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③  Nutrients enrichment promotes excessive growth of phytoplankton and macroalgae 

④  Bacterial degradation of biomass consumes dissolved oxygen. Excessive oxygen depletion may 
originate hypoxic to anoxic bottom waters 

⑤  Sublethal and lethal effects on resident biota are expected 

Marine Eutrophication 
Ecosystem response to the availability of 
plant nutrients 

①  PP sustained by nutrients released 
from microbial and animal 
metabolism 

②  Balance disrupted by 
anthropogenic fertilization. 
Sources: run-off from agriculture, 
atmospheric deposition, and 
sewage waters 

④ 

③ 
② 

① 

⑤ 
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How can CFs for marine eutrophication be defined in a spatially 

differentiated LCIA endpoint model?  

Research question 
Drivers and goals  

Considering that: 

ME impacts depend on the fate processes and on the sensitivity of the receiving 
ecosystems 

LCIA still lacks endpoint characterisation modelling 

Spatial differentiation is essential 

Goals: 

Understand the fate processes affecting nitrogen loadings to coastal waters 

Estimate factors for the impact characterisation (CFs) 

Introducing spatial differentiation at a suitable scale 
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Components of the model framework: 

Fate modelling: 

River-N fate models (i.e. from anthropogenic emission sources to export to 
marine waters) 

Marine-N fate modelling (i.e. fate of nitrogen in the marine compartment) 

Exposure modelling 
 (intermediate link from fate to effects, relating photic zone processes with bottom 

layer processes) 

Effect modelling 
 (includes the processes leading to impacts on biota) 

The proposed method 
Relates: 

Nitrogen loadings 
Phytoplankton biomass 
Biological response 
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To define the Characterisation Factor (CF) in (PAF∙)[m3∙d/kg]:  CFij = FFij ∙ XFj ∙ EFj 

Model framework 
From environmental mechanisms to factors 

Where: 

FFij is the Fate Factor [d] for emission route i to receiving ecosystem j 

XFj is the Exposure Factor [kgO2/kgN] in receiving ecosystem j 

EFj is the Effect Factor (PAF∙)[m3/kgO2] in receiving ecosystem j 
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The FFij [d] is obtained by:  

 

Where: 

fexp i [dimensionless] is the fraction of the emitted N that reaches coastal marine 
waters (exported) calculated for each emission route i 

λj [d
-1] is the N-loss rate coefficient in receiving ecosystem j 

River-N fate 

Marine-N fate 

Fate Factor 
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(LCI N to air) * fdep to sea * fdep to mw +  
(LCI N to air) * f to inland * fdep to ns * fleach from ns * Denitr in sfw +  
(LCI N to air) * f to inland * fdep to as * fleach from as * Denitr in sfw +  
(LCI N to air) * f to inland * fdep to sfs * Denitr in sfw  

(LCI N to sfw) * Denitr in sfw  

(LCI N to gw) * Denitr in gw * Denitr in sfw  

(LCI N to mw) * 1 

ns = natural soil 
as = agricultural soil 
sfw = surface freshwater 
mw = marine waters 

fexp i = 

River-N fate modelling 
Fate modelling and export to marine coastal waters 

dep to as 

dep to ns 
dep to mw 

gw leach gw leach 
dep to sfw 

N 
application 
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Nitrogen losses (λj) in the marine compartment may be caused by: 

Denitrification ≈ 30%   (Van Drecht et al., 2003) 

(microbial mediated reduction of NO3
-, NO2

- and NO into N2 in bottom sediments) 

Sedimentation ≈ 5%   (Nixon et al., 1996) 

(loss to mineralization of N into bottom sediments) 

Advection ≈ 1/τ 
(transport of nitrogen forms or net flushing) 

To find residence time (τ): 

Search literature 

Build archetypes: 

Marine-N fate modelling 

High dynamics & exposure to regional currents: τ ≈ 3 mo 

Medium dynamics & exposure to local currents: τ ≈ 2 yr 

Low dynamics: τ ≈ 25 yr 

Very low dynamics or embayment: τ ≈ 90 yr 
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N-loss routes follow first-
order kinetics with a 

constant removal rate (λr) 

From literature or 
archetypes to find τ j for 

LME j 

Marine-N loss rate coefficient (λj) 
Includes the 3 loss routes: 

Denitrification 
Advection 
Sedimentation 
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𝑶𝑴:𝑵 𝒓𝒂𝒕𝒊𝒐 =
𝑴𝒃𝒊𝒐𝒎𝒂𝒔𝒔

𝑴𝑵
≈ 𝟏𝟓. 𝟖𝟔 𝒈𝑶𝑴/𝒈𝑵 

after 106 𝐶𝑂2 + 16 𝐻𝑁𝑂3 +𝐻3𝑃𝑂4 + 122 𝐻2𝑂 ⇒ 𝐶106𝐻263𝑂110𝑁16𝑃 + 138 𝑂2    (photosynthesis) 

𝑶𝟐: 𝑶𝑴 𝒓𝒂𝒕𝒊𝒐 =
𝑴𝑶𝟐

𝑴𝒃𝒊𝒐𝒎𝒂𝒔𝒔
≈ 𝟏. 𝟐𝟒 𝒈𝑶𝟐/𝒈𝑶𝑴 

after 𝐶𝐻2𝑂 106(𝑁𝐻3)16𝐻3𝑃𝑂4 + 138 𝑂2 ⇒ 106 𝐶𝑂2 + 122 𝐻2𝑂 + 16 𝐻𝑁𝑂3 +𝐻3𝑃𝑂4       (respiration) 

𝑩𝑮𝑬 = 𝟎. 𝟐𝟔   (del Giorgio & Cole, 1998)   then:   
𝒌𝒈𝑶𝟐× 𝟏−𝑩𝑮𝑬

𝒌𝒈𝑶𝑴
≈ 𝟎. 𝟗𝟐 𝒈𝑶𝟐/𝒈𝑶𝑴 

BGE is the amount of new bacterial biomass produced per unit organic C substrate assimilated 

𝑵𝑰𝑬𝒋 =
𝑬𝒎𝒑𝑵𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒅

𝑻𝒉𝒆𝒐𝒓𝑵𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆
  

 
Nitrogen Incorporation Efficiency expresses the environmental factors affecting PP rates       (ecosystem response) 

𝐸𝑚𝑝𝑁𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 =
𝐷𝐼𝑁

𝐷𝐼𝑁 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑁𝑡𝑜𝑡
×𝑀𝑁 × 𝐴𝐿𝑀𝐸    with 𝐷𝐼𝑁 = 10(log 𝑃𝑃−2.332) 0.442  (Nixon et al., 1996) 

 

𝑇ℎ𝑒𝑜𝑟𝑁𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 = 𝑃𝑃 ×𝑀𝑁 𝑀𝐶 × 𝐴𝐿𝑀𝐸  

𝑽𝑪𝑪 =
𝑽𝒑𝒉𝒐𝒕𝒊𝒄 𝒉𝒂𝒃𝒊𝒕𝒂𝒕

𝑽𝒃𝒆𝒏𝒕𝒉𝒊𝒄 𝒛𝒐𝒏𝒆
=

𝟑𝟎

𝟎. 𝟑
= 𝟏𝟎𝟎 

Volume Correction Coefficient normalises different volume of photic zone above and benthic habitat at the bottom 

Exposure Factor (XF) 
The XFj (unit: kgO2/kgN) is estimated by: 



Endpoint characterisation modelling for marine eutrophication in LCIA  . 11 

The Potentially Affected Fraction of 

species (PAF) is a measure of the loss of 

biodiversity in the receiving ecosystem 

 

From Species Sensitivity Distribution 

(SSD) curves for 5 climate zones + global 

 

Probabilistic model that estimates the 

variability of the sensitivity of individual 

species to an environmental stressor 
(Posthuma et al. 2002) 

Species sensitivity to hypoxia (EC50) 
from Vaquer-Sunyer & Duarte (2008)  

where 
Effect Factor (EF) 
The EFj (unit: PAF·m3/kgO2 is estimated by the 
average gradient method (Pennington et al., 2004):  
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mgO2/L kgO2/m3 PAF.m3/kgO2

Climate zone LME taxa n α β Slope Inters. R2 HC50 mg/L EF

Polar 11 20 20 0.220 0.344 2.632 4.371 0.924 1.661 1.66E-03 3.01E+02

Subpolar 7 33 33 0.207 0.541 2.408 4.460 0.954 1.611 1.61E-03 3.10E+02

Temperate 16 55 55 0.133 0.723 2.361 4.659 0.981 1.357 1.36E-03 3.68E+02

Subtropical 13 41 41 0.228 0.554 2.492 4.414 0.981 1.691 1.69E-03 2.96E+02

Tropical 17 19 19 0.165 0.247 2.932 4.495 0.914 1.461 1.46E-03 3.42E+02

Global 64 65 65 0.149 0.735 2.443 4.612 0.984 1.409 1.41E-03 3.55E+02

Adapted from www.lme.noaa.gov 

Grouping EF into climate zones 
Mean annual Sea Surface Temperature (maSST) 
Latitudinal distribution 
Köppen-Geiger climate classification system  

ID Calculation: maSST 2005 =b ×2005+a Classification

LME name b a Estimation mean annual SST 2005 Climate zone

64. Arctic Ocean -1.2 Polar

55. Beaufort Sea 0.0034 -8.1379 -1.2 Polar

61. Antarctic 0.0023 -5.7893 -1.2 Polar

56. East Siberian Sea 0.0075 -16.1415 -1.1 Polar

57. Laptev Sea 0.0065 -13.6953 -0.8 Polar

58. Kara Sea 0.0061 -12.8746 -0.5 Polar

54. Chukchi Sea 0.0118 -23.6389 -0.1 Polar

63. Hudson Bay 0.0120 -23.1076 1.0 Polar

18. West Greenland Shelf 0.0086 -16.2938 1.0 Polar

19. East Greenland Shelf 0.0104 -18.9583 1.9 Polar

20. Barents Sea -0.0008 4.8359 3.3 Polar

52. Sea of Okhotsk 0.0100 -15.4208 4.6 Subpolar

1. East Bering Sea 0.0094 -13.6712 5.1 Subpolar

53. West Bering Sea 0.0097 -14.3607 5.2 Subpolar

9. Newfoundland-Labrador Shelf 0.0157 -25.9772 5.6 Subpolar

59. Iceland Shelf -0.0022 10.3775 6.0 Subpolar

23. Baltic Sea 0.0153 -22.3495 8.3 Subpolar

21. Norwegian Sea 0.0036 1.2815 8.6 Subpolar

51. Oyashio Current 0.0097 -12.4524 7.0 Temperate

8. Scotian Shelf 0.0235 -38.7342 8.4 Temperate

60. Faroe Plateau -0.0030 15.5008 9.6 Temperate

2. Gulf of Alaska 0.0078 -6.0887 9.6 Temperate

22. North Sea 0.0179 -25.3213 10.5 Temperate

14. Patagonian Shelf 0.0031 4.6785 10.8 Temperate

7. Northeast U.S. Continental Shelf 0.0221 -31.7350 12.6 Temperate

24. Celtic-Biscay Shelf 0.0083 -3.5225 13.1 Temperate

50. Sea of Japan/East Sea 0.0167 -19.9861 13.4 Temperate

62. Black Sea -0.0017 18.2366 14.9 Temperate

42. Southeast Australia 0.0108 -6.8315 14.9 Temperate

46. New Zealand Shelf 0.0023 10.8093 15.4 Temperate

48. Yellow Sea 0.0197 -24.1103 15.4 Temperate

13. Humboldt Current 0.0083 -0.1418 16.5 Temperate

25. Iberian Coastal 0.0162 -15.5848 17.0 Temperate

43. Southwest Australia 0.0086 0.0699 17.2 Temperate

3. California Current 0.0065 4.3347 17.4 Subtropical

26. Mediterranean 0.0088 2.2496 20.0 Subtropical

29. Benguela Current 0.0054 9.9577 20.7 Subtropical

27. Canary Current 0.0098 2.4479 22.0 Subtropical

47. East China Sea 0.0317 -41.3278 22.2 Subtropical

44. West-Central Australia 0.0167 -11.1084 22.4 Subtropical

15. South Brazil Shelf 0.0228 -22.8069 22.9 Subtropical

49. Kuroshio Current 0.0132 -3.4566 23.0 Subtropical

41. East-Central Australia 0.0115 -0.0330 23.0 Subtropical

4. Gulf of California 0.0254 -26.4000 24.5 Subtropical

6. Southeast U.S. Continental Shelf -0.0031 31.0589 24.8 Subtropical

30. Agulhas Current 0.0139 -2.4145 25.5 Subtropical

5. Gulf of Mexico 0.0038 18.4183 26.1 Subtropical

10. Insular Pacific-Hawaiian 0.0006 23.6974 25.0 Tropical

40. Northeast Australia 0.0095 7.7313 26.7 Tropical

16. East Brazil Shelf 0.0116 3.9558 27.2 Tropical

31. Somali Coastal Current 0.0094 8.4143 27.3 Tropical

11. Pacific Central-American 0.0060 15.4948 27.5 Tropical

28. Guinea Current 0.0118 3.8046 27.6 Tropical

32. Arabian Sea 0.0085 10.5733 27.7 Tropical

12. Caribbean Sea 0.0005 26.7566 27.8 Tropical

45. Northwest Australia 0.0086 10.5848 27.8 Tropical

17. North Brazil Shelf 0.0044 19.0068 27.9 Tropical

36. South China Sea 0.0163 -4.5643 28.0 Tropical

33. Red Sea 0.0060 16.1768 28.1 Tropical

39. North Australia 0.0085 11.1456 28.2 Tropical

34. Bay of Bengal 0.0102 8.3154 28.7 Tropical

38. Indonesian Sea 0.0109 6.9714 28.7 Tropical

35. Gulf of Thailand 0.0082 12.3672 28.9 Tropical

37. Sulu-Celebes Sea 0.0126 3.6460 29.0 Tropical

maSST 1957-2005 regression coeff.

ice covered all year
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EE 

LT 
LV 

FI 

BY 
DE 

DK 

SE 

LME13 Humboldt Current 
RT0.03 – NIE1.5 

LME 12 Caribbean Sea 
RT0.21 – NIE0.7 

LME11 Pacific Central-Am 
RT0.25 – NIE1.1 

CH 

PR 
VE 

HN 
JM HT DO 

NC 

CL 

BO 

PE 
LME40 Northeast Australia 

RT0.25 – NIE0.5 

CF≈70-90 

CF≈1.1 

CF≈0.4 

CF≈1.0 

LME23 Baltic Sea 
RT25 – NIE4.1 

LME62 Black Sea 
RT90 – NIE1.9 

Spatial differentiation of the model results 
Geographical distribution of the countries showing the Top10 (red) and Bottom10 (green) CFs (emissions to surface 
freshwater). CF unit = ×103 PAF·m3·d/kgN 
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Tested input parameters: 

fexp  (in FF) 

Sedimentation rate  (in FF) 

Denitrification rate  (in FF) 

Residence time (LME) (in FF) 

BGE (in XF) 

PP rate  (in XF) 

VCC  (in XF) 

HC50 value  (in EF) 

 

Independent 10% variation of each input parameter 

Sensitivity analysis 
Sensitivity Ratios (SR) were calculated by: (Strandesen et al., 2007) 
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fexp for countries exporting to multiple receiving LME:  null to total export 

Sedimentation rate:  5% to 8% (Nixon et al., 1996) 

Denitrification rate:  30% to 52.7% (Van Drecht et al., 2003 and Wollheim et al., 2008) 

Residence time:  lower to upper archetype or -50%/+50% of used value 

BGE:  0.01 to 0.69 (del Giorgio & Cole, 1998) 

PP rates datasets show discrepancies between different sources:  high uncertainty 

VCC is a model decision:  low uncertainty 

Uncertainty estimation 
Extreme values of possible variation range 
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Key issues 
Combining sensitivity and uncertainty 
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Sed and Denitr rates – high investment and low return 

VCC – high investment and medium return 

BGE – medium investment and low return 

Expanding the EC50 dataset – high investment and medium return 

RT – high investment and medium return 

fexp (N-export splitting) – medium investment and high return 

PP datasets – low investment and high return 

Increasing priority 

Data quality improvement 
Effort investment vs. return analysis 
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Dependency on third-party models (emissions, deposition) 

Dependency on the LCI model for the spatial aggregation of CF and NFs 

Unknown uncertainty associated with these ‘input’ models 

Low confidence on PP dataset 

No spatial differentiation for marine sedimentation and denitrification rates 
in the FF 

Weaknesses 
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Endpoint modelling 

Transparent and reproducible FFs, XFs, and EFs 

Spatially differentiated CFs 

High geographic applicability 

CFs and NFs for 233 Country-to-LME and 143 countries for 4 N-emission routes 

Global default CF and NF 

Key issues for data quality improvement identified 

Strengths  



Thank you for your attention 
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