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Active fault detection and isolation (AFDI) is used for detection and isolation of faults that are hidden in the normal operation
because of a low excitation signal or due to the regulatory actions of the controller. In this paper, a new AFDI method based
on set-membership approaches is proposed. In set-membership approaches, instead of a point-wise estimation of the states,
a set-valued estimation of them is computed. If this set becomes empty the given model of the system is not consistent
with the measurements. Therefore, the model is falsified. When more than one model of the system remains un-falsified, the
AFDI method is used to generate an auxiliary signal that is injected into the system for detection and isolation of faults that
remain otherwise hidden or non-isolated using passive FDI (PFDI) methods. Having the set-valued estimation of the states
for each model, the proposed AFDI method finds an optimal input signal that guarantees FDI in a finite time horizon. The
input signal is updated at each iteration in a decreasing receding horizon manner based on the set-valued estimation of the
current states and un-falsified models at the current sample time. The problem is solved by a number of linear and quadratic
programming problems, which result in a computationally efficient algorithm. The method is tested on a numerical example
as well as on the pitch actuator of a benchmark wind turbine.

Keywords: fault detection and isolation; fault diagnosis

1. Introduction

In modern industrial systems there is an increasing demand
on performance, safety, and reliability. A fault in the system
might degrade the performance of the system or eventually
lead to the loss of its functionality or stability. Some severe
faults or propagation of non-severe faults might result in
hazardous events. Therefore, fault detection and isolation
(FDI) is of crucial importance in modern industrial sys-
tems. In real applications, noise, uncertainties, and model
differences are always present. To ensure the reliability and
performance of an FDI method, it is important to make sure
that it is robust to uncertainties and noise but simultane-
ously sensitive to faults. An FDI method that possesses this
property is called robust.

Robust FDI methods are broadly classified into two
classes: residual signal based and set-membership based.
In the robust residual signal based fault detection, a resid-
ual signal is generated and its value is checked against a
threshold. When the value of the residual signal becomes
greater than the threshold, a fault is detected. For the method
to be robust the residual signal must be insensitive to uncer-
tainties and sensitive to faults, which is usually a difficult
and challenging problem. Choosing the appropriate thresh-
old is also an important and a challenging task. Among
the most known residual based approaches are unknown

∗Email: setaba@.elektro.dtu.dk

input observers (Chen and Patton, 1999), eigenstructure as-
signment (Patton and Chen, 1991a), and structured parity
equations (Patton and Chen, 1991b). In the set-membership
approaches, the noise, disturbance, and uncertainties are as-
sumed to be unknown but in given bounded sets. Then, a
set of states or parameters consistent with the model of
the system, past measurements, and bounds on the noise
and uncertainties is computed for the system. If the current
measurement is not consistent with any of the members of
this set, a fault is detected. In the control literature, these ap-
proaches are known as set-membership, or error-bounded
methods. For a review of set-membership approaches see
Puig (2010) and Ingimundarson, Bravo, Puig, Alamo, and
Guerra (2009). Relevant to this line of research are the
methods in Olaru, De Doná, and Seron (2010) and Seron,
Zhou, De Doná, and Martinez (2008) where positive invari-
ant sets are used to obtain a set characterisation of faulty
and healthy behaviour of residual signals. The advantage
of these methods is that the online computation of sets is
avoided. The problem of designing an excitation signal that
guarantees FDI by separation between the invariant sets cor-
responding to faulty and healthy behaviours is investigated
in Stoican, Olaru, Seron, and De Doná (2012).

Set-membership approaches are either state space based
or parameter space based. At each iteration, the set of states

C© 2013 Taylor & Francis
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2 S.M. Tabatabaeipour

or parameters that are consistent with the past measure-
ments, the model of the system, and the bounds on the un-
certainties, disturbance, and noise is calculated as a closed
set. If the set of states or the parameters consistent with a
new measurement does not intersect with this set, a fault
is detected. Therefore, in these approaches there is no need
for threshold design. Also, when the given bounds on the
uncertainties, noise, and disturbance are realistic, the ap-
proach does not generate any positive false alarm. The dis-
advantage of the method is that due to the propagation of
uncertainties and over-approximations required in the set
computations, it is possible for a measurement to be con-
sistent with more than one faulty model or with the model
of the normal and faulty system. Therefore, the fault would
remain hidden or non-isolated.

In PFDI methods, it is possible that because of the low
excitation signal or regulatory actions of the controller, the
fault remains hidden or un-isolated in the normal operation.
A remedy to this problem is to use an auxiliary excitation
signal that is added to the input signal to excite the system on
a periodic basis or at critical times to detect and isolate faults
that would remain hidden or un-isolated otherwise. These
solutions are called active FDI (AFDI) in the literature. In
AFDI, an input is generated that excites the system with the
aim of detecting and isolating the fault and then based on the
observed output the condition of the system is determined.
In recent years, there has been a considerable attention to
the area of AFDI, see papers (Campbell and Nikoukhah,
2004; Niemann, 2006) and references therein. In Campbell
and Nikoukhah (2004) dynamic optimisation is used to find
the smallest auxiliary input that guarantees fault detection.
The auxiliary input is pre-computed and then applied to the
system in the online operation. During the detection period,
measurements from the system are not used to update the
pre-computed input. The test is stopped if the fault is de-
tected before the end of period. This result is extended in
Nikoukhah, Campbell, Savkin, and Selmic (2005) for un-
certain sampled data systems using a multi-model frame-
work. The multi-model approach is extended for detection
of incipient faults in Nikoukhah and Campbell (2008) and to
include the possibility of having a-priori information about
the initial condition (Nikoukhah and Campbell, 2006). The
proposed method in Campbell and Nikoukhah (2004) is
extended for non-linear systems in Andjelkovic, Sweeting-
ham, and Campbell (2008). Niemann and Poulsen (2005)
and Niemann (2006) present a method for active diagno-
sis of parametric faults in closed loop systems based on
YJKB parameterisation. In Stoustrup and Niemann (2010),
two methods are proposed such that instead of generat-
ing an auxiliary signal the controller is altered. In the first
method, the observer part of the controller is changed be-
tween sequences of observers each sensitive to one or a
set of faults such that the continuity and stability of the
transition is preserved. In the second method, the controller
is changed such that the faulty system becomes unstable.

All of the aforementioned approaches consider linear sys-
tems. In Tabatabaeipour, Ravn, Izadi-Zamanabadi, and Bak
(2009a), an active fault diagnosis method for linear hybrid
systems in discrete time based on reach set computation for
faulty and normal systems is proposed. The results are ex-
tended to automatic sensor assignment in Tabatabaeipour,
Izadi-Zamanabadi, Bak, and Ravn (2009b). The problem
is reformulated in Tabatabaeipour (2010) as a mixed inte-
ger optimisation problem for active diagnosis of a hybrid
system using the mixed logical dynamical framework. All
of the above methods consider the problem in the open
loop configuration. Esna Ashari, Nikoukhah, and Campbell
(2012) study the effect of feedback on active fault detection
with only one faulty model and show that when the norm
of the auxiliary signal is considered to be the cost function
to be minimised, linear feedback cannot reduce the cost
considering the worst case of uncertainty.

In this paper, we consider the problem of AFDI formu-
lated for a state space based set-membership FDI approach.
A set-membership approach is used for PFDI of the sys-
tem. The set of states consistent with the normal model
and the models of the system subject to different faults are
computed. When one of the sets becomes empty, the corre-
sponding model is falsified. It is expected that after a while
only one of the models remains un-falsified, i.e., is compat-
ible with the measurement. When more than one model is
compatible with the measurements, the AFDI comes into
the picture. It receives the set-valued estimation of the states
form the set-membership FDI approach as an input. Then,
based on the models of the system (faulty and normal), it
generates an input sequence that guarantees fault detection
and isolation in a finite time horizon. The contribution of
this paper includes the following:

(1) A new AFDI method based on set-membership
PFDI approaches is proposed that finds the opti-
mal input signal which guarantees detection and
isolation of faults in a finite time horizon. The cri-
terion for optimality is considered to be the norm
of the input.

(2) The information about the initial condition of the
normal system and faulty system subject to differ-
ent faults is given as bounded sets where these sets
might be different.

(3) The input can be updated at each sample time in
a decreasing receding horizon manner using the
measurement information. The input is updated at
each iteration using the new available information
from the set-membership PFDI algorithm which
is the set-valued estimation of the states and un-
falsified models at the current time.

This paper is organised as follows. In Section 2, prelimi-
naries and basic notions that are used throughout the pa-
per are introduced. Then, passive set-membership FDI is
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explained in Section 3. The AFDI problem and the pro-
posed method are given in Section 4. Simulation results of
testing the method on a numerical example as well as on
the pitch actuator of a benchmark wind turbine are given in
Section 5. Finally, conclusions are given in Section 6.

2. Preliminaries

In this section basic definitions and notations used through-
out the paper are given. Given two setsX ∈ Rn andY ∈ Rn,
the Minkowski sum of them is defined asX ⊕ Y = {x + y :
x ∈ X , y ∈ Y}. A convex polytope P is the convex combi-
nation of its vertices. The polytope P with r vertices vi ∈ Rn

is the set:

P =
{

r∑
i=1

αivi |vi ∈ Rn, αi ∈ R, αi ≥ 0,

r∑
i=1

αi = 1

}
.

(1)
P can also be represented by the non-empty intersection of
a finite set of half-spaces. In this case the polytope P is
represented by:

P = {x|Hx ≤ K}. (2)

The above representation is called the H-representation.
Zonotopes are a special class of convex polytopes. A zono-
tope is the Minkowski sum of a finite number of line seg-
ments. A zonotope is represented by:

Z =
{

z ∈ Rn|z = c +
p∑

i=1

xigi,−1 ≤ xi ≤ 1

}
. (3)

Here, c is the centre of zonotope and gi’s are called gener-
ators.

Given the set M = {M0,M1, . . . ,Mn}, its cardinality
which is the number of its elements is denoted by |M|. The
index set of M is denoted by I which is a set that gathers
indices of the elements of M, i.e., M = ∪i∈IMi .

3. Set-membership fault detection and isolation

In set-membership approaches, instead of a point-wise esti-
mation of states, at each sampling time, the set of states that
are consistent with the current measurement, a given model
of the system, the initial condition set, the bounds on the dis-
turbance and noise, and the input-output sequence up to the
current sample time is calculated. As long as this set is not
empty, the corresponding model is valid and as soon as the
set becomes empty it is falsified. Falsification of a given dy-
namic model means that the given model is not compatible
with the observed input and output of the system. Therefore,
if the given model is representing the model of the normal
system, its falsification is equivalent to the detection of a
fault. This is shown in Figure 1. The same procedure is

Figure 1. Basic structure of set-membership FD approach.

used for fault isolation. Given M = {M0, . . . ,Mnf
} repre-

senting models of the system with no fault and subject to
fault f1, . . . , fnf

, when M0 is falsified, a fault is detected.
Then, the method is applied to the un-falsified models until
only a specific model, namely Mj remains un-falsified. At
that point, the fault fj is isolated. This is illustrated by an
example in Figure 2. In the rest of the paper, we make the
following assumptions:

Assumption 1: The models of the system subject to differ-
ent faults M1, . . . , Mnf

are known a priori.

Assumption 2: During the fault detection and isolation
period the fault is persistent.

3.1. Set-membership model falsification

In this section, it is explained how the set-membership ap-
proaches are used for falsification of a given model of a
system. The following given linear time-varying model of
the system is considered:

Mi :

⎧⎪⎪⎨
⎪⎪⎩

xi(k + 1) = Ai(k)xi(k) + Bi(k)u(k) + w(k),
yi(k) = Ci(k)xi(k) + v(k),
v(k) ∈ Vi , w(k) ∈ Wi ,

xi(0) ∈ Xi0 ,

(4)

Figure 2. Example of fault detection and isolation using model
falsification; each column shows the un-falsified models, td : de-
tection time, tI : isolation time.
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4 S.M. Tabatabaeipour

where xi(k) ∈ Rn is the state, yi(k) ∈ Rm is the output,
u(k) ∈ Rp is the input, w(k) ∈ Rn is disturbance, and v(k) ∈
Rm is noise. It is assumed that the noise and disturbance
are unknown but bounded, i.e., w(k) ∈ Wi and v(k) ∈ Vi .
Moreover, it is assumed that the initial condition is given in
a compact set xi(0) ∈ Xi0 . Also the input is assumed to be
constrained in a compact polyhedral set, i.e., u(k) ∈ U .

At each iteration, the set of states that are consistent
with the given model Mi, the input and output of the sys-
tem, the initial condition, and the bounds on the noise and
disturbance are computed. This set is denoted by X c

i (k).
Computation of X c

i (k) consists of two steps: a prediction
step and a correction step. At the prediction step, having
X c

i (k − 1), u(k), based on the dynamic of the system and
bounds on the disturbance, the set of all the states reachable
from X c

i (k − 1) denoted by X p
i (k) is computed. X p

i (k) is
defined by:

X p
i (k) = {z = Ai(k−1)x + Bi(k−1)u + w|x∈X c

i (k−1),

u = u(k − 1), w ∈ Wi}, (5)

which is computed as:

X p
i (k) = Ai(k − 1)X c

i (k − 1) ⊕ {Bi(k − 1)u(k − 1)}⊕Wi .

(6)
This set is then corrected using the information available
from the current measurement y(k). Given the current mea-
surement y(k), the set of all states that are consistent with it
is given by:

X y
i (k) = {x ∈ Rn : ∃v ∈ Vi such that Ci(k)x + v = y(k)}.

(7)

Since the noise is additive here, we have:

X y
i (k) = {x : Ci(k)x ∈ {y(k)} ⊕ (−Vi)}. (8)

The set of states compatible with the model and the mea-
surement is consistent with both the prediction and the
measurement which means that it is the intersection of the
predicted set and the measurement consistent set:

X c
i (k) = X p

i (k) ∩ X y
i (k). (9)

The prediction and correction steps to find X c
i (k) are de-

picted in Figure 3. As long as X c
i (k) is not empty, this

means that the model Mi is not falsified. But, when X c
i (k)

becomes empty, the input/output sequence can no longer be
explained by Mi. Therefore, Mi is falsified. The overall al-
gorithm for fault detection is given in the Algorithm 1. The
model falsification algorithm can also be viewed as a set-
valued observer (SVO) where X c

i (k) is a set-valued estima-
tion of the state, see Rosa, Casau, Silvestre, Tabatabaeipour,

Figure 3. Calculation of the corrected consistent set.

and Stoustrup (2012) and references therein.

Algorithm 1 Set-membership model falsification

Given Mi : Ai(k), Bi(k), Ci(k),Xi0 ,Vi ,Wi

k ← 0,X c
i (k) ← Xi0

whileX c
i (k) �= ∅ do

k ← k + 1

Given u(k), find the prediction set:

X p
i (k) ← Ai(k − 1)X c

i (k − 1) ⊕ {Bi(k − 1)u(k − 1)}
⊕Wi

Given y(k), findX y
i (k)

X y
i (k) ← {x : Ci(k)x ∈ y(k) ⊕ (−Vi)}

X c
i (k) ← X p

i (k) ∩ X y
i (k)

if X c
i (k ) = ∅ then

Mi is falsified

end if

end while

For fault detection and isolation given M =
{M0, . . . ,Mnf

}, a set valued observer for each model
of the system is used. Then, a model Mi is falsified
when the corresponding X c

i becomes empty. The overall
algorithm for model falsification using the set-membership
approach is given in Algorithm 2. The algorithm is initiated
at k0 and runs until kf. At each time step, for all models
in M the set X c

i is updated. If for model Mi, the set X c
i

becomes empty, it is falsified and therefore it is excluded
from the set M. The index of the model is also removed
from the index set. After updating M and I, the algorithm
is repeated with the un-falsified models.

To implement the Algorithm 1 or 2, a specific set repre-
sentation must be used. Several set representations are pro-
posed in the literature, including ellipsoids, polytopes, in-
tervals, parallelotopes, and zonotopes. Each representation
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International Journal of Systems Science 5

has its own benefits and downsides, see Alamo, Bravo, and
Camacho (2005) and references therein. The representation
that is used must be efficient concerning the operations that
must be performed in the algorithm. Here, the operations
are: affine transformation, Minkowski sum, and intersec-
tion. Ellipsoids are very simple to represent; however they
are not closed under the Minkowski sum and intersection.
Polytopes are closed under all the three required operations.
Also, using polytopic representation results in exact com-
putation of the sets, however the drawback of this represen-
tation is its high computational complexity. Zonotopes are
closed under the affine transformation and the Minkowski
sum and they offer low time and memory complexity. Al-
though zonotopes are not closed under intersection but are
a computationally efficient method for over-approximating
the intersection of a strip and zonotopes are proposed in the
literature that can be used here, see Alamo et al. (2005). In
this paper we use zonotopes for PFDI. But during the AFDI
horizon, because we need an exact computation of these
sets, as it will be explained later, polytopic representation
is used.

Algorithm 2 Model falsification using set-membership
approach

(M, I, {X c
i }i∈I ) = unfalsified(M,Xi(k0),Vi ,Wi , k0, kf )

Given M,Xi(k0),Vi ,Wi , k0, kf

k ← k0, X p
i (k) ← Xi(k0),X c

i (k) ← Xi(k0)
while k ≤ kf do

Get y(k), u(k)
for j = 1 to |M| do

i ← Ij

X p
i (k + 1) ← Ai(k)X c

i (k) ⊕ {Bi(k)u(k)} ⊕ Wi

X y
i (k) ← {x|Ci(k)x = y(k) ⊕ (−Vi)}

X c
i (k) ← X p

i (k) ∩ X y
i (k)

if X c
i (k) = ∅ then

M ← M \ Mi, I ← I \ i
end if

end for
k ← k + 1

end while

4. Active fault detection and isolation

Because of the presence of noise and uncertainty or due to
a small excitation signal or regulatory actions of the con-
troller, it might happen that the input and output sequence
is compatible with more than one model of the system.
Consequently, when the Algorithm 2 is used, more than one
model of the system remains un-falsified. Therefore, it is
not possible to distinguish between the un-falsified models
of the system. It must be pointed out that this problem is
not only limited to set-membership approaches and it might
happen in any PFDI method. A solution to this problem is
to use AFDI methods to improve the distinguishability be-
tween un-falsified models by exciting the system using an

Figure 4. General structure of an AFDI module.

auxiliary input signal. In AFDI, an input signal with the
aim of fault detection and isolation is produced and in-
jected into the system. Then, the output of the system is
measured and based on the measured input/output, it is de-
termined whether the system is in the normal or a faulty
condition. In case the system is in the faulty condition, it is
desirable to determine the faulty condition that the system
is in. The input signal must be designed such that based
on the observation it is possible to distinguish between the
un-falsified models.

Figure 4 depicts the general structure of an AFDI
method. The AFDI consists of an input generator mod-
ule and a PFDI module. The input generator produces an
input sequence that is injected into the system and then the
PFDI module decides about the condition of the system by
observing the output sequence.

The AFDI problem can be stated as follows:

Problem 1: Active fault detection and isolation prob-
lem: Given the set M = {M0, . . . ,Mnf

} describing dy-
namical models of the system with no fault and sub-
ject to the faults {f1, . . . , fnf

} respectively, a set of ini-
tial states for each model, i.e., {X0(k0), . . . ,Xnf

(k0)}, find
a sequence of inputs UNd

(k0) = {u(k0) . . . u(k0 + Nd − 1)]
such that the observation sequence YNd

(k0 + 1) = {y(k0 +
1), . . . y(k0 + Nd )} can only be produced by a unique Mj, j
∈ {0, 1, . . . , nf}.

In other words, the output sequences produced by apply-
ing the generated input sequence to the system in different
conditions must be distinguishable. This means that we are
searching for an input sequence, UNd

(k0), such that:

∀xi(k0) ∈ Xi(k0), vi(k) ∈ Vi , wi(k) ∈ Wi : ∃
k̄, k0 < k̄ ≤ k0 + Nd, such that: yi(k) �= yj (k),∀i,

j ∈ 0, . . . , nf , i �= j, (10)

where

xi(k + 1) = Ai(k)xi(k) + Bi(k)u(k) + wi(k),

yi(k) = Ci(k)xi(k) + vi(k). (11)
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6 S.M. Tabatabaeipour

If such an input sequence exists, then we can look for the
optimal solution, where optimality can be interpreted in
different senses. The problem can be formulated as a feasi-
bility test problem as follows:

min
UNd

(k0)
1 (12)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi(k0) ∈ Xi(k0),
xi(k + 1) = Ai(k)xi(k) + Bi(k)u(k) + wi(k),
yi(k) = Ci(k)xi(k) + vi(k),
vi(k) ∈ Vi ,

wi(k) ∈ Wi ,

u(k) ∈ U ,

i ∈ I,

k = k0, . . . k0 + Nd,

yi(k) − yj (k) �= 0, i, j ∈ I, i �= j, for some k̄,

k0 < k̄ ≤ k0 + Nd,

where Nd is the AFDI horizon and I is the index set of
M, i.e., M = ∪i∈IMi . This problem is in general non-
convex. Assume that an input sequence UN (k0) is given.
For a given input sequence if there exist a noise and distur-
bance sequence and an initial condition such that the fol-
lowing problem is feasible, then we cannot guarantee that
the models would be distinguishable during the horizon:

min
UN (k0)

1 (13)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi(k0) ∈ Xi(k0),
xi(k + 1) = Ai(k)xi(k) + Bi(k)u(k) + wi(k),
u(k) = u(k),
yi(k) = Ci(k)xi(k) + vi(k),
vi(k) ∈ Vi ,

wi(k) ∈ Wi ,

i ∈ I,

k = k0, . . . k0 + N,

yI�
(k) − yI�+1 (k) = 0, 0 ≤ � ≤ |I|,

k = k0 + 1, . . . k0 + N,

where I� denotes the �th element of the set I. But, in-
feasibility of the above problem means that there does
not exist a x(k0) ∈ X0, a noise and disturbance sequence
vi(k) ∈ Vi , wi(k) ∈ Wi such that all models produce the
same output sequence, i.e., yi(k) − yj (k) = 0, i, j ∈ I, i �=
j . In other words, at least two of the models produce differ-
ence output for some k̄, k0 < k̄ ≤ k0 + N regardless of the
realisation of the initial condition, noise, and disturbance,
which means that at least two of the models are distinguish-
able. Therefore, to solve (12) we use a divide and conquer
strategy. We look for input sequences that render (13) in-
feasible. If such an input sequence exists, this means that
at the end of sequence, as it will be shown in the sequel, at
least one of the models is falsified. Therefore, the size of
the problem is reduced by one. Consequently, the problem
can be solved by repeatedly applying this method.

In the following we prove that if (13) is infeasible, using
the set-membership approach results in falsification of at
least one of the models.

Theorem 1: Given the set M = {M0, . . . ,Mnf
} describ-

ing dynamical models of the system with no fault and sub-
ject to the faults {f1, . . . , fnf

} respectively, a set of ini-
tial states for each model, i.e., {X0(k0), . . . ,Xnf

(k0)}, and
an input sequence UN (k0) that yields the output sequence
YN (k0 + 1) = {y(k0 + 1), . . . y(k0 + N )}, if the problem
(13) is infeasible, then using Algorithm 2 with the output
sequence YN (k0 + 1) generated by applying UN (k0) to the
system, at least one of the models is falsified.

Proof: The theorem is proved using a reductio ad absur-
dum argument. Infeasibility of (13) means that:

�x0
i (k0) ∈ Xi(k0), v0

i (k) ∈ Vi , w
0
i (k) ∈ Wi , :

yi(k) = yj (k),∀i, j ∈ 0, . . . , nf , i �= j,

k = k0 + 1, . . . , k0 + N. (14)

Now, assume the conclusion of the theorem is not true
meaning that none of the models are falsified during the
period. This means that X c

i (k) �= ∅ which is equal to:

∀i ∈ 0, . . . nf , ∃x1
i (k0) ∈ Xi(k0), v1

i (k) ∈ Vi , w
1
i (k)Wi :

∀k ∈ k0 + 1, . . . , k0 + N, ∃x1
i (k) :

y(k) = Ci(k)x1
i (k) + v1(i) ∧ x1

i (k) = Ai(k)x1
i (k − 1)

+Bi(k)u(k − 1) + w1(k − 1). (15)

Therefore:

∀k ∈ k0 + 1, . . . , k0 + N, ∃x1
i (k0) ∈ Xi(k0),

v1
i (k) ∈ Vi , w

1
i (k)Wi : y(k) = yi(k). (16)

which means that:

∀l, m, l �= m :,∀k ∈ k0 + 1, . . . , k0 + N : ∃x1
i (k0) ∈ Xi(k0),

v1
i (k) ∈ Vi , w

1
i (k)Wi :

y(k) = yl(k), y(k) = ym(k) → yl(k) = ym(k). (17)

This is in contradiction to (14), because at least when
x0

i (k0) = x0
i (k0), v0

i (k) = v1
i (k), w0

i (k) = w1
i (k), it is con-

tradicted. This implies a contradiction that proves the
theorem. �

In the proof no over-approximation is taken into ac-
count. Therefore, to implement the set-membership model
falsification algorithm in the AFDI horizon we must use
polytopes.

In fact, to falsify at least one of the models as in (13), it
is not necessary to include all the un-falsified models in the
optimisation problem. If we arbitrarily choose ξ, ξ ′ ∈ I and
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find an input that renders the following problem infeasible:

min
UN (k0)

1 (18)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi(k0) ∈ Xi(k0),
xi(k + 1) = Ai(k)xi(k) + Bi(k)u(k) + wi(k),
u(k) = u(k),
yi(k) = Ci(k)xi(k) + vi(k),
vi(k) ∈ Vi ,

wi(k) ∈ Wi ,

i ∈ {ξ, ξ ′},
k = k0, . . . k0 + N,

yξ (k) − yξ ′ (k) = 0,

k = k0 + 1, . . . k0 + N,

then we can guarantee that at least one of the models is
falsified. This is stated in the following theorem.

Theorem 2: Given the set M = {M0, . . . ,Mnf
} describ-

ing dynamical models of the system with no fault and sub-
ject to the faults {f1, . . . , fnf

}, respectively, a set of ini-
tial states for each model, i.e., {X0(k0), . . . ,Xnf

(k0)}, and
an input sequence UN (k0) that yields the output sequence
YN (k0 + 1) = {y(k0 + 1), . . . y(k0 + N )}, if the problem
(18) with ξ , ξ ′ chosen arbitrarily form I, is infeasible, then
using Algorithm 2 with the output sequence YN (k0 + 1)
generated by applying UN (k0) to the system, at least one of
the models Mξ or Mξ ′ is falsified.

Proof: Assume that the correct model is ξ�. Then three
cases are possible:

1. ξ = ξ�: In this case according to Theorem 1, the
model Mξ , would be falsified.

2. ξ ′ = ξ�: In this case according to Theorem 1, the
model Mξ ′ , would be falsified.

3. ξ �= ξ� and ξ ′ �= ξ�: Assume, ad absurdum, that in
this case neither Mξ nor M ′

ξ is falsified. This means
that:

∀i ∈ {ξ, ξ ′},∀k ∈ k0 + 1, . . . , k0 + N,

∃x1
i (k0) ∈ Xi(k0), v1

i (k) ∈ Vi ,

w1
i (k) ∈ Wi : y(k) = yi(k), (19)

which means that:

∀k ∈ k0 + 1, . . . , k0 + N,∀i ∈ {ξ, ξ ′},
∃x1

i (k0) ∈ Xi(k0), v1
i (k) ∈ Vi ,

w1
i (k) ∈ Wi : y(k) = yξ (k),

y(k) = yξ ′ (k) → yξ (k) = yξ ′ (k). (20)

This in contradiction to the infeasibility of (18) that
requires:

�x0
ξ (k0) ∈ Xξ (k0), v0

ξ (k) ∈ Vξ ,

w0
ξ (k) ∈ Wξ and x0

ξ ′ (k0) ∈ X ξ ′
(k0), v0

ξ ′ (k) ∈ Vξ ′ ,

w0
ξ (k)′ ∈ Wξ ′ : yξ (k) = yξ ′ (k),

∀k = k0 + 1, . . . , k0 + N. (21)

Therefore, at least Mξ or M ′
ξ is falsified. �

To find an input sequence that renders (18) infeasible, it
is assumed that the horizon for each subproblem is N. We
need to find the feasible region of the following optimisation
problem.

Jξ,ξ ′ (UN (k0)) = min 1 (22)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi(k) ∈ Xi(k0),
xi(k + 1) = Ai(k)xi(k) + Bi(k)u(k) + wi(k),
yi(k) = Ci(k)xi(k) + vi(k),
vi(k) ∈ Vi ,

wi(k) ∈ Wi ,

k = k0, . . . , k0 + N, i ∈ {ξ, ξ ′},
yξ (k) − yξ ′(k) = 0
k = k0 + 1, . . . , k0 + N,

UN ∈ UN.

Then, we search for an UN (k0) that is not inside the fea-
sible region; hence rendering (18) infeasible. The feasible
region of the above problem is a polytope denoted here by
G(ξ, ξ ′) (see Appendix A for a description of the feasible
region). To find input sequences that are not inside the fea-
sible region we project G(ξ, ξ ′) on the input space. Then,
we find an input that lies outside the projection. For now,
assume that we can find a UN (k0). Then, we apply the input
sequence and observe the output. As a result, at least one of
the models must be falsified. For the remaining un-falsified
models we repeat the algorithm. It is possible that, given
X c

i and constraints on the input, some of the models are
not distinguishable from each other. In this case, the algo-
rithm must be repeated until all the falsifiable models are
falsified.

To find a UN (k0) that is outside the feasible region of
(13), the following approach is used. Let us assume that the
projection of the feasible region of (22) on the UN space is
given by the polytope:

P (ξ, ξ ′) = {UN |H (ξ, ξ ′)UN ≤ K(ξ, ξ ′)}, (23)

Moving the facets of P(ξ , ξ ′) outward by vector
ε[ ‖h1‖2, ‖h2‖2, · · · ‖hr‖2 ], where ε is a small positive
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8 S.M. Tabatabaeipour

number, we get the following polytope:

P e(ξ, ξ ′) = {UN |H (ξ, ξ ′)UN ≤ K(ξ, ξ ′)
+ ε

[ ‖h1‖2, ‖h2‖2, . . . ‖hr‖2
]}, (24)

where ‖hi‖2 is the 2-norm of the ith row of H. It is clear
that P(ξ , ξ ′)⊂Pe(ξ , ξ ′). Let us define Ke = K(ξ, ξ ′) +
ε[ ‖h1‖2, ‖h2‖2, . . . ‖hr‖2 ] and denote its ith element by

kei

. Therefore, any point in the set {∪r
i=1UN |hi(ξ, ξ ′)UN ≥

kei

(ξ, ξ ′)} lies outside of the set P(ξ , ξ ′). Therefore, to find
the optimal input sequence we solve the following prob-
lem:

min
UN

UT
NQUN (25)

s.t.

{∪r
i=1h

i(ξ, ξ ′)UN ≥ kei

(ξ, ξ ′)
UN ∈ UN .

The above optimisation problem is not convex since
the set {∪r

i=1UN |hi(ξ, ξ ′)UN ≥ kei

(ξ, ξ ′)} is non-convex.
However, this set is actually a union of r convex sets:⋃r

i=1{hiUN ≥ kei }. Hence, the above optimisation problem
is solved by first solving the following quadratic optimisa-
tion problem:

min
Ui

N

UiT

N QUi
N (26)

s.t.

{
hi(ξ, ξ ′)Ui

N ≥ kei

(ξ, ξ ′)
Ui

N ∈ UN .

for i = 1, . . . , r and then finding the minimum of the so-
lutions. We can also accommodate linear inequality con-
straints on inputs.

The overall algorithm is given in Algorithm 3. The sets
Ml in the outer while loop are used to keep track of the
un-falsified models. If the un-falsified models at two itera-
tions are the same, this means that these set of models are
not distinguishable from each other given the set of initial
conditions and constraints on the input. In this case the
algorithm terminates. Therefore, the set M0 is set as an
empty set to initiate the algorithm (M1 �= M0). At each
iteration, the first two models from Ml are chosen. If (25)
is feasible, UN is applied to the system and after N steps
either Mξ or M ′

ξ is falsified. The falsified model is excluded
from Ml and the procedure is repeated with the next two
elements of Ml . In this way all pairs are checked. At each
iteration, in case (25) is infeasible Mξ is deleted form Ml

and put in Ml+1 which gathers the set of un-falsified mod-
els at iteration l. (In case only Mξ,Mξ ′ remain in Ml they
are both added to Ml+1.)

Algorithm 3 requires finding the feasible region of the
optimisation problem in (22) online each time when X c

i (k0)
is updated. It is possible to avoid this step by eliminating the

constraints on the initial conditions, i.e., xi(k0) ∈ X c
i (k0).

Therefore, the feasible region is described by:

Algorithm 3 Active fault detection and isolation algorithm

Given M,X c
i (k0),Vi ,Wi , N

M1 ← M,M0 ← ∅, l ← 1
while Ml �= Ml−1 do

while |Ml | > 1 do
I ← {j |Mj ∈ Ml}, ξ ← I1, ξ

′ ← I2

Use (22) to find G(ξ, ξ ′), P (ξ, ξ ′) ← projection(G(ξ, ξ ′), UN )
Calculate Pe(ξ , ξ ′) using (24)
if (25) is feasible then

Find the input sequence UN (k0) by solving (25)
Apply UN to the system
(Ml ,X c

i (k0 + N )) = unfalsified(Ml ,X c
i (k0),Vi ,Wi ,

k0, k0 + N )
k0 ← k0 + N

else if |Ml | > 2 then
Ml+1 ← Ml+1 ∪ Mξ,Ml ← Ml \ Mξ

end if
end while
Ml+1 ← Ml+1 ∪ Ml

l ← l + 1
end while

G(ξ, ξ ′) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi(k + 1) = Ai(k)xi(k) + Bi(k)u(k) + wi(k),
yi(k) = Ci(k)xi(k) + vi(k),
vi(k) ∈ Vi ,

wi(k) ∈ Wi ,

k = k0, . . . , k0 + N, i ∈ {ξ, ξ ′},
yξ (k) − yξ ′ (k) = 0,

k = k0 + 1, . . . , k0 + N, UN ∈ UN.

(27)

Then, in the online operation, when we get {X c
i (k0)}i∈{ξ,ξ ′}

from the model falsification algorithm, the intersection of
G(ξ, ξ ′) and UN × X c

ξ (k0) × X c
ξ (k0) is obtained by adding

the constraints on the initial states. If the intersection is not
empty, for any point {xξ (k0)} × {xξ ′(k0)} in this intersec-
tion, there is at least one input sequence UN that makes
(22) feasible. The projection of this polytope on the UN

is computed. Using a similar argument as before, we need
to find an input sequence lying outside the projection. Ap-
plying this input to the system falsifies at least one of the
models. We exclude the falsified models from the set of
un-falsified models and repeat the algorithm. Since we do
not know a priori, the order of the models that would be
falsified, we need to find the feasible region in (27) for all
unordered pair from M and store them in a look-up table.
Then, at each iteration, having the updated M, we recall
the corresponding feasible region, namely P(ξ , ξ ′) from the
look-up table. This is summarised in the Algorithm 4. In
the algorithm projection(P, UN ) denotes projection of the
polytope P on the input sequence dimensions UN and kafd

denotes the time that the AFDI algorithm is initiated. For
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example, when by using Algorithm 2 more than one model
remains un-falsified for a certain time instant, the algorithm
is initiated.

Algorithm 4 AFDI algorithm with offline computation of Pe

Given M, I,Xi(0),Vi ,Wi , N
OFFLINE
for all unordered pair {ξ, ξ ′} ∈ I do

Use (27) to find G(ξ, ξ ′)
Store P(ξ , ξ ′) in the look-up table LU

end for
ONLINE
if k = kafd then

Get M, I,X c
i (k0) from Algorithm 2, k0 ← kafd

end if
M1 ← M,M0 ← ∅, l ← 1
while Ml �= Ml−1 do

while |Ml | > 1 do
I ← {j |Mj ∈ Ml}, ξ ← I1, ξ

′ ← I2

Recall P(ξ , ξ ′) from the look-up table LU
P ← UN × X c

ξ (k0) × X c
ξ ′ (k0)

P ← P ∩ P
P ← projection(P, UN )
Use (24) to calculate Pe(ξ , ξ ′)
if (25) is feasible then

Find the input sequence UN by solving (25)
while {Mξ, Mξ ′ } ∈ Ml do

Apply the k′th element of UN to the system
(Ml ,X c

i (k0 + 1)) ← unfalsified(M,X c
i (k0),Vi ,Wi ,

k0, k0 + 1)
k0 ← k0 + 1

end while
else if |Ml | > 2 then
Ml+1 ← Ml+1 ∪ Mξ,Ml ← Ml \ Mξ

end if
end while
Ml+1 ← Ml+1 ∪ Ml

l ← l + 1
end while

Note that it might happen that one of the models is
falsified before the termination of the horizon, i.e., before
N steps. Therefore, in the Algorithm 4, if this happens, the
procedure of applying UN is stopped and the algorithm exit
the innermost while loop.

It is also possible to apply Algorithm 4 in a decreas-
ing receding horizon fashion where at each iteration the
input sequence is updated. At each iteration UN is ob-
tained. Then, only the first element of it, u(k0), is applied
to the system. Then, we observe the input and output of
the system to check if a model is falsified. Based on this
result M is updated. Then, the length of the horizon is de-
creased by 1, i.e., N0 ← N0 − 1 and the whole procedure
is repeated. The advantage of this method is that at each
iteration the input is updated based on the set-valued esti-
mation of the states using the set-valued observers which
means that at each step the input is recalculated based on

the measurement information. The algorithm is given in
Algorithm 5.

Algorithm 5 AFDI: The decreasing receding horizon approach

Given M, I,Xi(0),Vi ,Wi , N
OFFLINE
For all unordered pair {ξ, ξ ′} ∈ I:
Use (27) with N0 = 1, . . . , N to find G(ξ, ξ ′, N0),
Store P(ξ , ξ ′, N0) in the look-up table LU
ONLINE
if k = kafd then

k0 ← kafd

Get M, I,X c
i (k0) from Algorithm 2

end if
M1 ← M,M0 ← ∅, l ← 1
while Ml �= Ml−1 do

while |Ml | > 1 do
I ← {j |Mj ∈ Ml}, ξ ← I1, ξ

′ ← I2, N0 ← N
Recall P(ξ , ξ ′, N0) from the look-up table LU
P ← UN0 × X c

ξ (k0) × X c
ξ ′ (k0)

P ← P ∩ P
P ← projection(P, UN0 ), Use (24) to calculate Pe(ξ , ξ ′)
if (25) is feasible then

while {Mξ, Mξ ′ } ∈ Ml do
Find the input sequence UN0 by solving (25)
Apply the first element of UN0 to the system
(Ml ,X c

i (k0 + 1)) ← unfalsified(M,X c
i (k0),Vi ,Wi ,

k0, k0 + 1)
if N0 > 1 then

N0 ← N0 − 1
Recall P(ξ , ξ ′, N0) from the look-up table LU
P ← UN0 × X c

ξ (k0) × X c
ξ ′ (k0)

P ← P ∩ P
P ← projection(P, UN0 ), Use (24) to calculate
Pe(ξ , ξ ′)

end if
end while

else if |Ml | > 2 then
Ml+1 ← Ml+1 ∪ Ml

end if
end while
Ml+1 ← Ml+1 ∪ Ml

l ← l + 1
end while

The algorithms explained so far, eliminate the incorrect
models sequentially. In the following we propose a method
to falsify the incorrect models simultaneously. This means
that the inputs sequence must lie outside the projection of
the feasible region of (22) on the input space, i.e., P(ξ ,
ξ ′) for all unordered pairs of {ξ, ξ ′} ∈ I. Therefore, the
optimisation problem that must be solved is:

min
UN

UT
NQUN (28)

s.t.

{∪r
i=1h

i(ξ, ξ ′)UN ≥ kei

(ξ, ξ ′),∀{ξ, ξ ′} ∈ I
UN ∈ UN.

The inequality constraints obviously form a non-convex
set, but we can solve the problem by dividing it into
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10 S.M. Tabatabaeipour

convex subproblems, finding the minimum for each sub-
problem and then finding the minimum of the solutions of
subproblems. This is shown in Algorithm 6. In the algo-
rithm N = (|M|

2

)
denotes the number of subsets {ξ , ξ ′}

of M. For each 1 ≤ � ≤ N , H�,K
e
� denotes the corre-

sponding matrices for the expanded polytopes of feasible
region, r� denotes the number of rows of H�, h

j
� denotes

the jth rows of the H� and kej

� denotes the jth element of
the Ke

� . The region outside each expanded feasible region

Pe�

is given as ∪r�

j=1Hj
� , where each Hj

� is a halfspace given

as: Hj
� = {UN |hj

�UN ≥ kej

� }. Therefore, the area outside all
feasible regions is given by:

Algorithm 6 Solving (28) by sequential convex optimisation

for i1 = 1 to r1 do...
for iN = 1 to rN do

if (31) is feasible then
j ← j + 1
Uj = arg min �(i1, . . . , iN )

end if
end for...

end for
if j = 0 then

The problem is infeasible.
else

UN = min{U�|1 ≤ � ≤ j}
end if

⎛
⎝ N⋃

i1=1

(
Hi1

1

)⎞
⎠ ⋂

· · ·
⋂⎛

⎝ N⋃
iN =1

(
HiN

N
)⎞
⎠ , (29)

which is equal to:

N⋃
i1=1

· · ·
N⋃

iN =1

(
Hi1

1

⋂
· · ·

⋂
HiN

N
)

. (30)

Consequently, the following subproblem must be solved for
all possible combinations of i1, . . . , iN :

�(i1, . . . , iN ) = min
UN

UT
NQUN (31)

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h
i1
1 UN ≥ kei1

1
...
h

iN
N UN ≥ keiN

N
UN ∈ UN

Remark 1: In this way it is possible to construct an input
sequence that simultaneously falsifies the incorrect mod-
els and by checking the feasibility of the method one can

Figure 5. Pe for all pairs in Remark 3.

guarantee the existence of such an input and guarantee fault
detection an isolation in N steps.

Remark 2: A good choice for N is the smallest N such that
the optimisation problem in (31) is feasible. This would
require solving the problem several times online. Note that
N might change depending on the models that are still un-
falsified. If this method is not applicable, another option is
to choose an N based on the offline analysis of the feasible
regions G(ξ, ξ ′). One could choose a griding of the feasible
region in the xξ (k0) × x ′

ξ (k0) space, and then find a good
choice of N for each area of the grid. In the online operation
based on the location of the X c

1 (k) × X c
2 (k) in the grid, the

corresponding N is used.

Remark 3: There might be cases that it is not possible to
falsify all the modes simultaneously, i.e., the optimisation
problem is infeasible, but it is possible to detect and isolate
the fault using the sequential method of Algorithm 4. To
exemplify this remark consider an example with models
M1, M2, M3. Assume that the correct model is M1. Figure 5
shows Pe for all unordered pairs and the set U that denotes
the constraints on the input. As can be seen from the figure,
finding an input that falsifies all the models simultaneously
without violating the constraints on input is impossible.
However, it is possible to first apply the input denoted by
point A which falsifies M3 and then apply the input B which
falsifies M2.

5. Examples

5.1. Example 1

In this example, we use a simple system with two faults
to demonstrate the algorithm. We consider the following
example:
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International Journal of Systems Science 11

Figure 6. Evolution of X c(k) for example 1 in different conditions over time. Columns show the system in different conditions: nominal
system M0, system subject to the pressure drop fault M1, and subject to air content increase M2. Each row represents a sample time.

M0 : x0(k + 1) = 0.5x0(k) + u(k) + w(k), (32)

y0(k) = x0(k) + v(k),

M1 : x1(k + 1) = 0.4x1(k) + 0.8u(k), (33)

y1(k) = x1(k) + v(k),

M2 : x2(k + 1) = 0.7x2(k) + 1.5u(k), (34)

y2(k) = x2(k) + v(k),

where M0 denotes the fault-free system, M1 denotes the
system subject to fault f1, and M2 denotes the system
subject to fault f2. The initial state is assumed to be in
Xi0 = [−0.01, 0.01], i = 0, 1, 2. Also, we assume that v(k)
∈ [− 0.25, 0.25], w(k) ∈ [− 0.25, 0.25], and U = [−5, 5].
The detection horizon, N, is chosen to be five.

We use Algorithm 4 to find the input sequence. It is
assumed that the system is subject to fault f1. Figure 6
shows an example of the evolution of the X c

i over time.
Rows represent sample times and each column represents
the system in a condition. After two samples M2 is falsified
and after four samples M0 is falsified; hence the fault f1 is
detected and isolated correctly.

In this simulation, for the sake of demonstration we
look for a constant input in the AFDI horizon that can iso-
late faults. The obtained input sequence is [0.7167 0.7167
2.4562 2.4562]. This enables us to demonstrate the steps
of the algorithm in three-dimensional plots after M2 is fal-
sified. First, we use (27) and find P(0, 1) which is shown
in Figure 7 in red. At time step 3, the initial state of x0 ∈
[0.698, 0.998] and x1 ∈ [0.498, 0.998]. Then, the intersec-
tion of Pe andU × X c

0 × X c
1 = [−5, 5] × [0.698, 0.998] ×

[0.498, 0.998] is found as shown in Figure 7 in purple.
This intersection is projected on u which results in Pe

= [− 2.8437, 2.4562]. From this it is obvious that u
= 2.4562 is the optimal input. As N = 5, and input is
assumed to be constant, applying this input guarantees
isolation in five samples. However, in the simulation in
Figure 6 the fault is isolated in only two samples due to
noise and disturbance realisation in this example. To inves-
tigate the effect of the bounds on the noise and disturbance
on the results we apply Algorithm 5 to the above example
where we perform 100 Monte Carlo simulations. The noise
and disturbance are generated randomly with a uniform
distribution over the given interval: [v] = [− vM, vM] and
[w] = [− wM, wM]. Tables 1 and 2 show the effect of in-
creasing the bounds on the noise and disturbance on the
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12 S.M. Tabatabaeipour

Figure 7. Expanded feasible region: Pe (red), and its intersection with U × X c
0 (3) × X c

1 (3) (purple).

Table 1. Effects of noise of the input.

vM mean(T) mean( ‖u‖
T

)

0.1 4.21 0.1793
0.2 4.26 0.298
0.3 4.32 0.4543
0.4 4.61 0.516
0.5 4.9 0.6593

energy and time required for FDI. As it is expected when
the bounds increase, both the T and ‖u‖

T
increase, which

means that for the system with bigger bounds on the noise
and disturbance we need more energy in the auxiliary input
and also it takes more time to detect and isolate the fault.

Table 2. Effect of disturbance on the input with v = 0.5.

wM mean(T) mean( ‖u‖
T

)

0 4.9 0.6593
0.1 5.25 1.0151
0.2 5.32 1.3756
0.3 5.49 1.6652
0.4 5.81 1.8873
0.5 6.01 2.1938

5.2. Example 2

In this example, we demonstrate how the proposed method
can be used for fault diagnosis in the pitch system of a
wind turbine. A wind turbine converts a part of the kinetic
energy of the wind into electrical energy. The wind turbine
model consists of four parts: blade and pitch systems, drive
train, generator and converter, and the controller, see Fig-
ure 8. The rotational torque due to the airflow of the wind
on the rotor blades rotates the rotor. As a result, a part of
wind energy is converted to mechanical energy. The drive
train transmits this mechanical energy to the generator, and
the generator converts the mechanical energy to electrical
energy. To control the power, we can manipulate the pitch
angle of the blades or the rotational speed of the rotor. The
rotational speed of the generator or the rotor is controlled
by the generator torque. The generator is fully coupled with
a converter, which provides us with the ability to control the
generator torque. The blade’s pitch is controlled through the
pitch actuators. The pitch actuator that is considered in this
paper is a hydraulic pitch actuator. The hydraulic circuit of
the pitch system is depicted in Figure 9. The flow to the two
sides of the cylinder is controlled by a proportional valve.
The proportional valve is controlled by a proportional feed-
back of the piston position error. The closed loop dynamic
of the pitch system can be approximated by a second-order
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Figure 8. Block diagram of a horizontal axis wind turbine model.

Figure 9. The hydraulic pitch system with three actuators.

system as:

β(s)

βr (s)
= ω2

n

s2 + 2ξωns + ω2
n

, (35)

where βr is the pitch reference, see Odgaard, Stoustrup, and
Kinnaert (2009) for the description of the benchmark model
as well as parameters of the model. The nominal values of
ξ and ωn are given in Table 3 as ξ 0, ωn0.
Faults:
Two kinds of faults for the pitch actuator are considered in
this work. The first one is a pressure drop in the actuator,
which changes the pressure to 50% of its nominal value. As

Table 3. Parameters of the pitch system in the normal and
faulty conditions.

Fault Parameters

No Fault ξ 0 = 0.6, ωn0 = 11.11
Pressure drop ξ 1 = 0.45, ωn1 = 5.73
Air content increase ξ 2 = 0.9, ωn2 = 3.42

a result of this fault, the nominal values of ξ 0, ωn0 change
to ξ 1, ωn1. The second fault is an increase of the air content
in the oil in the actuator. In the normal condition, the air
in the hydraulic oil is 7%. As a result of this fault, the air
constant increases to 15%. This changes ξ 0, ωn0 to ξ 2, ωn2.
Parameters of the nominal and the faulty system are given
in Table 3.
Simulation results:
Now, we demonstrate how the proposed method can be used
for fault diagnosis of the pitch actuator system. The set-
membership methods are used in Tabatabaeipour, Odgaard,
and Bak (2012a), Tabatabaeipour, Odgaard, Bak, and Stous-
trup (2012b) and Casau, Rosa, Tabatabaeipour, Silvestre,
and Stoustrup (2012) for fault detection of a benchmark
wind turbine proposed in Odgaard et al. (2009). The fault
scenarios considered in this paper are also considered in the
benchmark problem. When the reference signal is constant
for a period of time or in situations that the excitation of
the system because of the change of the reference signal is
small, the faults cannot be detected or isolated. Note that
this is not a rare case as in the low wind speed the pitch
reference is always kept at 0. In this situation it is useful to
use AFDI to excite the pitch system periodically to check
the condition of the actuator. We use the proposed AFDI
method to find the optimal excitation signal for fault de-
tection. We choose a sample time of 0.01s. It is assumed
that the measurement noise is in the interval [− vβ , vβ]. We
would investigate the effect of bounds on the noise on the
input.

Figure 10 shows the result of model falsification al-
gorithm to the pitch actuator system. For implementation
of the algorithm we have used zonotopes. The interested
reader is referred to Tabatabaeipour et al. (2012b) for de-
tails of implementation. M0 denotes the nominal system,
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14 S.M. Tabatabaeipour

Figure 10. Simulation result of the model falsification algorithm using zonotopes.

M1 the system subject to pressure drop faults, and M2 the
system subject to air content increase. Mi = 1 denotes that
the ith model is not falsified and Mi = 0 denotes that the
ith model is falsified. At t = 2900s the pressure drop fault
occurs. As can be seen from Figure 10, all three models
are valid for more than 5000 samples after occurrence of
the fault. The reason for this delay is that the system is not
excited enough in this period as it can be seen in Figure 11,
which shows βr in this period.

For faster fault detection and isolation the proposed
method can be applied when more than one model is valid
for a period of time. Here, we apply the proposed AFDI
method at t = 2905. Figure 12 shows an example of the
evolution of the X c

i over time. Rows represent sample times
and each column represents the system in a condition. In
this simulation vβ is chosen to be 0.5. At t = 605.01, X c

i ’s
are initialised using the result form of the model falsifica-
tion algorithm. They are over-approximated by boxes. After

Table 4. Effect of noise on the input.

vβ mean(T) mean( ‖u‖
T

)

0.5 5.8 10.08
0.6 6.06 12.16
0.7 5.32 14.55
0.8 6.53 15.11
0.9 6.81 17.72
1 6.94 19.26

three steps, X c
2 becomes empty and M2 is falsified. Then,

M = {M0,M1} and the input is updated based on this new
information. The input is applied to the system and after
three steps, M0 is also falsified and the fault is isolated.

Table 4 shows the average isolation time and 2-norm of
the input for different values of the bound on the noise. For
each average value 100 Monte Carlo simulations are per-
formed. As it is expected when the level of noise increases,

Figure 11. Reference signal for the pitch system.
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Figure 12. Evolution of X c
i (k) for the pitch system in different conditions over time. Columns show the system in different conditions:

nominal system M0, the system subject to the pressure drop fault M1, and subject to air content increase M2. Each row represents a sample
time.

the AFDI time as well as the average energy required for
detection and isolation increases.

6. Conclusion

In this paper a new method for AFDI for linear time-
varying systems is proposed. The method is based on using

set-membership approaches for PFDI. It is assumed that
noise and disturbance are unknown but bounded. Using set-
membership PFDI method, the set of models that are not
compatible with the input/output sequence and bounds on
the noise and disturbance is falsified. When more than one
model is compatible with the input/output and bounds, the
AFDI is used to distinguish between un-falsified models.
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16 S.M. Tabatabaeipour

The AFDI receives the set-valued estimation of the states
for each model and calculates an optimal input sequence
that guarantees fault detection and isolation in a finite time
horizon. The algorithm uses the information about the un-
falsified models and the set-valued state estimation forms
the set-membership PFDI and updates the input at each iter-
ation in a decreasing receding horizon manner. The method
is demonstrated through a numerical example as well as on
the pitch system of a benchmark wind turbine.
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Appendix. Description of feasible regions
In this appendix a description of the polytope of feasible region of (22) is given. For simplicity of notation we consider models M1 and
M2. The symbol Zi

N (k0 + n) denotes the vector
[
zT

i (k0 + n) · · · zT
i (k0 + N )

]T
. The feasible region is described by:

Y1
N (k0 + 1) = Y2

N (k0 + 1), (A.1)

where:

Yi
N (k0 + 1) = Qixi(k0) + RiUN−1(k0) + SiW

i
N−1(k0) + Vi

N (k0 + 1), (A.2)

where

Qi =

⎡
⎢⎣

Ci(k0 + 1)Ai(k0)
...

Ci(k0 + N )
∏N

j=1 Ai(k0 + N − j )

⎤
⎥⎦, (A.3)

Ri =⎡
⎢⎢⎢⎣

Ci(k0 + 1)Bi(k0) 0 · · · 0
Ci(k0 + 2)Ai(k0 + 1)Bi(k0) Ci(k0 + 2)Bi(k0 + 1) · · · 0

...
...

...
...

Ci(k0 + N )(
∏N−1

j=1 Ai(k0 + N − j ))Bi(k0) Ci(k0 + N )(
∏N−1

j=1 Ai(k0 + N − 2))Bi(k0 + 1) · · · Ci(k0 + N )Bi(k0 + N − 1)

⎤
⎥⎥⎥⎦,

(A.4)

Si =

⎡
⎢⎢⎢⎣

Ci(k0 + 1) 0 · · · 0
Ci(k0 + 2)Ai(k0 + 1) Ci(k0 + 2) · · · 0

...
...

...
...

Ci(k0 + N )(
∏N−1

j=1 Ai(k0 + N − j )) Ci(k0 + N )(
∏N−1

j=1 A(k0 + N − 2)) · · · Ci(k0 + N )

⎤
⎥⎥⎥⎦. (A.5)

Then, (A.1) is rewritten as:

Q1x1(k0) + R1UN−1(k0) + S1W1
N−1(k0) − Q2x2(k0) − R2UN−1(k0) − S2W2

N−1(k0) = V2
N (k0 + 1) − V1

N (k0 + 1). (A.6)

But since it is assumed that vi(k) ∈ Vi , then we have:

v2(k) − v1(k) ∈ V2 ⊕ (−V1).

If V1 ⊕ (−V2) is given as Hvv ≤ Kv , then:

Hv(
[Q1 −Q2

][ x1(k0)
x2(k0)

]
+ [R1 −R2

]
UN−1(k0) + [S1 −S2

][ W1
N−1(k0)

W2
N−1(k0)

]
≤ Kv, (A.7)

where Hv = diag(Hv, . . . , Hv) and Kv = [
KT

v . . . KT
v

]T
. Overall, the polytope of feasible region is given by:

⎧⎨
⎩

(A.7)
xi(k0) ∈ X c

i (k0), i = 1, 2
wi(k) ∈ Wi , i = 1, 2, k = k0, . . . , k0 + N − 1

. (A.8)
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