Hybrid Heat Pump Solutions for Industrial Energy Savings

Jensen, Jonas Kjær

Publication date:
2013

Citation (APA):
Hybrid Heat Pump Solutions for Industrial Energy Savings

DTU International Energy Conference
September 10th-12th 2013

Jonas Kjær Jensen
PhD Student
Thermal Energy Section
Agenda

• Introduction to the hybrid absorption compression heat pump
• Advantages of zeotropic mixtures specifically NH$_3$/H$_2$O
• Evaluation of important design parameters.
• Prospect for high temperature development $T_{supply} < 110^\circ C$.
• Conclusion & future work
The Hybrid Heat Pump

Absorber

Desorber

IHEX

Liquid/vapour separator

Mixer

\[\dot{Q}_{\text{abs}} \]

\[m_{\text{vapour}} \]

\[m_{\text{rich}} \]

\[Q_{\text{IHEX}} \]

\[Q_{\text{des}} \]

\[m_{\text{lean}} \]

\[W_{\text{pump}} \]

\[W_{\text{comp}} \]

\[m_{\text{rich}} \]

\[m_{\text{lean}} \]
Advantages of Zeotropic Mixtures
Reduction of Vapor Pressure

The diagram illustrates the vapor pressure of zeotropic mixtures as a function of temperature for different compositions, denoted by x. The x-axis represents temperature in °C, ranging from 0 to 400, and the y-axis represents vapor pressure in bar, ranging from 0 to 220. The diagram shows multiple curves corresponding to different compositions, with $x=0.0$ to $x=1.0$, each curve indicating the vapor pressure at a specific temperature. The critical point is also indicated on the diagram.
Advantages of Zeotropic Mixtures
Reduction of Vapor Pressure
Advantages of Zeotropic Mixtures
Reduction of Vapor Pressure

![Graph showing vapor pressure and temperature relationships for zeotropic mixtures, with curves representing different compositions (x) and critical temperatures.]

- Temperature Range 63-230°C
- Temp. Range 155-330°C
- Vapor Pressure Range 28-130 bar

R717 → x=0.0
R718 ← x=1.0

x=0.0
x=0.1
x=0.2
x=0.3
x=0.4
x=0.5
x=0.6
x=0.7
x=0.8
x=0.9
x=1.0

Critical

DTU Mechanical Engineering, Technical University of Denmark
DTU International Energy Conference 11.9.2013
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

- Pure Refrigerant
- Sink
- Source

Heat Load [kW]
Temperature [°C]
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

<table>
<thead>
<tr>
<th>Pure Refrigerant</th>
<th>Zeotropic Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sink</td>
<td>Source</td>
</tr>
<tr>
<td>Temperature [°C]</td>
<td>Heat Load [kW]</td>
</tr>
</tbody>
</table>

DTU Mechanical Engineering, Technical University of Denmark

DTU International Energy Conference 11.9.2013
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Reduced $\Delta T \Rightarrow$ Reduced Entropy Generation
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\[x = 0.9 \]

\[Q \text{ [kW]} \]
\[T \text{ [°C]} \]

\[Q \text{ [kW]} \]
\[T \text{ [°C]} \]
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\(T \ [\degree C] \)

\(x=0.8 \)

\(Q \ [kW] \)

\(0 \)

\(100 \)

\(50 \)

\(70 \)

\(90 \)

\(100 \)

\(0 \)

\(20 \)

\(40 \)

\(60 \)

\(80 \)

\(100 \)

\(0 \)

\(20 \)

\(40 \)

\(60 \)

\(80 \)

\(100 \)
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\[x = 0.7 \]
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\[T \text{ [\degree C]} \]
\[Q \text{ [kW]} \]
\[x=0.6 \]

EES Ver. 9.459: #0780: Department of Energy Engineering, Tech. Univ. of Denmark

DTU Mechanical Engineering, Technical University of Denmark
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

$x = 0.3$

\[T [\degree C] \]

\[Q [kW] \]

DTU Mechanical Engineering, Technical University of Denmark

DTU International Energy Conference 11.9.2013
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\(x=0.3 \)

\(T \text{ [°C]} \)

\(Q \text{ [kW]} \)

\(x=0.3 \)
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\(x = 0.2 \)
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\(x=0.1 \)

\[T \ [\text{C}^\circ] \]

\[\dot{Q} \ [\text{kW}] \]
The Hybrid Heat Pump: Design parameters x_r & f
Influence of x_r & f: $T_{sink,\text{out}} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$

Inputs and Assumptions

<table>
<thead>
<tr>
<th>External Inputs</th>
<th>Internal Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{sink,\text{in}} = 80^\circ C$</td>
<td>$\Delta T_{\text{pinch},\text{abs}} = 5^\circ C$</td>
</tr>
<tr>
<td>$T_{sink,\text{out}} = 110^\circ C$</td>
<td>$\Delta T_{\text{pinch},\text{des}} = 5^\circ C$</td>
</tr>
<tr>
<td>$T_{source,\text{in}} = 80^\circ C$</td>
<td>$\eta_{is,\text{comp}} = 0.7$</td>
</tr>
<tr>
<td>$\dot{m}_{sink} = 1\text{kg/s}$</td>
<td>$\eta_{is,\text{pump}} = 0.7$</td>
</tr>
<tr>
<td>$\dot{m}_{source} = 10\text{kg/s}$</td>
<td>$\epsilon_{IHEX} = 0.8$</td>
</tr>
</tbody>
</table>

Pressure drops are neglected.
Influence of x_r & f: $T_{sink, out} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$
Influence of x_r & f: $T_{sink,\text{out}} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$
Influence of x_r & f: $T_{sink,out} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$
Influence of x_r & f: $T_{sink,out} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$
Influence of x_r & f: $T_{sink, out} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$
Influence of $x_r \& f$: $T_{sink,out} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$

[COP, PH, PL, PR, TH, VHC] plots for different x_r values.
Influence of x_r & f: $T_{\text{sink, out}} = 110^\circ C$, $\Delta T_{\text{lift}} = 40^\circ C$
Influence of x_r & f: $T_{sink, out} = 110^\circ C$, $\Delta T_{lift} = 50^\circ C$
Working domain hybrid heat pumps

Constraints corresponding to standard refrigeration components

<table>
<thead>
<tr>
<th>Design Constraints</th>
<th>Economic</th>
<th>Standard refrigeration equipment</th>
<th>No entrainment of air from ambient</th>
<th>Economic ($\dot{Q}{abs}/\dot{V}{suc,comp}$)</th>
<th>Thermal stability of oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>COP</td>
<td>$> 4[-]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_H</td>
<td>$< 25[bar]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_L</td>
<td>$> 1[bar]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{HC}</td>
<td>$> 2[MJ/m^3]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_H</td>
<td>$< 160[^\circ C]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^\circ C] \quad T_{\text{lift}} = 30[^\circ C] \]

Possible design options

\[\text{COP} < 4 [-] \]
Working domain hybrid heat pumps

$T_{out} = 110[^\circ C]$ $T_{lift} = 30[^\circ C]$
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^{\circ}\text{C}] \quad T_{\text{lift}} = 30[^{\circ}\text{C}] \]

Possible design options

- \(\text{COP} < 4[-] \)
- \(P_H > 25[\text{bar}] \)
- \(P_L < 1[\text{bar}] \)

\[x_r \quad [\text{kg/kg}] \]

\[f [-] \]
Working domain hybrid heat pumps

\[T_{out} = 110[^\circ C] \quad T_{lift} = 30[^\circ C] \]

Possible design options:
- \(\text{COP} < 4 \)[−]
- \(P_H > 25[\text{bar}] \)
- \(P_L < 1[\text{bar}] \)
- \(\text{VHC} < 2[\text{MJ/m}^3] \)
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^\circ \text{C}] \quad T_{\text{lift}} = 30[^\circ \text{C}]\]
Working domain hybrid heat pumps

Constraints corresponding to supercritical CO$_2$ refrigeration components and new synthetic oils

<table>
<thead>
<tr>
<th>Design Constraints</th>
<th>Economic</th>
</tr>
</thead>
<tbody>
<tr>
<td>COP</td>
<td>$> 4[-]$</td>
</tr>
<tr>
<td>P_H</td>
<td>$< 130[bar]$</td>
</tr>
<tr>
<td>P_L</td>
<td>$> 1[bar]$</td>
</tr>
<tr>
<td>V_{HC}</td>
<td>$> 4[MJ/m^3]$</td>
</tr>
<tr>
<td>T_H</td>
<td>$< 250[^{\circ}C]$</td>
</tr>
</tbody>
</table>

Standard refrigeration equipment

No entrainment of air from ambient

Economic ($\dot{Q}_{abs}/\dot{V}_{suc,comp}$)

Thermal stability of oil
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^{\circ}\text{C}] \quad T_{\text{lift}} = 30[^{\circ}\text{C}] \]

Possible design options

\(\text{COP} < 4 \quad f \quad x_r \quad [\text{kg/kg}] \)

Possible design options
\(\text{COP} < 4 \quad [\text{–}] \)
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^\circ C] \quad T_{\text{lift}} = 30[^\circ C] \]

Possible design options

\[\text{COP} < 4[-] \]
\[P_H > 130[\text{bar}] \]
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^\circ\text{C}] \quad T_{\text{lift}} = 30[^\circ\text{C}] \]

Possible design options:
- COP < 4
- \(P_H > 130 \) [bar]
- \(P_L < 1 \) [bar]
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^{\circ}\text{C}] \quad T_{\text{lift}} = 30[^{\circ}\text{C}] \]

Possible design options
- \(\text{COP} < 4 \)
- \(P_H > 130 \text{[bar]} \)
- \(P_L < 1 \text{[bar]} \)
- \(\text{VHC} < 4 \text{[MJ/m}^3\text{]} \)
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^\circ C] \quad T_{\text{lift}} = 30[^\circ C] \]
Working domain hybrid heat pumps: $T_{sink,out}$

$T_{\text{out}} = 120[^\circ C]$ $T_{\text{lift}} = 30[^\circ C]$
Working domain hybrid heat pumps: $T_{sink,out}$

$T_{\text{out}} = 130[^\circ C]$ $T_{\text{lift}} = 30[^\circ C]$

Possible design options:
- $\text{COP} < 4$ [-]
- $P_H > 130$ [bar]
- $P_L < 1$ [bar]
- $VHC < 4$ [MJ/m3]
- $T > 250$ [°C]
Working domain hybrid heat pumps: $T_{sink, out}$

$T_{out} = 140[^{\circ}C] \quad T_{lift} = 30[^{\circ}C]$

Possible design options
- COP < 4
- $P_H > 130$[bar]
- $P_L < 1$[bar]
- VHC < 4[MJ/m3]
- $T > 250[^{\circ}C]$
Working domain hybrid heat pumps: $T_{sink, out}$

$T_{out} = 150[^{\circ}C]$ $T_{lift} = 30[^{\circ}C]$
Working domain hybrid heat pumps: $T_{sink, out}$

$T_{out} = 160[^\circ C]$ $T_{lift} = 30[^\circ C]$
Working domain hybrid heat pumps: $T_{sink, out}$

$T_{out} = 170[^\circ C]$ $T_{lift} = 30[^\circ C]$

Possible design options:
- COP < 4
- $P_H > 130$[bar]
- $P_L < 1$[bar]
- VHC < 4[MJ/m3]
- $T > 250[^\circ C]$
Working domain hybrid heat pumps: $T_{sink,out}$

$$T_{out}=180^{\circ}C \quad T_{lift}=30^{\circ}C$$

Possible design options:
- COP < 4 [-]
- $P_H > 130$ [bar]
- $P_L < 1$ [bar]
- VHC < 4 [MJ/m3]
- $T > 250$ [°C]
Working domain hybrid heat pumps: $T_{sink,out}$

$T_{out} = 190[^\circ C]$ $T_{lift} = 30[^\circ C]$
Working domain hybrid heat pumps: $T_{sink, out}$

$T_{out} = 200[^\circ C]$ $T_{lift} = 30[^\circ C]$
Working domain hybrid heat pumps: ΔT_{lift}

$T_{out} = 180[°C]$ $T_{lift} = 30[°C]$
Working domain hybrid heat pumps: ΔT_{lift}

$T_{out}=180[^\circ C]$ $T_{lift}=35[^\circ C]$
Working domain hybrid heat pumps: ΔT_{lift}

$T_{out} = 180[^\circ C]$, $T_{lift} = 40[^\circ C]$

Possible design options:
- $\text{COP} < 4$ $[-]$
- $P_H > 130$ $[\text{bar}]$
- $P_L < 1$ $[\text{bar}]$
- $VHC < 4$ $[\text{MJ/m}^3]$
- $T > 250$ $[^\circ C]$
Working domain hybrid heat pumps: ΔT_{lift}

$T_{out} = 180[^\circ C]$ $T_{lift} = 45[^\circ C]$

Possible design options:
- $COP < 4$ [-]
- $P_H > 130$ [bar]
- $P_L < 1$ [bar]
- $VHC < 4$ [MJ/m3]
- $T > 250[^\circ C]$
Working domain hybrid heat pumps: ΔT_{lift}

$T_{\text{out}}=180[{^\circ C}]$ $T_{\text{lift}}=50[{^\circ C}]$

- Possible design options
 - $\text{COP}<4$ [−]
 - $P_{\text{H}} > 130$ [bar]
 - $P_{\text{L}} < 1$ [bar]
 - $VHC < 4$ [MJ/m3]
 - $T > 250$ [°C]
Future work

- Heat transfer characteristics, influence of x_r.
- Identification of suitable oils.
- Material compatibility with NH$_3$/H$_2$O should be investigated
- Two-stage concepts should be evaluated, this could reduce compressor discharge temperature and increase COP.
- Thermoeconomic analysis and optimization should be applied to find cost efficient designs.
Conclusion

• COP and design parameters are highly dependent on x_r and f.
• Standard refrigeration components can be used up to 110[°C].
• Supercritical CO$_2$ components can be used up to 200[°C].
• ΔT_{lift} up to 45[°C] can be attained.
• Dominating constraint is the compressor discharge temperature.
• Hence thermal stability of oil should be tested.
• Case studies should be performed to show the feasibility of the hybrid heat pump implementation.
Thank you for your attention.
Questions?