Co-Electrolysis of Water and CO2 for synthetic fuels

Jensen, Søren Højgaard

Publication date: 2013

Co-Electrolysis of Water and CO$_2$ for synthetic fuels

Søren Højgaard Jensen
Technical University of Denmark,
DTU Risø Campus
DK-4000 Roskilde
Denmark

shjj@dtu.dk
Outline

1. Solid Oxide Electrolyser Cell (SOEC)
2. SOEC Electrode Potentials, Thermodynamic
3. Gas Diffusion and Conversion
The Solid Oxide Cell
The Solid Oxide Cell

Ni-YSZ support & current collector

Ni-YSZ electrode

YSZ electrolyte

LSM-YSZ electrode

LSM current collector

$$\text{LSM} = (\text{La}_{0.75}\text{Sr}_{0.25})_{0.95}\text{MnO}_3$$

$$\text{YSZ} = \text{Zr}_{0.84}\text{Y}_{0.16}\text{O}_{1.92}$$

DTU Energy Conversion, Technical University of Denmark
The Solid Oxide Cell

Solid Oxide Electrolysis Cell

H₂O (and CO₂) → H₂ (and CO) + O₂ (1.3 V)

Solid Oxide Fuel Cell

O₂ → H₂O (and CO₂) (0.8 V)

H₂ (and CO) → H₂O (and CO₂)
The Solid Oxide Cell

- **SOFC**
 - 950 °C, 70% CO₂
- **SOEC**
 - 950 °C, 70% H₂O
 - 850 °C, 50% H₂O
 - 750 °C, 50% H₂O

Cell voltage V [V]

Current density i [A/cm²]
H₂O → H₂ + ½O₂

η = 100 % at E = Eₜₙ (no heat loss)

Eₜₙ = Eₜₙ

Temperature (°C)

Energy demand (KJ/mol)

Liquid

Gas

Total energy demand (ΔHᵣ)

Electrical energy demand (ΔGᵣ)

Heat demand (TΔSᵣ)

1/(2·n·F) · Energy demand (Volt)
CO₂ → CO + \frac{1}{2}O₂

Total energy demand (\Delta H_f)

Electrical energy demand (\Delta G_f)

Heat demand (T\Delta S_f)

Energy demand (KJ/mol)

Temperature (°C)
Electrical energy demand (ΔG_f)

$$\Delta G_{H_2O \rightarrow H_2 + \frac{1}{2}O_2} = \Delta G_{CO_2 \rightarrow CO + \frac{1}{2}O_2}$$

$750^\circ C - 900^\circ C$
Co-electrolysis of H₂O and CO₂

1 kW - 10-cell stack – 12 × 12 cm²
850 °C, -0.50 (-0.75) A/cm², 45 % CO² / 45% H₂O / 10 % H₂

S. Ebbesen et al.
Electrolyte degradation at high current

Cell with R_s constant (-1 A/cm2)

Cell with R_s increase (-2 A/cm2)

TEM study of the YSZ grain boundaries.... →

Ref. Knibbe et al., J. Electrochem. Soc., 157(8), B1209, 2010

DTU Energy Conversion, Technical University of Denmark
Electrolyte degradation at high current

TEM of YSZ grain boundary near oxygen electrode from cell tested at -2 A/cm² (R_s increase)

Pore / gaps inbetween YSZ grains in the YSZ close to the electrolyte – oxygen electrode interface observed.
The Pressure Test Setup

Cell voltage / V

Current density / A/cm²

850 °C, 50% H₂ + 50% H₂O, Air

1 bar 10 bar
Synthetic Fuel Production

\[\text{CO}_2 \rightarrow \text{Purification} \rightarrow 300 \, ^\circ\text{C} \rightarrow \text{Insulation} \rightarrow 900 \, ^\circ\text{C} \]

\[\text{H}_2\text{O(l)} \rightarrow \text{Recycling} \rightarrow \text{Catalyst} \]

\[\text{CO} + \text{H}_2 + \text{H}_2\text{O(g)} + \text{CO}_2 \]

\[\text{O}_2 \rightarrow \text{SOEC stack} \rightarrow + \]
Electricity price (€¢/kWh) over the years:

- Ireland
- Italy
- EU Average
- Norway
- France
- Finland

Average price: 9.6 €¢/kWh

S. D. Ebbesen, S. H. Jensen, A. Hauch and M. Mogensen, to be submitted
Synthetic Fuel Production Economy

- Hydrogen production price (€/kg \(\text{H}_2 \))
- FT-diesel production price (€/l)

Production price (€)

Electricity price (€/kWh)

1.15 €/L Diesel, EU average excluding taxes¹

S. D. Ebbesen, S. H. Jensen, A. Hauch and M. Mogensen, to be submitted

DK Electricity Price in 2010

Average Price
SOEC Economy

Søren Højgaard Jensen, Unpublished work
WTI and BRENT Crude Oil price

WTI

BRENT

$/barrel

DTU Energy Conversion, Technical University of Denmark
Conclusions

1. Stable co-electrolysis operation below -1 A/cm²

2. Operation at high pressure makes internal catalysis possible which enables high production efficiency

3. Using Only Cheap Electricity Doesn’t change the synthetic fuel production costs significantly
I wish to thank Colleagues at DTU Energy Conversion for contributions to this presentation
CO$_2$+2H$_2$O \leftrightarrow CH$_4$+2O$_2$

\[
\frac{\Delta H^0}{8F} = 1.15 \text{ V}
\]

\[
\frac{\Delta G^{1000\text{C}}}{8F} = 1.04 \text{ V}
\]
At 15 Mpa and 650 C, a mixture of 85% methane and 15% hydrogen dry gas with small concentrations of CO and CO$_2$ can be produced without producing equilibrium carbon, at $V= 1.08$ V vs. air.

S. H. Jensen and M. Mogensen, 19th World Energy Congress, Sydney, Australia 2004

$$\text{CO}_2 + 2\text{H}_2\text{O} \leftrightarrow \text{CH}_4 + 2\text{O}_2$$

$$\frac{\Delta H^0}{8F} = 1.15 \text{ V}$$

$$\frac{\Delta G^{1000\text{C}}}{8F} = 1.04 \text{ V}$$
Vision

LL. Thorup Salt caverns

- 150-200 bar
- 500 mill Nm3 storage
- 5000 mill kWh stored
- 200 M€ CAPEX
<table>
<thead>
<tr>
<th>Operating cost and conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating pressure</td>
<td>150-200 bar</td>
</tr>
<tr>
<td>Storage capacity (volume)</td>
<td>500 Mio Nm³</td>
</tr>
<tr>
<td>Storage capacity (Energy (CH₄))</td>
<td>5000 GWh</td>
</tr>
<tr>
<td>Cavern CAPEX (CH₄)</td>
<td>200 M€</td>
</tr>
<tr>
<td>Cavern CAPEX (CO₂ + CH₄)</td>
<td>0.08 €/kWh</td>
</tr>
<tr>
<td>Electrolysis/Fuel-cell operation/year</td>
<td>4000 hours</td>
</tr>
<tr>
<td>SOC cost</td>
<td>150 €/kW</td>
</tr>
<tr>
<td>Total SOC CAPEX</td>
<td>200 M€</td>
</tr>
<tr>
<td>Total system CAPEX</td>
<td>600 M€ (0.12 €/kWh)</td>
</tr>
</tbody>
</table>

Assume the return of investment on the storage facility is 5 years, the round trip efficiency is 70% and that the storage facility buys electricity during the summer (4000 h) at a cost of 9.6 €¢/kWh. Then the storage facility will be able to sell electricity during the winter periods (4000 h) for 14 €¢/kWh.