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Abstract
Shifting the focus from code to models in software devel-

opment brings into view model-related tasks such as query-
ing which are not very well supported by current CASE
tools. Existing textual query languages like OCL are of-
ten not acceptable for domain modelers. Also, most query
languages suffer from a mismatch between models, queries,
and results. The Visual Model Query Language (VMQL)
tries to overcome this by using a modeling language also as
the query language and result presentation language.

1 Introduction
Many software development approaches today use mod-

els instead of code for many purposes (e. g., model based
and model driven development, Domain-Specific Lan-
guages (DSLs), Business process management). As a con-
sequence of this shift of focus, tasks such as version and
configuration management, consistency checking, transfor-
mations, and querying of models are much more common
today than they used to be. Unfortunately, these and other
tasks are not well covered in current CASE tools. But from
practical experience we have learned that modelers dearly
need, among others, an ad-hoc query facility covering more
than just full text search and a set of predefined queries.

In prior work [11], we have explored several textual lan-
guages to query models, in particular OCL, SQL, and Pro-
log. All of these serve this purpose, with varying degrees
of expressiveness, efficiency, and usability. However, all of
them are textual in nature, so that there is a media mismatch
between the models queried, the queries, and the results
found. Also, all of these languages involve a substantial
amount of formalism which makes these languages difficult
to use for a fair number of (potential) modelers, because
at least domain and requirements modelers are usually not
software engineers. However, any modeler must be famil-
iar with the modeling language at hand—after all, this is a
necessary prerequisite for becoming a modeler in the first
place. So, using the modeling language as the query and
result presentation language would make querying models
much easier for them.

In order to support ad hoc querying, the VMQL aims at
expressing model queries as (annotated) models. Our ap-
proach is generic in that it is applicable to a wide range

of visual languages, including all notations in UML, IDEF,
ARIS, as well as traditional notations such as ER-diagrams,
Petri nets or state machines, and even domain-specific lan-
guages not yet defined. In order to provide an optimal trade
off between expressiveness and complexity, the syntax of
VMQL is structured in two layers. The lower layer pro-
viding full expressiveness and little implementation effort
at the cost of reduced usability. The upper layer provides
syntactic sugar for the most frequent types of queries, pro-
viding very succinct and easy to use notations but incurring
more implementation effort.

Most popular CASE tools like Rational Rose, Sparx En-
terpriseArchitect or MagicDraw UML provide an applica-
tion programming interface (API) that may be used to query
models. Obviously, such a facility potentially offers unlim-
ited expressiveness but requires a user to express a query
as a program, using some particular programming language
(Visual Basic, .Net, and Java, respectively, for the tools jut
mentioned), and a complex API and programming environ-
ment. Thus, it is fairly difficult to run ad hoc user queries
against a model, and so, only very proficient users will be
able to query models using an API.

On the other hand, many tools also offer full-text-search,
and/or a selection of predefined (parameterizable) queries.
For instance, MagicDraw UML and Adonis provide full-
text search and predefined queries. Such query facilities
are rather easy to use, but offer only limited expressiveness.
For instance, in Adonis it is not possible to query for all
model elements of any type satisfying some condition (e.
g., “has been changed yesterday”). Either way, both types
of facilities—APIs and predefined queries—are specific to
one given tool.

More generic approaches that define a proper query
language independent of a specific tool include the Ob-
ject Constraint Language (OCL, [6]), the Model Manipu-
lation Toolkit (MoMaT, [11]), or the OMG’s Query-View-
Transformations standard (QVT, [8]). As outlined before,
a textual query language does not blend well with a visual
modeling language, and formalisms like first order logic are
not acceptable to domain modelers. Visual OCL [1] only vi-
sualizes an OCL expression used for querying, not the query
as such: from a visual OCL diagram, the structure of the re-
sult can not be inferred. Additionally, all approaches men-
tioned in this paragraph have a certain version of the UML



meta-model hardwired into them. Any changes to the meta-
model will break some queries.

Both of these disadvantages are avoided by Constraint
Diagrams [4]. Here, the concrete syntax (which is much
less likely to change than the meta-model) is used to formu-
late a query. Unfortunately, Constraint Diagrams are rather
limited with respect to the modeling language they may be
applied to (basic class diagrams). Also, it seems that Con-
straint Diagrams have never been implemented as a tool.

Probably the approach closest to VMQL are Query Mod-
els (QM, [9, 10]). Like Constraint Diagrams and VMQL,
QM uses a variant of the host language to express additional
constraints. Unlike VMQL, however, query models are sup-
posed to be translated into OCL. The QM approach does not
provide a generic translation of diagrams into UML, it only
gives a handfull of examples how such a translation might
look like. So, QM is more like a visualization of certain
predefined OCL queries, and inherits the respective prob-
lems of (visual) OCL. Also, QM has only been elaborated
for a few examples of class and sequence diagrams in the
context of aspect-oriented modeling. It is not clear whether
it may be generalized to other notations and other types of
queries. QM has never been elaborated to the point of an
implementation that actually executes a query, and indeed,
it is not clear how the translation from Query Models to
OCL could be automated in general. Table 1 provides an
overview comparison of the approaches discussed above.
The usability scores shown refer to the ease of usage nonex-
pert users experience with ad-hoc-queries. Expressiveness
scores are increasing with higher numbers of (dialects of)
modeling languages and types of query.

The starting point of our work is the observation that pro-
viding interactive query facilities for modelers is essential
in many modeling projects. However, many modelers are
overwhelmed by the complexity of the modeling language
they (have to) use, and can’t cope with yet another, compli-
cated language for queries (such as OCL or QVT), let alone
query APIs. On the other hand, the full-text search and pre-
defined queries provided by many tools are not nearly ex-
pressive and flexible enough.

Therefore, we propose to express queries as annotated
model fragments, using more or less the same notation
that is used for expressing the models to be queried—
plus a range of optional annotations (“constraints”) to pro-
vide more expressiveness for queries. We will call the
modeling notation “host language”, and the model to be
queried “source model” in the remainder. Executing a
query (“query model”) amounts to finding matching frag-
ments in the model base and thus establishing an injective
function from model elements of the query to model ele-
ments of the source model (“mapping”) and values for all

free variables in the query (“binding”).
Finally, the results must be displayed back to the user,

and again, we use the notations of the host language for
this. Obviously, then, anybody who can model can also
read and write queries with virtually no additional learn-
ing effort. Since the results are also presented in the host
language, there are no semantic gaps between model base,
query, and query result. We expect that this makes query-
ing models much easier, and first practical experiences have
confirmed this.

Using essentially the same notations for specifying mod-
els and for specifying queries on them means that this ap-
proach may be used for almost any visual modeling lan-
guage, that is, not just all diagram types of the UML,
but also all other visual language families (like ARIS [2],
IDEF [5]) or individual visual languages like ER-diagrams,
BPMN, MSCs, SADT and so on. And, more importantly,
it is also applicable for visual languages not yet defined, i.
e. Domain-Specific Languages (DSLs). In this paper, how-
ever, we will restrict ourselves to UML to mitigate the lim-
ited space and yet reach the broadest audience possible.

The rest of this paper is organised as follows. In the
next section, we will go through the VMQL language and
explain all notations, followed by a section with sample
queries for a variety of modeling languages such as UML
Class, Activity, and State Machine diagrams. Then we will
explain how VMQL queries are executed and briefly portray
our experimental implementation of VMQL.

2 Language elements of VMQL

In the remainder, we will use the source model visualised
by the diagrams presented in Fig. 1. This model is extracted
from the analysis level models of an industrial project; ll
queries discussed subsequently will be run against it.

First of all, the VMQL language consists of the host lan-
guage itself, with all of its notational elements that have a
representation in the abstract syntax. Elements of secondary
notation, such as implicit layout conventions, are excluded.1

Some sample queries are presented in Fig. 2.
Sample Query 1 (see Fig. 2) contains a class Product

and a Person with three attributes (name of type
String, some attribute of type Date, and an attribute
called gender). Running this query against the model base
of Fig. 1 ought to produce exactly one result mapping as
shown in the following sketch.

1Note that modelers may find it hard to distinguish between primary
and secondary notation. Consider e. g. containment of Parts in Classes
in UML composite structure diagrams, cf. [7, Fig. 9.26, p. 190] which
belongs to the primary notation while the vertical arrangement of use cases
in a system is not.
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Table 1. Approaches to querying models, ordered by decreasing score.

APPROACH USABILITY EXPRESSIVENESS TOOL
READ WRITE READ QUERY MODEL QUERY QUERY AVAIL- INTE-

NAME [REF.] QUERY QUERY RESULTS AD HOC TYPES TYPES LANG. ABILITY GRATION
VMQL (this paper) • • • • • • • • • X • • • •• diagram X X
predefined queries • • • • • • •1 X • •1 selection X X
Query Models [9] • • • • • • • • • × • • diagram ×2 ×
Visual OCL [1] • • • × •• • • • diagram X ×
OCL [6] • • • X •• • • • formula X X
query APIs • • • × • • • • code X X
MoMaT [11] • • • X • • • • • • code X ×
Constraint Diagr. [4] •• • • × • •• diagram × ×
QVT [8] • • • × •• •• code3 X ×
1 depends on tool 2 tool doesn’t execute queries 3 implementations don’t support visual notation of standard

CD Insurance Entities AD Coverage Quote Processing

SQD Contract approval

SM Contract Lifecycle

CD Product Catalog

Person

AllRoundHealthPlan

DreadDiseasePlan

DentalPlan

CompoundProduct

LifePlan

Address

GroupPlan

MedicalPlan

CompoundHealthPlan

name: String
birth date: Date
gender: Char
subscriberID: int
lastChange: Date
entry: Date

street: String
city: String
zip: int

Product

name: String
coverage: float
effective: Date

covers
0..1

11..*

0..*

0..*

0..*

1..*

0..*

0..*

cooperate

receive plan coverage 
quote request

verify
customer account

set up standard 
letter No 42

check
general coverage

check
coverage limit

compute quotable 
coverage offering

manual coverage 
quote processing

notify local 
claims manager

send  plan coverage
quote to customer

[error]

offered accepted

approved

activeterminated

accept

approve

activate

deactivate

decline reject

Person
/Customer

Person
/Underwriter

Contract

propose(self)

accept()

approve()

activate()

propose(self)

Contract

valid from: Date
valid thru: Date

1

1

1
underwriter

customer

Product

accept(): void
approve(): void
activate(): void
deactivate(): void
reject(): void
decline(): void

Figure 1. The model base against which all sample queries described in this paper are supposed to
run.
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Table 2. Overview of VQML constraints.
CONSTRAINT applicable to parameters
name 1 any type of model element regular exp., var. name1

ref 1 any type of model element variable name
steps 1 relationship relational expression
multiplicity 1 relationship end cardinality
mclass 1 any type of model element set of meta-classes
mattr 1 any type of model element meta-attribute, value
precision 0, 12 any type of model element float

CONSTRAINT applicable to
acyclic 1 relationship
irreflexive 1 relationship
distinct 2 model elements of same type
or n model elements of same type
not 1 any type of model element
optional 1 any type of model element
strict 1 any type of model element

1 : optional 2 : constraint without parameter refers to whole query

(a)

Result 1

Query: CD 1 Query: CD 2

Query 5b

Query 5a

Query: CD 4a

Query: CD 3

Query: CD 4b

Query 7Query 6

3Result: CD1Result: CD

Person

name: String
birth date: Date
gender: Char
subscriberID: int

Product

name: String
coverage: float
effective: Date

Person Product Product

name: String
coverage: float
effective: Date

Address

street: String
city: String
zip: String

name: String
: Date
gender

$Part{*}

$Whole{*}

1..*

0..1

$Part{*}

$Whole{*}

1..*

0..1

* *

Product

$A{n*e}: String
coverage: float
effective: Date

$Class{*}

$A: String
$B{*}: Date

Product

$Prod{*Plan}

Query 1

Query 2

Query 5bQuery 5a

Query 4

Person Product

Product

name: String
coverage: float
effective: Date

Address

street: String
city: String
zip: String

name: String
: Date
gender

$Part{*}

$Whole{*}

1..*

0..1

$Part{*}

$Whole{*}

1..*

0..1

* *

Query 3

Product

$A{n*e}: String
coverage: float
effective: Date

$Class{*}

$A{n*e}: String
$B{*}: Date

Product $Product{*Plan}*

Query 4 (expanded)

name $Product{*Plan}

steps = *

Product

Product

$Prod{*Plan}

*

Query 3 (expanded)

Product

: String
coverage: float
effective: Date

: String
: Date

name $Class{*}

name $A{n*e}

name $B{*}

name $A{n*e}

(a)
Person Product

name: String
coverage: float
effective: Date

name: String
birth date: Date
gender: Char
subscriberID: int
last change: Date
entry: Date

(a)
Product

name: String
coverage: float
effective: Date

Person

0..* 0..*
name: String
birth date: Date
gender: Char
subscriberID: int
last change: Date
entry: Date

Figure 2. Some sample VMQL class model queries on the model base of Fig. 1, together with some
of their results. Alternative bindings for Result 3 are displayed by highlighting with dashed outline.

Query: CD 3 (expanded)

Query 5b'  (expanded)

Query 4 (expanded)

Query 5a (expanded)

Query: CD 4c

steps = *

name $Whole{*},
property 
 isAbstract = any

name $Product{*Plan}

name $Part{*}

1..*

0..1
steps = *

steps = *

name $Part{*}

name $Whole{*}

1..*

0..1

Product

: String
coverage: float
effective: Date

: String
: Date

name $Class{*}

name $A{*}

name $B{*}

mclass <: Class,
mattr isAbstract = *,
name $Product{*Plan}

Product

steps = *

Product

name $A{n*e}

<< VMQL >>

Expansionen von 3 und von 5a geben nicht viel her.
Interessanter sind die Fällre, wo man zusätzlich zur 
gezuckerten Syntax die rohe Form braucht.
Für die rohe form braucht man in jedem Fall auch 
ein << VMQL >> Stereotyp; für die gezuckerte nicht, 
denn da muss man eh einen neuen Diagrammtyp 
einführen, udn der hat es dann implizit.

Query 3 (expanded)

Product

: String
coverage: float
effective: Date

: String
: Date

name $Class{*}

name ref A

name $B{*}
name $A{n*e}

Figure 3. Two queries with expanded ("non sugared") syntax.

Query: SQD Who calls Person.propose()?Query: SM Unconnected State Query: AD Dangling Choices

Query: AD $FaultyDiagram{*}

steps = *, not

name $Whole{*}

1..*

0..1

receive plan 
coverage quote

check
customer account

$Unconnected
State{*}

compute quotable 
coverage offering

notify local 
claims manager

[error]

not,
steps = *

steps = *

distinct

name 
 DanglingChoice{*}

offered accepted

approved

active

$PreFinalState{*}

accept

approve

activate

deactivate

decline reject
* $Unconnected

Action{*}

Person$Caller{*}

propose()

Figure 4. Queries for UML Activity and State Machine diagrams.

4



Query:CD 1

CD Insurance Domain

1

Person

Product

name: String
: Date
gender

(a)

Result

Person Product

name: String
coverage: float
effective: Date

name: String
birth date: Date
gender: Char
subscriberID: int

Person
Address

name: String
birth date: Date
gender: Char
subscriberID: int
lastChange: Date
entry: Date

street: String
city: String
zip: int

Product

name: String
coverage: float
effective: Date

covers
0..1

11..*

0..*

0..*

0..*

1..*

0..*

Contract

valid from: Date
valid thru: Date

1

1

1
underwriter

customer

Query 1CD Insurance Domain

Person

Product

name: String
: Date
gender

Person

name: String
birth date: Date
gender: Char
subscriberID: int

Product

name: String
coverage: float
effective: Date

0..*
0..*

Binding

1

(a)

Result

Person Product

name: String
coverage: float
effective: Date

name: String
birth date: Date
gender: Char
subscriberID: int

Mapping

This query result could be visualised by highlighting, as
shown in Result 1 in Fig. 2. Observe that the mapping
covers just five elements from the model base: the classes
named Person and Product, the attributes name, birth
date, and gender of Person, and just those properties
shown in Query 1. Additional elements or properties of
the model base that do not occur in Query 1 are ignored.

Let’s now turn to the next example. When running
Query 2 (see Fig. 2), no mapping can be established, and
so, no results will be returned. There are three points of fail-
ure: the model base does not have a class Address with
(1) an attribute zip of type String, (2) an association
to a class Product, and (3) with the value true for the
meta-attribute isAbstract.2

The queries encountered so far are ground queries; that
is, they do not contain variables. In Query 3 we introduce
variables and element name match expressions. An expres-
sion of the form $Var{regexp} may replace the name
of a model element. This expression declares the variable
Var, and constrains the element’s name to be in the set
of strings described by the regular expression regexp. In
Query 3, for instance, the expression $A{n*e}$ used as
the name of the first attribute will restrict the set of match-
ing attributes in the model base to those whose names start
with a “n”, followed by an arbitrary sequence of symbols,
and end with “e”. So, Query 3 looks for pairs of associated
classes with the following properties:

• both classes have String-typed attributes whose
names match n*e, and the result is bound to the same
variable A (i. e., the names coincide);

• one of the classes is named Product and contains
the attributes coverage and effective of types
float and Date, respectively;

• the other classes’ name matches * and is bound to the
variable Class. It has an attribute of type Date,

2In UML, using an italic font for the class name shows that it is abstract.
This property is reflected by the boolean meta-attribute isAbstract,
cf. [7, p. 52].

whose name is bound to the variable B.

Thus, mappings quite similar to those shown in the sketch
above are established. In fact, there are three possible map-
pings, that is, three solutions to Query 3. In order to save
space in this presentation, the three alternative solutions
have been combined into one diagram in Result 3 of Fig. 2.
As there are free variables in this query, also a binding be-
tween variables and values is established. Each mapping
corresponds to one of the following bindings.

Binding Class A B

1: “Person” “name” “birth date”
2: “Person” “name” “last change”
3: “Person” “name” “entry”

Variables may be used several times in one query, but
they always refer to the same value in one result, though this
value may vary for different results. All the usual features
of regular expressions are allowed (i. e., option, selection,
repetition, and wild cards).

Instead of replacing the name of a model element by an
expression as described above, the constraints may also be
expressed as a comment attached to the model element. We
call this the “expanded” notation; Fig. 3 presents the ex-
panded version of Query 3 as an example. In fact, the ex-
panded notation is the primary way to define constraints, as
it allows a greater variety of constraints, and it is also gener-
ally applicable: almost any modeling language will provide
something similar to a comment attached to an element.

So, the notation presented above is just a form of “syn-
tactic sugaring” to increase usability while restricting the
generality of the approach and increasing the implementa-
tion effort. However, there are also drawbacks to the ex-
panded syntax. For instance, non-unary constraints may not
be expressed with the expanded notation if the host model-
ing language or tool does not support comments to be at-
tached to two or more model elements simultaneously. In
that case, syntactic sugaring may be used to overcome tool
or host language restrictions.

Observe that constraints always override features in a
model. For instance, if a model element has a name and a
name constraint, the latter takes precedence. This feature is
necessary when tools impose restrictions that interact with
the query as such.

Now assume we are looking for all Products of our
insurance domain that are Plans. At first sight, Query
4a in Fig. 2 appears like doing this, however, it yields only
two bindings for the variable Prod, namely LifePlan
and MedicalPlan because all other classes matching the
name constraint are not direct subclasses of Product. In
order to also access all indirect subclasses the steps con-
straint is introduced, see Query 4b in Fig. 2. This query
yields five bindings as expected, because GroupPlan is
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abstract and AllRoundHealthPlan is an Association-
Class rather than a Class in the UML meta-model. In order
to also include these two in the result set, Query 4c (Fig. 3)
is needed.

In order to include GroupPlan and AllRound-
HealthPlan in the result set, two additional constraints
must be put in place to form Query 4c (see Fig. 3).
First, we must allow other UML meta-classes than Class
to match our query. We could just enumerate the rel-
evant meta-classes here (i.e., write mclass [Class,
AssociationClass]). However, in order to provide
more generality, we might prefer mclass <: Class
to allow any subclass of the meta-class Class, which also
includes AssociationClass. This feature is particularly use-
ful for large generalization trees, e. g., for the Action
or Behavior hierarchies. Second, we must allow any
value of the meta-attribute isAbstract in a matching
model element. This is achieved by the constraint mattr
isAbstract *.

Obviously, using the mclass and mattr constraints
ties queries to the particular meta-model underlying the
modeling language used, so some of the generality of
VMQL is lost here: should the meta-model change, the
query may become faulty. However, we get a great deal
of expressiveness in return, useful for all meta-model-based
modeling languages.

We will now briefly explain the complete set of all con-
straint types currently defined in VMQL. Table 2 provides a
synopsis. Due to the restricted space in this paper, we can’t
go into details here.

Identifier constraints refer to the proper names of
model elements: name declares a regular expression to
match the name of a model element, and ref declares a
reference to a variable defined before.

Path constraints refer to edge-node-structures: steps
gives a limit to the length of a path (as in steps < 42 or
steps = ∗), acyclic and irreflexive are exactly
as is to be expected from graph theory (irreflexive is really
a frequent special case of distinct for relationships without
cycle of 1 or more steps).

Metamodel constraints refer to the meta-model of the
host language: mclass allows to define the set of matching
model element types (i. e., meta-classes), mattr allows to
specify the values of meta-attributes.

Match constraints refer to the process of matching:
precision defines the degree of similarity required to
consider two model elements as matches (default is 1),
strict enforces that matches for query elements must not
have additional parts and properties.

Identity constraints refer to the role of model elements:
distinct enforces that two matches be non-identical,
or joins alternative match candidates, optional declares
an element as not essential, and not forbids designated

elements.

To increase the usability, we allow several forms of syn-
tactic sugaring. First, the unary constraint of Table 2 may
be applied to several model elements at one time. This is
supposed to mean that an identical copy of the constraint is
applied to each of the model elements individually. Also,
instead of attaching several constraints in their own boxes
to one element, constraints may use one comment-box to-
gether to form a complex constraint. In that case, the indi-
vidual constraints may be separated by commas (conjunc-
tion), or semicolons (disjunction). Brackets must be used to
disambiguate terms.

VMQL is not restricted to querying class diagrams, or,
indeed, any particular modeling language: every host di-
agram that allows constraint annotations similar to those
presented above may be used as a query. See Fig. 4 for an
example of a State Machine query (left), and an Interaction
query (middle). These queries yield all states not connected
to the initial state (Fig. 4, left); and all interaction partners
calling method propose of Person (Fig. 4, middle).

Also, queries may be used for a variety of simple consis-
tency checks, see Fig. 4 (right), where we ask for all choice
paths that are not properly joined togehter again. Observe,
that this query uses a name constraint for the query diagram
as such – this is one feature difficult to implement for most
CASE tools.

3 Query execution
Query models are annotated fragments of regular mod-

els. Executing a query with respect to a given source model
essentially requires finding portions of the source model
that resemble the structure and properties of the query
model and also satisfy its annotations. Fig. 5 shows a syn-
opsis of the query execution process.

First, the user creates the source models in the model
base, exports them to an XMI file, and transforms it into a
Prolog database (represented in Fig. 5 by numbers in white
circles). These two steps occur once for all subsequent
queries. For instance, the Prolog representation of class
Address of Fig. 1 is shown below.

me(class-25, [ownedMember-ids([26,29,31,33]),
name-’Address’]).

me(property-26,[association-id(89),type-id(35),
visibility-’private’,
multiplicity-interval(1,*)]).

me(property-29,[visibility-’private’,name-’street’,
multiplicity-1,type-’String’]).

me(property-31,[visibility-’private’,name-’city’,
multiplicity-1,type-’String’]).

me(property-33,[visibility-’private’,name-’zip’,
multiplicity-1,type-int]).

Each model element is transformed to one Prolog clause
of the predicate me, whose first argument are a pair of type

6
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Figure 5. The architecture of the ModelQuery
system. Numbers indicate the sequence of
steps in creating and executing a query.

and internal identifier (usually an integer), and whose sec-
ond argument is a property list of tags for meta-attributes
and their values. References to identifiers are marked with
an id or ids-term. The code has been slightly beauti-
fied for improved readability. The transformation is imple-
mented in the MX-tool [3]. Observe that this transforma-
tion is bijective and content preserving. It neither adds nor
removes anything, it changes merely the model representa-
tion. This process is highly generic, covering a wide range
of XMI versions, different tools’ dialects of them, and com-
pletely different formats e. g. from DSLs. To a large de-
gree, it is precisely this step that makes VMQL a generic
approach.

We now describe the process of creating and executing
a query and visualizing the results. These steps are repre-
sented in Fig. 5 by numbered black circles.












 A query is entered either as a regular UML model with
extended syntax annotations or as a sugared syntax
query diagram, as described above.

 ,








 Then, the query model is exported to XMI and trans-
lated into a Prolog-predicate. The model elements
are transformed by the same procedure as the source
model. Constraints are directly mapped to predefined
Prolog predicates and added to the query (details be-
low).









 Now the predicate resulting from translating the query

model is run on the Prolog-database resulting from
transforming the source model.
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 Finally, the user selects one of the matches found in the
previous step. To support this, a list of all diagrams is
computed, that contain elements of the match (“hits”).
This list is sorted by number of hits. The diagram se-
lected in the previous step is presented, and all hits are
highlighted (see Fig. ??). The user may return to the
previous step and select another match.

Translating a query is a two-step process. Firstly, the
query model is transformed into Prolog code (via XMI), just
like a regular source model. Secondly, the constraints are
translated into predefined Prolog predicates. For instance,
consider again Query 4c presented in Fig. 3. It is trans-
formed into the following Prolog code.

me(class-0, [name-’Product’]).
me(class-1, [ownedMember-ids([2])]).
me(comment-3,[annotatedElement-id(1),

body-’mclass <: Class,
mattr isAbstract = *,
name $Product {*Plan}’]).

me(generalization-2, [to-id(0),from-id(1)]).
me(comment-4,[annotatedElement-id(2),

body-’steps = *’]).

The complex constraint with id 3 is translated to the fol-
lowing prolog clause

Constraint_1 = [
mattr( q4c, 1, isAbstract, =, any),
mclass(q4c, 1, ’<:’, Class),
name( q4c, 1, Product, ’*Plan’)]

where q4c is the model identifier, and 1 is the identifier
of the model element to which the constraint refers. The
predicates mattr, mclass, and name are predefined and
check the respective constraint on the specified model el-
ement. Such predefined predicates may, of course, be of
arbitrary complexity. Keep in mind that in Prolog, variables
start with a capital letter.

Matching the constrained elements amounts to calling
the following clauses

match(q4c, me(me(class-0, [name-’Product’])),
[], Binding_0),

match(q4c, me(class-1,[ownedMember-ids([2])]),
Constraints_1, Binding_1).

match(q4c, me(generalization-2, [to-id(0),from-id(1)]),
Constraints_2, Binding_2).

And that is it – the Prolog engine handles all the rest.

4 Implementation
We have implemented the ModelQuery system (MQ)

to realize VMQL (see [13]). It is a plugin to the popular
MagicDraw UMLTM CASE tool (see www.magicdraw.
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com) and uses SWI Prolog and the JPL Java-Prolog-Bridge
library (see www.swi-prolog.org).

MQ provides not just a generic query facility using ex-
tended syntax, but also syntactic sugaring by way of spe-
cialized query diagrams for class and activity queries. MQ
does not yet implement all constraint types and lacks sev-
eral features necessary for industrial usage. While the user
interaction is tool specific, the query engine and the model-
to-Prolog conversion are not (i. e., the lower part of Fig. 5).
It should thus be fairly easy to port MQ to other UML tools,
to DSL tools, or, in fact, to any CASE tool as long as it
provides an open plugin API. For want of space, we can-
not include a screenshot here. See [12] for a more detailed
version of this article.

5 Discussion
VMQL is a language to query model bases. It is as vi-

sual as its host language is. By using the concrete syntax
of the host language for query specification and result pre-
sentation, our approach avoids a meta-model and modeling
language lock-in and guarantees minimal effort to read and
write queries and results.

VMQL has been used manually for notations as diverse
as the complete UML 2.1.2, BPMN, ARIS/EPCs, all of
IDEF, MSCs, SDL, BON, a range of DSLs, and several oth-
ers. We have implemented VMQL as a plugin for the Mag-
icDraw UMLTM tool. We also tested our approach in prac-
tice for about 70% of the concepts and notations of UML
2.2, SysML and other UML profiles, and BPMN. The fol-
lowing table provides an overview of the case studies we
ran with VMQL. The model sizes are given by the number
of model elements (ME) and diagrams (D); the number of
queries are split up into class diagram queries (CD), activity
diagram queries (AD), and all other types of queries.

case model size queries
study ME D CD AD other
Library 177 4 18 2 3
Insurance 282 5 6 10 8
Vehicles 505 1 20 12 0
UML 2.2 1587 109 15 0 0
LF4 10293 1 8 0 0

We have not encountered any specific problems, and we
can’t think of any reason why it shouldn’t be possible to
use VMQL for other visual modeling languages and to in-
tegrate it into other tools. Given the architecture of MQ and
the nature of our approach, this should actually be fairly
straightforward.

In contrast to similar approaches like Constraint Dia-
grams and Query Models, VMQL is actually implemented,
even if our implementation is a prototype, and does not yet
support all of the constraints described in this paper. In con-
trast to (visual) OCL, and QVT, VMQL is not tied to a meta-
model, and the query structure is determined by the source
model structure, not some formalism.

The query execution performance degrades rather
quickly with increasing model sizes. Thus, we are currently

working on automatic query optimization by reordering the
sequence in which the matches and constraints are evalu-
ated, as this significantly shapes the search space. It would
also be interesting to see how well this approach is doing
for other use cases than ad-hoc-querying, i. e., for model
transformation specifications, model completion, pattern re-
trieval, and, most of all, enforcement of modeling guide-
lines and validity rules. Finally, it appears to be promising
to study combinations of queries, such as logical connectors
or pipelining.
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