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Abstract.  

Existing pharmacological inhibitors for nicotinamide phosphoribosyltransferase (NAMPT) are 

promising therapeutics for treating cancer. Using medicinal and computational chemistry methods, the 

structure-activity relationship for novel classes of NAMPT inhibitors is described and compounds 

optimized. Compounds are designed inspired by the NAMPT inhibitor APO866 and cyanoguanidine 

inhibitor scaffolds. In comparison with recently published derivatives the new analogues exhibit an 

equally potent anti-proliferative activity in vitro and comparable activity in vivo. The best performing 

compounds from these series showed sub-nanomolar anti-proliferative activity towards a series of 

cancer cell-lines (compound 15: IC50 0.025 nM and 0.33 nM, in A2780 (ovarian carcinoma) and MCF-7 

(breast), respectively), and potent anti-tumour in vivo activity in well tolerated doses in a xenograft 

model. In an A2780 xenograft mouse model with large tumours (500 mm3) compound 15 reduced the 

tumour volume to one fifth of the starting volume at a dose of 3 mg/kg administered i.p., bid, day 1-9. 

Thus, compounds found in this study compared favourably with compounds already in the clinic and 

warrant further investigation as promising lead molecules for the inhibition of NAMPT. 

Introduction 

Inhibition of nicotinamide adenine dinucleotide, (NAD) production has recently been suggested as a 

principle for inducing death of cells with high demand for this dinucleotide.1 This is particularly true for 

cancer cells due to increased metabolism and high activity of NAD consuming enzymes. NAD is an 

essential cofactor in redox reactions and as such involved in cellular energy production and metabolism 

without being substantially consumed. However, besides being a cofactor, NAD serves as the substrate 

for mono-ADP-ribosyltransferases,2 poly-ADP-ribose polymerases (PARPs),3 and sirtuins,4 all of these 

converting NAD to nicotinamide. Also, NAD is consumed as the precursor for a number of Ca2+-

releasing second messengers (e.g., cADPR, NAADP).5,6
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Thus, the increased dependence on glycolysis and elevated expression or activity of PARPs,7-9 and 

sirtuins,4 characteristic for malignant cells, make these more sensitive to NAD availability as compared 

with normal cells.10,11 

In the organism several pathways for the synthesis of NAD are known. Besides the "de novo" pathway 

using tryptophan as precursor, NAD can alternatively be synthesized or resynthesized from 

nicotinamide, a sequence where Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate 

limiting step.12-14 Thus, inhibition of NAMPT enzyme activity causes a direct inhibition of NAD 

production. Importantly, normal cells can use an alternative pathway for NAD synthesis from nicotinic 

acid (NA), catalyzed by nicotinic acid phosphoribosyltransferase (NAPRT).15-17 Unlike most normal 

tissues many cancer cell lines, and primary tumours, are deficient in NAPRT activity.18 Furthermore, an 

increased concentration of NAMPT in colorectal, ovarian, and prostate cancer cells has been 

reported.10,19, 20 Altogether, inhibition of NAD production via NAMPT inhibition is suggested to be a 

valid principle for selective inhibition of cancer cell growth and as such represents an attractive target 

for drug discovery.  

 

A few classes of NAMPT inhibitors have been reported such as compounds APO866 (1)21and CHS828, 

(2)22 which have entered the clinic, and more recent structures like TRON-823 and CB3086524 for which 

biological data have been reported (Figure 1). Biological data for NAMPT inhibitor MCP-8640 is also 

reported but no chemical structure.25 These NAMPT inhibitors show potent anti-proliferative activity in 

a spectrum of cancer cell lines and in vivo efficacy in both solid tumours and leukemia in preclinical 

studies.26,27 A comprehensive literature review on NAMPT inhibitors including patents was recently 

published.28 Originally, 1 was developed as an inhibitor of NAMPT and displays anti-proliferative 

activities comparable to compound 2 for which the molecular target was unknown until recently.29-31 

Safety, pharmacokinetics and biological effect of compound 1 and 2 (and a pro-drug thereof, 3, Figure 

1) have been reported from five phase I clinical trials performed in patients with advanced disease.32-34 

In these trials, not surprisingly in phase I, no objective response was found and for both compounds the 
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dose limiting toxicity was found to be thrombocytopenia. Compound 2 was tested in an oral formulation 

but was later transformed to a pro-drug, compound 3, to obtain improved pharmacokinetics.35,36
 To 

obtain good exposure both compound 1 and 3 were administered i.v. using long term continued 

infusion.33,34 Both compounds have entered phase II clinical trials, however, results from these trials are 

not yet available.       

     

Figure 1. NAMPT inhibitors. 1, APO866 (activity see Table1); 2, CHS-828 (activity see Table 1); 3, 

EB 1627 (pro-drug of CHS828); TRON-8 (IC50 (SH-SY5Y) 3.8 nM))23; and CB30865 (IC50 (W1L2) 2.8 

nM)37. 

 

Inspired by these results and with the aim of finding compounds with improved toxicological and 

activity properties  we here report the structure activity relationship (SAR) for a new series of NAMPT 

inhibitors based on structural modifications of compound 1 and 2. The results from the SAR study were 

rationalized and new compounds designed using computational chemistry methods. 
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Results and discussion 

Chemistry  

A series of 2-cyanoguanidines 11-25 was synthesized using a general strategy (Scheme 1, Table 1). 

Treatment of dimethyl cyanocarbonimidodithioate (I) with 4-pyridylamine (IIa), 3-pyridylamine (IIb) 

or aniline (IIc) produced methyl N’-cyano-N-arylcarbamimidothioates IIIa-c, which were condensed 

with pre-assembled hydroxamate amines IVa-c or sulfonamide amines Va-k to give the corresponding  

2-cyanoguanidines 11-25.  

Scheme 1. Convergent Synthesis of 2-Cyanoguanidine Derivatives 11-25  

 

No R1 R2  No R1 R2 

IVc, 11 4-Py 

 

 Vj, 19 4-Py 

 

IVa, 12 4-Py 

 

 Va, 20 4-Py 

 

IVb, 13 Ph 

 

 Vd, 21 4-Py 

 

Vk, 14 4-Py 
 

 Vc, 22 4-Py 

 
       
       

Page 5 of 55

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6 

 

 

 

Although this convergent approach was successful in most cases, a stepwise formation of the side chain 

was used for some 2-cyanoguanidine derivatives such as 4-10 (Scheme 2, Tables 1 and 2). 

Thus, the condensation of methyl N'-cyano-N-(pyridin-4-yl)carbamimidothioate (IIIa) with 7-

aminoheptanoic acid (VIa) or optically active 2-methyl or 2-benzyl-7-aminoheptanoic acids VIb-e38
 

produced 7-guanidinoheptanoic acid derivatives VIIa-e. These intermediate acids VIIa-e afforded the 

target N-hydroxycarboxamides 4-10 when treated with hydroxylamines VIIIa-c in the presence of 1-

ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) or O-(7-azabenzotriazol-1-yl)-N,N,N',N'-

tetramethyluronium hexafluorophosphate (HATU).  

 

 

 

Ve, 15 4-Py 

 

 Vf, 23 4-Py 

 

IVb, 16 3-Py 

 

 Vb, 24 4-Py 

 

Vi, 17 4-Py 

 

 Vh, 25 4-Py 

 

Vg, 18 4-Py 
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7 

 

Scheme 2. Synthesis of 2-Cyanoguanidine Derivatives 4-10 via Carboxylic Acid Intermediates 

VIIa-e 

 

No R  No R3 R4  No R R3 R4 

VIa, VIIa H  VIIIa H 
 

 4 H H 
 

VIb, VIIb (R)-Me  VIIIb Bn 
 

 5 H Bn 
 

VIc, VIIc (S)-Me  VIIIc 

  
 6 (S)-Me H 

 

VId, VIId (R)-Bn      7 (R)-Me H 
 

VIe, VIIe (S)-Bn      8 (S)-Bn H 
 

       9 (R)-Bn H 
 

       10 H 
 

 
           

 

A similar convergent approach to Scheme 1 was used for the preparation of a series of 1,2-

diaminocyclobutene-3,4-diones 26-36 (Scheme 3, Table 3).39 Reaction of 3,4-diethoxy-3-cyclobutene-

1,2-dione (IX) with 4-pyridylamine (IIa) afforded intermediate amidoester X, which was treated with 

amines IVa,b,d, Va-e,j,l,m to obtain target 1,2-diaminocyclobutene-3,4-diones 26-36.  
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Scheme 3. Convergent Synthesis of 1,2-Diaminocyclobutene-3,4-dione derivatives 26-36 

 

 

No R2  No R2 

IVb, 26 

 

 Vj, 32 

 

Vl, 27 

 

 Va, 33 

 

IVd, 28 

 

 Vd, 34 

 

IVa, 29 

 

 Vc, 35 

 

Vm, 30 

 

 Vb, 36 

 

Ve, 31 
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N,N’-Disubstituted urea derivatives 37, 38, 40-50 (Table 4) were prepared by reacting of such carbonic 

acid derivatives as N,N’-carbonyldiimidazole (CDI) or 4-nitrophenyl chloroformate with 4-pyridylamine 

(IIa) or 3-picolylamine (IId) followed by appropriate pre-assembled amines IVb, Va-f,k,n (Scheme 4).  

 

Scheme 4. Synthesis of N,N’-Disubstituted Urea Derivatives 37, 38, 40-50 

 

 

No R1 R2  No R1 R2 

Ve, 37 4-Py 

 

 Vj, 45 3-Pic 

 

IVb, 38 3-Pic 

 

 Vd, 46 3-Pic 

 

Vm, 40 4-Py 

 

 Vc, 47 3-Pic 

 

Vm, 41 3-Pic 

 

 Vf, 48 3-Pic 

 

Va, 42 4-Py  Vn, 49 3-Pic 
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Vj, 43 4-Py 

 

 Vb, 50 3-Pic 

 

Va, 44 3-Pic 

 

    

 

 

The N,N’-disubstituted thiourea derivative 39 was synthesized by the condensation of 3-picolylamine 

IId with di(2-pyridyl) thionocarbonate (DPT) followed by treatment of in situ formed intermediate 

isothiocyanate XIIb with amine IVb. The N,N’-disubstituted thiourea derivative 51 was prepared from 

amine Vd and isothiocyanate XIIa, which in turn was obtained from 4-pyridilamine IIa and carbon 

disulfide (Scheme 5, Table 4). 

Scheme 5. Synthesis of N,N’-Disubstituted Thiourea Derivatives 39 and 51 

 

No R1 R2  No R1 R2 

IVb, 39 3-Pic 

 

 Vd, 51 4-Py 

 

 

The hydroxylamine intermediates VIIIa,b,d,e of carboxamide amines IV and sulfonamide amines V 

were synthesized starting from 2-hydroxyisoindoline-1,3-dione which was alkylated with cyclohexyl 

alcohol XIIIa upon Mitsunobu conditions, with cyclohexylmethyl bromide XIIIb in the presence of 
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K2CO3 in DMSO, or with 2-(4-morpholinyl)ethyl chloride (XIIIc) in the presence of 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU) to give the O-substituted derivatives XIVa-c. Removal of the 

phthalimide protective group of compounds XIVa-c gave O-hydroxylamine derivatives VIIIa, VIIId, 

and VIIIe, respectively. Compound VIIIa was further converted into N-monobenzyl derivative VIIIb 

via 2-nitrobenzosulfonamide intermediates XV and XVI (Scheme 6).  

Scheme 6. Preparation of Hydroxylamines VIIIa,b,d,e 

 

 

No R 

XIIIa, XIVa, VIIIa Cyclohexyl 

XIIIb, XIVb, VIIId cyclohexylmethyl 

XIIIc, XIVc, VIIIe 2-(4-morpholinyl)ethyl 

 

Another series of N,O-disubstituted hydroxylamines VIIIc,f-i were prepared from cyclic ketones 

XVIIa-c and O-(2-morpholinoethyl)hydroxylamine (VIIIe) or 3-morpholinopropan-1-amine (XVIII) 

by reductive amination  (Scheme 7). Condensation of the ketones XVIIa-c with the amino compounds 

VIIIe or XVIII gave the corresponding intermediate oximes or imines XIXa-e, which were reduced to 

saturated structures VIIIc,f-i.  
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Scheme 7. Preparation of Hydroxylamines VIIIc,f,h and Amines VIIIg,i 

 

No n X 

XIXa, VIIIf 1 O 

XIXb, VIIIg 1 CH2 

XIXc, VIIIh 2 O 

XIXd, VIIIc 3 O 

XIXe, VIIIi 3 CH2 

 

By a similar one-pot reductive amination protocol O-(2-morpholinoethyl)hydroxylamine (VIIIe) and 

benzaldehyde afforded N-benzyl-O-(2-morpholinoethyl)hydroxylamine (VIIIj) (Scheme 8).  

Scheme 8. Synthesis of N-Benzyl-O-(2-morpholinoethyl)hydroxylamine (VIIIj) 

 

The hydroxamate amines IVa-d were prepared from N-Boc protected ω-amino hexanoic, heptanoic, and 

octanoic acids XXa-c which were condensed with hydroxylamine VIIIj in the presence of EDC or with 

hydroxylamine VIIIc in the presence of HATU to afford the corresponding hydroxamates XXIa-d 

which were deprotected to obtain compounds IVa-d (Scheme 9).  
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Scheme 9. Synthesis of Hydroxamate Amines IVa-d 

 

    

 

The synthesis of sulfonamide amines Va-n was based on the condensation of phthalyl-protected ω-

aminopentane, aminohexane, and aminoheptane sulfonyl chlorides XXVa-c with appropriate amine or 

hydroxylamine derivatives to produce the corresponding sulfonamides XXVIa-j,l-n (Scheme 10). In the 

case of tertiary sulfonamides XXVIh,i,l,m the synthesis included an extra alkylation step of initially 

obtained secondary sulfonamides XXVIIa-c. The following treatment of the sulfonamides XXVIa-j,l-n 

and XXVIIc with hydrazine produced the sulfonamide amines Va-n. The intermediate sulfonyl 

chlorides XXVa,b were obtained by a short synthetic sequence from potassium phthalimide XXII, 

including mono-alkylation of the latter with 1,5-dibromopentane or 1,6-dibromohexane, treatment of the 

obtained bromo derivatives XXIIIa,b with sodium sulfite and conversion of the resulting sodium 

sulfonates XXIVa,b into the corresponding sulfonyl chlorides XXVa,b with PCl5. The sulfonyl chloride 

XXVc was obtained using literature procedure.40 

 

No n R 

XXIa, IVa 5 Bn 

XXIb, IVb 6 Cyclohexyl 

XXIc, IVc 7 Bn 

XXId, IVd 6 Bn 
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Scheme 10. Synthesis of Sulfonamide Amines Va-n 

 

No n R1 R2  No n R1 R2 

XXVIa, 
Va 

5    XXVIIb, 
XXVIh, 
Vh 

6   

XXVIb, 
Vb 

5 
   XXVIIc, 

XXVIi,  
Vi 

6   

XXVIc, 
Vc 

6    XXVIj, 
Vj 

7   

XXVId, 
Vd 

6   
 XXVIIa, 

XXVIl, 
Vl 

6 
  

XXVIe, 
Ve 

6    XXVIIc, 
XXVIm, 
Vm 

6   

XXVIf, 
Vf 

6    XXVIn, 
Vn 

5   

XXVIg, 
Vg 

6    
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SAR 

Compound 1 and 2 (Figure 1) represent two distinct compound classes, which are bioisosters, both 

targeting the NAMPT enzyme. The common features in the two compounds are the pyridyl head-group, 

a functional group with hydrogen binding capabilities, a linker chain and an aromatic group in the end 

of the linker. With the aim of discovering new compounds with improved activity and toxicological 

properties the SAR of these compounds was explored by modification of the mentioned key structural 

elements (Figure 2).  

 

Figure 2. Overview of the sequence of the described SAR work: 1) Modification of aromatic end group 

D to hydroxamic acid esters (compounds 4-12). 2) SAR for pyridyl head group A (comp. 10, 13). 3) 

SAR of hydrogen binding group B, replacement of cyanoguanidine with squaric acid and urea (comp. 

26, 28, 29, 38 and 39). 4) Change of the hydroxamic acid ester for a preferred alkoxy sulphonamide or 

sulphonamide in D (e.g. 10 vs. 15, 26 vs. 31). 5) Optimisation of linker length C and end group for 

squaric acids (31-34 and 36) and urea derivatives (40-42 and 44). 6) Final optimisation of the 

cyanoguanidine series with a pyridyl head-group and an alkoxy sulphoneamide (comp. 17 and 20-25). 

 

The primary determination of activity was performed using a WST-1 cell viability and proliferation assay 

in two cell lines, a breast cancer, MCF-7, and an ovarian carcinoma, A2780, cell line. The WST-1 assay 

determines the metabolic activity of the cells, in a process dependent on NADH as coenzyme, thus this 

assay will have a strong functional connection to the NAMPT inhibition. 
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Modification of aromatic end group  

Initially, the aromatic end group of compound 2 was modified by preparing novel hydroxamic acid 

esters which immediately gave potent analogues in the in vitro test system, represented by the first hit 

compound 4 with nanomolar activity (Table 1 and Figure 3).  

 

 

Figure 3. Structures of molecular fragment B in Table 1, 3 and 4. 

Table 1. NAMPT inhibitors with a cyanoguanidine binding group 

 

Cell line         A2780a MCF-7a 

Compound R1 n A 
Bb 

structure 
IC50, (mean, 

nM)   
SD 

IC50, (mean, 
nM)  

SD 
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1, APO866 - - - - 1.6 ±1.5 7.4 ±0.68 

2, CHS828 - - - - 0.56 ±0.19 1.6 ±1.3 

4 4-pyridyl 6 CO 1 35 ±13 940 ±377 

5 4-pyridyl 6 CO 2 0.055 ±0.036 1 ±0.80 

10 4-pyridyl 6 CO 4 0.1 ±0.11 0.42 ±0.08 

11 4-pyridyl 7 CO 6 0.01 ±0.014 NDc 
 

12 4-pyridyl 5 CO 6 0.081 ±0.10 0.021 ±0.002 

13 phenyl 6 CO 4 98 ±34 1016 ±737 

14 4-pyridyl 6 SO2 3 0.16 ±0.18 3.4 ±2.3 

15 4-pyridyl 6 SO2 4 0.025 ±0.021 0.33 ±0.63 

16 3-pyridyl 6 SO2 4 0.51 ±0.31 2.9 ±1.10 

17 4-pyridyl 6 SO2 8 0.052 ±0.060 0.1 ±0.19 

18 4-pyridyl 6 SO2 9 0.16 ±0.35 0.11 ±0.24 

19 4-pyridyl 7 SO2 4 0.089 ±0.091 0.29 ±0.42 

20 4-pyridyl 5 SO2 4 0.011 ±0.017 0.036 ±0.015 

21 4-pyridyl 6 SO2 10 0.0041 ±0.0032 NDc 
 

22 4-pyridyl 6 SO2 11 0.049 ±0.031 0.007 ±0.008 

23 4-pyridyl 6 SO2 12 0.091 ±0.11 0.1 ±0.01 

24 4-pyridyl 5 SO2 10 0.022 ±0.03 0.041 ±0.01 

25 4-pyridyl 6 SO2 13 0.053 ±0.07 0.63 ±0.29 
 

a Activities were determined in a WST-1 assay. b See Figure 3. c ND, not determined. 

 

In the crystal structure of NAMPT co-crystallized with compound 1 a rather large binding region near 

the surface of the protein can be observed where the side chain end group of the ligand is placed.41,42 As 

in earlier work the published crystal structure of NAMPT co-crystallized with 1 was used as starting 

point for docking analysis.43 (PDB ID 2GVJ) which was carried out in Glide (further details in 

Experimentals). Previously, we found that different ligands for NAMPT had such similar geometric 

features that compound 2 and 5 could even be docked into the crystal structure of compound 1 without 

removing the crystallographic water molecules in the active site.43 However, due to the much larger and 

more diverse set of ligands we chose to completely remove the crystallographic waters in the current 

study. In the supporting information we have included additional pictures showing the crystal structure 
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with the crystallographic water molecules present and it is evident that only few water molecules 

penetrate the active site when the ligand is present. 

 

When 1 was re-docked into the empty active it achieved the crucial hydrogen bonding to Ser275, albeit 

with a slightly longer distance (2.3Å) compared to the 1.8Å observed in the X-ray structure (Figure 4). 

 

 

 

Figure 4. Left: Illustration of 1 docked in the NAMPT X-ray structure (PDB id 2GVJ). Notice the lack 

of crystallographic waters in the binding cleft (additional orientations are included in the Supporting 

Information). Center: The pose of 1 observed in the X-ray with hydrogens added and waters removed. 

Right: The pose obtained by docking 1 into the “dry” active site of NAMPT.  

 

Docking of compound 4 suggested a similar binding mode as compared to 1 (Figure 5) where the 

cyanoguanidine is capable of achieving a similar hydrogen bond to Ser275. Furthermore, the 

cyanoguanidine established two new hydrogen bonds to Asp219, which may serve as part of the 

explanation for the efficiency of this chemical motif.  
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Figure 5. Left: The conformation of 4 docked into the NAMPT active site (PDB id 2GVJ). Right: 

Close-up of the pyridine sandwich with the three hydrogen bonds made by the cyanoguanidine moiety. 

 

To investigate the preferred binding orientation of the side chain in compound 4 the close alpha-methyl 

and alpha-benzyl analogues were prepared in an enantiomerically pure form. A stereochemical 

preference for the (S)-methyl derivative (6) was found, with a 40 times higher activity, as compared 

with the (R)-methyl derivative (7) (Table 2). However, this was not reflected in the calculated docking 

scores for the interaction which showed a reversed preference. The reasons for this discrepancy were not 

clear from visual inspection of the docked structures since they were virtually superimposable in spite of 

the difference in stereochemistry. Therefore we speculate that the observed difference in activity could 

be due to one of several factors that are not accounted for in simple docking calculations such as protein 

flexibility or different interactions with the hydrogen-bond network between enzyme and water 

molecules. The similarity in physico-chemical properties leads us to believe that the observed difference 

in not due to differences in pharmacokinetics. The activity difference was very small for the 

corresponding benzyl enantiomers (8, 9), probably due to the similar size of the binding end-groups in 

the molecule (Table 2). Thus, the docking analysis of these structures did not reveal any obvious 
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differences, or a preferred fit, of the enantiomers with the protein structure. Even though the chiral 

derivatives were very potent with sub-nanomolar activity this compound group was not further explored 

due to a generally low stability and rapid hydrolysis in mouse plasma (data not shown).  

 

Table 2. NAMPT inhibitors with a chiral end group 

 

Cell line   A2780a   MCF-7a   

Compound R IC50, (nM)  SD IC50, (nM)  SD 

6 (S)-Me 0.08 NDb 1 ±0.8 

7 (R)-Me 3.9 ±0.64 38.3 ±27.8 

8 (S)-Bn 0.32 ±0.03 5.3 ±3.4 

9 (R)-Bn 0.22 ±0.28 1.7 ±0.6 
 

a Activities were determined in a WST-1 assay. b ND, not determined. 

 

An improvement of both stability and activity was found for the hydroxamic acid esters bearing an 

additional substituent on the hydroxamic acid nitrogen, compounds 5, 10, 11 and 12 all exhibiting sub-

nM activities (Table 1).  From the docked structures it is clear that these ligands are capable of spanning 

the wide entrance of the cleft of the protein active site thereby increasing their binding affinities. At 

present time it is unclear whether this increase is due to additional (non-specific) binding interactions 

with the protein surface or that the increased binding is caused by a decreased number of accessible 

conformations of the free ligands. 

 

SAR for pyridyl head group  
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In earlier studies the pyridyl head-group in the parent compounds has been found essential for high 

activity.22 To investigate the importance of the head-group in this series a phenyl derivative, compound 

13, was prepared and found approx. 1000-2000 times less potent as compared with the analogous 

compound 10 (Table 1). This large difference in activity is difficult to explain since the two head-groups 

(phenyl and pyridine) are both capable of sandwiching between Tyr18 and Phe193 (Figure 6).  

 

 

 

Figure 6. Docking of 10 and 13 in the NAMPT X-ray structure (PDB id 2GVJ), where it is clear that 

the head groups are virtually superimposable.  

 

To investigate this difference in more detail we carried out an analysis of the binding energy using 

density functional theory (DFT) in combination with the B3LYP functional with added dispersion 

corrections (DFT-d3). 
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Due to the computational demands of DFT-d3 the enzyme was reduced to an active site model 

consisting of Arg-196, B-chain Tyr-18, B-chain Asp-16, Asp 219, Phe-193, Arg-311, and Ser-275. The 

amino acids were truncated at the Cα in line with earlier work.44 Since the aim of the study was 

primarily to delineate the effect of the head group it was also decided to truncate the ligands in the 

spacer region so it consisted of just a single methyl group. A single-point energy calculation shows that 

the pyridine has an interaction energy that is 22 kJ/mol larger than for the corresponding structure with a 

phenyl as head-group, which is in qualitative agreement with the experimental results. In the 

cyanoguanidine series also the 4-pyridyl head group was compared with the analogues 3-pyridyl 

derivative, compound 15 vs. 16 (Table 1). This comparison showed a >10 fold activity preference for 

the 4-pyridyl group. A similar activity preference was found for other 4-pyridyl versus 3-pyridyl 

compound pairs (data not shown), but in this case the observation could not be explained by the DFT 

calculations since 4-pyridyl and 3-pyridyl head groups had a similar stabilization energy (within 1 

kJ/mol). At present it is unclear whether more extended conformational sampling combined with e.g. 

advanced mixed quantum mechanics/molecular mechanics (QM/MM) calculations could delineate this 

interesting experimental difference in activity.  

 

 SAR of hydrogen binding group  

The next structural modification made was a replacement of the cyanoguanidine with other hydrogen 

binding groups. There have been previous attempts to substitute the cyanoguanidine or amide group of 

compounds 1 and 2 with other groups retaining activity (Figure 1).28 In this investigation the most 

promising substitutions were found to be the squaric acid and urea analogues. The squaric acid 

compounds 26, 28, 29 (Table 3) and the urea and thiourea derivatives with a 3-picolyl head group, 

compounds 38 and 39 respectively (Table 4), both series with a hydroxamic acid ester end group, all 

were potent inhibitors of proliferation. As expected, docking of these structures showed that they too 

were capable of obtaining the crucial hydrogen-bonding interactions in the active site of NAMPT 

(Figure 7).  
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Figure 7. Compounds docked in the NAMPT X-ray structure (PDB id 2GVJ). Left: 26, a representative 

of the squaric acid series with dotted lines indicating the hydrogen bonds made to Ser275 and Asp219. 

Center: 38, the urea linker also allows hydrogen bonds to be made to Asp219. Right: 39, also the larger 

thiourea can be accommodated in the active site. 

 

Squaric acids with similar side chains as the parent compounds 1 and 2 have been reported in the patent 

literature to have anti-proliferative activity.45 This finding suggests a further exploration of the squaric 

acid bioisosters with novel side chains.  

 

Table 3. NAMPT inhibitors with a squaric acid binding group 

N
H

O O

N
H

R1 (CH2)n A-B

 

Cell line         A2780a MCF-7a 

Compound R1 n A 
Bb 

structure 
IC50, (mean, nM)  SD IC50, mean, (nM)  SD 

26 4-pyridyl 6 CO 4 0.03 ±0.02 NDc 
 

27 4-pyridyl 6 SO2 5 4.1 ±2.2 21.6 ±4.5 
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28 4-pyridyl 6 CO 6 0.29 ±0.32 12.3 ±5.0 

29 4-pyridyl 5 CO 6 0.68 ±0.47 23 ±1.1 

30 4-pyridyl 6 SO2 7 0.73 ±0.03 10.8 ±2.3 

31 4-pyridyl 6 SO2 4 0.49 ±0.22 9 ±2.9 

32 4-pyridyl 7 SO2 4 0.49 ±0.17 8 ±5.2 

33 4-pyridyl 5 SO2 4 0.57 ±0.12 35.8 ±8.4 

34 4-pyridyl 6 SO2 10 0.59 ±0.35 13.7 ±2.4 

35 4-pyridyl 6 SO2 11 0.2 ±0.14 29.1 ±6.4 

36 4-pyridyl 5 SO2 10 0.38 ±0.05 46.3 ±6.3 

 

a Activities were determined in a WST-1 assay. b See Figure 3. c ND, not determined 

 

Table 4. NAMPT inhibitors with a urea (thiourea) binding group 

N
H

N
H

O(S)

R1 (CH2)nA B

 

Cell line 
    

A2780a 
 

MCF-7a 
 

Compound R1 n A 
Bb 

structure 

IC50,  

(mean, nM) 
 SD 

IC50,  

(mean, nM) 
 SD 

37 4-pyridyl 6 SO2 4 0.25 ±0.13 0.05 ±0.01 

38 3-picolyl 6 CO 4 0.27 ±0.13 0.37 ±0.51 

39 3-picolylc 6 CO 4 0.91 ±0.31 5.5 ±2.2 

40 4-pyridyl 6 SO2 7 0.56 ±0.01 1.4 ±0.05 

41 3-picolyl 6 SO2 7 0.17 ±0.06 0.93 ±0.11 

42 4-pyridyl 5 SO2 4 3.4 ±2.2 28 ±11.2 
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43 4-pyridyl 7 SO2 4 1.8 ±0.07 7.4 ±4.6 

44 3-picolyl 5 SO2 4 4.6 ±4.5 6.5 ±5.7 

45 3-picolyl 7 SO2 4 0.31 ±0.11 3.6 ±2.3 

46 3-picolyl 6 SO2 10 0.58 ±0.18 5.8 ±0.15 

47 3-picolyl 6 SO2 11 2.2 ±0.12 11 ±5.0 

48 3-picolyl 6 SO2 12 1.7 ±0.21 8.7 ±7.2 

49 3-picolyl 5 SO2 11 13 ±6.4 49 ±33.7 

50 3-picolyl 5 SO2 10 2.7 ±1.9 7 ±1.2 

51 4-pyridylc 6 SO2 10 0.16 ±0.15 0.31 ±0.40 

 

a Activities were determined in a WST-1 assay. b See Figure 3. c The compound is a thiourea. 

 

Change of the hydroxamic acid ester  

With three structural core elements, the cyanoguanidine, the squaric acid and the urea, all producing 

highly active compounds, in hand a further optimization was structured. Changing the hydroxamic acid 

ester for an alkoxy sulphonamide or sulphonamide gave a more robust series of compounds with high 

activity and this substitution was used in the further SAR work (see e.g. 10 vs. 15, Table 1 and 26 vs. 

31, Table 3).  

 

Squaric acid series  

In the squaric acid series, compounds 31, 34, and 35 were prepared to explore the effect of ring size in 

the end group, however, no significant difference in binding affinity/anti-proliferative activity was 

found (Table 3). This is understandable also from the docking results since the head groups dock in a  

similar position in the active site, as expected (Figure 8 left), whereas the flexible end of the chain can 

freely position itself in the wide entrance region of the catalytic cleft.  
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Figure 8. Compounds docked in the NAMPT X-ray structure (PDB id 2GVJ). Left: Compounds 31, 34, 

and 35 all dock into the sandwich region of the enzyme. Right: The wide entrance region allows the 

ligands to obtain different positions that do not offer any differences in activity between compounds 

having a 5-membered (green), 6-membered (red), or 4-membered ring (blue) as substituent on nitrogen. 

 

Likewise the linker length was varied from 5-7 carbons in compounds 31-33 and 34 vs. 36 which gave 

compounds with similar activity, however, with a slight activity preference for compounds with 6 

carbons in the linker (Table 3). Shorter and longer linker chains gave compounds with lower anti-

proliferative activity (data not shown). 

For compounds 31-33 the docking analysis shows a preference for a hydrogen bond interaction between 

the sulphonamide moiety and His191. This enforces a constraint on the length between the 

sulphonamide and the pyridine head-group, which is suitable for a 6-carbon linker (31). The docking 

results showed that the shorter chain introduces strain in the structure (33) and the longer 7-carbon 

linker has to coil up to satisfy the distance requirement (32). However, we should stress that the 

similarity in the biological activity shows that such accomodation is possible and indeed takes place 

without significant loss in activity. 
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The squaric acid 27, a sulphone amide, was less active, however, this compound was not strictly 

analogous to any alkoxy sulphone amide since it has an additional pyridine group in the end group of 

the molecule. In all three series the sulphonamide end groups were found equipotent or slightly less 

potent as compared with similar alkoxy sulphonamide (see compounds 18, 23, 27 and 48, Table 1-4). 

 

Urea series 

The urea derivatives were designed as analogues to compound 1 where the unsaturated amide was 

replaced by a urea group. In this series, compounds with a 4-pyridyl or a 3-picolyl head-group were 

compared, compounds 40 vs. 41 and 42 vs. 44, and found equipotent despite the structural difference in 

the head group (Table 4). Computational modeling of these interactions showed that despite the 

difference in the location of the pyridine nitrogen the aromatic group positions itself perfectly aligned in 

the pocket between Tyr18 and Phe193. This introduces a slight difference in the orientation of the urea 

moiety, but does not hinder the formation of hydrogen bonds to Asp219. As mentioned earlier, our 

simple DFT model of the binding site does not reveal any differences in the π-π stacking ability of the 

two head groups which is in line with the observation for the urea series. 

 

Similar to the squaric acid analogues a linker of 5-6 carbons gave highly active compounds both with a 

pyridyl head-group (37, 42, 43) and a picolyl head-group (46, 47, 49, 50, Table 4). 

Also in the urea series many of the analogues showed sub nM activities either with a pyridyl or picolyl 

head-group, a urea or thio-urea binding group and a series of different end groupings. 

 

Cyanoguanidine series 

Returning to the cyanoguanidine series with a pyridyl head-group and an alkoxy sulphone amide 

connecting the linker and end groups the most potent compounds with low pM anti-proliferative 

activity, e.g. compounds 17 and 20-25, were found (Table 1). Similar to the other series a linker of 6 

carbons was optimal. 

Page 27 of 55

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



28 

 

In summary, using a functional cell proliferation assay a rather broad SAR was determined. Highly 

active compounds were found in all three series, the cyanoguanidine, the squaric acid and the urea 

series, suggesting an analogous interaction with the target NAMPT enzyme. Also, a similar substitution 

pattern was used to obtain the most potent compounds in the three series suggesting a similar binding to 

the target.   

 

In vitro activity and mode of action.  

To further characterize the key compounds, the IC50 values of a number of them were established in the 

colon cancer cell line HCT-116 and a derived compound 1 resistant cell line HCT-116/APO866 (Table 

5). Determination of the actual sensitivity of the cell line with acquired resistance was not possible. 

However, the resistance towards the compounds was at least 128-2632 fold higher in HCT-116/APO866 

compared to the parental cell line. The mechanism of resistance in HCT-116/APO866 has been 

determined to be specifically due to a mutation, H191R, in the active site of NAMPT which results in 

highly specific resistance.29,43 Thus, the high level of cross-resistance observed for the compounds in 

this study strongly suggests that their mechanism of action likewise is through inhibiting NAMPT and 

thus similar to that of compound 1.  

 

Table 5. IC50 values for key compounds for anti-proliferative effects in HCT-116 and compound 1 

resistant HCT-116/APO cells 

Cell line HCT-116a 

 

HCT-
116/APO866a 

 Compound IC50 (nM) ±SD IC50 (nM) 

 1 10.9 6.1 946 
 15 1,9 0,2 >5000 
 17 3,6 2,4 >5000 
 31 39 13 >5000 
 37 5,3 2,9 >5000 
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a Activities were determined in a WST-1 assay. 

 

In order to confirm the on-target mechanism of action for the new series of compounds the enzyme 

inhibitory activity was determined using a NAMPT enzymatic assay with HepG2 lysates as source of 

NAMPT enzyme (Table 6). Even though the correlation with the anti-proliferative activity data was not 

perfect, all tested compounds showed high potency with low nM activity, thus a strong support for a 

direct enzyme interaction. The discrepancy between enzyme inhibition and anti-proliferative activity is 

suggested to be due to the different properties of the compounds such as cell penetration which is 

important in the cellular assay. Compounds were selected for further testing primarily based on in vitro 

activity but also to cover the chemical classes. Key compounds were also characterised in a clonogenic 

assay in several cancer cell lines (Table 7). Compounds 15 and 17 showed similar or increased potency 

in these assays as compared to reference compound 1 and were thus selected for further in vivo 

characterization. 

Table 6. NAMPT enzyme assay (IC50, nM) 

 

 

Table 7. Clonogenic assay for compounds 15, 17 and 1 in a selection of cancer cell lines 

Compound,  
Cell line 

15, IC50 (nM) 17, IC50 (nM) 1, IC50 (nM) 

A2780 0.55 (24h) 0.43 (16h) 5.7 
A431 >50 NDa 6.1 
DU145 >50 6.39 NDa 

Comp nr 1 2 4 5 10 11 14 15 17

IC50 (nM) 2.2 18.3 1.1 38.5 0.2 4.4 2.4 0.3 3.2

Comp nr 18 27 32 33 37 39 40 41

IC50 (nM) 2.4 22.8 3.6 49.6 49 8.2 133.2 11.8
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MCF-7 
>50 (24h) >50 (24h) 8.4 
1.9 (96 h) 0.98 (96 h) NDa 

NYH 0.3 0.05 1.5 
PC-3 0.53 0.35 3.8 

SK-OV-3 9.9 3.4 211 
 

a ND, not determined 

 

In vivo antitumour activity.  

Compounds with potent (nM) activity from all series were taken forward to tests of pharmacokinetics 

and preliminary toxicology effects in mouse as a selection filter for in vivo test in an A2780 xenograft 

mouse model (Table 8). Several of the new compounds compared well with the reference compound 1 

and based on these data compounds were selected. Most compounds in these series exhibited a 

relatively short half-life, approximately 20 min, but with an adequate systemic exposure 

(AUC).Therefore, in this early screen for pharmacological activity in vivo the compounds were 

administered i.p. to secure a sufficient exposure of the compound in the animal.  

 

Table 8. Toxicological and pharmacokinetic data for selected derivatives as determined in mouse 

 

a The compound toxicity (MTD) was estimated in NMRI mice dosing the compounds bid i.p. for 5 

consecutive days, determining weight loss and blood cell counts. 

 

Toxicology
a

Compound MTD (mg/kg)
Dose for PK 

(mg/kg)
Route

T½       
(hrs)

Tmax 
(hrs)

Cmax 
(ng/ml)

Vz 
(ml/kg)

CL 
(ml/hr/kg)

AUC 
(hr*ng/ml)

1 10<MTD<50 20 i.v. 0.4 0.25 14563 998 1620 12337
15 MTD<10 50 i.v. 0.18 0.08 14102 1275 4906 10184

17 10<MTD<50 50 i.v. 0.36 0.08 78519 547 1052 47514

31 10<MTD<50 50 i.v. 0.21 0.083 33535 1200 3995 12499

37 MTD<10 50 i.v. 0.45 0.08 14827 4600 7105 7018

Pharmacokinetics
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Treatment with compound 17 (15 mg/kg bid i.p. for 10 consecutive days (small tumours) or two 5 day 

cycles (large tumours) had good therapeutic effect in both small and large A2780 tumours (Figure 9). A 

clear decrease was seen in the tumour volumes during the treatment period, some mice even showed a 

transient cure and eradication of the tumour. After treatment, the tumours resumed growth at various 

time points, and grew to the maximum allowed size (1000 mm3). Treatment with compound 17, 

15 mg/kg, using the schedules above was well tolerated and did not affect the body weight as compared 

with vehicle treated animals (Figure 9, insert). 

 

 

Figure 9. Tumour growth curves of compound 17 in an A2780 xenograft mouse model. (15 mg/kg bid 

i.p. on days 0-4 + 7-11 (large tumours; starting volume 500 mm3) or days 0-9 (small tumours; starting 

volume 100 mm3). Inserted graph; body weight change during treatment.  

 

Similarly, compound 15 was tested in the A2780 xenograft model with large tumours (3 mg/kg, i.p., bid, 

10 consecutive days) (Figure 10). This compound (15) showed good efficacy and on average, treatment 

reduced the tumour volume significantly to one fifth of the volume from start of treatment (Figure 

10A).This dose was found well tolerated in the mice (Figure 10C). Compound 15 was tested at higher 
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doses (5 and 10 mg/kg) with very clear therapeutic effects, however already at 5 mg/kg four of nine 

mice showed toxic signs in form of body weight loss and reduced activity level as compared to control 

which was further accentuated at 10 mg/kg (data not shown). Thus, it was concluded that a 3 mg/kg bid 

dose was at the MTD level for compound 15, in this model.  

   

A 

 

B 
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C 

 

Figure 10. Treatment with compound 15, in an A2780 xenograft mouse model (large tumours, 3 mg/kg, 

i.p., bid). A) Mean tumour volume. B) Tumour volume in individual mice C) Body weight during 

treatment in individual mice.  

 

In a comparative study with these two compounds (15 and 17) and the reference compound 1, 

compound 15 was found approximately 12 times more potent than 1 in the A2780 xenograft mouse 

model (schedule; i.p. bid day 0-4, starting tumour volume 100 mm3) as measured by the tumour volume 

at day 14. Significant reduction of A2780 tumour volume at day 14 was observed after treatment with 

compound 15, 1.25 and 2.5 mg/kg and compound 1, 15 mg/kg. Dose response effect of 15, 0.63, 1.25 

and 2.5 mg/kg was observed with percent volume of treated tumours versus control T/C% of 82, 40 and 

24%, respectively. Also, some effect (T/C=52%), however not significant, was determined after 
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treatment with compound 17 and compound 1 (Figure 11). Critical body weight losses were not 

observed in any treatment groups.  

In summary, in vivo the selected compounds showed an equal or increased potency as compared with 

reference compound 1, with no critical signs of toxicology using effective doses. These highly 

promising results suggest a continuation of studies of this compound class. 

 

 

Figure 11. Tumour volume at day 14 after treatment with compounds 15 (0.63, 1.25, 2.5 mg/kg), 17 (15 

mg/kg) and 1 (15 mg/kg) bid day 0-4 as compared with vehicle, in a A2780 xenograft mouse model. 

 

Conclusion 

The present study describes the successful discovery of novel NAMPT inhibitors with promising 

biological activities as anti-proliferative agents in cancer cell lines in vitro and potent tumour reduction 

efficacy in vivo in a xenograft mouse model. The structure based method used for the optimization of 

these structures gave a rationale for the obtained activities and knowledge about the scope and limitation 

in the design of new NAMPT inhibitors. The most active compounds in these new series compared 
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favorably, in respect to toxicology and in vivo activity, with compounds already in the clinic and 

warrant further investigation as promising lead molecules for the inhibition of NAMPT. 

 

Experimentals 

Reaction conditions and yields were not optimized. 1H and 13C NMR spectra were recorded on a Bruker 

Avance 300 spectrometer (300 MHz) or Varian 400 OXFORD NMR spectrometer (400 MHz). 

Chemical shifts are reported in parts per million (δ) and referenced to hexamethyldisiloxane (HMDSO) 

as an internal standard or using the signal according to deuterated solvent for 1H spectra (CDCl3, 7.26; 

CD3OD, 3.31; (CD3)2SO, 2.50) and 13C spectra (CDCl3, 77.23; CD3OD, 49.00; (CD3)2SO, 39.52). The 

value of a multiplet, either defined (dublet (d), triplet (t), double dublet (dd), double triplet (dt), quartet 

(q)) or not (m) at the approximate mid-point is given unless a range is quoted. (bs) indicates a broad 

singlet. MS was performed using an LC-MS using a Bruker Esquire 3000+ ESI Ion-trap with an Agilent 

1200 HPLC-system or on an Acquity UPLC system (Waters) connected to the Micromass Q-TOF micro 

hybrid quadrupole time of flight mass spectrometer operating in the electrospray ionization (ESI) 

positive ion mode and using reverse-phase Acquity UPLC BEH C18 column (1.7µm, 2.1×50 mm) on a 

gradient of 5-98% acetonitrile-water 0.1% formic acid. All tested compounds were of sufficient purity 

(>95%) as determined by HPLC, using an Agilent 1200 HPLC-system. HRMS was carried out on a 

Micromass Q-Tof micro mass spectrometer. Elemental analyses were performed on Carlo Erba CHNS-

O EA-1108 apparatus.  Melting points were measured on a ‘‘Boetius’’ or Gallenkamp melting point 

apparatus and are uncorrected. Silica gel, 0.035 e 0.070 mm, (Acros) was employed for column 

chromatography. 

 

Preparation of key compounds 15 and 17. 
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For a full description of the preparation and spectroscopic data of compounds reported in this paper 

please view Supporting Information. 

6-(2-Cyano-3-(pyridin-4-yl)guanidino)-N-cyclohexyl-N-(2-morpholinoethoxy)hexane-1-

sulfonamide (15) 

2-(2-Morpholinoethoxy)isoindoline-1,3-dione (XIVc)  

Synthesis of compound XIVc by modified version of published procedures46-48 was performed as 

follows: To a mixture of 2-hydroxyisoindoline-1,3-dione (33.92 g, 208 mmol) and 4-(2-

chloroethyl)morpholine hydrochloride (50.24 g, 270 mmol) in 1-methyl-2-pyrrolidinone (160 ml) 

slowly was added DBU (80 ml, 535 mmol) and the resulting mixture was stirred at 45°C for 6 h. The 

mixture was poured into water (500 ml), extracted with ethyl acetate (3 × 250 ml), the combined extract 

was washed with brine (200 ml), and dried (Na2SO4). The solvent was evaporated and the residue was 

dried in vacuo to give compound XIVc (39.0 g, 68%) as an oil which solidified on standing. 1H NMR 

(200 MHz, CDCl3) δ 2.50 (m, 4H), 2.79 (t, J = 5.5 Hz, 2H), 3.59 (m, 4H), 4.37 (t, J = 5.5 Hz, 2H), 7.70-

7.89 (m, 4H). 

O-(2-Morpholinoethyl)hydroxylamine (VIIIe)  

To a solution of 2-(2-morpholinoethoxy)isoindoline-1,3-dione (XIVc) (39.0 g, 141 mmol) in a mixture 

of methanol (200 ml) and dichloromethane (100 ml) was added hydrazine hydrate (20 ml, 411 mmol) 

and the obtained mixture was stirred at room temperature overnight. The resulting precipitate was 

filtered off and the filtrate was concentrated in vacuo.  The residue (22.9 g) was mixed with water (200 

ml), to this mixture was added conc. HCl (30 ml), and the solid material was filtered off. The filtrate 

was washed with EtOAc (200 ml) and the pH of the medium was raised to 10 by adding 5N aqueous 

NaOH. The mixture was extracted with chloroform (3 × 300 ml), the extract was washed with brine 

(100 ml), and dried (Na2SO4). The solvent was evaporated and the residue was dried in vacuo to give O-

(2-morpholinoethyl)hydroxylamine (VIIIe) (20.7 g, quantitative yield). 1H NMR (200 MHz, CDCl3) δ: 

2.44-2.55 (m, 4H); 2.59 (t, J = 5.4 Hz, 2H); 3.69-3.77 (m, 4H); 3.81 (t, J = 5.4 Hz, 2H); 5.50 (b s, 2H). 
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Cyclohexanone O-(2-morpholin-4-ylethyl)oxime (XIXd) 

To a stirred solution of cyclohexanone oxime (XVIIc) (22.64 g, 0.2 mol) in dimethylformamide (200 

ml) at ice-bath temperature 60% sodium hydride in mineral oil (16.0 g, 0.4 mol) was added portion-wise 

and the resulting mixture was stirred at this temperature for 1 h. To the reaction mixture was added a 

suspension of 4-(2-chloroethyl)morpholine (37.22 g, 0.2 mol) in dimethylformamide (100 ml). The ice-

bath was removed, the reaction mixture was stirred at room temperature for 16 h and at 60 °C for 3 h. 

The mixture was allowed to cool to room temperature, and then filtered and the filtrate was evaporated. 

The residue was mixed with a saturated ammonium chloride solution in water (300 ml) and extracted 

with diethyl ether (3 × 200 ml). The combined organic extracts were washed successively with 0.5 N 

sodium hydroxide (200 ml), brine (200 ml), and dried (Na2SO4). The solvent was evaporated and the 

residue (36.47 g) was chromatographed on silica gel (250 g) with chloroform-methanol (40 : 1) as 

eluent to give compound XIXd (35.1 g, 77.5%) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ 1.54-

1.71 (m, 6H), 2.18 (m, 2H), 2.43 (m, 2H), 2.52 (m, 4H), 2.66 (t, 2H, J = 5.8 Hz), 3.71 (m, 4H), 4.15 (t, 

2H, J = 5.8 Hz). 

4-{2-[(Cyclohexylamino)oxy]ethyl}morpholine (VIIIc) 

To a solution of cyclohexanone O-(2-morpholin-4-ylethyl)oxime (XIXd) (13.9 g, 61.4 mmol) in 

methanol (100 ml) at ice-bath temperature were added sodium cyanoborohydride  (7.72 g, 122.8 mmol) 

and trace of Methyl Orange. To the obtained slightly yellow solution slowly 2N HCl solution in 

methanol was added until the color of the reaction mixture changed from yellow to pink (in about 15 

min.). The reaction mixture was stirred at room temperature for 5 h and the solvent was evaporated. To 

the residue was added water (30 ml) and the pH of the obtained solution was raised to pH>9 with 6N 

KOH, saturated with sodium chloride. The obtained mixture was extracted with chloroform (3 × 150 

ml), the combined organic extract was washed with brine (100 ml), and dried (Na2SO4). The solvent 

was removed and the residue was dried in vacuo to afford title compound VIIIc (13.0 g, 92%) as a 

yellow oil. 1H NMR (400 MHz, CDCl3) δ 1.00-1.33 (m, 5H), 1.62 (m, 1H), 1.73 (m, 2H), 1.84 (m, 2H), 
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2.48 (m, 4H), 2.56 (t, 2H, J = 5.7 Hz), 2.84 (tt, 1H, J = 3.7, 10.5 Hz), 3.71 (m, 4H), 3.81 (t, 2H, J = 5.7 

Hz), 5.43 (br s, 1H). LCMS (ESI) m/z: 299 [M+H]+. 

Sodium 6-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-1-hexanesulfonate (XXIVb) 

To a hot solution of 2-(6-bromohexyl)-1H-isoindole-1,3(2H)-dione (XXIIIb)49 (12.67 g, 40.8 mmol) in 

ethanol (82 ml) was added a solution of sodium sulfite (10.3 g, 81.7 mmol) in water (80 ml) and the 

resulting mixture was refluxed overnight. The hot mixture was filtrated, crystallized from ethanol, and 

dried in vacuo over P2O5 to give compound XXIVb (8.43 g, 62%). 1H NMR (200 MHz, (CD3)2SO) δ 

1.16-1.41 (m, 4H), 1.41-1.68 (m, 4H), 2.37 (m, 2H), 3.56 (t, 2H, J = 7.0 Hz), 7.77-7.92 (m, 4H). LCMS 

(ESI): m/z 312 [Msulfonic acid +H]+. 

6-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-hexanesulfonyl chloride (XXVb) 

A mixture of sodium 6-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-1-hexanesulfonate (XXIVb) (13.99 g, 

42.0 mmol) and phosphorus pentachloride (28.0 g, 134.5 mmol)  was carefully ground in a mortar 

(Caution – a good hood has to be used!). An evaluation of some amount of gas was observed and 

gradually (in 2-3 min.) the solid mixture turned into an oily liquid. The obtained liquid was mixed with 

toluene (280 ml), the precipitated solid material was filtered off, washed with toluene, and the filtrates 

were combined. The solvent was evaporated and the residue was azeotropically dried several times with 

toluene. The obtained white solid was dissolved in ethyl acetate (300 ml), washed successively with 

water (100 ml), saturated sodium bicarbonate (2 × 100 ml), brine (2 × 100 ml), and dried (Na2SO4). The 

solvent was evaporated and the residue was dried in vacuo over P2O5 to afford compound XXVb (10.4 

g, 75%) as white crystals: mp 73-75°C. 1H NMR (400 MHz, CDCl3) δ 1.41 (qui, 2H, J = 7.6 Hz), 1.55 

(qui, 2H, J = 7.6 Hz), 1.72 (qui, 2H, J = 7.4 Hz), 2.04 (m, 2H); 3.65 (m, 2H); 3.69 (t, 2H, J = 7.1 Hz); 

7.67-7.75 (m, 2H); 7.80-7.87 (m, 2H). Anal. Calcd. for C14H16ClNO4S: C, 50.99; H, 4.89; N, 4.25; S, 

9.72. Found: C, 51.03; H, 5.01; N, 4.17; S, 9.68.  

N-Cyclohexyl-6-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-N-(2-morpholinoethoxy)-1-

hexanesulfonamide (XXVIe) 
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A solution of N-cyclohexyl-O-(2-morpholin-4-yl-ethyl)-hydroxylamine (VIIIc) (12.56 g, 55 mmol) and 

triethylamine (14.0 ml, 100 mmol) in dry dichloromethane (100 ml) under argon atmosphere was cooled 

to -20°C. To the stirred solution slowly during 1 h was added a solution of 6-(1,3-dioxo-1,3-dihydro-

2H-isoindol-2-yl)hexane-1-sulfonyl chloride (XXVb) (16.49 g, 50 mmol) in dichloromethane (50 ml), 

and the resulting mixture was stirred at -20 °C for 20 h. The reaction mixture was concentrated to a 

small volume, filtered, and the precipitated solid material was washed with dichloromethane. The 

filtrate was evaporated, the residue (32.25 g) was dissolved in a small volume of chloroform and 

chromatographed on silica gel (450 g) with hexane-isopropanol (gradient from 7:3 to 6:4) as eluent. The 

eluate, containing pure product by TLC, was separated, and the impure material was re-

chromatographed using the same eluent. The eluates with TLC pure material were combined, the 

solvent was evaporated, and the residue was dried in vacuo to afford compound XXVIe (16.4 g, 62.8%) 

as a crystalline solid. 1H NMR (400 MHz, CDCl3) δ 1.10 (tq, 1H, J = 3.5, 12.9 Hz), 1.20-1.44 (m, 4H), 

1.44-1.76 (m, 7H), 1.76-1.95 (m, 6H), 2.49 (m, 4H), 2.58 (t, 2H, J = 5.6 Hz), 3.08 (b s, 2H); 3.58 (tt, 

1H, J = 3.6, 11.7 Hz), 3.68 (t, 2H, J = 7.0 Hz), 3.69 (m, 4H), 4.12 (b s, 2H), 7.71 (m, 2H), 7.83 (m, 2H). 

6-Amino-N-cyclohexyl-N-(2-morpholinoethoxy)-1-hexanesulfonamide (Ve) 

N-Cyclohexyl-6-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-N-(2-morpholinoethoxy)-1-

hexanesulfonamide (XXVIe) (17.608 g, 33.75 mmol) was dissolved in a mixture of chloroform (150 

ml) and absolute ethanol (150 ml), and hydrazine hydrate (4.2 ml, 86.54 mmol ) was added. The 

obtained mixture was refluxed for 5 h, and then stirred at room temperature overnight. The mixture was 

filtered, the precipitate was washed with dichloromethane, and the combined filtrates were evaporated. 

The residue was dissolved in dichloromethane (50 ml) and the mixture was kept in a refrigerator (ca 5 

°C) for 1 h, and then filtered again. The filtrate was evaporated and the residue (14.392 g) was 

chromatographed on silica gel (200 g) with methanol-30% ammonium hydroxide aqueous solution 

(gradient from 25:1 to 20:1) to give 8.38 g of an oil. The oil was dissolved in dichloromethane (100 ml), 

washed successively with water (2 × 20 ml), brine (20 ml), and dried (Na2SO4). The solvent was 

evaporated and the residue was dried in vacuo at 50 °C to give compound Ve (7.67 g, 63.8%) as a 
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yellow oil. 1H NMR (400 MHz, CDCl3) δ 1.10 (tq, 1H, J = 3.4, 12.9 Hz), 1.20-1.52 (m, 8H), 1.52-1.69 

(m, 5H),  1.75-1.98 (m, 6H), 2.49 (m, 4H), 2.59 (t, 2H, J = 5.6 Hz), 2.70 (t, 2H, J = 6.8 Hz), 3.09 (b s, 

2H); 3.59 (tt, 1H, J = 3.6, 11.7 Hz), 3.69 (m, 4H), 4.12 (b s, 2H). LCMS (ESI) m/z: 392 [M+H]+. Anal. 

Calcd for C18H37N3O4S · 0.15 H2O: C, 54.83; H, 9.54; N, 10.66; S, 8.13. Found: C, 54.86; H, 9.66; N, 

10.63; S, 8.14. 

6-(2-Cyano-3-(pyridin-4-yl)guanidino)-N-cyclohexyl-N-(2-morpholinoethoxy)hexane-1-

sulfonamide (15)  

A mixture of 6-amino-N-cyclohexyl-N-(2-morpholinoethoxy)-1-hexanesulfonamide (Ve) (2.49 g, 6.4 

mmol), 4-[(cyanoimino)(methylsulfanyl)methyl]aminopyridine (IIIa) (1.22 g, 6.3 mmol), triethylamine 

(3 ml, 21.6 mmol), and 4-dimethylaminopyridine (0.1 g, 0.8 mmol) in dry pyridine (4 ml) was stirred at 

75-80 °C for 5 h. The solvent was evaporated to dryness and the residue was chromatographed on silica 

gel (150 g) with acetonitrile-water (10:1) as eluent to give compound 15 (1.8 g, 53%) as a foam together 

with a less pure material (1.0 g, 29%) which can be purified repeatedly by column chromatography to 

increase the yield of the process. 1H NMR (200 MHz, (CD3)2SO) δ 0.79-1.66 (m, 13H); 1.66-1.96 (m, 

5H); 2.38-2.47 (m, 4H); 2.47-2.60 (m, 2H, overlapped with DMSO); 3.12-3.33 (m, 4H); 3.39-3.54 (m, 

1H); 3.52-3.63 (m, 4H); 4.02 (t, J = 5.6 Hz, 2H); 7.21 (d, J = 5.3 Hz, 2H); 7.87 (t, J = 5.5 Hz, 1H); 8.38 

(d, J = 5.6 Hz, 2H); 9.41 (b s, 1H). HRMS m/z calcd for C25H42N7O4S [M+H]+, 536.3019; found, 

536.2976. 

6-(2-Cyano-3-(pyridin-4-yl)guanidino)-N-(cyclohexylmethoxy)-N-(2-fluoroethyl)hexane-1-

sulfonamide (17)     

N-(Cyclohexylmethoxy)-6-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-1-hexanesulfonamide 

(XXVIIc)       

To a solution of O-(cyclohexylmethyl)hydroxylamine (VIIId) (1.1 g, 8.51 mmol) and triethylamine (2.3 

ml, 16.55 mmol) in dry dichloromethane (40 ml) at ice-bath temperature slowly for 2 h was added 6-

(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)hexane-1-sulfonyl chloride (XXVb) (3.08 g, 9.34 mmol) 

portion-wise. The reaction mixture was allowed gradually to warm up to room temperature (for 1 h) and 
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evaporated. The residue was dissolved in ethyl acetate (100 ml), washed successively with water (2 × 15 

ml), brine (30 ml), and dried (Na2SO4). The solvent was evaporated and the residue was dried in vacuo 

over P2O5 to afford compound XXVIIc (3.2 g, 89%) as crystalline solid. 1H NMR (400 MHz, CDCl3) δ 

0.86-1.00 (m, 2H), 1.08-1.30 (m, 3H), 1.33-1.44 (m, 2H), 1.46-1.57 (m, 3H), 1.61-1.77 (m, 7H), 1.75-

1.85 (m, 2H), 3.18 (m, 2H), 3.68 (t, 2H, J = 7.2 Hz), 3.80 (d, 2H, J = 6.2 Hz), 6.99 (s, 1H), 7.71 (m, 

2H), 7.84 (m, 2H). 

N-(Cyclohexylmethoxy)-6-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-N-(2-fluoroethyl)-1-

hexanesulfonamide (XXVIi) 

To a solution of N-(cyclohexylmethoxy)-6-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-1-

hexanesulfonamide (XXVIIc) (2.11 g, 5.0 mmol), 2-fluoroethanol (0.4 g, 6.2 mmol), and 

triphenylphosphine (2.16 g, 8.2 mmol) in dichloromethane (40 ml) at ice bath temperature slowly in 10 

min. was added a solution of diethyl azodicarboxylate (1.43 g, 8.2 mmol) in dichloromethane (1.5 ml) 

and the resulting mixture was stirred at this temperature for 20 min. The ice bath was removed, and then 

the reaction mixture was stirred at room temperature for 3 h, and evaporated. The residue was mixed 

with petroleum ether-ethyl acetate (4:1, 25 ml), the obtained suspension was stirred for 30 min. at ice 

bath temperature and filtered. The filtrate was evaporated and the residue was chromatographed on 

silica gel with toluene-ethyl acetate (9:1) as eluent to afford compound XXVIi (1.57 g, 67%) as white 

crystals. 1H NMR (400 MHz, CDCl3) δ 0.90-1.06 (m, 2H), 1.09-1.33 (m, 4H), 1.33-1.45 (m, 2H), 1.45-

1.79 (m, 9H), 1.83-1.95 (m, 2H), 3.07 (m, 2H), 3.54 (td, 2H, J = 5.0, 23.8 Hz), 3.68 (t, 2H, J = 7.1 Hz), 

3.86 (d, 2H, J = 6.4), 4.62 (td, 2H, J = 5.0, 47.1 Hz), 7.71 (m, 2H), 7.83 (m, 2H). 

6-Amino-N-(cyclohexylmethoxy)-N-(2-fluoroethyl)-1-hexanesulfonamide (Vi) 

N-(Cyclohexylmethoxy)-6-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-N-(2-fluoroethyl)-1-

hexanesulfonamide (XXVIi) (1.53 g, 3.26 mmol) was dissolved in a mixture of ethanol (20 ml) and 

chloroform (10 ml), and hydrazine hydrate (0.5 ml, 103 mmol) was added. The reaction mixture was 

stirred at 60 °C for 2 h, left overnight at room temperature, and cooled in the refrigerator (5 °C). The 

precipitated solid was filtered off and the filtrate was evaporated. The residue was chromatographed on 
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silica gel with chloroform-methanol-30% ammonium hydroxide aqueous solution (5:1:0.15) as eluent to 

give compound Vi (0.93 g, 84%) as white crystals. 1H NMR (400 MHz, CDCl3) δ 0.90-1.04 (m, 2H), 

1.09-1.30 (m, 3H), 1.33-1.54 (m, 6H), 1.54-1.78 (m, 6H), 1.82-2.02 (m, 4H), 2.72 (t, 2H, J = 6.9 Hz), 

3.08 (m, 2H), 3.54 (td, 2H, J = 5.0, 23.6 Hz), 3.87 (d, 2H, J = 6.5), 4.62 (td, 2H, J = 5.0, 47.0 Hz). 

6-(2-Cyano-3-(pyridin-4-yl)guanidino)-N-(cyclohexylmethoxy)-N-(2-fluoroethyl)hexane-1-

sulfonamide (17)     

A mixture of 6-amino-N-(cyclohexylmethoxy)-N-(2-fluoroethyl)-1-hexanesulfonamide (Vi) (1.95 g, 

5.76 mmol), 4-[(cyanoimino)(methylsulfanyl)methyl]aminopyridine (IIIa) (1.1 g, 5.76 mmol), 

triethylamine (0.93 ml, 6.68 mmol), and 4-dimethylaminopyridine (0.15 g, 1.22 mmol) in dry pyridine 

(20 ml) was stirred at 85 °C for 20 h. The solvent was evaporated to dryness; the residue was 

azeotropically dried with toluene (2 × 5 ml), and then vigorously stirred with ether (30 ml) until the 

precipitation occurred (ca 2h). The obtained suspension was filtered and the solid material (2.7 g) was 

chromatographed on silica gel with chloroform-methanol-30% ammonium hydroxide aqueous solution 

(6:1:0.015) as eluent to give compound 17 (2.48 g, 89%) as white crystals: mp 100-102 °C. 1H NMR 

(400 MHz, CDCl3) δ 0.90-1.04 (m, 2H), 1.11-1.29 (m, 3H), 1.41 (qui, 2H, J = 7.3 Hz), 1.48-1.75 (m, 

10H), 1.91 (qui, 2H, J = 7.6 Hz), 3.09 (t, 2H, J = 7.5 Hz), 3.36 (q, 2H, J = 6.6 Hz), 3.52 (dt, 2H, J = 4.9, 

24.0 Hz), 3.86 (d, 2H, J = 6.5 Hz), 4.61 (dt, 2H, J = 4.9, 47.0 Hz), 5.51 (b s, 1H), 7.20 (d, 2H, J = 4.9 

Hz), 7.68 (b s, 1H), 8.55 (d, 2H, J = 4.9 Hz). Anal. Calcd for C22H35FN6O3S: C, 54.75; H, 7.31; N, 

17.41. Found: C, 54.85; H, 7.42; N, 17.50. HRMS m/z calcd for C22H36FN6O3S [M+H]+, 483.2554; 

found, 483.2526. 

 

Cell culture  

Human breast carcinoma, MCF-7 and ovarian carcinoma A2780 were grown according to American 

Type Culture Collection guidelines. Cell culture media were from Invitrogen unless otherwise stated. 

MCF-7 was maintained in DMEM and A2780 in RPMI 1640 with GlutaMax. Media was supplemented 
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with 10%(v/v) FCS (Perbio, Thermo Fischer Scientific) and penicillin (100 U/mL), streptomycin (0.1 

mg/mL) and cells incubated at 37 °C in an atmosphere containing 5% CO2. 

 

WST-1 proliferation assay  

Cells were seeded in 96-well plates (3×103 cells/well) in culture medium (100 µL). The following day 

compounds were serially diluted in culture medium and 100 µL of each dilution were added per well in 

triplicate to the cell culture plates. Plates were incubated (72 h, 37°C, 5% CO2 atmosphere) and the 

number of viable cells assessed using cell proliferation reagent WST-1 (Roche, Mannheim, Germany). 

Reagent (10 µL) was added to each well and after a 1 h incubation period, absorbance was measured at 

450 nm subtracting absorbance at 690 nm as a reference. Data were analysed using GraphPad Prism 

(GraphPad Software, CA, USA) and Calcusyn (Biosoft, Cambridge, UK) as appropriate.  

Clonogenic assays  

HCT-116/APO866 resistant cell line was obtained as described previously.43 

In vitro colony forming assays were performed essentially as previously published.50 Briefly, HCT116 

cells were cultured with compounds for the indicated times and seeded onto 35 mm dishes in agar (3% 

(w/v)) containing a sheep erythrocyte feeder layer. Agar plates were cultured for 14–21 days at 37 °C 

and colonies counted using a digital colony counter and Sorcerer image analysis software (Perceptive 

Instruments Ltd, SuVolk, UK). Data were analyzed using GraphPad Prism (GraphPad Software, CA, 

USA) and Calcusyn (Biosoft, Cambridge, UK) as appropriate. 

NAMPT enzyme assay  

NAMPT enzyme activity was measured as described previously with minor modifications.51,52 In this 

procedure the NAMPT catalysed formation of 14C-nicotinamide mononucleotide (NMN) was 

determined, using 14C-nicotinamide and 5-phosphoribosyl-1-pyrophosphate (PRPP) as substrates.  
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For preparation of lysates, confluent HepG2 cells were washed twice with PBS (4°C, Ca²+, Mg2+ free), 

once with NaHPO4-buffer, (0.01 N, pH 7.4) and scraped in NaHPO4-buffer. After centrifugation (10 

min, 500×g, 4°C) pelleted cells were resuspended by pipetting in NaHPO4-buffer to a concentration of 

approx. 107 cells/100 µl for HepG2 and aliquoted (200 µl aliquots in 2 ml tubes). Cells were then 

broken up by sonography on ice (Bandelin Sonopuls, 3×10s, approx. 30% power). Cell debris was 

removed by centrifugation (23,000×g, 90 min, 0°C). Protamine sulphate solution (1% in NaHPO4 

buffer) was added to the supernatant (70 µl/ml supernatant) to precipitate DNA by incubation on ice for 

15 min. After centrifugation (23,000×g, 30 min, 0°C), aliquots of the supernatant were stored at –80°C. 

Various concentrations of inhibitor or adequate concentrations of DMSO as solvent control and cell 

lysates (10 µl) were added to a total of 50 µl reaction mixture (50 mmol/l TrisHCl pH 7.4; 2 mmol/l 

ATP; 5 mmol/l MgCl2; 0.5 mmol/l PRPP; 6.2 µmol/l 14C-nicotinamide; American Radiolabelled 

Chemicals, St. Louis; MO, USA) and incubated (37°C, 1h). The reaction was terminated by transfer into 

tubes containing acetone (2 ml). The whole mixture was then pipetted onto acetone-pre-soaked glass 

microfiber filters (GF/A Ø 24 mm; Whatman, Maidstone, UK). After rinsing with acetone (2×1 ml), 

filters were dried, transferred into vials with scintillation cocktail (6 ml, Betaplate Scint, PerkinElmer, 

Waltham, MA, USA) and radioactivity of 14C-NMN was quantified in a liquid scintillation counter 

(Wallac 1409 DSA, Perkin Elmer). After subtraction of blank values, NAMPT activity was normalized 

to total protein as measured by BCA assay (Pierce).  

 

Xenograft studies  

The anti-tumour effect in vivo was tested in an A2780 (ovarian cancer) subcutaneous (s.c.) xenograft 

model in nude mice (female, NMRI/nude, Harlan or Taconic). Cancer cells were grown in RPMI + 10% 

FBS, washed once with PBS and suspended in 100 µL of PBS + 100 µL matrigel (BD) and injected s.c. 

Treatment started at tumour volumes around 100 mm3 (small tumours) or 500 mm3 (large tumour). The 

compounds were formulated in DMSO 2%, 20% HP-β-CD and isotonic saline at 10 mL/kg i.p. 
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injection. Tumour diameters were measured during tumour growth and tumour volumes (Tv) estimated 

according to the formula: Tv = (width² × length)/2. Mice were observed for tumour regression after 1 

week or else sacrificed. The experiments were conducted at Topotarget A/S, Copenhagen and approved 

by the Experimental Animal Inspectorate, Danish Ministry of Justice. 

 

Pharmacokinetic analysis  

Mouse plasma samples were prepared for analysis by protein precipitation on Sirocco plates (Waters, 

Milford, Ma, USA).  Waters Acquity UPLC system with Quattro Premier MS-MS system was used for 

separation and detection. Acetonitrile containing 1 µg/ml of internal standard was used in the ratio 3:1 

(v/v) for precipitation. Separation was performed with an acetonitrile – 0.05% formic acid gradient on a 

Acquity UPLC BEH C18, 2.1×50 mm, 1.7 µm reversed phase column (Waters A/S) operated at 40°C.  

Detection was performed using electrospray MRM in the positive mode. Pharmacokinetic parameters 

were calculated using non compartmental analysis methods as included in WinNonlin ver 5.02 

(Pharsight, CA, USA). 

 

Docking analysis 

The structure was downloaded from the protein data bank (PDB ID 2GVJ) and prepared for docking 

using the built-in protein preparation wizard in Maestro v. 9.3. During this process bond orders were 

assigned and hydrogens added to the crystal structure. Furthermore, the four seleno-methionines which 

had been incorporated to allow for better X-ray diffraction were changed to cysteines (chain A: residues 

368 and 372, chain B: residues 368 and 372). The docking was carried out using Glide v. 5.8 in extra 

precision (XP) mode. The ligands were docked flexibly and nitrogen inversions and ring flips were 

allowed. The van der Waals radii of the non-polar ligand atoms (partial charge < 0.15) were scaled by a 

factor of 0.8 to accommodate slightly inaccurate initial dockings. A post-docking minimization was 

carried out for the best 25 poses for each ligand and finally the 10 best poses were reported.  
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DFT analysis 

This study was carried out using Jaguar v. 8.0.53 DFT using the B3LYP functional54-56 with added d3 

corrections57,58 to account for dispersion interactions. We used the 6-31G** basis set59 throughout. 

 

Supporting Information Available. Experimental procedures, analytical and spectral data for all 

intermediate and final compounds, computation chemistry docking scores and associated docking poses. 

This material is available free of charge via the Internet at http://pubs.acs.org. 
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