
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 23, 2024

Optimal prediction intervals of wind power generation

Wan, Can; Wu, Zhao; Pinson, Pierre; Dong, Zhao Yang; Wong, Kit Po

Published in:
IEEE Transactions on Power Systems

Link to article, DOI:
10.1109/TPWRS.2013.2288100

Publication date:
2014

Link back to DTU Orbit

Citation (APA):
Wan, C., Wu, Z., Pinson, P., Dong, Z. Y., & Wong, K. P. (2014). Optimal prediction intervals of wind power
generation. IEEE Transactions on Power Systems, 29(3). https://doi.org/10.1109/TPWRS.2013.2288100

https://doi.org/10.1109/TPWRS.2013.2288100
https://orbit.dtu.dk/en/publications/f0dfec75-451e-494f-86b4-277a46f666e1
https://doi.org/10.1109/TPWRS.2013.2288100


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON POWER SYSTEMS 1

Optimal Prediction Intervals
of Wind Power Generation

Can Wan, Student Member, IEEE, Zhao Xu, Senior Member, IEEE, Pierre Pinson, Senior Member, IEEE,
Zhao Yang Dong, Senior Member, IEEE, and Kit Po Wong, Fellow, IEEE

Abstract—Accurate and reliable wind power forecasting is es-
sential to power system operation. Given significant uncertainties
involved in wind generation, probabilistic interval forecasting
provides a unique solution to estimate and quantify the potential
impacts and risks facing system operation with wind penetration
beforehand. This paper proposes a novel hybrid intelligent algo-
rithm approach to directly formulate optimal prediction intervals
of wind power generation based on extreme learning machine and
particle swarm optimization. Prediction intervals with associated
confidence levels are generated through direct optimization of
both the coverage probability and sharpness to ensure the quality.
The proposed method does not involve the statistical inference
or distribution assumption of forecasting errors needed in most
existing methods. Case studies using real wind farm data from
Australia have been conducted. Comparing with benchmarks
applied, experimental results demonstrate the high efficiency and
reliability of the developed approach. It is therefore convinced
that the proposed method provides a new generalized framework
for probabilistic wind power forecasting with high reliability and
flexibility and has a high potential of practical applications in
power systems.

Index Terms—Extreme learning machine, forecasts, particle
swarm optimization, prediction intervals, wind power.

I. INTRODUCTION

W IND energy is the most important and efficient renew-
able energy and is widely utilized for power generation

in modern power systems in the past decades. In particular, wind
power can supply up to 20% of annual electricity consumption
in Denmark. However, wind power also introduces much more
uncertainties than conventional generation due to the chaotic na-
ture of the weather system. Accurate and reliable wind power
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forecasting becomes highly meaningful to optimize the oper-
ation cost and improve the reliability for power systems with
increased wind penetration [1].
In the past, most researches focused on point forecasting ap-

proaches for wind power [2]. Due to the nonstationarity of wind
power series, traditional point forecasting can hardly be accu-
rate, and the forecasting errors are unavoidable and significant
to some extent. For traditional applications, wind power fore-
casting errors are statistically analyzed in [3]. With the integra-
tion of high penetration of wind generation in deregulated power
systems, the development of probabilistic forecasting tools is
needed for making decisions in the operational domain to ac-
counting for wind generation uncertainties. Recently, different
approaches have been proposed for probabilistic wind power
forecasts to obtain prediction intervals (PIs). Meteorological
ensembles are used to obtain predictive distribution and esti-
mate the uncertainty of forecasts [4], [5]. The uncertainty of
wind power forecasting is investigated based on the nonlinear
power curve and statistical analysis of wind speed prediction
errors [6]. Quantile regression is used to estimate different fore-
casting quantiles [7], [8]. Based on the point prediction results
of AWPPS,WPPT and Sipreólico, PIs are constructed through a
combined nonparametric probability forecasts and adaptive re-
sampling approach [9]. In [10], radial basis function has been
implemented to derive quantile forecasts of wind power based
on point prediction results, weather conditions, etc. The con-
ditional kernel density (CKD) estimation approach is proposed
to estimate of the probability distribution of wind power gen-
eration [11]. In general, PIs with associated confidence levels
successfully quantify the uncertainties of wind power forecasts,
which essentially benefit all participants in power systems to
prepare for possible scenarios in advance and significantly re-
duce risks facing power system operation and control, such as
wind farm control, reserve setting, energy storage sizing, unit
commitment, wind power trading, and so forth [12]–[17].
In this paper, a hybrid intelligent algorithm (HIA) based in-

terval forecasting approach is newly developed to produce pre-
diction intervals of wind power generation based on the ex-
treme learning machine (ELM) [18] and particle swarm opti-
mization (PSO) [19]. The proposed HIA method aims to ob-
tain optimal PIs without the prior knowledge, statistical infer-
ence or distribution assumption of forecasting errors required
in most traditional approaches. ELM applied in the proposed
approach is a novel learning algorithm proposed for training
single-hidden layer feedforward neural networks (SLFNs) fea-
turing extremely fast learning speed and superior generaliza-
tion capability. ELM successfully avoids the limitations of tradi-
tional neural networks (NNs) learning algorithms, such as local
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minima, overtraining, high computation costs and so forth. Due
to its excellent performance, ELM has been used in many dif-
ferent applications including both regression and classification
tasks [20]–[22].
Classical NNs based PIs construction methods always as-

sume that prediction errors are normally distributed [23]–[26].
These methods are not applicable to the case of ELM, since the
extreme learning process is very different from that for con-
ventional NNs. Lower upper bound estimation (LUBE) method
is proposed for PI construction based on traditional NN [27],
applied in load forecasting [28] and wind power forecasting
[29]. However, traditional NNs employed in the LUBE method
would cause several inevitable limitations, such as overtraining,
high computation burden, and so forth. Furthermore, the cov-
erage width-based criterion (CWC) cannot accurately measure
the overall skill of constructed PIs. Traditional PIs construc-
tion methods for wind power rely on quantile analysis of point
forecast errors with or without prior distribution assumptions
[4]–[11], where the procedures of PIs formulation and final per-
formance assessment are usually separated. E.g. in [9], PIs can
be achieved through a conditional probabilistic modeling be-
tween point forecast outputs and associated errors. In contrast,
the proposed HIA approach integrates the two procedures holis-
tically to formulate the PIs directly to pursue the best quality of
resultant PIs, without the need of prior knowledge and distribu-
tion assumption of point forecasts errors. As investigated in [30]
as early as 1970s, with a properly constructed cost function, PI
estimation could be considered as a Bayesian decision-making
procedure to acquire an optimal PI that minimizes the expected
cost. The objective function of HIA is specially formulated to
address both the coverage probability and sharpness of PIs si-
multaneously, and is optimized through PSO featuring fast con-
vergence and gradient-free optimization. Furthermore, the pro-
posed method is able to generate multiple optimal PIs of dif-
ferent confidence levels in one single optimization process.
Generally, different decision-makers in power systems have

different look-ahead time preferences ranging from minutes to
days for wind power forecasts according to their own opera-
tional requirements. Very short-term wind power prediction is
needed to wind farm control [12], [13], the temporal operation
of wind storage systems associated with temporal market
regulations such as Australian National Electricity Market with
5-min resolution [31], and the transmission system operator
(TSO) which aims to optimally dispatch reserves for the con-
tinuous balance of the power system [32], [33]. Hourly ahead
forecast is crucial for power system and electricity market
balance, e.g., Nord pool market [34]. Longer term forecasts
up to days ahead are very meaningful for unit commitment
[16], day-ahead market trading [17], etc. The proposed HIA
method has been tested using the practical data of two wind
farms in Australia. Without loss of generality, in the case study
we focus on the hourly forecast on an hourly basis though with
extendibility. Comparing with benchmarks, the effectiveness of
the proposed method has been proved through comprehensive
evaluations with respect to both the reliability and overall skill
of the forecasting results. By accurate quantification of the un-
certainties of wind generation forecasts, the proposed interval
forecasting approach has a high potential to support various

operation and planning activities in power systems, such as to
provide reliable information for dispatching, e.g., the hourly
Nord pool market. Particularly, the interval forecasting results
can also be used to develop new operation and planning tools
for TSO to probabilistically determine the needed reserves in
advance [14], [15], and to facilitate Gencos’ risk management
through strategic biding [17].
The rest of this paper is organized as follows. Section II in-

troduces the ELM and PIs formulation. Section III describes PIs
evaluation indices including reliability and sharpness. Objective
function modeling and the detailed procedures of the proposed
HIA approach are expressed in Section IV. Comprehensive nu-
merical studies are implemented and analyzed in Section V. Fi-
nally, the conclusion is drawn in Section VI.

II. PREDICTION INTERVAL FORMULATION

A. Extreme Learning Machine

ELM is a recently developed novel algorithm for training
a single hidden-layer feedforward neural network [18]. Dif-
ferent from traditional gradient-based training algorithms in
supervised batch learning, ELM randomly chooses the input
weights and hidden biases and needs not be tuned in the training
process, dramatically saving learning time. Given datasets with
arbitrary distinct samples where the inputs

and the targets , if the ELM with hidden
neurons and activation function can approximate the
samples with zero error, it can be expressed by the following
equation:

(1)

where represents the weight vector
connecting the th hidden neuron and the input neurons,

denotes the weight vector connecting
the th hidden neuron and the output neurons, denotes the
threshold of the th hidden neuron, and is the
output of the th hidden neuron with respect to the input .
Equation (1) can be simplified as

(2)

where is the hidden layer output matrix of the modeled ELM,
expressed as

...
... (3)

The th column of denotes the output vector of
the th hidden neuron with respect to the inputs

. In addition, is the matrix of output
weights and is the matrix of targets, respectively represented
as

...
... (4)
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After the weights and the hidden layer biases are
randomly assigned, the hidden layer output matrix can be
uniquely determined, and consequently the estimated parame-
ters , and can be obtained such that

(5)

which is equivalent to minimizing the cost function of the tra-
ditional gradient-based back-propagation learning algorithm

(6)

With unchanged input weights and the hidden layer biases of
ELM, training an SLFN is simply equivalent to finding a unique
smallest norm least-squares solution of the linear system in (2),
expressed as

(7)

where is the Moore-Penrose generalized inverse of the
hidden layer output matrix , which can be derived through
singular value decomposition (SVD) method.
For any infinitely differentiable activation function, when the

number of hidden neurons equals to the number of training sam-
ples, i.e., , ELM can exactly learn with zero error. The
ELM overcomes many limitations of traditional gradient based
NNs training algorithms, such as the local minima, overtraining,
high computational burdens, etc. The traditional gradient based
NNs leaning algorithms always involve a number of iterations
that affect the training speed. The ELM training features ex-
tremely fast speed because of the simple matrix computation,
and can always guarantee the optimal performance [18].

B. Formulation of PIs

PIs quantify the uncertainty associated with forecasts. Given
a set of process pairs

(8)

where is the future target to forecast, and denotes relevant
input variables that can include historical wind power and wind
speeds, numerical weather predictions and so on for wind power
forecasting in the study. PI with nominal confidence

of the future target , represented as , can be
expressed as the following equation:

(9)

where and denote the lower and upper
bounds of PI , respectively, such that the future target
is expected to be enclosed by with coverage proba-

bility

(10)

The proposed method aims to directly generate the lower
and upper bounds of the expected PIs by ELM. It should

Fig. 1. ELM model for PIs generation by the proposed HIA approach.

be pointed out that the proposed method actually provides
an unique framework capable of generating multiple pairs
of PI bounds with different nominal coverage probabilities

simultaneously through a single opti-
mization approach. The overall structure of the proposed ELM
model is shown in Fig. 1, where the ELM takes the inputs and
outputs the corresponding PI bounds of different confidence
levels.

III. PIS EVALUATION CRITERIA

In this section, comprehensive PIs evaluation indices are in-
troduced from the perspectives of reliability and sharpness in
detail.

A. Reliability

Reliability is regarded as a major property for validating
probabilistic forecasting models, due to that low reliability
could cause systematic bias involved in following deci-
sion-making problems. According to the PIs definition, the
future targets are expected to be covered by the constructed
PIs with the nominal probability , termed as PI
nominal confidence (PINC). PI coverage probability (PICP),
represented by , is a key measure for the reliability of the
constructed PIs [9], [10], defined by

(11)

where is the size of test dataset, and is the indicator of
PICP, expressed as

(12)

The PICP of derived PIs should asymptotically approach
the PINC as closely as possible. Therefore, average coverage
error (ACE), represented by , can be used to assess the PIs
quality [9], [10], defined by

(13)

The value of ACE should diminish towards zero as closely as
possible, i.e., the smaller the absolute ACE is, the higher relia-
bility the obtained PIs possess.
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B. Sharpness

Under the condition of high reliability, sharper PIs have
higher quality and would be preferred by decision makers. The
sharpness is an indispensable aspect of PIs quality and should
be considered in the evaluation process [35]. It can be under-
stood that high reliability can be easily achieved by simply
increasing or decreasing the distance between the bounds of PI,
which can result in the degradations of sharpness. Obviously,
the resultant PIs can be far from satisfactory and would be
useless in practice since they cannot provide accurate quantifi-
cations of uncertainties involved in the real-world processes.
The width of PI defined in (9), represented by

, can be calculated through

(14)

In the study, we focus on obtaining PIs with two quantiles
at particular confidences. Therefore, the interval score can be
used to assess the overall skill of wind power PIs to involve
the sharpness aspect [30]. The interval score of the specific PI

, represented by , is defined through

if

if

if .
(15)

The score is calculated for each prediction point and then the
overall score value can be derived as the average over the
entire test dataset

(16)

Obviously, the score awards the narrow PI and penalizes it if
the target is not enclosed. Including all aspects of PIs evalua-
tion, the interval score can be used to compare the overall skill
of interval forecasts. However, the score cannot quantitatively
distinguish the contributions of reliability and sharpness to the
overall skill. Though, based on a prior analysis of reliability, a
skill score can still be employed to carry out an assessment from
the sharpness perspective. Given PIs with the same PINC and
similar reliability, the smaller the absolute score indicates
the higher sharpness and consequently the higher quality.
With the described PIs assessment criteria above, we can see

that both the reliability and sharpness should be taken into con-
sideration to comprehensively assess the quality of constructed
PIs. Meanwhile, it should be noted that reliability is the primary
feature reflecting the correctness of the constructed PIs. Gener-
ally, in the evaluation process, the reliability of PIs should be
prioritized.

IV. OPTIMAL CONSTRUCTION OF PIS

A. Objective Function

The proposed HIA method adopts an ELM to predict the PIs
and pursues the optimal quality of produced PIs without sta-
tistical inferences and distribution assumptions for forecasting

errors. Because of the unique properties of ELM described in
Section II-A, training the ELM based forecasters is equivalent to
analytically determining the output weights alone. Comprehen-
sive PIs evaluation criteria are well established and described in
Section III. To ensure the quality of produced PIs, ELM output
weights are optimized to account for both reliability and sharp-
ness of the generated PIs simultaneously, which can be consid-
ered as a multi-objective optimization problem (MOOP) [36].
A multi-objective function for training the proposed model

is developed based on well-established PIs evaluation criteria
introduced in the previous section to produce optimal PIs. It
should be highlighted that though the interval score accounts for
reliability and sharpness, it cannot quantitatively distinguish the
contributions of the two aspects. However, the interval score can
provide an evaluation from the perspective of sharpness given
a prior analysis of reliability. Under the same nominal confi-
dence and similar reliability, PIs with the smaller the absolute
score have the higher sharpness and the higher quality.
The interval score is not a dedicated index for reliability assess-
ment anyhow. As the primary requirement of probabilistic fore-
casting, the reliability of PIs should be given a prior analysis in
the assessment process. Therefore to specifically quantify and
emphasize the reliability aspect, ELM output weights are opti-
mized with respect to the objective combining ACE and
overall score to optimize both reliability and sharpness of
PIs at particular confidence levels ,

(17)

(18)

(19)

where is the absolute value function, is ACE of PIs with
corresponding PINC , denotes the
normalized absolute interval score which is normalized
over the corresponding maximum score and min-
imum score , defined by

(20)

and and are importance weights of the reliability and
overall skill (including sharpness), respectively. With the nor-
malized objectives, the importance weights and are set
as unit values in the study. The compatibility of the resultant
PIs with different confidence levels can be assured through
the constraints given in (18) and (19). The minimum value

is set to 0, which means the perfect condition with
exact forecasting results. The maximum value is
set to , which indicates the most conservative PIs with the
maximum width.

B. Particle Swarm Optimization

Particle swarm optimization is a heuristic and population
based optimization method and has proved to be an efficient,
robust and gradient-free optimization algorithm [19]. PSO also
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distinguishes itself from other heuristic optimization methods
by its fast convergence speed. It can be seen that the objective
function in (17) is non-differentiable with respect to the ELM
output weights. Therefore PSO is applied for objective function
minimization to obtain the optimized ELM.
Given that the search space of PSO is -dimensional and the

size of the particles population is , the th particle of the
swarm can be represented by the -dimensional vector

and the best particle in the swarm, i.e., the
particle generating the smallest objective function value, is ex-
pressed by . The previous best position, i.e., the position
with the smallest objective function value of the th particle, is
stored in a vector and expressed as ,
and the position velocity of the th particle is represented as

. In each iteration of PSO, the velocity
of each particle is computed, and the particles are manipulated
accordingly

(21)

(22)

where is the inertia weight; is a constric-
tion factor controlling and keeping the velocity within the range

; and are two positive constants; and
are random numbers within . The velocity of the th

particle is a function with respect to three components: the par-
ticle’s previous velocity, the distance between the previous best
position of the particle and its current position, and the distance
between the swarm’s best success and the particle’s current lo-
cation. The performance of each particle is evaluated through
the objective function modeled.

C. Hybrid Intelligent Algorithm for PI Optimization

The proposed HIA method aims to achieve the PIs of the best
quality through directly optimizing the ELM with respect to the
objective function (17) using PSO. The core idea underneath is
simply to directly approximate the PIs through a regression pro-
cedure using the PSO based optimization, where the objective
function strictly measures the quality of resultant PIs including
both reliability and sharpness. The major steps of the developed
algorithm are described as follows:
Step 1) With the historical data of wind generation,

wind speed and numerical weather predic-
tion information and so forth, formulate the
dataset , based on which
two training datasets and

, respectively, for the upper
and lower bounds of the PI should be prepared for
ELM initialization. The targets of bounds including
and can be generated by slightly increasing or

decreasing original by, e.g., , ,
respectively. This manipulation is based on the
knowledge that the actual wind power should be
enclosed by the potential PIs.

Step 2) Given the randomly determined the input weights
and biases , establish an ELM to initialize the

output weights which is -dimensional, using
the modified training datasets obtained in Step 1).

Step 3) Initialize a population array of particles Pop with
random positions around the output weights of
the ELM obtained in the Step 2) and velocities in
the -dimensional search space.

Step 4) Set the iteration counter .
Step 5) WHILE maximum number of iterations or suffi-

ciently good fitness has not been reached, do
a) For each particle in Pop, evaluate the objec-
tive function according to the PIs generated by
ELM with the output weights over the original
training data .

b) Compare the particle’s evaluation through
value of objective function (17) satisfying the
constraints (18) and (19) with its previous best
position . If current value is better than that
of , then set equal to the current location.

c) Identify the particle in the swarm better than
the best experience and update the smallest
value of objective function (17) and the best
position .

d) Change the velocities and move the positions
of particles according to (21) and (22).

e) Keep the particles in the given search space in
case that they exceed their valid boundaries,
and when the decision variable is out of its
lower or upper boundary, takes the value of its
corresponding boundary.

f) Increment the iteration counter .
Step 6) END WHILE
Step 7) Based on the test data, evaluate the PIs generated by

the ELM with optimized parameters .
According to the detailed procedures of the proposed algo-

rithm introduced above, the proposed HIA approach can con-
struct an optimized ELM to directly generate the bounds of PIs
with different confidences of the best quality, avoiding the ef-
forts needed for statistical inference and distribution assumption
of point forecasting errors for traditional approaches. The ap-
plication of ELM provides an extremely fast initialization pro-
cedure and significantly reduces the complexity of optimizing
decision variables. The proposed algorithm demonstrates high
flexibility due to the high mapping capability of ELM. The pro-
posed HIA approach is indeed performance-oriented, and the
quality of constructed PIs can be ensured through optimization
on the formulated objective function.

V. CASE STUDIES

A. Introduction of Experiment Data

The highly chaotic climate systems are responsible for
the high level of uncertainties in wind power generation. To
comprehensively validate the effectiveness of the proposed
approach, it is tested by two wind farms the Challicum Hills
wind farm and the Starfish Hill wind farm in Australia. The
weather conditions and wind speeds vary significantly in the
two regions where the wind farms locate. Therefore forecasting
models and case studies are separately constructed and con-
ducted for the two wind farms, respectively.
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The Challicum Hills wind farm locates near Ararat in western
Victoria, Australia, with coordinate latitude and lon-
gitude . The wind farm has a combined generating ca-
pacity MW consisting of 35 wind turbines of 1.5 MW.
Wind power generation data with one-hour resolution of this
wind farm used in the study covers the period from September
2008 to August 2010.
The second wind farm Starfish Hill is near Cape Jervis on

the Fleurieu Peninsula, South Australia, with coordinate latitude
and longitude . It consists of 23 wind tur-

bines of 1.5 WM each, with a total installed capacity of 34.5
MW. Wind power generation data with one-hour resolution of
Starfish Hill wind farm used in the study covers the period from
January 2009 to May 2010.
To ensure both forecasting performance and computation ef-

ficiency, in the case study the wind power series is used as the
inputs alone to the proposed HIA approach to conduct hourly
ahead forecasting, of which the results can be significant to gen-
eration and ancillary service dispatch and so on in practice, e.g.,
in the Nord Pool market in Scandinavia, the hourly market plays
a key role in maintaining system balance [34].

B. Experimental Results and Analysis

To evaluate the forecast performance of the proposed
approach, five other PI forecasting methods including the cli-
matology method, the constant forecast method, the persistence
method, the exponential smoothing method (ESM), and the
quantile regression (QR) approach are employed to compute
PIs using the same training and testing data for benchmarking.
The climatology is the most commonly used benchmark for

probabilistic forecasts of meteorological or weather-related pro-
cesses. It is the unconditional predictive distribution computed
from all historical observations available. The constant forecast
takes the form of normal distribution, and themean and variance
are derived from the observed wind power data. Since the clima-
tology and constant approaches are fairly easy to outperform for
short look-ahead time forecasting, other three methods also are
applied for comparisons. For point forecasting, the persistence
forecast method is a widely used benchmark and is known to
be difficult to outperform for short look-ahead time. The persis-
tence based probabilistic forecast model is used as benchmark
herein, of which the forecast error is assumed to be random
and normally distributed. Its mean is given by the last avail-
able power measurement, and the variance is computed using
the latest observations. In addition, a nice benchmark the ex-
ponential smoothing method is employed for comparisons as
well, which applies a normal predictive density with its con-
ditional mean based on exponential smoothing of past mea-
sured values and its conditional variance determined from ex-
ponential smoothing of previous squared residuals [33]. It is ob-
vious that both the persistence and ESM approaches are based
on the normal assumption of forecasting uncertainty. To better
demonstrate the effectiveness of the proposed approach, quan-
tile regression approach is employed as an advanced bench-
mark, which does not need the assumption of probability dis-
tribution for forecasting errors [7], [37].
The proposed model mainly aims to optimally compute reli-

able PIs with expected confidences. In practice, power system

operation always requires accurate information with high confi-
dence levels, e.g., state estimation always pursues higher confi-
dence level like in [38] to ensure operation security. Therefore
it is much more practically meaningful to produce high con-
fidence level PIs to satisfy the requirements of power system
operation. In our case study, PIs with different PINCs involving
90%, 95%, and 99% are constructed to evaluate the performance
of the proposed approach, i.e., and
in the optimization objective function defined by (17). The pa-
rameter in Step 1) of the HIA algorithm is set to 30 in the
case studies. The proposed method and applied benchmarks are
tested for the two wind farms for detailed analysis and com-
parisons. For the Challicum Hills wind farm, the wind power
generation data from March 2010 to August 2010 are used for
testing the forecasting methods. For the Starfish Hill wind farm,
the wind power generation data from January 2010 toMay 2010
are used for testing the forecasting methods. The rest data of the
two wind farms are used for training the applied methods sepa-
rately.
The detailed testing results from the two wind farms, in-

cluding the PIs evaluation indices PICP, ACE and overall score,
are given in Tables I and II , respectively. It can be observed
that the proposed method can provide fairly satisfactory per-
formances for both wind farms from Tables I and II. At all
confidence levels in the case studies, the PICPs of the proposed
method are close to the corresponding nominal confidences.
The absolute ACEs obtained from the proposed method at dif-
ferent nominal confidence levels for the two farms are smaller
than 1%, indicating a significantly high reliability of the gen-
erated PIs. E.g., at the confidence level with ,
the proposed method produces PICPs of 90.80% and 90.91%
for the Challicum Hills wind farm and the Starfish Hill wind
farm respectively, which outperform all other methods. As
an advanced approach, quantile regression method provides
comparable reliability as the proposed approach, better than
the other four benchmarks. Nevertheless, the proposed method
has the smallest absolute interval scores for all studied cases
in the two wind farms, which indicates the best overall skill
and the highest sharpness of the PIs generated by the proposed
approach compared to other methods. E.g., at the nominal
confidence level 90%, the proposed method produces PIs with
absolute interval score 6.43% for the Starfish Hill wind farm,
which outperforms the applied five benchmarks. Accounting
for both reliability and overall skill, the proposed HIA approach
produces the best PIs in terms of comprehensive performance
against the other five benchmarks.
The climatology and constant approaches are unconditional

forecasts and do not take into account the nonstationarity
and heteroscedasticity of wind power series. Though PIs de-
rived by the climatology and constant forecasts demonstrate
fair reliability at the tested high confidence levels, they are
generally too wide with low sharpness and therefore not mean-
ingful for practical applications. ESM and persistence based
interval forecasting approaches are difficult to outperform for
short-term forecasts. According to the experiment results, the
ESM and persistence forecasts cannot generate PIs to best fit
the expected confidences especially for the PINCs larger than
95%. According to the experiment results, quantile regression
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TABLE I
RESULTS OF DIFFERENT METHODS IN CHALLICUM HILLS WIND FARM

TABLE II
RESULTS OF DIFFERENT METHODS IN STARFISH HILL WIND FARM

approach can derive relatively comparable PIs to the proposed
approach, especially from the aspect of reliability. Generally,
it performs better than the other four benchmarks from the
perspectives of both reliability and sharpness. This should not
be unreasonable since the quantile regression approach does
not require any distribution assumption of forecasting errors,
as a conditional forecasting approach.
PIs with PINC 90% obtained by the proposed method and

the corresponding actual wind power are displayed in Figs. 2–5
where the actual measured wind farm outputs are perfectly
covered by the constructed PIs in the tested two wind farms.
Figs. 2–5 visually demonstrate the highly satisfactory perfor-
mance of the proposed approach in different months for the
two wind farms. It also can be easily found that the wind power
series have different nonstationary characteristics at different
time and different regions. In consideration of that some gen-
erated PIs may have abnormal values beyond the possible
generation range of the wind farms, the resultant predictive

Fig. 2. PIs with PINC 90% in March 2010 of the Challicum Hills wind farm
obtained the proposed HIA approach.

Fig. 3. PIs with PINC 90% in June 2010 of the Challicum Hills wind farm
obtained by the proposed HIA approach.

Fig. 4. PIs with PINC 90% in February 2010 of the Starfish Hill wind farm
obtained by the proposed HIA approach.

densities shown in Figs. 2–5 have been censored to concentrate
probability of abnormal conditions mass on the bounds.
The experimental results demonstrate that the proposed

method is highly satisfactory for short-term probabilistic wind
power forecasting in comparisons with other five benchmarks
including both time series and statistical models. Though wind
power series is taken as the input alone to produce hourly ahead
PIs in the case study, the proposed HIA approach in this paper
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Fig. 5. PIs with PINC 90% inMay 2010 of the Starfish Hill wind farm obtained
by the proposed HIA approach.

gives a generalized forecasting framework having the advan-
tages of flexible extendibility in terms of inputs, outputs and
look-ahead time window, because of the high mapping ability
of ELM. It is well known that wind power generation fluctuates
due to the volatility of the wind speed, wind direction, etc. For
wind power prediction with longer than a few hours look-ahead
time, it is necessary to involve numerical weather prediction
data as the forecasting model inputs. Certainly, this can be
easily included to the proposed model.
In most existing interval forecasting methods, it is necessary

to conduct quantile analysis of point forecast errors involving
statistical inferences, with or without prior assumption of the
forecast error distribution. For instance, in the case study the
ESM and persistence rely on the normal assumption of wind
power forecasting errors. Comparing with quantile regression
without the need of distribution assumption, the proposed ap-
proach shows flexible and higher regression ability due to the
universal mapping capability of ELM. The HIA approach fo-
cuses on PIs quality and offers a novel framework that does not
require any information of point forecast results or the associ-
ated errors at all. Moreover, since the proposed method provides
a performance oriented optimization model, the quality of PIs
can be ensured through the optimization directly. Due to the op-
timization and flexibility, it has high potential practical applica-
tions to power systems operation, including reserve determina-
tion, wind power trading, wind farm control, unit commitment
and so on.

VI. CONCLUSION

Wind power forecasting is critical to modern power system
operation with increased wind penetration. However, wind
power forecasting errors are naturally inevitable due to the
chaotic nature of weather systems. Traditional probabilistic
wind power forecasting approaches are usually based on prior
knowledge or assumption of forecasting errors. In this paper,
a novel HIA approach combining extreme learning machine
and particle swarm optimization is developed and successfully
applied for interval forecasting of wind power without the prior
knowledge of forecasting errors. A novel objective function
accounting for PIs coverage probability and overall skill is
constructed to obtain optimal PIs at multiple confidence levels

simultaneously through one single performance-oriented opti-
mization process to ensure both reliability and sharpness. The
effectiveness of the proposed method for short term forecast
has been successfully verified through tests and comparisons
with several well-established benchmarks using practical wind
farm data. The proposed HIA approach provides a general
framework of probabilistic wind power forecasting, with high
flexibility. With large scale of wind power integration in
modern power systems, the proposed HIA approach indicate
high potential in practical applications in power systems oper-
ations, e.g., reserve determination by TSO to meet the load and
safely and economically operate the systems.
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