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Fully Nonlinear Free Surface Water Waves

The potential flow equations describe fully nonlinear water waves under the
assumption of inviscid and irrotational flow.

2D Potential Flow Equations

Wave parameters

η - surface elevation

φ - potential (u = ∇φ)

h - still water depth

k = 2π/L - wave number

kh - dispersion

H/L - nonlinearity
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Fully Nonlinear Free Surface Water Waves

The potential flow equations describe fully nonlinear water waves under the
assumption of inviscid and irrotational flow.

2D Potential Flow Equations

∂tη = −∂xη ∂x φ̃ + ω̃(1 + (∂xη)2)

∂t φ̃ = −gη −
1

2
((∂x φ̃)2 − ω̃2(1 + (∂xη)2))

ω̃ = ∂z φ̃, φ̃ = φ|z=η

For ω̃ to be computed, we need to know the
potential in the entire domain.

φ = φ̃, z = η

∂xxφ + ∂zzφ = 0, −h ≤ z < η

∂zφ + ∂x h ∂xφ = 0, z = −h
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σ-Transformed Laplace Equation

σ(x , z , t) =
z + h(x)

η(x , t) + h(x)
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Φ = φ̃, σ = 1

∂xx Φ + ∂xxσ(∂σΦ) + 2∂xσ(∂xσΦ) + ((∂xσ)2 + (∂zσ)2)∂σσΦ = 0, 0 ≤ σ < 1

(∂zσ + ∂x h∂xσ)∂σΦ + ∂x h∂x Φ = 0, σ = 0
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Linear Free Surface Water Waves

If wave amplitudes are small η < ε, then the total water depth is almost the
same as the still water depth (η + h ≈ h). If also the derivatives in η and h are
assumed to be zero, the free surface equations take linear form.

Linearized Laplace Equation

Φ = φ̃, σ = 1

∂xx Φ + (∂zσ)2∂σσΦ = 0, 0 ≤ σ < 1

∂zσ ∂σΦ = 0, σ = 0

These equations might serve as an approximation for the fully nonlinear
equations and can thus be used for preconditioning.
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Motivation for GPU computing

There are several good reasons
to consider Graphical Processing
Units for high-performance
computing

Massively parallel
architecture, ∼ 500 cores.

Teraflops of floating point
performance

Moderate prices
$100− $2, 000. A personal
super computer

Fairly easy to get started
(CUDA, OpenCL)

Number 2 and 4 on top500
are based on GPUs
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A GPU-based Framework for PDE Solvers

We have build a highly generic heterogenous CPU-GPU framework for fast
PDE solver prototyping.

Framework Objectives

Remove all GPU-specific code for the non-expert GPU programmer

While maintaining the possibility to customize code at kernel level

1 gpulab ::vector <float ,host_memory > x_h (100 ,3.f); // Create host vector x, size 100, value 3

2 gpulab ::vector <float ,device_memory > x_d(x_h); // Create device vector x, transfer host data

3 gpulab ::vector <float ,device_memory > y_d(x_d); // Create device vector y, copy device data

4 y_d.axpy (4.f,x_d); // Do y = a*x+y on the device

5 y_d.nrm2(); // Calculate the 2-norm on the device

Ideas are based on the C++ standard library, Thrust, and CUSP that exist for
GPUs.
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Framework Outline

Key library components

Regular grid objects, 1D, 2D, 3D.

Compact stencil-based flexible order FD operators

Iterative methods for solving large systems of eqs.

Effective preconditioning strategies

1 grid_dim <int > dim (100 ,100); // 100 x100 grid

2 grid_dim <double > phys0 (0. ,0.); // Domain starts in x=0, y=0

3 grid_dim <double > phys1 (1. ,1.); // Domain end in x=1, y=1

4 grid_properties <int ,double > grid_props(dim , phys0 , phys1);

5 grid <double ,device_memory > u(grid_props); // Create u

6 grid <double ,device_memory > f(grid_props); // Create f
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Framework Outline

Key library components

Regular grid objects, 1D, 2D, 3D.

Compact stencil-based flexible order FD operators

Iterative methods for solving large systems of eqs.

Effective preconditioning strategies

1 grid_dim <int > dim (100 ,100); // 100 x100 grid

2 grid_dim <double > phys0 (0. ,0.); // Domain starts in x=0, y=0

3 grid_dim <double > phys1 (1. ,1.); // Domain end in x=1, y=1

4 grid_properties <int ,double > grid_props(dim , phys0 , phys1);

5 grid <double ,device_memory > u(grid_props); // Create u

6 grid <double ,device_memory > f(grid_props); // Create f

7
8 FD:: stencil_2d <double > A(2,4); // Second order derivative , fourth order accuracy

9 A.matvec(u,f); // Calculate f = du/dxx + du/dyy
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Framework Outline

Key library components

Regular grid objects, 1D, 2D, 3D.

Compact stencil-based flexible order FD operators

Iterative methods for solving large systems of eqs.

Effective preconditioning strategies

1 grid_dim <int > dim (100 ,100); // 100 x100 grid

2 grid_dim <double > phys0 (0. ,0.); // Domain starts in x=0, y=0

3 grid_dim <double > phys1 (1. ,1.); // Domain end in x=1, y=1

4 grid_properties <int ,double > grid_props(dim , phys0 , phys1);

5 grid <double ,device_memory > u(grid_props); // Create u

6 grid <double ,device_memory > f(grid_props); // Create f

7
8 FD:: stencil_2d <double > A(2,4); // Second order derivative , fourth order accuracy

9 A.matvec(u,f); // Calculate f = du/dxx + du/dyy

10
11 monitor m(iter ,rtol ,atol); // Stopping criteria

12 solvers ::cg cg_solver(A,m); // Create a CG solver from A

13 cg_solver.solve(u,f); // Solve Au = f
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Framework Outline

Key library components

Regular grid objects, 1D, 2D, 3D.

Compact stencil-based flexible order FD operators

Iterative methods for solving large systems of eqs.

Effective preconditioning strategies

1 grid_dim <int > dim (100 ,100); // 100 x100 grid

2 grid_dim <double > phys0 (0. ,0.); // Domain starts in x=0, y=0

3 grid_dim <double > phys1 (1. ,1.); // Domain end in x=1, y=1

4 grid_properties <int ,double > grid_props(dim , phys0 , phys1);

5 grid <double ,device_memory > u(grid_props); // Create u

6 grid <double ,device_memory > f(grid_props); // Create f

7
8 FD:: stencil_2d <double > A(2,4); // Second order derivative , fourth order accuracy

9 A.matvec(u,f); // Calculate f = du/dxx + du/dyy

10
11 monitor m(iter ,rtol ,atol); // Stopping criteria

12 solvers ::cg cg_solver(A,m); // Create a CG solver from A

13 cg_solver.solve(u,f); // Solve Au = f

14
15 FD:: stencil_2d <double > P(2,2); // Second order derivative , second order accuracy

16 cg_solver.set_preconditioner(P); // Add the preconditioner

17 cg_solver.solve(u,f); // Solve PAu = Pf
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Defect Correction Method

We found that the Defect Correction method works well for our Laplace
problem

High-order approximations (accuracy)

Minimal storage overhead (problem size)

Minimal global synchronization and reduction steps (parallelizable)

Effective as GMRES in practice (effective)

Textbook Recipe

Algorithm: DC Method for approximate solution of Ax = b

1 Choose x [0] /* initial guess */

2 k = 0
3 Repeat

4 r [k] = b − Ax [k] /* high order defect */

5 Solve Mδ[k] = r [k] /* preconditioner */

6 x [k+1] = x [k] + δ[k] /* defect correction */

7 k = k + 1
8 Until convergence or k > kmax
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Analysis of Defect Correction Convergence

Rewriting DC into the form of a stationary iterative method

x [k+1] = x [k] +M−1(b −Ax [k]) (1)

= (1−M−1A)x [k] +M−1b (2)

=Gx [k] + c, k = 0, 1, . . . (3)

where G is called the iteration matrix. From stationary iterative theory we
know that to ensure convergence towards the exact solution we must have

ρ(G) < 1,

where ρ(G) is the spectral radius of G, i.e. the maximum absolute eigenvalue of
G. Closer to 0 means better convergence.
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Analysis of Defect Correction Convergence

We can now predict attainable convergence rates for various free surface setups
using linear flexible-order preconditioners.
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Dispersion (kh) expresses ratio between water depth and wave length and
relates to the condition number of the Laplacian matrix.
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Mixed Precision

Definition

An algorithm that mixes different machine precision numbers in its
calculations – while maintaining a high precision solution.

Advantages

Bandwith bound

1 double = 2 floats = 64 bits

Less storage - at all levels

Less bandwith required

Compute bound

1 double multiplier ≈ 4 float
multipliers

1 double adder ≈ 2 float adder

On many GPUs 1:8
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Mixed Precision

Definition

An algorithm that mixes different machine precision numbers in its
calculations – while maintaining a high precision solution.

Example

Single precision roundoff error:

c =0.5 + 0.5 + 0.000000004− 0.000000003 = 1.000000001 = 1fl

Mixed precision fix:

a =0.5 + 0.5 = 1fl

b =0.000000004− 0.000000003 = 0.000000001fl

c =a + b = 1.000000001dl
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Mixed Precision Defect Correction

The same principle holds for the defect correction update – and all other
refinement processes in general.

Mixed Precision DC

1 Choose x [0]

2 k = 0
3 Repeat

4 r [k] = b − Ax [k] /* Double Precision */

5 Solve Mδ[k] = r [k] /* Single Precision */

6 x [k+1] = x [k] + δ[k] /* Double Precision */

7 k = k + 1
8 Until convergence or k > kmax

Remember, much work lies within the preconditioner!

A Fast Mixed-precision Strategy for Iterative GPU-based Solution of the Laplace Equation Technical University of Denmark



Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Mixed Precision GPU-based Performance Results

Timings per Defect Correction iteration. Using 6th order accurate stencil,
preconditioned with a linear 2nd order accurate multigrid approach,
DC+MG-RB-GS-1V(2,2).
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Mixed Precision Convergence

The residual error at every iteration confirms that the mixed precision
algorithm in fact maintains high accuracy.
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