Hybrid Heat Pump Solutions for Industrial Energy Savings

Jensen, Jonas Kjær

Publication date: 2013

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Hybrid Heat Pump Solutions for Industrial Energy Savings

DTU International Energy Conference
September 10th-12th 2013

Jonas Kjær Jensen
PhD Student
Thermal Energy Section
Agenda

- Introduction to the hybrid absorption compression heat pump
- Advantages of zeotropic mixtures specifically NH$_3$/H$_2$O
- Evaluation of important design parameters.
- Prospect for high temperature development $T_{supply} < 110^\circ$C.
- Conclusion & future work
The Hybrid Heat Pump

Absorber

Desorber

IHEX

Liquid/vapour separator

Mixer

\(m_{\text{vapour}} \)

\(m_{\text{rich}} \)

\(\dot{Q}_{\text{abs}} \)

\(m_{\text{lean}} \)

\(Q_{\text{IHEX}} \)

\(Q_{\text{des}} \)
Advantages of Zeotropic Mixtures
Reduction of Vapor Pressure
Advantages of Zeotropic Mixtures

Reduction of Vapor Pressure

DTU Mechanical Engineering, Technical University of Denmark
Advantages of Zeotropic Mixtures
Reduction of Vapor Pressure

![Graph showing the vapor pressure of mixtures for different temperatures and compositions. The graph illustrates the reduction in vapor pressure for different mixtures compared to single components.](image)

- R717: Temp. Range 63-230°C
- R718: Temp. Range 155-330°C

DTU Mechanical Engineering, Technical University of Denmark

DTU International Energy Conference 11.9.2013
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Sink

Source

Temperature [°C]

Heat Load [kW]
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

![Graph showing temperature vs. heat load for sink and source with pure refrigerant lines.

- Pure Refrigerant
- Sink
- Source

Source:
- Pure Refrigerant

Sink:
- Pure Refrigerant

Heat Load [kW]

Temperature [°C]
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

![Diagram showing temperature vs. heat load for Pure Refrigerant, Zeotropic Mixture, and Sink/Source comparison.](image-url)
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Reduction of ΔT => Reduced Entropy Generation

Temperature [°C]

Heat Load [kW]

Pure Refrigerant
Zeotropic Mixture
Sink
Source

DTU Mechanical Engineering, Technical University of Denmark

DTU International Energy Conference
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\[x = 0.9 \]

\[T \ [^\circ C] \]

\[Q \ [kW] \]
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\(x=0.8 \)

\[T \text{ [°C]} \]
\[\dot{Q} \text{ [kW]} \]
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\(x = 0.7 \)

\(T \ [^\circ C] \)

\(Q \ [\text{kJW}] \)
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\(x=0.6 \)

\(T \ [^\circ C] \)

\(Q \ [\text{kW}] \)

\(x=0.6 \)
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\[x=0.5 \]

\[Q \ [\text{kW}] \]

\[T \ [\text{C}^\circ] \]

\[x=0.5 \]
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\[x = 0.3 \]

\[T \, ^{\circ}C \]

\[Q \, [kW] \]
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\(x = 0.3 \)

<table>
<thead>
<tr>
<th>Tempreature (T) [°C]</th>
<th>Q [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

\[0 \leq x \leq 1 \]
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\(x = 0.2 \)

\(T \) [°C]

\(\dot{Q} \) [kW]

\(Q \) [kW]
Advantages of Zeotropic Mixtures
Reduction of Entropy Generation

Absorber

\[x = 0.1 \]

\[
\begin{array}{c|c|c|c|c|c}
Q [kW] & T [\degree C] & \hline
0 & 50 & \hline
20 & 50 & \hline
40 & 70 & \hline
60 & 90 & \hline
80 & 100 & \hline
100 & 100 & \hline
\end{array}
\]
The Hybrid Heat Pump: Design parameters x_r & f

- Absorber
- Desorber
- IHEX
- Liquid/vapour separator
- Mixer
- m_{vapour}
- m_{rich}
- Q_{abs}
- Q_{IHEX}
- m_{lean}
- W_{pump}
- W_{comp}
- Q_{des}

Equations:

1. Q_{abs}
2. m_{vapour}
3. m_{rich}
4. Q_{IHEX}
5. m_{lean}
6. W_{pump}
7. W_{comp}
8. Q_{des}
9. x_r
10. f
Influence of \(x_r \) & \(f \): \(T_{sink,\text{out}} = 110^\circ C, \Delta T_{lift} = 30^\circ C \)

Inputs and Assumptions

<table>
<thead>
<tr>
<th>External Inputs</th>
<th>Internal Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{sink,\text{in}} = 80^\circ C)</td>
<td>(\Delta T_{pinch,\text{abs}} = 5^\circ C)</td>
</tr>
<tr>
<td>(T_{sink,\text{out}} = 110^\circ C)</td>
<td>(\Delta T_{pinch,\text{des}} = 5^\circ C)</td>
</tr>
<tr>
<td>(T_{source,\text{in}} = 80^\circ C)</td>
<td>(\eta_{is,\text{comp}} = 0.7)</td>
</tr>
<tr>
<td>(m_{sink} = 1\text{kg/s})</td>
<td>(\eta_{is,\text{pump}} = 0.7)</td>
</tr>
<tr>
<td>(m_{source} = 10\text{kg/s})</td>
<td>(\epsilon_{IHEX} = 0.8)</td>
</tr>
</tbody>
</table>

Pressure drops are neglected.
Influence of x_r & f: $T_{sink,out} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$
Influence of x_r & f: $T_{sink, out} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$
Influence of x_r & f: $T_{sink,\, out} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$
Influence of x_r & f: $T_{sink,out} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$
Influence of x_r & f: $T_{sink, out} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$
Influence of x_r & f: $T_{sink,out} = 110^\circ C$, $\Delta T_{lift} = 30^\circ C$
Influence of x_r & f: $T_{sink, out} = 110^\circ C$, $\Delta T_{lift} = 40^\circ C$
Influence of x_r & f: $T_{sink, out} = 110^\circ C$, $\Delta T_{lift} = 50^\circ C$
Working domain hybrid heat pumps

Constraints corresponding to standard refrigeration components

<table>
<thead>
<tr>
<th>Design Constraints</th>
<th>COP</th>
<th>PH</th>
<th>PL</th>
<th>VHC</th>
<th>TH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard refrigeration equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No entrainment of air from ambient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economic (\dot{Q}{abs}/\dot{V}{suc,comp})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal stability of oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^{\circ}\text{C}] \quad T_{\text{lift}} = 30[^{\circ}\text{C}] \]

Possible design options

COP < 4[−]

DTU Mechanical Engineering, Technical University of Denmark

DTU International Energy Conference 11.9.2013
Working domain hybrid heat pumps

\[T_{out} = 110[^\circ C] \quad T_{lift} = 30[^\circ C] \]

Possible design options
- COP < 4
- \(P_H > 25 [\text{bar}] \)
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^{\circ}\text{C}] \quad T_{\text{lift}} = 30[^{\circ}\text{C}] \]

Possible design options

- COP < 4[$-$]
- \(P_H > 25 \) [bar]
- \(P_L < 1 \) [bar]
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^{\circ}\text{C}] \quad T_{\text{lift}} = 30[^{\circ}\text{C}] \]

Possible design options:
- \(\text{COP} < 4 \)
- \(P_H > 25 \) bar
- \(P_L < 1 \) bar
- \(\text{VHC} < 2 \) MJ/m\(^3\)
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^\circ\text{C}] \quad T_{\text{lift}} = 30[^\circ\text{C}] \]

Possible design options:
- COP < 4
- \(P_H > 25 \text{[bar]} \)
- \(P_L < 1 \text{[bar]} \)
- \(\text{VHC} < 2 \text{[MJ/m}^3\text{]} \)
- \(T > 160[^\circ\text{C}] \)
Working domain hybrid heat pumps

Constraints corresponding to supercritical CO₂ refrigeration components and new synthetic oils

<table>
<thead>
<tr>
<th>Design Constraints</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COP > 4[−]</td>
<td>Economic</td>
</tr>
<tr>
<td>P_H < 130[bar]</td>
<td>Standard refrigeration equipment</td>
</tr>
<tr>
<td>P_L > 1[bar]</td>
<td>No entrainment of air from ambient</td>
</tr>
<tr>
<td>VHC > 4[MJ/m³]</td>
<td>Economic ($\dot{Q}{abs}/\dot{V}{suc,comp}$)</td>
</tr>
<tr>
<td>T_H < 250[°C]</td>
<td>Thermal stability of oil</td>
</tr>
</tbody>
</table>
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^\circ C] \quad T_{\text{lift}} = 30[^\circ C] \]
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[\degree C] \quad T_{\text{lift}} = 30[\degree C] \]
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^\circ\text{C}] \quad T_{\text{lift}} = 30[^\circ\text{C}] \]

Possible design options

\[\text{COP} < 4[^\text{-}] \]

\[P_H > 130[^\text{bar}] \]

\[P_L < 1[^\text{bar}] \]
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^{\circ}\text{C}] \quad T_{\text{lift}} = 30[^{\circ}\text{C}] \]

Possible design options:
- COP < 4
- \(P_H > 130 \) [bar]
- \(P_L < 1 \) [bar]
- VHC < 4 [MJ/m\(^3\)]
Working domain hybrid heat pumps

\[T_{\text{out}} = 110[^\circ \text{C}] \quad T_{\text{lift}} = 30[^\circ \text{C}] \]
Working domain hybrid heat pumps: $T_{\text{sink,out}}$

$T_{\text{out}} = 120[^\circ C]$ $T_{\text{lift}} = 30[^\circ C]$

Possible design options
- $\text{COP} < 4$ [--]
- $P_H > 130$ [bar]
- $P_L < 1$ [bar]
- $\text{VHC} < 4$ [MJ/m3]
- $T > 250$ [°C]
Working domain hybrid heat pumps: $T_{\text{sink, out}}$

$T_{\text{out}} = 130[^\circ\text{C}] \quad T_{\text{lift}} = 30[^\circ\text{C}]$

Possible design options

- COP < 4
- $P_H > 130$[bar]
- $P_L < 1$[bar]
- VHC < 4[MJ/m3]
- $T > 250[^\circ\text{C}]$
Working domain hybrid heat pumps: $T_{sink, out}$

\[T_{out} = 140[^\circ C] \quad T_{lift} = 30[^\circ C] \]

Possible design options:
- COP < 4
- $P_H > 130$ [bar]
- $P_L < 1$ [bar]
- $VHC < 4$ [MJ/m3]
- $T > 250[^\circ C]$
Working domain hybrid heat pumps: $T_{sink, out}$

$T_{out} = 150[°C]$ $T_{lift} = 30[°C]$

Possible design options
- COP < 4[
- $P_H > 130[bar]$
- $P_L < 1[bar]$
- VHC < 4[MJ/m3]
- $T > 250[°C]$
Working domain hybrid heat pumps: $T_{sink, out}$

$T_{out} = 160[°C]$ $T_{lift} = 30[°C]$
Working domain hybrid heat pumps: $T_{sink, out}$

$T_{out} = 170[^\circ C]$ $T_{lift} = 30[^\circ C]$

Possible design options
Working domain hybrid heat pumps: $T_{sink,out}$

$T_{out}=180[^\circ C]$ $T_{lift}=30[^\circ C]$
Working domain hybrid heat pumps: $T_{\text{sink,out}}$

$T_{\text{out}} = 190^\circ\text{C}$ $T_{\text{lift}} = 30^\circ\text{C}$

Possible design options:
- COP < 4
- $P_H > 130$[bar]
- $P_L < 1$[bar]
- $VHC < 4$[MJ/m3]
- $T > 250^\circ\text{C}$
Working domain hybrid heat pumps: $T_{sink,out}$

$T_{out} = 200[°C] \quad T_{lift} = 30[°C]$

- Possible design options:
 - $COP < 4[-]$
 - $P_H > 130[bar]$
 - $P_L < 1[bar]$
 - $VHC < 4[MJ/m^3]$
 - $T > 250[°C]$
Working domain hybrid heat pumps: ΔT_{lift}

$T_{out} = 180[^\circ C]$ $T_{lift} = 30[^\circ C]$
Working domain hybrid heat pumps: ΔT_{lift}

$$T_{out} = 180[{^\circ}C] \quad T_{lift} = 35[{^\circ}C]$$

Possible design options
- COP $< 4\, [\text{--}]$
- $P_H > 130\, \text{[bar]}$
- $P_L < 1\, \text{[bar]}$
- VHC $< 4\, \text{[MJ/m}^3\text{]}$
- $T > 250\, {^\circ}\text{C}$
Working domain hybrid heat pumps: ΔT_{lift}

$T_{out} = 180[^\circ C]$ $T_{lift} = 40[^\circ C]$
Working domain hybrid heat pumps: ΔT_{lift}

$T_{out} = 180[^{\circ}C] \quad T_{lift} = 45[^{\circ}C]$

Possible design options
- COP < 4
- $P_H > 130$ [bar]
- $P_L < 1$ [bar]
- VHC < 4 [MJ/m3]
- $T > 250[^{\circ}C]$
Working domain hybrid heat pumps: ΔT_{lift}

$T_{out} = 180[^\circ C]$ $T_{lift} = 50[^\circ C]$

Possible design options:
- COP < 4
- $P_H > 130$[bar]
- $P_L < 1$[bar]
- VHC < 4[MJ/m3]
- $T > 250[^\circ C]$
Future work

- Heat transfer characteristics, influence of x_r.
- Identification of suitable oils.
- Material compatibility with NH$_3$/H$_2$O should be investigated.
- Two-stage concepts should be evaluated, this could reduce compressor discharge temperature and increase COP.
- Thermoeconomic analysis and optimization should be applied to find cost efficient designs.
Conclusion

- COP and design parameters are highly dependent on x_T and f.
- Standard refrigeration components can be used up to 110[°C].
- Supercritical CO$_2$ components can be used up to 200[°C].
- ΔT_{lift} up to 45[°C] can be attained.
- Dominating constraint is the compressor discharge temperature.
- Hence thermal stability of oil should be tested.
- Case studies should be performed to show the feasibility of the hybrid heat pump implementation.
Thank you for your attention.
Questions?