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③ Nutrients enrichment promotes excessive growth of phytoplankton and macroalgae.

④ Bacterial degradation of biomass consumes dissolved oxygen. Excessive oxygen depletion may 

originate hypoxic to anoxic bottom waters.

⑤ Sublethal and lethal effects on resident biota are expected.

Marine Eutrophication
Ecosystem response to the availability of 

plant nutrients

Marine Eutrophication
Ecosystem response to the availability of 

plant nutrients

① PP sustained by nutrients released 

from microbial and animal 

metabolism.

② Balance disrupted by 

anthropogenic fertilization. 

Sources: run-off from agriculture, 

atmospheric deposition, and 

sewage waters.

④

③
②

①

⑤
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Life Cycle Assessment
LCA and LCIA

Life Cycle Assessment
LCA and LCIA

Life Cycle Assessment (LCA)

Environmental assessment tool

Evaluates the environmental exchanges (technosphere-ecosphere)

Potential environmental impacts of a product or service throughout the entire life 

cycle (resources extraction, processing, manufacturing, assembly, packaging, 

transport, use, reuse, recycling, and disposal stages)

Life Cycle Impact Assessment (LCIA)

Characterisation of emissions with Characterisation Factors (CF)

CFs are substance-specific and represent the substance potency

CFs translate emissions into potential impacts

Regional and global impacts
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Future scenarios
Increase in food demand

Future scenarios
Increase in food demand

Projected development of cereal production, global population, 

fertilizer use and arable land (FAO 2003)

More impacts

New locations

Management

Legislation/regulations

Best practices

Guidelines

Climatic-driven pressures
Increase in crops productivity

Climatic-driven pressures
Increase in crops productivity
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How to define CFs for marine eutrophication in a spatially

differentiated LCIA endpoint model? 

Drivers and goals
Research question

Drivers and goals
Research question

Understand the fate processes affecting nitrogen loadings to coastal waters

Include ecosystems’ sensitivity to obtain a damage dimension (loss of biodiversity)

Estimate factors for the impact characterisation (CFs)

Introducing spatial differentiation at a suitable scale

Produce an endpoint damage model to support decision-making processes
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To define the Characterisation Factor (CF) in (PAF∙)[m3∙d/kg]: CFij = FFij ∙ XFj ∙ EFj

Model framework
From environmental mechanisms to factors

Model framework
From environmental mechanisms to factors

Where:

FFij is the Fate Factor [d] for emission route i to receiving ecosystem j

XFj is the Exposure Factor [kgO2/kgN] in receiving ecosystem j

EFj is the Effect Factor (PAF∙)[m3/kgO2] in receiving ecosystem j
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The FFij [d] is obtained by: 

Where:

fexp i [dimensionless] is the fraction of the emitted N that reaches coastal marine 

waters (exported) calculated for each emission route i

λj [d-1] is the N-loss rate coefficient in receiving ecosystem j

River-N fate

Marine-N fate

Fate FactorFate Factor
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(LCI N to air) * fdep to sea * fdep to mw + 

(LCI N to air) * f to inland * fdep to ns * fleach from ns * Denitr in sfw + 

(LCI N to air) * f to inland * fdep to as * fleach from as * Denitr in sfw + 

(LCI N to air) * f to inland * fdep to sfs * Denitr in sfw 

(LCI N to sfw) * Denitr in sfw 

(LCI N to gw) * Denitr in gw * Denitr in sfw 

(LCI N to mw) * 1

fexp i =

River-N fate modelling
Fate modelling and export to marine coastal waters

River-N fate modelling
Fate modelling and export to marine coastal waters
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Nitrogen losses (λj) in the marine compartment may be caused by:

Denitrification ≈ 30%  (Van Drecht et al., 2003)

(microbial mediated reduction of NO3
-, NO2

- and NO into N2 in bottom sediments)

Sedimentation ≈ 5%   (Nixon et al., 1996)

(loss to mineralization of N into bottom sediments)

Advection ≈ 1/τ
(transport of nitrogen forms or net flushing)

To find residence time (τ):
Search literature

Build archetypes:

Marine-N fate modellingMarine-N fate modelling

High dynamics & exposure to regional currents: τ ≈ 3 mo

Medium dynamics & exposure to local currents: τ ≈ 2 yr

Low dynamics: τ ≈ 25 yr

Very low dynamics or embayment: τ ≈ 90 yr
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N-loss routes follow first-
order kinetics with a 

constant removal rate (λr)

From literature or 
archetypes to find τ j for 

LME j

Marine-N loss rate coefficient (λj)
Includes the 3 loss routes:

Denitrification

Advection

Sedimentation

Marine-N loss rate coefficient (λj)
Includes the 3 loss routes:

Denitrification

Advection

Sedimentation
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after (photosynthesis)

after (respiration)

(del Giorgio & Cole, 1998)   then:   

Bacterial Growth Efficiency is the amount of new bacterial biomass produced per unit organic C substrate assimilated

Nitrogen Incorporation Efficiency expresses the environmental factors affecting PP rates (ecosystem response)

with (Nixon et al., 1996)

Exposure Factor (XF)
The XFj (unit: kgO2/kgN) is estimated by:

Exposure Factor (XF)
The XFj (unit: kgO2/kgN) is estimated by:
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The Potentially Affected Fraction of 

species (PAF) is a measure of the loss of 

biodiversity in the receiving ecosystem

From Species Sensitivity Distribution 

(SSD) curves for 5 climate zones + global

Probabilistic model that estimates the 

variability of the sensitivity of individual 

species to an environmental stressor 
(Posthuma et al. 2002)

Species sensitivity to hypoxia (EC50) 

from Vaquer-Sunyer & Duarte (2008) 

where
Effect Factor (EF)
The EFj (unit: PAF·m3/kgO2 is estimated by the 

average gradient method (Pennington et al., 2004): 

Effect Factor (EF)
The EFj (unit: PAF·m3/kgO2 is estimated by the 

average gradient method (Pennington et al., 2004): 
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LME 12 Caribbean Sea

RT0.21 – NIE0.7

LME11 Pacific Central-Am
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LME40 Northeast Australia

RT0.25 – NIE0.5
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CF≈1.1

CF≈0.4
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LME23 Baltic Sea

RT25 – NIE4.1

LME62 Black Sea

RT90 – NIE1.9

Spatial differentiation of the model results
Geographical distribution of the countries showing the Top10 (red) and Bottom10 (green) CFs (emissions to surface 

freshwater). CF unit = ×103 PAF∙m3∙d/kgN

Spatial differentiation of the model results
Geographical distribution of the countries showing the Top10 (red) and Bottom10 (green) CFs (emissions to surface 

freshwater). CF unit = ×103 PAF∙m3∙d/kgN
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Tested input parameters:

fexp in FF

Sedimentation rate in FF

Denitrification rate in FF

Residence time (LME) in FF

BGE in XF

PP rate in XF

VCC in XF

HC50 value in EF

Independent 10% variation of each input parameter

Sensitivity analysis
Sensitivity Ratios (SR) were calculated by:

Sensitivity analysis
Sensitivity Ratios (SR) were calculated by: (Strandesen et al., 2007)
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fexp for countries exporting to multiple receiving LME:  null to total export

Sedimentation rate:  5% to 8% (Nixon et al., 1996)

Denitrification rate:  30% to 52.7% (Van Drecht et al., 2003 and Wollheim et al., 2008)

Residence time: lower to upper archetype or -50%/+50% of used value

BGE:  0.01 to 0.69 (del Giorgio & Cole, 1998)

PP rates datasets show discrepancies between different sources:  high uncertainty

VCC is a model decision:  low uncertainty

Uncertainty estimation
Extreme values of possible variation range

Uncertainty estimation
Extreme values of possible variation range
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Key issues
Combining sensitivity and uncertainty

Key issues
Combining sensitivity and uncertainty
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Dependency on third-party models (emissions, deposition)

Dependency on the LCI model for the spatial aggregation of CF and NFs

Unknown uncertainty associated with these ‘input’ models

Low confidence on PP dataset

No spatial differentiation for marine sedimentation and denitrification rates 

in the FF

WeaknessesWeaknesses
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Endpoint modelling

Transparent and reproducible FFs, XFs, and EFs

Spatially differentiated CFs

High geographic applicability

CFs and NFs for 233 Country-to-LME and 143 countries for 4 N-emission routes

Global default CF and NF

Key issues for data quality improvement identified

Strengths Strengths 
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