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Marine Eutrophication

Ecosystem response to the availability of
plant nutrients

@ PP sustained by nutrients released
from microbial and animal
metabolism

@ Balance disrupted by
anthropogenic fertilization.
Sources: run-off from agriculture,
atmospheric deposition, and
sewage waters

Processes

Compartments

T Photosynthesis
? Primary Production

Freshwater runoff

Photic Zone /<!7 @ 7?{

Incorporation of N into Biomass

Benthic habitat

OM sinksto bottom

OM degradation and

@ Nutrients enrichment promotes excessive growth of phytoplankton and macroalgae

@ Bacterial degradation of biomass consumes dissolved oxygen. Excessive oxygen depletion may
originate hypoxic to anoxic bottom waters

@ Sublethal and lethal effects on resident biota are expected




Research question

Drivers and goals

Considering that:

@ ME impacts depend on the fate processes and on the sensitivity of the receiving
ecosystems

@ LCIA still lacks endpoint characterisation modelling
@ Spatial differentiation is essential

Goals:

@ Understand the fate processes affecting nitrogen loadings to coastal waters
@ Estimate factors for the impact characterisation (CFs)

@ Introducing spatial differentiation at a suitable scale

How can CFs for marine eutrophication be defined in a spatially
o  differentiated LCIA endpoint model?
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The proposed method

Relates:
@ Nitrogen loadings
@ Phytoplankton biomass
@ Biological response

Components of the model framework:
@ Fate modelling:

o River-N fate models (i.e. from anthropogenic emission sources to export to
marine waters)

o Marine-N fate modelling (i.e. fate of nitrogen in the marine compartment)

@ Exposure modelling
(intermediate link from fate to effects, relating photic zone processes with bottom
layer processes)

@ Effect modelling
(includes the processes leading to impacts on biota)

Endpoint characterisation modelling for marine eutrophication in LCIA . 4

> T o i &> — - -
=T . > e '



Model framework

From environmental mechanisms to factors
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Emission routes Receiving ecosystem
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. ! marine waters . . !
N to groundwater N to marine water 1 waters ecosystem diversity ]
| |
1 1
LCI ' FF XF EF '
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kgN ! d kg0,/kgN PAF-m3/kg0, !
! !
1 1

PAF-m3-d/kgN

To define the Characterisation Factor (CF) in (PAF-)[m3-d/kg]: CFIJ = FFIJ . XFJ . EFJ
Where:

@ FF;;is the Fate Factor [d] for emission route I to receiving ecosystem |j

@ XF;is the Exposure Factor [kgO,/kgN] in receiving ecosystem j

@ EF;is the Effect Factor (PAF-)[m3/kgO,] in receiving ecosystem j

@L- T
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Fate Factor

The FF;; [d] is obtained by: FFU = e;p :
J
Where:

@ f.pi[dimensionless] is the fraction of the emitted N that reaches coastal marine
waters (exported) calculated for each emission route i

@ A [d!] is the N-loss rate coefficient in receiving ecosystem |

f exp i River-N fate

Aj Marine-N fate

ol
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River-N fate modelling

Fate modelling and export to marine coastal waters

(LCl Nt air) * faep tO S€Q * fyep, to MW +
(LCl y o air) * ftoinland * f,,, to ns * £, from ns * Denitr in sfw +

(LCl o 4ir) * ftoinland * f,., to as * f,.,, from as * Denitr in sfw +
f - (LCl \ 0 2ir) * ftoinland * £, to sfs * Denitr in sfw
exp i
N d — /
application dep to as epto nsl (é I | : dep to mw
'l
* \ _ }% ; 1 <
“\{ % i A AAAAAAAAAA,
r7s
_ | J S *
leach i gw leach E gw dep to sfw
1 ]
v
<L \ A 4 v J Vo d ~ ~

(LCI NtOgW) Denitr in gw * Denitr in sfw ns = natural soil

(LCl \ o <) * Denitr in sfw as = agricultural soil
sfw = surface freshwater
mw = marine waters
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Marine-N fate modelling
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Nitrogen losses (4;) in the marine compartment may be caused by:

@ Denitrification = 30% (Van Drecht et al., 2003)
(microbial mediated reduction of NO3, NO, and NO into N, in bottom sediments)

@ Sedimentation = 5% (Nixon et al., 1996)
(loss to mineralization of N into bottom sediments)

@ Advection= 1/t
(transport of nitrogen forms or net flushing)

To find residence time (t):

_ @ High dynamics & exposure to regional currents: T = 3 mo
@ Search literature
_ @ Medium dynamics & exposure to local currents: t= 2 yr
@ Build archetypes: <
@ Low dynamics: t=25yr
L @ Very low dynamics or embayment: t= 90 yr
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Marine-N loss rate coefficient (A)
Includes the 3 loss routes: . — . _
@ Denitrification A'] Adenltr + T: + AS ed
@ Advection J
@ Sedimentation

N-loss routes follow first- From literature or
order kinetics with a archetypes to find t ; for
constant removal rate (A ) LME j

Nt — NO ) B_A"t

1
Adenitr = —1n(0.70) Aggy = —

Tj

Agoq = —In(0.95)
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Exposure Factor (XF) xF, = X9OM kg0, x (1= BCE) g xvee
The XF; (unit: kgO,/kgN) is estimated by: J kgN kgoM g

OM: N ratio = ”1"‘:’1’"“” ~ 15.86 gOM/gN

N
after 106 CO, + 16 HNO3; + H3PO, + 122 H,0 = Cig6H2630110N16P + 138 0, (photosynthesis)
) My,
0,:0M ratio =—=1.24 g0,/gOM
biomass
after (CH,0)196(NH3)14H3P0, + 138 0, = 106 CO, + 122 H,0 + 16 HNO5; + H3PO, (respiration)

kg0;x(1-BGE) _
oo~ 0.92902/g0M

BGE is the amount of new bacterial biomass produced per unit organic C substrate assimilated

BGE = 0.26 (del Giorgio & Cole, 1998) then:

DIN

: X My X Apyg With DIN = 10008 PP=2:332)/0442 (Njyon et al., 1996)
DIN content in N¢ot

_ EmpN ; EmpNconsumea =
NIE — consume

TheorN gyqilable

TheorNgygiiapie = PP X My /M¢ X Apyg

Nitrogen Incorporation Efficiency expresses the environmental factors affecting PP rates (ecosystem response)

Vphotic habitat 30

VCC = =100

Vbenthic zone 0.3
Volume Correction Coefficient normalises different volume of photic zone above and benthic habitat at the bottom
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Effect Factor (EF)

The EF; (unit: PAF-m3/kg0, is estimated by the
average gradient method (Pennington et al., 2004):

@ The Potentially Affected Fraction of
species (PAF) is a measure of the loss of
biodiversity in the receiving ecosystem

@ From Species Sensitivity Distribution
(SSD) curves for 5 climate zones + global

@ Probabilistic model that estimates the
variability of the sensitivity of individual

species to an environmental stressor
(Posthuma et al. 2002)
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(1-PAF

PNAF

APAF 0.5
A[0z]  HCsq

where HCsy = 10979 (10gECs0)

Species sensitivity to hypoxia (ECs)
from Vaquer-Sunyer & Duarte (2008)

0.9 - Global

0.0 o — . : : .
1.0 0.5 0.0 0.5 1.0 1.5
log [0,] mg/I

© logECS0 Central tendency line 95% confidence interval
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— o — | S et e, ORON. St

D maSST 1957-2005 regression coeff. Calculation: maSST ;005 =bx2005+a  Classification
LME name b a Estimation mean annual SST 2005  Climate zone
64. Arctic Ocean ice covered all year | -1.2 Polar
L] . L] 55. Beaufort Sea 0.0034 81379 [ 12 Polar
Grouping EF into climate zones o iw B
56. East Siberian Sea 0.0075 61415 11 Polar
57. Laptev Sea 0.0065 136953 B 0.8 Polar
58. Kara Sea 0.0061 128726 I 05 Polar
@ Mean annual Sea Surface Temperature (maSST) oons  sews I P
63. Hudson Bay 0.0120 231076 [ 1.0 Polar
q Latltudlnal dISlTIbUtIOH 18. West Greenland Shelf 0.0086 162038 [ 10 Polar
19. East Greenland Shelf 0.0104 -18.9583 | 1.9 Polar
.. . . .. . 20. Barents Sea -0.0008 4.8359 I 33 Polar
@ Koppen-Geiger climate classification system oowo  asaos N
1. East Bering Sea 0.0094 136712 [ 5.1 Subpolar
53. West Bering Sea 0.0097 -14.3607 5.2 Subpolar
9. Newfoundland-Labrador Shelf 0.0157 259772 [N 56  Subpolar
59. Iceland Shelf -0.0022 103775 [ 60  Subpolar
23. Baltic Sea 0.0153 223495 [N 83  Subpolar
mgO,/L  kgO,/m’ PAF.m*/kg0, 21. Norwegian Sea 0.0036 12815 [N 86  Subpolar
Climate zone  LME taxa n o B Slope Inters. R? HC50 mg/L EF 51. Oyashio Current 0.0097 124524 I 7.0 Temperate
8. Scotian Shelf 0.0235 -38.7342 8.4 Temperate
Polar 11 20 20 0220 0344 2632 4371 0924 1661 1.66E-03 3.01E+02 eyl s AN —— o
Subpolar 7 33 33 0.207 0.541 2.408 4.460 0.954 1.611 1.61E-03 3.10E+02 i»ZG:" ":Q:’Ska 0.0078 -6.0887 E 1:'5 15'“93'“‘8
. .017¢ -25.321 .
Temperate 16 55 55 0133 0723 2361 465 0981 1357 1.36E-03 3.68E+02 2o, Petomonon Shelf ooom e —— 102 R
Subtropical 13 0 0 0.228 0554 2492 4414 0981  1.691 1.69E-03 2.96E+02 e G e 00221 ar73so 126 Temperate
Tropical 17 19 19 0165 0247 2932 4495 0914 1461 1.46E-03 3.42E+02 e ppoped e b
Global 64 65 65 0149 0735 2443 4612 0984  1.409 1.41E-03 3.55E402 | 62 Blacksea -0.0017 182366 [ 149 Temperate
42. Southeast Australia 0.0108 68315 [ 149  Temperate
46. New Zealand Shelf 0.0023 10.8093 N 15.4  Temperate
48, Yellow Sea 0.0197 241103 [N 154  Temperate
S . . 13. Humboldt Current 0.0083 EETIEINN 165  Temperate
Large Marine Ecosystems grouped in climate zones Polar . Tomperate 25 Iberian Coastal 0.0162 55848 [N 170 Temperate
Nd o I oo Subpolar B Swwopkal 43. Southwest Australia 0.0086 00699 [N 172 Temperate
! R R - s % o e P oo e ot w0t o e g e i 3. California Current 0.0065 43307 D 17.4  Subtropical
26. Mediterranean 0.0088 22406 [N 200  Subtropical
29, Benguela Current 0.0054 9.9577 [ . 20.7  Subtropical
27. Canary Current 0.0098 2.4479 [ . 220  Subtropical
47. East China Sea 0.0317 -13273 [ 222 Subtropical
44. West-Central Australia 0.0167 -11.1084 [N 224 Subtropical
15. South Brazil Shelf 0.0228 228050 T 229  Subtropical
49. Kuroshio Current 0.0132 34566 [N 230  Subtropical
41. East-Central Australia 00115 00330 [N 230  Subtropical
4. Gulf of California 0.0254 264000 [N 245 Subtropical
6. Southeast U.S. Continental Shelf -0.0031 EINGTCR 248  Subtropical
30. Agulhas Current 0.0139 24145 T 255  Subtropical
5. Gulf of Mexico 0.0038 184183 T 261 Subtropical
. Insular Pacific-Hawaiian 0.0006 236074 T Tropical
. Northeast Australia 0.0095 7.7313 N Tropical
. East Brazil Shelf 00116 3osss T Tropical
. Somali Coastal Current 0.0094 8.4143 S Tropical
. Pacific Central-American 0.0060 154043 T Tropical
. Guinea Current 0.0118 38046 T Tropical
. Arabian Sea 0.0085 105733 T Tropical
. Caribbean Sea 0.0005 267565 Tropical
. Northwest Australia 0.0086 10.5848 [ . Tropical
. North Brazil Shelf 0.0044 19.006s [N Tropical
. South China Sea 0.0163 45643 T Tropical
. Red Sea 0.0060 161763 T Tropical
. North Australia 0.0085 111456 T Tropical
. Bay of Bengal 0.0102 8.3154 H Tropical
. Indonesian Sea 0.0109 69714 T Tropical
. Gulf of Thailand 0.0082 12372 T Tropical
. Sulu-Celebes Sea 0.0126 3esc0 T Tropical




Spatial differentiation of the model results

Geographical distribution of the countries showing the Top10 (red) and Bottom10 (green) CFs (emissions to surface
freshwater). CF unit = x10° PAF-m3-d/kgN
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Sensitivity analysis
Sensitivity Ratios (SR) were calculated by:

SR _ (CFend_CFstart)/CFstart
X =

(Strandesen et al., 2007)
(X end _Xstart) / Xstart

=
—

= SR max ™SR min

Tested input parameters:

PP 1.28

@ foo (in FF)
) . fexp

@ Sedimentation rate (in FF)
@ Denitrification rate (in FF) vee
@ Residence time (LME) (in FF) g ot

£

@ BGE (in XF) § sed

@ PPrate (in XF)
BGE

@ VCC (in XF)
Denitr

@ HC,,value (in EF)
HC50

Independent 10% variation of each input parameter -1.50 -1.00 -0-50 0.00 0-30 100 150

i
g
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Uncertainty estimation

Extreme values of possible variation range
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fexp fOr countries exporting to multiple receiving LME: null to total export
Sedimentation rate: 5% to 8% (Nixon et al., 1996)

Denitrification rate: 30% to 52.7% (Van Drecht et al., 2003 and Wollheim et al., 2008)
Residence time: lower to upper archetype or -50%/+50% of used value

BGE: 0.01 to 0.69 (del Giorgio & Cole, 1998)

PP rates datasets show discrepancies between different sources: high uncertainty

VCC is a model decision: low uncertainty

\Q - - " - ~ Endpoint characterisation modelling for marine eutrophication in LCIA . 15
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Key issues

Combining sensitivity and uncertainty

A -
high op
™ £
o
Residence time >
— 2| Keyissues
. || Denitrification rate |
Uncertainty L
Sedim rate
o el [
LT Perhapsa
- ES (8] keyisspue
(=]
> Perhapsa
IOW | | issue key issue
—
low high
Sensitivity

@l
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Data quality improvement

Effort investment vs. return analysis

=
—

@ Sed and Denitr rates — high investment and low return

@ VCC - high investment and medium return

@ BGE — medium investment and low return

@ Expanding the EC., dataset — high investment and medium return \ /

@ RT - high investment and medium return Increasing priority

@ f. (N-export splitting) — medium investment and high return

@ PP datasets — low investment and high return

i
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Weaknesses
@ Dependency on third-party models (emissions, deposition)
@ Dependency on the LCI model for the spatial aggregation of CF and NFs
@ Unknown uncertainty associated with these ‘input’ models
@ Low confidence on PP dataset
@ No spatial differentiation for marine sedimentation and denitrification rates
in the FF
DTU .
” @lﬁ' \Q - . - - - - ~ Endpoint characterisation modelling for marine eutrophication in LCIA . 18
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Strengths
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@ Endpoint modelling

@ Transparent and reproducible FFs, XFs, and EFs

@ Spatially differentiated CFs

@ High geographic applicability

@ CFs and NFs for 233 Country-to-LME and 143 countries for 4 N-emission routes
@ Global default CF and NF

@ Key issues for data quality improvement identified

@lﬁ' \Q - - - " - ~ Endpoint characterisation modelling for marine eutrophication in LCIA . 19
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Thank you for your attention
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