Characterization of the small intestinal gene expression response in a preterm pig model of necrotizing enterocolitis

Støy, Ann Cathrine Findal; Sangild, Per T.; Skovgaard, Kerstin; Heegaard, Peter M. H.

Publication date: 2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Støy, A. C. F., Sangild, P. T., Skovgaard, K., & Heegaard, P. M. H. (2013). Characterization of the small intestinal gene expression response in a preterm pig model of necrotizing enterocolitis. Poster session presented at 10th International Veterinary Immunology Symposium, Milano, Italy.
Characterization of the small intestinal gene expression response in a preterm pig model of necrotizing enterocolitis

Ann Cathrine F. Støy1,2, Per T. Sangild2, Kerstin Skovgaard1, Peter M. H. Heegaard1
1 Innate Immunology Group, National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
2 Department of Nutrition, Exercise and Sports, University of Copenhagen, DK-1958 Frederiksberg C, Denmark
Correspondence: acfst@vet.dtu.dk

Aim
To investigate how expression of epithelial- and immune response-related genes in distal small intestinal tissue is affected by necrotizing enterocolitis (NEC) in a preterm pig model of NEC.

Conclusion
The results points to inflammation and loss of intestinal integrity as being important components of NEC. Further studies should address the relationship of inflammation related gene expression and the development of NEC in order to elucidate cause-effect relationships leading to NEC.

Introduction
NEC is a the serious gastrointestinal disease in preterm infants, and is caused by the combined effect of abnormal bacterial colonization, enteral feeding, and prematurity, including immaturity of the immune system.

In a well-established preterm pig model of NEC, the effect of diet on disease development has been studied thoroughly; however, the inflammatory response during NEC needs to be characterized to elucidate cause-effect relationships leading to NEC, and to improve and promote the use of this model as a model for human disease.

Experimental design (Figure 1)
Preterm pigs were delivered by Cesarean section and given total parenteral nutrition (TPN) for 2 days followed by enteral nutrition: bovine colostrum (n = 6) or 6 hours of milk formula followed by continued milk formula (n = 13), bovine colostrum (n = 14), reconstituted spray dried bovine colostrum (n = 7), or reconstituted pasteurized, spray dried bovine colostrum (n = 9).

Pigs were euthanized after 2 days of enteral feeding, and the gastrointestinal tract (stomach, proximal-, mid- and distal small intestine and colon) was evaluated for NEC lesions using a severity score ranging from 1–6 (6 being severe NEC). Pigs with a severity score of minimum three in any gastrointestinal region was regarded as a case of NEC. High throughput qPCR was used to investigate the gene expression of 48 genes in distal small intestinal tissue.

Figure 1. Experimental design.

Results
28 pigs developed NEC (mean NEC score = 3.0 ± 0.1) while 21 stayed healthy (mean NEC score = 1.0 ± 0.03).

Irrespective of enteral diet group, the expression of four genes (CCL3, IL1RN, IL6 and IL8) coding for proteins involved in inflammation was increased in pigs suffering from NEC compared to healthy pigs (Figure 2). With higher NEC severity in the distal small intestine, a more diverse gene expression pattern between pigs was observed in principal component analysis (PCA; Figure 3). Six genes involved in inflammation correlated positively, while 2 genes coding for tight junction proteins involved in maintaining intestinal permeability were negatively correlated with NEC severity (Table 1).

Figure 2. Relative gene expression (means ± SEM). **within each gene indicate significant differences, p < 0.01.

Figure 3. PCA plot of expression data.

Table 1. Spearman correlations between gene expression and distal small intestinal NEC score.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Function of protein</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD14</td>
<td>Co-receptor for LPS detection</td>
<td>0.415**</td>
<td></td>
</tr>
<tr>
<td>IL6</td>
<td>Anti- and proinflammatory</td>
<td>0.387**</td>
<td></td>
</tr>
<tr>
<td>IL8</td>
<td>Chemokine receptor for neutrophil</td>
<td>0.417**</td>
<td></td>
</tr>
<tr>
<td>CCL3</td>
<td>Recruitment /activation of polymorphonuclear leukocytes</td>
<td>0.485***</td>
<td></td>
</tr>
<tr>
<td>IL1RN</td>
<td>Inhibitor of the pro-inflammatory effect of IL1β</td>
<td>0.493***</td>
<td></td>
</tr>
<tr>
<td>CD163</td>
<td>Receptor that marks monocytes/macrophage lineage</td>
<td>0.380**</td>
<td></td>
</tr>
<tr>
<td>CLDN3</td>
<td>Tight junction</td>
<td>-0.420**</td>
<td></td>
</tr>
<tr>
<td>OCLN</td>
<td>Tight junction</td>
<td>-0.364*</td>
<td></td>
</tr>
</tbody>
</table>

1 * p < 0.05, ** p < 0.01, *** p < 0.001

0 h TPN C-section 48 h Enteral nutrition ~96 h

tp > 0.05, **p < 0.01, ***p < 0.001