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Optimal Charge control of Electric Vehicles in
Electricity Markets

Tian Lan, Junjie Hu, Guang Wu, Shi You, Lei Wang, Qidi Wu

Abstract— Environment constraints, petroleum scarcity, high
price on fuel resources and recent advancements in battery
technology have led to emergence of Electric Vehicles (EVs).
As increasing numbers of EVs enter the electricity market,
these extra loads may cause peak load and need to be properly
controlled. In this paper, an algorithm is presented for every
individual vehicles to minimize the charging cost while satisfying
the vehicle owner’s requirements. The algorithm is based on a
given future electricity prices and uses dynamic programming.
Optimization aims to find the economically optimal solution for
each vehicle.

Index Terms— Optimal charge plan, Electricity market, Elec-
tric vehicles, Dynamic programming.

I. INTRODUCTION

Due to an increased societal awareness of environment
issues and fuel resource limitation, electric vehicles (EVs)
are becoming more popular. The emergence of EVs is also
an important solution to curb CO2 emission and oil de-
pendency of current automotive technology [1], since the
EVs shift petroleum consumption to electricity. Nowadays,
major producers including Toyota, General Motors, Ford, and
Volkswagen have plans to sell PHEVs starting in 2011 [2]. A
fast growing market is expected in the near future, which leads
both opportunities and challenges. Generally, functionalities of
EV can be divided into two aspects. On one hand, battery of
the EV can be considered as a controllable load. With optimal
charging or smart charging for the battery, vehicle owners
could maximize their profits by purchasing energy at the
lowest possible electricity price. Moreover, charging during the
off peak hours will help the load shape and avoid peak load.
On the other hand, battery of the EV can also be considered
as energy storage capacity which has possibility to provide
V2G (Vehicle to Grid) and G2V (Grid to Vehicle) capabilities,
also known as regulation service. This functionality is a bi-
directional charging that offers ancillary service to grid. For
instance, the concept of V2G is that power can be delivered
back to the grid from EV battery during the peak hours of
electrical power consumption, which is researched in series of
publications [3-6].

Many researches have been done on EV optimal charging
management. From the point of EV charging’s impact on grid,
research can go back to 1980s. Heydt has already researched
on the impact of electric vehicle in his paper [7]. He concludes
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that typical driving patterns will likely to coincide the charging
with peak load periods of power system. So, methods should
be developed to avoid overloading with off-peak charging.
Olle presents a linear approximation based method to mini-
mize the charing cost of electricity for EV driver, and mean
while avoiding distribution grid congestion [8]. In another
paper [9], Kristien researches the impact of charging PHEVs
on a residential distribution grid, investigates the difference
between coordinated and uncoordinated charging with re-
spect to various penetrations of PHEVs. Some other papers
research from a business perspective. In paper [2], Niklas
proposes two dynamic programming-based algorithms to find
the economically optimal solution for vehicle owner. The first
reduces daily electricity cost substantially. The latter takes
into account vehicle to grid support as a means of generating
additional profits by participating in ancillary service markets.
Sekyung proposes an aggregator that makes efficient use of the
distributed power of electric vehicles to produce the desired
grid scale power, which is V2G concept that can make revenue
from providing regulation service [3]. In this paper, we only
consider the EV as a controllable load, and investigate its smart
charging potential. The functionality of regulation service will
not be discussed here.

The purpose of this paper is to investigate a possible solution
for EV smart charging under electricity market. The paper is
organized as follows. Section II gives a system architecture
with appropriate assumptions. Section III constructs a dynamic
programming based mathematical model. In Section IV, one
case is studied to investigate the optimization of EV charging
cost.

II. SYSTEM ARCHITECTURE AND ASSUMPTIONS

In this paper, charging of electric vehicles come up through
purchases in the electricity spot market is presumed. Electric
vehicles may directly access to this market or indirectly access
through an interface between EV and energy market. And
vehicle would be plugged in every time when the driving
finished. It is assumed that this market with day-ahead and
spot market pricing, which is well suited for the application
of smart charging control. Since the V2G is not considered
here, a price for ancillary services is not necessary available.
Besides the predicted spot price signal, another important
piece of information is the future driving pattern. In order
to have a successful charging plan, a representative driving
pattern is essential. Normally, intra city or short term driving
patterns are largely predictable due to fixed working hours
and fixed business schedules and routes. Therefore, a future
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driving pattern is assumed to be obtained by estimating data
of past trips or established driving plans. Moreover, electricity
demand of every trip is also needed to be assumed based upon
driving pattern.

Centralized control architecture is presumed, in which a sin-
gle entity (aggregator) directly controls the charging strategy
of every vehicle to facilitate smart charging [10], and each
vehicle indirectly access to electricity market through this
aggregator, which is a smart interface between EV fleets and
market to play a role of coordinating charge and discharging
operation of multiple vehicles. We assume the aggregator
doesn’t have a sufficiently large market share to affect elec-
tricity price. Therefore, not only vehicle owner, but also
aggregator is price taker. In this case, it is expected that most
of charging occur at night-time, when given the lower prices.
With an automated communication technology, all information
can be immediately communicated to aggregator, which then
returns a charging plan for an individual EV for the following
day.

After gathering all information, the aggregator is fed with
following data for charging plan making: predicted electricity
price, future driving pattern, energy requirement during every
trip and EV status data, such as state of charge of EV battery.

III. CONTROL TASK FORMULATION

The following notation will be used throughout this paper.
Since the market with day-ahead pricing is assumed, the charg-
ing plan covers an entire day. For this short-term planning, the
time horizon [0, N] of a day is discretized in to equidistant
time intervals [k, k+1] with k=0, , N-1. It is assumed that the
time interval is ∆t.

This problem is addressed by considering the following
discrete system which describes the battery:

xk+1 = T (xk, uk, k) (3.1)

State variable xk represents the state of charge (SOC) of the
battery at time k. xk is not only discrete in time (index k) but
also in value. Any value has to be included in the predefined
set X. It is defined as follows:

xk =
Ek

Emax
× 100% (3.2)

The control variable uk is a dimensionless and discrete
representation of Pk, which is the charge power when plug-
in. In order to obtain Pk, uk is multiplied with the maximum
available charge power (Pmax−plug) when plug-in. The elec-
tric vehicle discussed in this paper is purely electric propulsion
system, which is characterized by an electric energy conver-
sion chain upstream of the drive train, roughly consisting of a
battery (or another electricity storage system) and an electric
motor with its controller [11]. EV doesn’t have an internal
combustion engine (ICE) to provide power for propulsion.
Battery must be charged from an external electric network.
Due to this fact, the values of uk are fixed at 0 when driving,
while these values range from 0 to 1 when plug-in. If Uplug

is set that covers all possible values of uk, its discretization
may be described as follows:

uk =

{
uk ∈ Uplug, k ∈ Kplug

uk = 0, k ∈ Kdriv
(3.3)

Kplug denotes the set of indices k within the time periods
when the vehicle is plugged in, while Kdriv refers to the
driving intervals. The summation of the number of elements in
Kplug and Kdriv is N, which denotes the total number of time
intervals. Any index k in Kplug or Kdriv has to be element
of the predefined set K.

k ∈ K = {Kplug,Kdriv} (3.4)

A specific control strategy is denoted by

u = {u0, u1, u2, ..., uN−1} (3.5)

Any value of uk has to be element of a predefined set U,
which known as set of admissible decision. The total cost of a
sequence, fU

0 , is given by the cost of the final step, fN (xN ),
plus the cost for all other steps, vk(xk, uk, k):

fU
0 (x0) = fN (xN ) + ΣN−1

k=1 vk(xk, uk, k) (3.6)

To minimize the objective function (3.6), the optimal control
strategy u∗ = {u∗

0, u
∗
1, u

∗
2, . . . , u

∗
N−1} has to be obtained.

This is a classic dynamic programming formulation and can
be solved as described by literature [12, 13]. The optimal
trajectory is calculated starting with the cost of the last step
and going backwards through time until the first state’s optimal
cost f∗

0 (x0) is given by the algorithm. The recursive equation
is listed as follows:

fk(xk, uk) = min{vk(xk, uk) + fk+1(xk+1)}

= min{vk(xk, uk) + fk+1(T (xk, uk, k))} (3.7)

u∗
k = argmin(fk(xk, uk)) (3.8)

According to dynamic programming, some special terms are
given as follows:
k: step
X: set of admissible state
U: set of admissible decision

Due to the dicretization of xk and uk, admissible state set X
must be defined appropriately, because T (xk, uk, k) may not
be any of the elements of X where fk+1 is know if set X is
not defined good enough, which means T (xk, uk, k) may not
equal with xk+1 as described in equation (3.1). Actually in
practice operation, errors are hardly avoided that T (xk, uk, k)
will usually not be on a grid point no matter how the set X
is defined. Therefore, an approximation is needed. Normally,
xk+1 is defined as a range by plus a margin of 10% to cover
the possible T (xk, uk, k).

junhu
Highlight
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A. Cost of final step

The objective function is to ensure that the battery is fully
charged before the first trip of the following morning. Step N
is the moment right before the next day’s departure. Therefore,
the value of xN is 100%, and no charging operation happens
at step N. The cost of final step fN (xN ) should be defined as.

fN (xN ) = 0 (3.9)

B. Cost of other step

For EV, a purely electric propulsion system, it is important
to acknowledge different step function vk for driving mode
and plug in charging mode. The most general case is given by
introducing the following discontinuity:

vk(xk, uk, k) =

{
vplug(xk, uk, k), k ∈ Kplug

vdriv(k), k ∈ Kdriv

(3.10)
where

vplug(xk, uk, k) = ηk · uk · Pmax−plug · Cel(k) ·∆t (3.11)

and

vdriv(k) = 0 (3.12)

ηk denotes the efficiency parameter between step k and k+
1. Cel is the price of electricity per unit of energy. ∆t is the
time interval between step k and k + 1. Since EV is a purely
electric propulsion system, charging cannot take place during
driving period as hybrid electric vehicle did, and the charging
cost is set to 0.

C. Equation of state transition

The performance measure is defined as shown in equation
(3.7), where xk is an actual SOC at the step k, xk+1 is a
desired SOC at step k + 1. The equation of state transition
T (xk, uk, k) is specified as follows:

xk+1 = T (xk, uk, k) = xk +∆x

= xk +
∆Ek

Emax
× 100% (3.13)

Where

∆Ek ={
∆Ek−plug = ηk · uk · Pmax−plug ·∆t, k ∈ Kplug(3.14)
∆Ek−driv = −Pdr ·∆t, k ∈ Kdriv (3.15)

∆Ek−plug is the energy increasement of the battery from
step k to step k + 1 when plug in. Similarly, ∆Ek−driv is
the energy decreasement of the battery from step k to step
k+1 when driving. Pdr(k) denotes power requirement during
driving cycle. It is obvious that power requirement of every
step when driving is hardly predicted. Instead, it is possible
to predict energy requirement throughout a whole driving

trip, which can be a replacement of power requirement. This
solution is described as follows:

Ei
dr =

m∑
j=1

∆Ei
dr(j) = −

m∑
j=1

P i
dr(j) ·∆t (3.16)

Here Ei
dr is the energy requirement of the ith trip during

a day. m is number of time intervals of the trip, where as
P i
dr is the corresponding power requirement. Substitute equa-

tion (3.16) into equation (3.13), we have the state transition
equation of ith trip when driving as follows:

xk+m = xk −
∑m

j=1 P
i
dr(j) ·∆t

Emax
× 100%

= xk +
Ei

dr

Emax
× 100% (3.17)

Similarly, the state transition equation of other trips can
be obtained in the same way. The drawback of equation
(3.17) is that intermediate states {xk+1, xk+2, . . . , xk+m−1}
are difficult to be calculated precisely due to the impossible
prediction of Pdr in practice. Fortunately, the imprecision of
these states has no influence on the accuracy of final optimal
control strategy u∗. The reason is that no charging happens
when driving, and uk is determined by battery state of charge
xk and xk+1, where k ∈ Kplug . This relationship is illustrated
by following equation (3.18).

Substitute equation (3.14) into equation (3.13), we have the
state transition equation when plug in as follows:

xk+1 = xk +
ηk · uk · Pmax−plug ·∆t

Emax
× 100%

= xk + ηkuk · Pmax−plug ·∆t

Emax
× 100% (3.18)

From equation (3.18), it is clear that Pmax−plug and Emax

are constant for a specific vehicle battery, efficiency parameter
ηk and time interval ∆t are also assumed to be known.
Therefore, uk is a function of xk and xk+1.

These state transition models (equation (3.17) and (3.18))
are general enough to account for the possibility of parallel
processing among the various control strategies, as well as
for redundancy in the database. Once the concept of state
transition has been properly defined, dynamic programming
can be used to find the state containing the answer to the query
that has the minimum cost and to find the optimal trajectory
to that state (i.e., optimal sequence of processing operations)
[14].

IV. CASE STUDY

In this section, a case is studied and the goal of optimization
is to present a charging schedule for every individual vehicle
to minimize the cost of electricity while satisfying the vehicle
owner’s requirements. A comparison is made between the
results of an EV with a fast charging scheme and those of
the dynamic programming based method.

The charging schedule is divided into time intervals for a
24-h based period. The period starts from the first second when
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the vehicle owners begin their first trip and ends right before
the next day’s departure, which has 288 intervals of 5-minutes
each. As mentioned previously, the objective function is to
ensure that the battery is fully charged before the first trip of
the following morning, which means x0=100% and xN=100%.
The vehicle used to study in this paper is Nissan LEAF Electric
Car, which is a purely electricity propulsion system. The basic
battery information [15] is shown in Table I. Typically, the
battery operation is limited to a given state of charge operating
range. We assume Nissan LEAF battery has a minimum state
of charge of 10%. Hence, here the SOC is limited to [0.1,
1.0]. Moreover, it is important to know a driving behavior
of a vehicle, which includes the departure time, return time
and energy requirements of every trip. Based on the vehicle
parameters, a driving map includes three trips during a day is
given in table II.

Another important piece of information is electricity prices,
which are based upon a typical work day of 04.05.2011 from
Nordpool Spot market area Denmark West [16].

TABLE I

SIMULATION PARAMETERS

Discretization Parameters

U 11
X 721
∆t 300s

Battery V alue

Total capacity 24KWh
Maximum plug power 4KW

Maximum driving distance 160km
Energy consumption 150Wh/km

TABLE II

DRIVING BEHAVIOR

Trip DepartureT ime ReturnT ime EnergyRequirement

1 8:00 9:00 13.5KWh
2 15:00 16:00 9KWh
3 20:00 21:00 13.5KWh

A. Fast Charging

Fast charging is a kind of uncoordinated charging. It as-
sumes that vehicles are charged instantaneously when they
are plugged in, and the batteries will be fully recharged
as fast as possible without considering the daily electricity
price. Nissan LEAF vehicles have their own definition for
battery fast charging. The LEAF’s battery is intended to
accept several rapid charging scenarios including a 50KW
”fast charge” which gives 80% charge in thirty minutes, or a
five minute fast-charge which delivers an additional 31 miles
of range. These rapid recharge modes will require a special
three-phase charger, which is most likely to be owned by
commercial or governmental entities in distributed charging

stations [15]. This fast charging offers most flexibility to driver.
However, it is not the fast charging we discussed here, because
homeowners don’t have a spare 50KW charging power, but
prefer to have a common, single-phase 220V with maximum
4KW charging power. The profiles with fast charging are given
by Fig.1. From Fig.1, it is clear that every time when the
vehicle finishes a trip, the battery will be charged immediately
without the considering the electricity prices. The battery is
fully charged as fast as possible once it is plugged in. As a
result, the electricity costs will be high, which for the profiles
amount to 4.5995EU.
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Fig. 1. Profile with fast charging

B. Smart Charging

The idea of the smart charging is to achieve optimal
charging to minimize the charging cost. The optimal control
strategy will be obtained and sent to the individual vehicle
as control signals for charging power. The results of the
dynamic programming based method are shown in Fig.2. The
simulation parameters are given in Table I.

From Fig.2, we have a general idea that electric vehicle
charging is done when the price for electricity is lowest. The
SOC of battery shows that the battery doesn’t have to be fully
charged before next trip. Instead, it would be sufficient if the
SOC is charged enough to support the energy consumption for
the next trip. This leads to a electricity cost of 2.0393EU for
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a whole day, which is much cheaper than the fast charging
cost. Smart charging cannot offer flexibility for driver as fast
charging does. Consequently, sometimes when drivers drive
away their vehicles before the preannouced departure time,
the battery may not be enough charged to meet the energy
requirement for the next trip, which the drivers have to accept.
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Fig. 2. Profile with smart charging

C. Computing Time

The code optimizes a 24-h interval in Matlab takes 77.79s
on 2.8-GHz CPU with 3.12GB of RAM.

V. CONCLUSIONS

This paper presents a mathematical formulation and a dy-
namic programming based algorithm for optimizing EV charg-
ing given electricity prices and driving pattern. Smart charging
without provision of regulation service reduces daily electricity
costs for driving from 4.5995EU to 2.0393EU compare with
fast charging. With smart charging, EV is recharged during
the lowest electricity price period, where is also the off peak
hours. It naturally drops the possibility of grid overload during
the peak load hours.

Future work is needed with respect to several possible
extensions. The optimization model should be extended to
account for providing of regulation service and given different

type of electric drive vehicles as well as various driving
patterns. Furthermore, in considering the possibility that EV
charging may impact the electricity price, electricity price
forecasting models should be properly developed.
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