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Abstract

A new computationally efficient method for de-
termination of the aerodynamic performance of
kites is proposed in this paper. The model is
based on an iterative coupling between a Vor-
tex Element Method (VLM) and 2D sectional
airfoil coefficients to introduce the effect of air-
foil thickness and effects of viscosity while re-
taining the strength of the VLM to model phys-
ically correct the effect of low aspect ratio and
highly non-planar configurations. The perfor-
mance of the new method will be assessed
by comparison with simulation results from the
state of the art incompressible Reynolds Aver-
aged Navier-Stokes (RANS) solver EllipSys3D
on a simplified kite-like geometry designed
from lifting line theory.

1 Introduction

Several ideas of using kites as possible power
sources emerged around the 70s and gradu-
ally along the years, but only until recently the
research was intensified in this topic. Projects
like the MS Beluga Skysails [1], where a con-
tainer cargo ship sailed the Baltic Sea with the
help of a secondary propulsion system consist-
ing of a 160 m2 kite harvesting the energy in
the wind and reducing, therefore, the fuel con-
sumption; or stationary systems for electricity
generation, such as the one presented origi-
nally by Loyd [2]. As an alternative to conven-
tional wind turbines, the use of kites for har-
vesting power from the wind is a topic for sev-
eral research groups [3–7]. With a kite it is
possible to increase the line traction force by
at least an order of magnitude compared to
the steady case by making the kite perform
crosswind motion. One way to harvest the en-
ergy in the wind using a kite is to generate
electricity by letting a looping kite unroll a line
from a drum connected to a generator. At the
end of the production stroke, the kite is wound
back to its initial position in a low traction force

mode, from where the cycle can be repeated.
The kite power generation technology is still
in its infancy, and many open questions exist.
Presently, it is not possible to give a realistic
determination of either the power production or
economic potential of such a system because
there are too many unanswered questions on
how to implement the basic ideas in real life.
Critical key issues that have been spurred in-
terest in academia include control [3, 5, 7–
9], wind resources at high altitude [10], critical
parameters for the mechanical energy output
available [2, 4, 6, 11]. One of the areas where
work is needed to get closer to be able to as-
sess the potential of a kite power system is on
the specific aerodynamic behavior/efficiency of
the kites, including the effect of different key
design features of the kite. Due to the rela-
tively large number of inflow conditions (angle
of attack and sideslip) and kite deformations
(control actions and elastic deformations) that
have to be considered in such an investiga-
tion, standard Computational Fluid Dynamics
(CFD) methods such as Reynolds Averaged
Navier-Stokes (RANS) modeling is too compu-
tationally costly. Therefore, the present work
describe a new aerodynamic model based on
a coupling between a Vortex Element Method
(VLM) and 2D sectional airfoil coefficients to in-
troduce the effect of airfoil thickness and ef-
fects of viscosity while retaining the strength
of the VLM to model physically correct the ef-
fect of low aspect ratio and highly non-planar
configurations. The performance of the new
method will be assessed by comparison with
simulation results from the state of the art
incompressible RANS solver EllipSys3D [12–
15] on a reference kite-like geometry designed
using key results from classic lifting line the-
ory [16]. Note that a big part of the present
work was developed in connection with with
the master thesis project by Carqueija [17], in
which many of the present results can also be
found.



2 Computational models

In this section, the computational models em-
ployed in this work are described.

2.1 New coupled prediction tool
using geometry and 2D airfoil
coefficients

The new model described in this work was in-
spired by the work of Horsten and Veldhuis
[18], where...

Since one of the key elements in the model
is a Vortex Lattice Method (VLM), this method
is first described briefly.

2.1.1 Vortex Lattice Method

A few elements of the present method are
worth mentioning but, for a full description of
the method refer to e.g. [19].

The choice of using a VLM is due to its flex-
ibility in incorporating changes of chord and
twist distribution, and also because the VLM
methods perform well at low aspect ratios. It
consists of a distribution of vortex singularities
over the discretized mean surface of the body
(solutions of Laplace’s equation, as mentioned
previously) which allow the calculation of lift
and induced drag. Thickness is neglected in
this method which, however, incorporate the
camber of the airfoil at each section. The con-
dition of flow tangency to the mean surface de-
termines the strengths of the vortex singulari-
ties.

The vortex singularities which, in the code
used, consist of vortex rings, are placed at
the quarter chord line of each panel. The ad-
vantage of such element is on the simple pro-
gramming effort that it requires and on the fact
that the boundary conditions can be exactly
specified on the actual surface, which can take
more complex shapes (ideal for kite investiga-
tions) [19]. The forces are calculated on each
line element separately by applying the Kutta-
Joukowsky theorem and then weighted to each
of the collocation points. The calculation of the
force is preceded by finding (i) the influence
coefficients for each line element and (ii) the
circulation, after solving the linear set of equa-
tions specifying the zero normal flow boundary
condition.

In order to reduce the computational effort
required to calculate the influence coefficients
each time the inflow angle changes, the code

incorporates an algorithm where only the coef-
ficients related to the wake are updated, keep-
ing constant the ones related to the geom-
etry of the body. The change of inflow an-
gle is incorporated in the right-hand side ma-
trix (RHS), which includes the normal veloc-
ity components. For fine discretizations, this
approach becomes extremely valuable as the
calculation of influence matrices is a time con-
suming process.

As it will be presented, the algorithm is
based on local geometric changes to account
for viscosity. The problem rises due to the fact
that, if geometry is changed, new influence
matrices have to be computed each time the
algorithm is run. The implementation in the
present work encircles the problem by artifi-
cially changing the geometry of the body for
each iteration of the algorithm. This is done
by keeping the original geometry constant and
applying the correspondent geometric change
at each section by modifying the inflow angle
at the section, changing the RHS vector. Fig-
ure 1 show that as the aspect ratio of an ellip-
tic wing is increased, the results from the VLM
method tends to the results of Prandtl’s lifting
line, which should be applicable for large as-
pect ratios.

 

 

Figure 1: VLM method validation against
Prandtl’s classical lifting line results for ellipti-
cally loaded wings. Upper: lift coefficient ver-
sus aspect ratio. Lower: induced drag coeffi-
cient versus aspect ratio.



2.1.2 New coupling algorithm

Several approaches using two-dimensional
data to account for viscous effects can be
found in literature. The inspiration to the
present algorithm is Horsten and Veldhuis’ [18]
formulation for wind tunnel interference cor-
rection, which uses the concept of ‘morphed’
wings to simulate viscosity along the lifting sur-
face.

Figure 2 is needed to explain the present al-
gorithm

 
Figure 2: Explanation of the coupling algo-
rithm’s baseline concept. The Cl is plotted ver-
sus α.

The illustration shows the two-dimensional
lift and drag coefficient curves for an assumed
airfoil. For the effective angle of attack seen
by a section - which is dependent of the down-
wash created by the trailing wake - the inviscid
and viscous lift coefficients can be determined.
To account for viscosity, a shift on the initial ef-
fective angle is performed so that, now, the air-
foil works at an angle which has the same lift
coefficient as the viscous lift coefficient before
the angle shift.

Cli(αeff∆α) = Clv (αefforiginal) (1)

This angle shift is applied directly on the ini-
tial geometry of the lifting surface for the cor-
responding section. Now, changing the geom-
etry, gives origin to a different loading on the
body so there will be a new downwash value
and, consequently, a new effective angle. An
iteration procedure is required until the con-
vergence of the angle shift value. This angle
shift will, then, allow to calculate the viscous
lift coefficient distribution along the body and,
by integration, the total viscous lift coefficient.
The total drag coefficient, on the other hand,
is found by summing the induced drag coef-
ficient for the updated geometry and the two-
dimensional drag coefficient taken for the effec-

tive angle seen by each of the original sections
(without the angle shift).

The VLM code incorporates two-
dimensional viscous considerations on
the solution, after external input of the span-
wise drag coefficient vector, Cd. In other
words, the code integrates along the span
the two-dimensional Cd vector found with the
coupling algorithm and adds the result to the
total induced drag.

From thin airfoil theory we have

Csli = Clα · (αseff ) (2)

with,

αseff = α∞ + αstwist − αs0 − αsi (3)

Clα =
∂Cl
∂α

= 2π (4)

αsi introduced already due to three-
dimensional effects. As soon as the mentioned
angle shift start to be applied on the lifting
surface’s initial geometry, the section lift co-
efficient changes until it converges. This final
value, referred here as Csli,final , is expressed
by the following

Csli,final = Clα ·(
α∞ + αstwist − αs0 − αsi,final −

∆Csl

(
αseff,final

)
Clα

)
(5)

In equation 5, αsi,final is the final induced an-
gle, for the converged angle shift given by the
last term of the equation. Subtracting equa-
tions 2 and 5 results in,

Csli,original − Csli,final =

Clα ·
(
αsi,final − αsi,original

)
+∆Csl (α∞ + αstwist − αs0 − αsi,final) (6)

= Clα ·
(
αsi,final − αsi,original

)
+∆Csl (α∞ + αstwist − αs0

−αsi,original − (αsi,final − αsi,original))

(7)

Csli,original being the lift coefficient taken from
the first calculation with no angle shift applied.
Reorganizing yields,

∆αsi = αsi,final−αsi,original =
Csli,original − Csli,final

2π
−∆αs

(8)

∆αs =

∆Csl

(
α∞ + αstwist − αsi,original −

(
αsi,final − αsi,original

))
Clα

(9)



The difference between induced angles, ∆αsi ,
in equation 8 can then be determined without
computing the induced angles themselves.

As for the two-dimensional drag coefficients,
the values are taken for

Csd = Cd
(
αefforiginal

)
= Cd

(
Csli,original

Clα
+ αs0

)
(10)

From the relations above, the algorithm can
be structured as follows:

1. VLM is called and the Csl,i,original for each
section along the span is saved. This first
value is considered as being the baseline,
original value.

2. Initialize ∆αsi as equal to zero

3. Find αseff for each section, from:

αseff =
Csli,original

Clα
+ αs0 − ∆αsi (11)

4. Calculate ∆Csl = ∆Cl(α
s
eff )

5. Calculate ∆αs, from:

∆αs =
∆Csl
Clα

(12)

6. Call VLM with the artificial angle correc-
tion, ∆αs, and save for each section along
the span the new lift coefficient, Csl,i,final

7. Calculate ∆αsi using Equation 8

8. Return to step 3 until convergence

Convergence is controlled through the resid-
ual value between the ∆αsi ’s of the two last it-
erations. The iteration process runs until the
condition

εs = max(
∣∣∆αsi,k − ∆αsi,k−1

∣∣) ≤ 10−3 (13)

is satisfied, for iteration k.
For a certain predetermined number of iter-

ations, if the results have not converged, a Su-
cessive Over Relaxation method is applied to
fasten up convergence.

Several differences can be pointed between
the approach in [18] and the present algorithm:

1. Iteration is introduced in the present algo-
rithm to ensure that the induced drag is
based on the correct loading.

2. The computation of the induced angles is
avoided. As a note, it is known from theory
that the wake should be force free. How-
ever, not computing it properly can lead
to wrong calculations of the induced drag
force on the body and, consequently, the
induced angles [19]. The potential flow
code used assumes a prescribed wake
model and, therefore, it is better to not cal-
culate induced angles.

3. The two-dimensional form drag coeffi-
cients are calculated for the initial effective
angle corresponding to the original lift dis-
tribution, and not to the shifted effective
angle, as in [18]. The reason is that the
actual angle seen by the lifting surface is
still the original effective angle, Cl,original,
without any angle shifts. The shift in ge-
ometry serves only the purpose to match
the viscous lift distribution to the inviscid
one.

2.2 Computational Fluid Dynam-
ics: EllipSys3D

2.2.1 Method

The in-house flow solver EllipSys3D [12–15]
is used in all CFD computations presented
in the following. The EllipSys3D code is
a multiblock finite volume discretization of
the incompressible Reynolds-averaged Navier-
Stokes (RANS) equations in general curvilin-
ear co-ordinates. The code uses a collocated
variable arrangement, and Rhie/Chow interpo-
lation [20] is used to avoid odd/even pressure
decoupling. As the code solves the incom-
pressible flow equations, no equation of state
exists for the pressure, and the SIMPLE algo-
rithm of Patankar and Spalding [21] is used to
enforce the pressure/velocity coupling. The El-
lipSys3D code is parallelized with MPI for exe-
cution on distributed memory machines, using
a non-overlapping domain decomposition tech-
nique. The solution is advanced in time us-
ing a second-order iterative time-stepping (or
dual time-stepping) method. In each global
time step the equations are solved in an iter-
ative manner, using underrelaxation. First, the
momentum equations are used as a predictor
to advance the solution in time. At this point
in the computation the flow field will not fulfil
the continuity equation. The rewritten continu-
ity equation (the so-called pressure correction
equation) is used as a corrector to make the



predicted flow field satisfy the continuity con-
straint. This two-step procedure corresponds
to a single subiteration, and the process is re-
peated until a convergent solution is obtained
for the time step. When a convergent solution
is obtained, the variables are updated and the
computation continues with the next time step.
For steady state computations the global time
step is set to infinity and dual time stepping is
not used. This corresponds to the use of local
time stepping. To accelerate the overall algo-
rithm, a three-level grid sequence is used in
the steady state computations. The convec-
tive terms are discretized using a third-order
upwind scheme, implemented using the de-
ferred correction approach first suggested by
Khosla and Rubin [22]. In each subiteration,
only the normal terms are treated fully implic-
itly, while the terms from non-orthogonality and
the variable viscosity terms are treated explic-
itly. Thus, when the subiteration process is
finished, all terms are evaluated at the new
time level. The three momentum equations
are solved decoupled using a red/black Gauss-
Seidel point solver. The solution of the Pois-
son system arising from the pressure correc-
tion equation is accelerated using a multigrid
method. In the present work the turbulence in
the boundary layer is modelled by the k − ω

SST model of Menter [23]. The equations for
the turbulence model are solved after the mo-
mentum and pressure correction equations in
every subiteration/pseudo time step. In the
present work, all computations are performed
using a γ − R̃eθ Laminar-turbulent transition
model [24].

2.2.2 Mesh

The central part of the blades have a span-
wise discretization of the mesh points following
a tangent hyperbolic distribution. The roots and
the tips surfaces of each blades are meshed
using the commercial software Pointwise to
generate the surface fitted domains. The 3D
mesh generation is done with a 3D version of
hypgrid [25] an in-house hyperbolic mesh gen-
eration code. Some illustrations of the mesh
generation on mesh are illustrated in Fig.3.

2.2.3 Boundary Conditions

A zero gradient is enforced normal to the outlet
of the downstream end of the spherical domain

Figure 3: Details of the computational mesh.

where the flow leaves the domain. At the up-
stream part of the spherical domain the undis-
turbed wind speed is specified. The surface of
the blades are set as wall (no-slip) boundary
conditions.

3 Reference Kite Geometry

In order to develop a reference geometry with
which to test the developed code, it was cho-
sen to make a shape with the crossectional
section consisting only of one single airfoil
type. The sectional shape of this is the NACA
64-418 section [26]. In order to have a plan-
form which performs well in at least one point,
a design was based on the classical lifting line
results of Munk [16]. Munk’s analysis showed
that the solution that leads to the system of
trailed vorticity for which the induction in the di-
rection perpendicular to the projection of the
wing on the Trefftz plane is proportional to the
cosine of the wing angle minimizes the induced
drag.

Since the trailed vorticity is equal to the
change in bound vorticity along the wing it is a
straightforward task to determine the induced
velocities in the direction perpendicular to the
trailed vortex sheet at the Trefftz plane. Due
to the linearity of the problem result in a linear



system which can be written as

~A~Γb = ~Vp (14)

Here, the ~A matrix will depend only on the ge-
ometry of the lifting line. ~Γb is a column vector
holding the bound vorticity, and ~Vp is the in-
duced velocities in the Trefftz-plane normal to
the intersectional curve. Munks condition for
minimum induced drag can be written

~Vp = cos(~Θ)K (15)

where ~Θ is the vector with the inclination of the
wing, and K is a constant. Upon combining
Equations (14) and (15), we see that the bound
vorticity of the case which minimizes induced
drag for a given lift will be

~Γb = ~A
−1

cos(~Θ)K (16)

Here we see that K is simply the scaling factor
that determines the level of the bound circula-
tion. We also see that the distribution shape
of it is otherwise constant, given by the shape
of the wing. When the definition of the 2D lift
coefficient

Cl =
l

0.5ρV 2
∞c

(17)

is combined with the locally lifting part of the
Joukowski equation

l = ρV∞Γb (18)

we get an expression for the chordlength on
the wing as

c =
2Γb
V∞Cl

(19)

Combining this local expression for the
chordlength with the expression for the optimal
bound circulation, Equation (16), we can there-
fore get the expression for the chordlengths for
the whole wing as

~c =
2~A
−1

cos(~Θ)

V∞Cl
K (20)

Again, we see that if we choose a design lift
coefficient, the constant K simply scales the
chordlengths on the rotor. This way once the
geometry of the line that defines the span in
space is determined, we are now able to de-
termine the distribution of chordlengths along
that span using Equation (20). The constant
K which corresponds to the desired mid chord
length, or wing aspect ratio can then be picked.

OnceK is chosen, the corresponding bound
vorticity can be evaluated using Equation (16),

and from this and the layout of the wing lifting
line in space, the induced velocities from the
trailed vortices at the location of the lifting line
can be determined. This enables the determi-
nation of the direction of the chordlengths in
space using the design angles of attack corre-
sponding to the design lift coefficient and the
airfoil section.

Using the wing layout procedure described
above with the elliptic shape (half-ellipse of to-
tal with 1 and height 0.4) of the span in space
depicted in Figure 4. The figure also show
chord distribution (mid-chord length of 0.3) and
local twist of the wing, which has the NACA 64-
418 airfoil as crossection.
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Figure 4: Layout of the reference kite geome-
try. Upper: layout of the wing span in space
(x-coordinate=default wind direction, is zero).
Middle: Chordlength. Lower: Local twist of the
wing.



4 Results

CFD computations were carried out on the ref-
erence kite at a range of inflow conditions,
both pitch angles and sideslip angles. Figure
5 show examples of the predicted flowfields,
where the complex nature of the flow situations
are visible.

Figure 5: Visualizations of the predicted flow-
field around the kite using CFD. Upper and
middle: αpitch = 120, βsideslip = 00. Lower:
αpitch = 00, βsideslip = 80

4.1 Zero sideslip angle

Comparison of the integral computational re-
sults obtained with the raw VLM, the new cou-
pled method and the CFD results for the ref-
erence kite at zero sideslip angle is shown in
Figure 6.

It is seen that the performance of the new
coupled model is very good. The model cap-
tures the beginning of stall well on lift, and the
drag for which the flow is attached is predicted
in very close agreement with the CFD results.
The underprediction of the drag does not set in
before αpitch = 8O. Please bear in mind that
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Figure 6: Comparison of lift and drag coeffi-
cients simulated on the reference kite at zero
sideslip angle. Upper: CL versus pitch angle.
Middle: CD versus pitch angle. Lower: CL ver-
sus CD.

this angle is the inclination of the onset flow rel-
ative to the design point of the reference kite,
so the flow angle relative to the kite is more
than zero when αpitch = 00. Overall the per-
formance of the model is found to be very good
for these cases.

It should be noted that until a time stepping
simulation of a kite system, using for instance
tabulated data from the present model, has
been performed, it is not clear what the typi-
cal operational conditions is for a kite. It is very
likely, however, that situations with stall will be
avoided, because the lowered lift to drag val-
ues in this case results in much lower kite ve-
locities, which again results in lower than opti-
mal kite traction forces.



4.2 Sideslip angle

Figure 7 show the performance of the mod-
els for cases with sideslip angles different from
zero.
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Figure 7: Comparison of lift and drag co-
efficients simulated on the reference kite for
sideslip angles. Upper: CL versus angle of
attack. Middle: CD versus angle of attack.
Lower: CL versus CD.

As in the previous case, the agreement be-
tween CFD and the new algorithm in the region
where the flow is not stalling is excellent. As
the sideslip angle is increased the agreement
deteriorates somewhat. As was mentioned
previously, the typical operational conditions is
for a kite are unknown, but likely to remail at-
tached for the majority of the time. Therefore
it is likely that the present model could provide
aerodynamic data useful for detailed analysis
of kite energy systems.

4.3 Computational time

The ratio between computational times used
for the same number of cases for the new al-
gorithm and the CFD method is approximately
1/400.

5 Conclusions and further
work

The present report contains description of a
new, computationally light, algorithm, which
can determine the aerodynamic loading on a
kite for wind energy applications. The model
couples a Vortex Lattice Method with 2D airfoil
data iteratively to take into account effects of
airfoil thickness and effects of viscosity.

The computational time of the new coupled
algorithm is approximately 1/400 of the time of
the state of the art CFD prediction tool Ellip-
Sys3D.

The agreement between the present model
and the CFD results is excellent for cases
where the flow remains attached over the kite.
The agreement deteriorates as the flow enters
the stalled state.

As the typical operational conditions is for a
kite in a kite power system are unknown, but
likely to remain attached for the majority of the
time, it is likely that the present model can pro-
vide aerodynamic data useful for detailed anal-
ysis of kite energy systems.

Further work Further work include

• Further validation of the new model with
crossection shapes closer to what is found
on real kites.

• Development of a time stepping tool which
builds on a database of results produced
with the present method.

• Investigation of the effect of line drag,
control strategies, etc. using a database
with aerodynamic results from the present
method

• Investigations of what a ’good’ kite design
is (effect of design choices of the kite lay-
out)

• More realistic determination of the power
production capabilities of a kite power sys-
tem using performance characteristics for
a realistic kite simulated using the present
coupled method



• Investigation of the effect of extreme
events (shear, gusts).

• Fatigue analysis of specific key elements
in a kite power system.

Based on the results presented in the pa-
per, the envisaged further work is therefore
a detailed investigation of design choices of
the kite, control system design (sensor, actu-
ator, control algorithms for both generator and
flight path), line specifications, effect of ex-
treme events (shear, gusts) and fatigue analy-
sis of specific key parts of the kite energy sys-
tem.
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