuits for handling of
information. Oscillators are kernel components of electronic
circuits. Oscillators create sine waves as carriers of signals
(Radio, TV) or square waves as clock control in digital sys-
tems. Steady state oscillators are considered nonlinear circuits
having a time-varying DC bias point. They may be investigated
as time-varying linear systems. Apparently the steady state
chaotic behavior is more common than the steady state limit
cycle behavior wanted in electrical oscillators.

The aim of this contribution is to give a simple introduction
to electronic oscillators. It may be seen as an addendum to [3].
II. ELECTRONIC OSCILLATORS

In the following the topics of history, mechanisms and
design of electronic oscillators are discussed.
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A. History [4]

In 1891 Nikola Tesla (1856-1943) was the first to demon-
strate wireless transmission by means of magnetic fields.
Teslas descriptions contained all the elements that were later
incorporated into radio systems [5].

The continuous steady state oscillations necessary for long
distance wireless telephony were first generated by arch or
quenched sparks (William Duddell 1900, Valdemar Poulsen
1906). In 1910 E. Leon Chaffee (1885-1975) discovered a
method of producing the first coherent continuous electrical
oscillations from 1MHz to 100MHz or more and applied them
to radiotelephony [6]. The method is based on a discharge gap
similar to the Poulsen method.

In 1906 Lee de Forest (1873-1961) invented the triode tube.
Since then electrical engineers have designed oscillators as
amplifiers with positive feed-back (regeneration or retroaction).

In 1907 Lee de Forest invented the ultra-audion” regen-
erative circuit which was one of the first electronic oscillators
[7]. Unfortunately he was not able to explain the regenerative

Fig. 183.—The ‘‘ultra-audion'’ circuits.

Fig. 1. Lee de Forest’s Ultra-Audion circuit. Page 330 in [7].

principle so E.H. Armstrong (1890-1954) “invented” the re-
generative circuit while he was an undergraduate and patented
it in 1914. When Armstrong and de Forest later faced each
other in a dispute over the regeneration patent, Armstrong was
able to demonstrate conclusively that de Forest still had no
idea how it worked [8].

In textbooks you may find a large number of classic oscil-
lators named after the inventors like Armstrong (1912), Meiss-
ner (1913), Hartley (1915), Colpitts (1920), Pierce (1923),
Meacham (1938), Hewlett (1939), Clapp (1948) and Vackar



(1949) together with oscillators for which the inventor is
unknown like the harmonic LC oscillator, the RC phase-shift
oscillators, the negative resistance oscillators and the multi-
vibrators.

The Meacham [9], [10] and the Hewlett oscillators are
bridge oscillators. The Hewlett oscillator is the well-known
Wien bridge oscillator [11], [12]. Bridge oscillators seem
to be candidates for realizing good approximations to linear
oscillators. The Clapp and the Vackar oscillators are modified
Colpitts oscillators.

Today most off-the-shelf oscillators are crystal oscillators
(Pierce, Meacham) where a coupling between a mechanical
oscillator (piezo-electrical) and an electronic oscillator is made
use of in order to obtain a very stable and clean oscillator.

B. Mechanisms

Linear oscillators are either damped oscillators or unstable
oscillators. In both cases they end-up in a DC bias point with
no oscillations. You can not create a linear real world steady
state oscillator with a complex pole pair on the imaginary axis.
You can not balance on the razors edge. Real world steady state
oscillators must be non-linear circuits. They may be treated as
time varying linear circuits so it make sense to study the poles
(eigenvalues) of the small signal model as function of time.

The bias point of the circuit vary with time so it is
important to study the power source current in order to
understand the mechanism behind the behavior. The startup
phase begins with switching on the power source. You may
”stop” time, calculate a DC bias point and derive the small
signal model from the linearized Jacobian of the differential
equations. If the poles are in RHP (the right half of the
complex frequency plane) the signals will increase and either
steady state oscillations or a new DC bias point will occur. If
the poles are in LH P (the left half of the complex frequency
plane) you may change some elements so the poles come to
RHP and the situation with the unstable small signal model
may result in a self starting oscillator. Often you observe that
a complex pole pair goes to the real axis and split-up into two
real poles.

So far the regenerative principle with linear positive
feed-back around a non-linear amplifier where a small output
signal is fed back and amplified until some steady state is
obtained is the answer to the question:

Why does an oscillator oscillate ?

Other mechanisms may be the introduction of a negative
resistance to compensate the losses of a damped linear oscilla-
tor or the introduction of an impulse to compensate the losses
similar to the escape mechanism of the mechanical pendulum
clock.

If we introduce a nonlinearity in the feed-back circuit
and assume an ideal operational amplifier or a perfect linear
amplifier we may have a mechanism for minimizing the phase
noise and the harmonics.

Our starting point for the oscillator circuit is an unstable
small signal model for the closed loop circuit: The modified
Barkhausen criterion.

An electronic circuit is normally a circuit with 3 ports: 2
input ports and 1 output port. One input port is the power
source (battery) the other input port is the signal input port.
The output port is the signal output port. If the circuit is linear
superposition gives that the output signal is the sum of the
input signals transferred and modified through the circuit.

An oscillator is a circuit with only 2 ports: the battery
input port and the signal output port. The signal observed on
the output port at time “zero plus” is the step response of the
initial small signal model of the circuit.

When we switch on the battery at time “zero minus” all
coils are open-circuits and all capacitors are short-circuits. At
time “zero plus” we have the start-up of the DC bias point
where all coils are short-circuits and all capacitors are charged
based on time constants of their equivalent parallel resistors.
If no steady state oscillations are observed we have a DC bias
point with constant currents in the coils and constant voltage
on the capacitors. If oscillations are observed we have a time
varying DC bias point.

When we switch on the constant voltage power supply
to the nonlinear closed loop circuit we may observe two
situations: (1) steady state oscillations or (2) a transient from
the zero bias point to a bias point different from zero. In
situation (2) we may add an impulse and observe steady state
oscillations or a transient to an other bias point (2 rails).

The time varying DC point is a picture of the movements of
energy (charge and flux) in the circuit. It might be the starting
point for a search of a sufficient criteria for oscillations. So
far we have succeeded for more than 100 years with assuming
design of a linear oscillator by “hit and try”.

We want to understand the mechanisms behind steady state
oscillations in the time domain. We want to find a sufficient
criterion for steady state oscillations.
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Fig. 2. Barkhausen’s original observation

C. Design

In 1921 Barkhausen [13], [14] pointed out that an oscillator
may be described as a linear inverting amplifier (a vacuum



tube) with a linear feedback circuit (Fig. 2) which determine
the frequency. The amplifier is a two-port with a static gain-
factor equal to the ratio between the signals at the ports.
The linear feedback circuit is a two-port with a feed-back-
factor equal to the ratio between the port signals. It is obvious
that the product of the two factors becomes equal to one.
This observation is called the Barkhausen criterion or the
Allgemeine Selbsterregungsformel in German language.

This criterion has been used for design of oscillators
assuming a linear amplifier with gain A. The loop is opened
and the circuit is designed with gain 1 and phase-shift Z0.
The loop is closed and regeneration is assumed to start-up
oscillations.

Very often you observe oscillations but unfortunately you
have no guarantee of steady state oscillations. When you open
the loop you study a circuit closely related to the oscillator
circuit but it is the closed loop circuit which you want to be
an oscillator. The open loop circuit is just an active filter with
a time invariant bias point.

When you close the loop you have a linear circuit with a
complex pole pair on the imaginary axis. Often the criterion is
modified so that the complex pole pair is moved to the RH P.
The linear circuit then becomes unstable and steady state os-
cillations are supposed to occur because the nonlinearities will
limit the growth of the amplitude in some way. Unfortunately
this might not always be the case [15]. Steady state oscillators

are nonlinear circuits.
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Fig. 3. Barkhausen’s observation. Characteristic polynomial

Barkhausens figure may be redrawn as shown in fig. 3
where the non-linear amplifier is assumed to be a perfect
amplifier with infinite input impedance, zero output impedance
and linear time-varying gain A. The linear feedback circuit is
assumed to be a linear, lumped element, time-invariant passive
two-port with a rational transfer function H(s). It is obvious
that the loop-gain is always equal to one (1) and the phase-
shift is equal to a multiple of 360° (27). Furthermore it is
seen that the Barkhausen criterion is just an expression for
the characteristic polynomial of the circuit as function of the
amplifier gain. For zero gain the characteristic polynomial

becomes equal to the denominator of H(s). For infinite gain
the characteristic polynomial becomes equal to the numerator
of H(s). The circuits may be divided into two groups: four-
terminal- and three-terminal- coupled two-ports.

There are examples where the poles of the initial small
signal model are in LH P so it becomes necessary to apply
initial conditions (energy) e.g. an impulse somewhere in order
to start-up steady state oscillations. The size of this impulse
is crucial for the behavior. A nonlinear circuit may have
several stable DC bias points but some of these points may
be potentially unstable. Some times an average DC bias point
is introduced.

If the amplifier is a real world operational amplifier i.e. an
active nonlinear circuit then the transfer function (gain A(t)) of
the amplifier A(t) = V,ut/Vin as function of time should be
investigated in order to obtain insight in the behavior. Also the
introduction of nonlinearities in the feed-back circuit should be
considered in order to minimize the influence of the amplifier
nonlinearities [15].

The Barkhausen criterion is a starting point for the design
of an oscillator. The Nyquist criterion may be looked upon as
a generalization of the Barkhausen criterion. Both criteria are
necessary but not sufficient criteria for an oscillator based on
a nonlinear amplifier with positive linear feed-back [16]. In
order to find a sufficient criterion for steady state oscillations
you should investigate the nonlinear dynamics of electronic
oscillators [17], [18], [19].

It is an open question if it is possible to find a sufficient
criterion for steady state oscillations. So far you have to use a

hit and try” approach.
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Fig. 4. Wien Bridge Oscillator

III. DISCUSSION OF A WIEN BRIDGE OSCILLATOR

The Wien Bridge oscillator in Fig. 4 is investigated in [15]
at the frequency 0.7958 Hz well below the 12 Hz dominating
pole frequency of the AD712 operational amplifier in order
to obtain a linear oscillator. Here we design the oscillator to
3.333 kHz (period 300us). The start-up phase and the steady
state phase are investigated.



Assuming ideal operational amplifier the component values
corresponding to a complex pole pair at the imaginary axis
becomes: RA = RB = 20k}, CA = CB = 2.387324147nF,
RC = 6.000k$2, RD = 3k). For RC' = 6.010k{2 the pole
pair is in RH P. In order to make the analysis more close to
the real world conditions a 1€) internal resistance is assumed
for the power sources VN and V P. Also a rise time of 1us
is assumed. V' P is switched on 200us before V N. The results
depends of course on the operational amplifiers used. We may
investigate the Wien Bridge oscillator as a modified multi-
vibrator i.e. the capacitor C A may be removed [20] .

Figure 5 shows the startup phase. Figure 6 shows the steady
state behavior. Without the two diodes and resistor RC'L a
large pulse is seen in the current of VN and the amplitude of
V(3) is close to the power source voltage.
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Fig. 5. Start-up of oscillator with VN delayed 200us after V P
Cadence PSpice Lite 16.5 is used for simulation
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Fig. 7.
. without and with the diodes and RC'L

With the diodes and RCL the pulse disappear and the
amplitude of V(3) is about 0.6V. Figure 7 shows the transfer

characteristic of the amplifier i.e. the output voltage V' (3) as
function of the input voltage V' (1, 2).

The answer to the question: Why does a Wien Bridge
oscillator oscillate may be given as follows.

Due to the unstable small signal model the amplitude of the
output voltage V' (3) will increase until the power source level
is reached. The mechanism seems to be the common multi-
vibrator mechanism. When the two diodes and the resistor
RCL are introduced in the feed-back we have the time varying
small signal model mechanism for creating an energy balance
with a complex pole pair moving between RH P and LHP.
More details including frequency spectra will be given in the
slides for the presentation of this paper.
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