

Estimation of uncertainties in CT metrology by simulation

Hiller, Jochen

Publication date: 2011

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Hiller, J. (Author). (2011). Estimation of uncertainties in CT metrology by simulation. Sound/Visual production (digital)

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Estimation of uncertainties in CT metrology by simulation

CT Audit University of Padova, October 26th

Jochen Hiller

 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^{i}}{i!} f^{(i)}(x) = a^{b} + 2 \int a^{b} e^{i\pi} = \frac{1}{2} [2.7182818284] + 2 \int a^{2} e^{i\pi} = \frac{1}{2} [2.71828184] + 2 \int a^{2} e^{i\pi} = \frac{1}{2} [2.7182818284] + 2 \int a^{2} e^{i\pi} = \frac{1}{2} [2.71828184] + 2 \int a^{2} e^{i\pi} = \frac{1}{2} [2.71848184] + 2 \int a^{2} e^{i\pi} = \frac{1}{2} [2.7184814] + 2 \int a^{2}$

DTU Mechanical Engineering

Department of Mechanical Engineering

Motivation and problem definition

- The proposed approach
- Modelling and analytical simulation of CT scanning process
- Case study: Uncertainty estimation at a simple workpiece
- Summary and outlook

Motivation and problem definition

Influences lead to systematic and random measurement errors

Motivation and problem definition

Ø: 2,424 mm ± ???

Analytical calculation

almost not possible in CT

Experimental method

- calibrated workpiece available?
- Destruction of the workpiece?
- repeated measurements (time-factor)

Simulation method

- "virtual experiments" using computers
- numerical evaluation of measurement uncertainty
- Basis: Monte Carlo method (MCM)

- Motivation and problem definition
- The proposed approach
- Modelling and analytical simulation of CT scanning process
- Case study: Uncertainty estimation at a simple workpiece
- Summary and outlook

- Motivation and problem definition
- The proposed approach

Modelling and analytical simulation of CT scanning process

- Case study: Uncertainty estimation at a simple workpiece
- Summary and outlook

Projection

CT model

Consideration of

- Image unsharpness
- Image noise
- Image artefacts (beamhardening, scatter radiation)
- System misalignment including temporal focus drift
- Environment influences (temperature)
- Random variability of input quantities

Tomolibri[®] Micro-CT system

Relevant information

- Focal spot size
- Focus drift (in 3 dimensions if possible)
- Detector contrast & noise transmission
- System misalignment parameters

First validation of synthetic projection images using simple test objects like step-wedges

- Motivation and problem definition
- The proposed approach
- Modelling and analytical simulation of CT scanning process
- Case study: Uncertainty estimation at a simple workpiece
- Summary and outlook

Material: X20Cr13 (Steel)

Measuring tasks:

- Evaluation of the 3 cylinder diameters
- Evaluation of associated form deviations of the cylindrical geometries

Result of dimensional CT measurements:

Geometry element	Diameter in mm	Form deviation in µm	
Outer cylinder, small	8,014	8	
Outer cylinder, big	9,812	9	
Inner cylinder	6,192	21	

Stochastic variation of input parameter values

	Parameter	Default	Uncertainty	Range of values	
e	U _R I _R	200 0,1	1 % 5 %	198202 0,0950,105	Uniform distributed
tub	$\begin{array}{c} \alpha_{\mathrm{T}} \\ B_{\mathrm{h}} \end{array}$	15,0 54,0	33,3 % 5 %	51,356,7	input quantities
ray	$B_{\rm v}$ $D_{{ m h}_1}$	50,0 $8,45 \cdot 10^{-3}$	5% 42,0%	47,552,5 $(4,912,0) \cdot 10^{-3}$	assumed
×	D_{h_2} D_{v_1}	2,85 $4,03 \cdot 10^{-3}$ 1.95	19,3 % 20 % 18 %	2,33,4 $(3,24,8) \cdot 10^{-3}$ 1.6 2.3	
ر ح (Δx_{det} Δy_{det}	0,0 0,0	0,2 Pixel 0,2 Pixel	$-40,0\ldots 40,0$ $-40,0\ldots 40,0$	- U _{ct}
omet 人	$\eta_{ m det} \ \phi_{ m det} \ heta_{ m det}$	0,0 0,0 0,0	0,1° 1,0° 0,5°	$-0,1\ldots 0,1$ $-1,0\ldots 1,0$ $-0,5\ldots 0,5$	
Ŭ Ŭ	FDA FOA	1539,447 114,953	1 % 0,3 %	1524,0521554,841 114,608115,298	
Position	$ \begin{bmatrix} T_x \\ T_y \end{bmatrix} $	0,0 0,0	0,5 mm 0,5 mm	$-0,5\dots 0,5 \\ -0,5\dots 0,5$	Number of simulations
	$T_z R_x$	0,0 0,0	0,5 mm 1,5°	-0,50,5 -1,51,5) M = 50

DTU

Result:

$$U = U_{\rm sim} = U_{\rm ct}$$

If uncertainty contribution u₁...u_i from other sources avaliable (hybrid):

$$U = k \cdot \sqrt{u_1^2 + \ldots + u_i^2 + u_{ ext{sim}}^2}$$
 with $u_{ ext{sim}} = rac{U_{ ext{sim}}}{k}$

• If uncertainty contribution $u_{sim_1}...u_{sim_j}$ from simulation can be seperated \rightarrow no correlations among single contributions $u_{sim_1}...u_{sim}$:

$$U = k \cdot \sqrt{u_1^2 + \ldots + u_i^2 + u_{\sin_1}^2 + \ldots + u_{\sin_j}^2}$$

Completed result:

$$Y = y \pm U$$

Diameter:

Geometry element	<i>U</i> (95 %) in mm	<i>U</i> (99 %) in mm	Y (95 %) in mm	Y (99 %) in mm
Outer cylinder, small	0,080	0,086	$\textbf{8,014} \pm \textbf{0,080}$	$\textbf{8,014} \pm \textbf{0,086}$
Outer cylinder, big	0,102	0,108	9,812 ± 0,102	$9{,}812\pm0{,}108$
Inner cylinder	0,064	0,066	$\textbf{6,192} \pm \textbf{0,064}$	$\textbf{6,192} \pm \textbf{0,066}$

Form deviation:

Geometry element	<i>U</i> (95 %) in μm	<i>U</i> (99 %) in in μm	Υ (95 %) in μm	Υ (99 %) in μm
Outer cylinder, small	3	3	8 ± 3	8 ± 3
Outer cylinder, big	4	4	9 ± 4	9 ± 4
Inner cylinder	6	9	21 ± 6	21 ± 9

DTU

- Motivation and problem definition
- The proposed approach
- Modelling and analytical simulation of CT scanning process
- Case study: Uncertainty estimation at a simple workpiece

Summary and outlook

A simulation-based method to estimate uncertainties in dimensional CT using synthetic X-ray projection data and the Monte Carlo method, combined in the virtual CT, was presented

Further developments should be concentrated on:

- Increasing of computational performance to increase the number of simulations
- Development of systematic workflow for characterization of a CT system to adapt the simulation enviroment
- Minimization of input quantities to the most significant ones and studying of correlations
- Development of procedures to validate CT simulators in 2D/3D

Test of plausibility according to VDI/VDE 2617-7

using calibrated workpieces:

Thank you for your attention