

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 10, 2024

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace
Equation

Glimberg, Stefan Lemvig

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Glimberg, S. L. (Author). (2011). A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the
Laplace Equation. Sound/Visual production (digital)
http://www.mcs.anl.gov/research/LANS/events/listn/index.php

https://orbit.dtu.dk/en/publications/fafaa2dd-ef63-45d8-a96a-24a0f5ac23da
http://www.mcs.anl.gov/research/LANS/events/listn/index.php

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

A Fast Mixed-Precision Strategy for Iterative GPU-Based
Solution of the Laplace Equation

Stefan L. Glimberg

Section of Scientific Computing
Department of Informatics and Mathematical Modelling

Technical University of Denmark

Argonne National Laboratory
November 29th, 2011

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Background

Stefan L. Glimberg

PhD student, started 2010

Technical University of Denmark - Section of Scientific Computing

Project: Scientific GPU Computing for PDE Solvers

Visiting UIUC this semester

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

http://gpulab.imm.dtu.dk/

D T U I n f o r m a t i c s

The GPUlab is a competence center and laboratory for the use of Graphics
Processing Units (GPUs) for visualization, scientific computations, and
high-performance computing. The purpose is to attract focal interests in the
use of GPUs by both engineering students and researchers in projects.

Projects

Auto-tuning of Dense Linear Algebra on GPUs

Accelerating Economic Model Predictive Control using GPUs

Fast simulation of fully nonlinear water waves

...

Your project?

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

A Fast Mixed-precision Strategy for Iterative
GPU-based Solution of the Laplace Equation

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Fully Nonlinear Free Surface Water Waves

The potential flow equations describe fully nonlinear water waves under the
assumption of inviscid and irrotational flow.

2D Potential Flow Equations

Wave parameters

η - surface elevation

φ - potential (u = ∇φ)

h - still water depth

k = 2π/L - wave number

kh - dispersion

H/L - nonlinearity

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Fully Nonlinear Free Surface Water Waves

The potential flow equations describe fully nonlinear water waves under the
assumption of inviscid and irrotational flow.

2D Potential Flow Equations

∂tη = −∂xη ∂x φ̃ + ω̃(1 + (∂xη)2)

∂t φ̃ = −gη −
1

2
((∂x φ̃)2 − ω̃2(1 + (∂xη)2))

ω̃ = ∂z φ̃, φ̃ = φ|z=η

For ω̃ to be computed, we need to know the
potential in the entire domain.

φ = φ̃, z = η

∂xxφ + ∂zzφ = 0, −h ≤ z < η

∂zφ + ∂x h ∂xφ = 0, z = −h

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

σ-Transformed Laplace Equation

σ(x , z , t) =
z + h(x)

η(x , t) + h(x)

z

x
0

-h(x)

x

1

0

L

0 L

(x,z,t)

z(x, ,t)

η(x,t)

o
(xi,zj)

o
(xi, j)

j

i
i

j

Φ = φ̃, σ = 1

∂xx Φ + ∂xxσ(∂σΦ) + 2∂xσ(∂xσΦ) + ((∂xσ)2 + (∂zσ)2)∂σσΦ = 0, 0 ≤ σ < 1

(∂zσ + ∂x h∂xσ)∂σΦ + ∂x h∂x Φ = 0, σ = 0

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Linear Free Surface Water Waves

If wave amplitudes are small η < ε, then the total water depth is almost the
same as the still water depth (η + h ≈ h). If also the derivatives in η and h are
assumed to be zero, the free surface equations take linear form.

Linearized Laplace Equation

Φ = φ̃, σ = 1

∂xx Φ + (∂zσ)2∂σσΦ = 0, 0 ≤ σ < 1

∂zσ ∂σΦ = 0, σ = 0

These equations might serve as an approximation for the fully nonlinear
equations and can thus be used for preconditioning.

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

A Fast Mixed-precision Strategy for Iterative
GPU-based Solution of the Laplace Equation

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Motivation for GPU computing

There are several good reasons
to consider Graphical Processing
Units for high-performance
computing

Massively parallel
architecture, ∼ 500 cores.

Teraflops of floating point
performance

Moderate prices
$100− $2, 000. A personal
super computer

Fairly easy to get started
(CUDA, OpenCL)

Number 2 and 4 on top500
are based on GPUs

Figure: Theoretical peak performance of
CPUs vs GPUs within recent years.

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Motivation for GPU computing

There are several good reasons
to consider Graphical Processing
Units for high-performance
computing

Massively parallel
architecture, ∼ 500 cores.

Teraflops of floating point
performance

Moderate prices
$100− $2, 000. A personal
super computer

Fairly easy to get started
(CUDA, OpenCL)

Number 2 and 4 on top500
are based on GPUs

Figure: Theoretical memory throughput of
CPUs vs GPUs within recent years.

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Motivation for GPU computing

There are several good reasons
to consider Graphical Processing
Units for high-performance
computing

Massively parallel
architecture, ∼ 500 cores.

Teraflops of floating point
performance

Moderate prices
$100− $2, 000. A personal
super computer

Fairly easy to get started
(CUDA, OpenCL)

Number 2 and 4 on top500
are based on GPUs

Figure: Rough sketch of the chip transistor
layout for a CPU vs a GPU.

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

CUDA Implementation Example

Implementing a simple CUDA program is not very difficult.

1 Familiarize yourselves with CUDA syntax/keywords

2 Localize parts in the code that can be parallelized

3 Execute a lot of threads, each processing one element

BLAS1 Example: y = ax + y
Host (CPU):

1 void

2 axpy_host(float a, float* x, float

* y, int N)

3 {

4 for(int i=0; i<N; ++i)

5 {

6 y[i] = a*x[i] + y[i];

7 }

8 }

However, converting entire solvers for engineering applications is difficult, and
it is even more difficult to get the best possible performance.

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

CUDA Implementation Example

Implementing a simple CUDA program is not very difficult.

1 Familiarize yourselves with CUDA syntax/keywords

2 Localize parts in the code that can be parallelized

3 Execute a lot of threads, each processing one element

BLAS1 Example: y = ax + y
Host (CPU):

1 void

2 axpy_host(float a, float* x, float

* y, int N)

3 {

4 for(int i=0; i<N; ++i)

5 {

6 y[i] = a*x[i] + y[i];

7 }

8 }

However, converting entire solvers for engineering applications is difficult, and
it is even more difficult to get the best possible performance.

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

CUDA Implementation Example

Implementing a simple CUDA program is not very difficult.

1 Familiarize yourselves with CUDA syntax/keywords

2 Localize parts in the code that can be parallelized

3 Execute a lot of threads, each processing one element

BLAS1 Example: y = ax + y
Host (CPU):

1 void

2 axpy_host(float a, float* x, float

* y, int N)

3 {

4 for(int i=0; i<N; ++i)

5 {

6 y[i] = a*x[i] + y[i];

7 }

8 }

Device (GPU):

1 __global__ void

2 axpy_device(float a, float* x,

float* y, int N)

3 {

4 int i = blockDim.x*blockIdx.x+

threadIdx.x;

5 y[i] = a*x[i] + y[i];

6 }

However, converting entire solvers for engineering applications is difficult, and
it is even more difficult to get the best possible performance.

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

CUDA Implementation Example

Implementing a simple CUDA program is not very difficult.

1 Familiarize yourselves with CUDA syntax/keywords

2 Localize parts in the code that can be parallelized

3 Execute a lot of threads, each processing one element

BLAS1 Example: y = ax + y

Host (CPU):

1 void

2 axpy_host(float a, float* x, float

* y, int N)

3 {

4 for(int i=0; i<N; ++i)

5 {

6 y[i] = a*x[i] + y[i];

7 }

8 }

Better one:

1 template <typename T>

2 __global__ void

3 axpy_device(T a, T* x, T* y, int N

)

4 {

5 int i = blockDim.x*blockIdx.x+

threadIdx.x;

6 y[i] = a*x[i] + y[i];

7 }

However, converting entire solvers for engineering applications is difficult, and
it is even more difficult to get the best possible performance.

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

CUDA Implementation Example

Implementing a simple CUDA program is not very difficult.

1 Familiarize yourselves with CUDA syntax/keywords

2 Localize parts in the code that can be parallelized

3 Execute a lot of threads, each processing one element

BLAS1 Example: y = ax + y

Host (CPU):

1 void

2 axpy_host(float a, float* x, float

* y, int N)

3 {

4 for(int i=0; i<N; ++i)

5 {

6 y[i] = a*x[i] + y[i];

7 }

8 }

Better one:

1 template <typename T>

2 __global__ void

3 axpy_device(T a, T* x, T* y, int N

)

4 {

5 int i = blockDim.x*blockIdx.x+

threadIdx.x;

6 y[i] = a*x[i] + y[i];

7 }

However, converting entire solvers for engineering applications is difficult, and
it is even more difficult to get the best possible performance.

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

A GPU-based Framework for PDE Solvers

We have build a highly generic heterogenous CPU-GPU framework for fast
PDE solver prototyping (Inspired by PETSc).

Framework Objectives

Remove all GPU-specific code for the non-expert GPU programmer

While maintaining the possibility to customize code at kernel level

1 gpulab ::vector <float ,host_memory > x_h (100 ,3.f); // Create host vector x, size 100, value 3

2 gpulab ::vector <float ,device_memory > x_d(x_h); // Create device vector x, transfer host data

3 gpulab ::vector <float ,device_memory > y_d(x_d); // Create device vector y, copy device data

4 y_d.axpy (4.f,x_d); // Do y = a*x+y on the device

5 y_d.nrm2(); // Calculate the 2-norm on the device

Implementations are partly based on Thrust – a high-level interface for GPU
programming.

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

A Finite Difference Example

Based on Taylor series expansion we can derive a set of coefficients for
calculating any derivative of u:

∂pu(xi)

∂xp
≈

β∑
n=−α

cnu(xi+n)

For given p; α, β and the coefficients cn can be determined. If α = β = 1 the
corresponding finite difference matrix becomes

c00 c01 c02 0 0 0 0 0
c10 c11 c12 0 0 0 0 0
0 c10 c11 c12 0 0 0 0
0 0 c10 c11 c12 0 0 0
0 0 0 c10 c11 c12 0 0
0 0 0 0 c10 c11 c12 0
0 0 0 0 0 c10 c11 c12

0 0 0 0 0 c20 c21 c22

u0

u1

u2

u3

u4

u5

u6

u7

≈

∂pu(x0)/∂xp

∂pu(x1)/∂xp

∂pu(x2)/∂xp

∂pu(x3)/∂xp

∂pu(x4)/∂xp

∂pu(x5)/∂xp

∂pu(x6)/∂xp

∂pu(x7)/∂xp

There is a lot of repetitions in the matrix and it is very sparse.

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

A Finite Difference Example (II)

So in compact form we only need

c =

 c11 c12 c13

c21 c22 c23

c31 c32 c33

 . (1)

We call this the compact stencil.

It is embarrassingly parallel !

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

A Finite Difference Example (III)

Host version:

1 void finite_difference(float* out , float* in, float* stencil , int alpha , int N){

2 for(int n=alpha; n<N-alpha; ++n){

3 float sum = 0.f;

4 for(int i=-alpha; i<=alpha; ++i)

5 sum += stencil[alpha+i] * in[n+i];

6 out[n] = sum;

7 }

8 }

Device version:

1 __global__

2 void finite_difference(float* out , float* in, float* stencil , int alpha , int N){

3 int n = blockDim.x * blockIdx.x + threadIdx.x;

4 float sum = 0.f;

5 for(int i = -alpha; i<=alpha; ++i)

6 sum += stencil[alpha+i] * in[n+i];

7 out[n] = sum;

8 }

However, there is still some tweaking to do.

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

A Finite Difference Example (IV)

Performance results for CPU and GPU implementations, α = β.

1 2 3 4
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Alpha

T
im

e
(s

)

Stencil size vs time

Shared memory

Constant stencil

Naive GPU

CPU

1 2 3 4
0

5

10

15

20

25

30

35

40

45

Alpha
G

F
lo

ps

Stencil size vs GFlops

Shared memory
Constant stencil
Naive GPU
CPU

Figure: Timings for a vector with 1,000,000 elements. Using a Tesla C1070 GPU and
an Intel Core i7 @ 1.73GHz CPU.

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Framework Outline

Key components for PDE solvers

Regular grid objects, 1D, 2D, 3D.

Compact stencil-based flexible order FD operators

Iterative methods for solving large systems of eqs.

Effective preconditioning strategies

1 grid_dim <int > dim (100 ,100); // 100 x100 grid

2 grid_dim <double > phys0 (0. ,0.); // Domain starts in x=0, y=0

3 grid_dim <double > phys1 (1. ,1.); // Domain end in x=1, y=1

4 grid_properties <int ,double > grid_props(dim , phys0 , phys1);

5 grid <double ,device_memory > u(grid_props); // Create u

6 grid <double ,device_memory > f(grid_props); // Create f

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Framework Outline

Key components for PDE solvers

Regular grid objects, 1D, 2D, 3D.

Compact stencil-based flexible order FD operators

Iterative methods for solving large systems of eqs.

Effective preconditioning strategies

1 grid_dim <int > dim (100 ,100); // 100 x100 grid

2 grid_dim <double > phys0 (0. ,0.); // Domain starts in x=0, y=0

3 grid_dim <double > phys1 (1. ,1.); // Domain end in x=1, y=1

4 grid_properties <int ,double > grid_props(dim , phys0 , phys1);

5 grid <double ,device_memory > u(grid_props); // Create u

6 grid <double ,device_memory > f(grid_props); // Create f

7
8 FD:: stencil_2d <double > A(2,4); // Second order derivative , fourth order accuracy

9 A.matvec(u,f); // Calculate f = du/dxx + du/dyy

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Framework Outline

Key components for PDE solvers

Regular grid objects, 1D, 2D, 3D.

Compact stencil-based flexible order FD operators

Iterative methods for solving large systems of eqs.

Effective preconditioning strategies

1 grid_dim <int > dim (100 ,100); // 100 x100 grid

2 grid_dim <double > phys0 (0. ,0.); // Domain starts in x=0, y=0

3 grid_dim <double > phys1 (1. ,1.); // Domain end in x=1, y=1

4 grid_properties <int ,double > grid_props(dim , phys0 , phys1);

5 grid <double ,device_memory > u(grid_props); // Create u

6 grid <double ,device_memory > f(grid_props); // Create f

7
8 FD:: stencil_2d <double > A(2,4); // Second order derivative , fourth order accuracy

9 A.matvec(u,f); // Calculate f = du/dxx + du/dyy

10
11 monitor m(iter ,rtol ,atol); // Stopping criteria

12 solvers ::cg cg_solver(A,m); // Create a CG solver from A

13 cg_solver.solve(u,f); // Solve Au = f

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Framework Outline

Key components for PDE solvers

Regular grid objects, 1D, 2D, 3D.

Compact stencil-based flexible order FD operators

Iterative methods for solving large systems of eqs.

Effective preconditioning strategies

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

A Fast Mixed-precision Strategy for Iterative
GPU-based Solution of the Laplace Equation

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Defect Correction Method

We found that the Defect Correction method works well for our Laplace
problem

High-order approximations (accuracy)

Minimal storage overhead (problem size)

Minimal global synchronization and reduction steps (parallelizable)

Effective as GMRES in practice (effective)

Textbook Recipe

Algorithm: DC Method for approximate solution of Ax = b

1 Choose x [0] /* initial guess */

2 k = 0
3 Repeat

4 r [k] = b − Ax [k] /* high order defect */

5 Solve Mδ[k] = r [k] /* preconditioner */

6 x [k+1] = x [k] + δ[k] /* defect correction */

7 k = k + 1
8 Until convergence or k > kmax

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Defect Correction Method

We found that the Defect Correction method works well for our Laplace
problem

High-order approximations (accuracy)

Minimal storage overhead (problem size)

Minimal global synchronization and reduction steps (parallelizable)

Effective as GMRES in practice (effective)

Textbook Recipe

Algorithm: DC Method for approximate solution of Ax = b

1 Choose x [0] /* initial guess */

2 k = 0
3 Repeat

4 r [k] = b − Ax [k] /* high order defect */

5 Solve Mδ[k] = r [k] /* preconditioner */

6 x [k+1] = x [k] + δ[k] /* defect correction */

7 k = k + 1
8 Until convergence or k > kmax

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Analysis of Defect Correction Convergence

Rewriting DC into the form of a stationary iterative method

x [k+1] = x [k] +M−1(b −Ax [k]) (2)

= (1−M−1A)x [k] +M−1b (3)

=Gx [k] + c, k = 0, 1, . . . (4)

where G is called the iteration matrix. From stationary iterative theory we
know that to ensure convergence towards the exact solution we must have

ρ(G) < 1,

where ρ(G) is the spectral radius of G, i.e. the maximum absolute eigenvalue of
G. Closer to 0 means better convergence.

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Analysis of Defect Correction Convergence

We can now predict attainable convergence rates for various free surface setups
using linear flexible-order preconditioners.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

kh

ρ(
G

)

2. order discretization

10% (H/L)

max
, order

p
=2

50% (H/L)
max

, order
p
=2

90% (H/L)
max

, order
p
=2

Dispersion (kh) expresses ratio between water depth and wave length and
influences to the condition number of the Laplacian matrix.

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Analysis of Defect Correction Convergence

We can now predict attainable convergence rates for various free surface setups
using linear flexible-order preconditioners.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

kh

ρ(
G

)

4. order discretization

10% (H/L)

max
, order

p
=2

50% (H/L)
max

, order
p
=2

90% (H/L)
max

, order
p
=2

10% (H/L)
max

, order
p
=4

50% (H/L)
max

, order
p
=4

90% (H/L)
max

, order
p
=4

Dispersion (kh) expresses ratio between water depth and wave length and
influences to the condition number of the Laplacian matrix.

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Analysis of Defect Correction Convergence

We can now predict attainable convergence rates for various free surface setups
using linear flexible-order preconditioners.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

kh

ρ(
G

)

6. order discretization

10% (H/L)

max
, order

p
=2

50% (H/L)
max

, order
p
=2

90% (H/L)
max

, order
p
=2

10% (H/L)
max

, order
p
=4

50% (H/L)
max

, order
p
=4

90% (H/L)
max

, order
p
=4

10% (H/L)
max

, order
p
=6

50% (H/L)
max

, order
p
=6

90% (H/L)
max

, order
p
=6

Dispersion (kh) expresses ratio between water depth and wave length and
influences to the condition number of the Laplacian matrix.

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

A Fast Mixed-precision Strategy for Iterative
GPU-based Solution of the Laplace Equation

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Mixed Precision

Definition

An algorithm that mixes different machine precision numbers in its
calculations – while maintaining a high precision solution.

Advantages

Bandwith bound

1 double = 2 floats = 64 bits

Less storage - at all levels

Less bandwith required

Compute bound

1 double multiplier ≈ 4 float
multipliers

1 double adder ≈ 2 float adder

On many GPUs 1:8

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Mixed Precision

Definition

An algorithm that mixes different machine precision numbers in its
calculations – while maintaining a high precision solution.

Question

Can we obtain high accuracy solutions with low/fast precision calculations?

Note: Accuracy 6= precision. 3.121872918723098 has good precision but is not
an accurate representation of π.

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Mixed Precision

Definition

An algorithm that mixes different machine precision numbers in its
calculations – while maintaining a high precision solution.

float s23e8

s23e8 = 1 bit sign — 23 bit mantissa — 8 bit exponent

±d .dd . . . d × βe

The discrete set of floating point values are not uniform

0 2 4 6 8 10 12 14
−1

0

1
3 bit mantissa, 3 bit exponent

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Mixed Precision

Definition

An algorithm that mixes different machine precision numbers in its
calculations – while maintaining a high precision solution.

Roundoff error example

Single precision roundoff error:

c =0.5 + 0.5 + 0.000000004− 0.000000003 = 1.000000001 = 1fl

Mixed precision fix:

a =0.5 + 0.5 = 1fl

b =0.000000004− 0.000000003 = 0.000000001fl

c =a + b = 1.000000001dl

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Mixed Precision Defect Correction

The same principle holds for the defect correction update – and all refinement
processes in general.

Mixed Precision DC

1 Choose x [0]

2 k = 0
3 Repeat

4 r [k] = b − Ax [k] /* Double Precision */

5 Solve Mδ[k] = r [k] /* Single Precision */

6 x [k+1] = x [k] + δ[k] /* Double Precision */

7 k = k + 1
8 Until convergence or k > kmax

Remember, much work lies within the preconditioner!

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Mixed Precision GPU-based Performance Results

Timings per Defect Correction iteration. Using 6th order accurate stencil,
preconditioned with a linear 2nd order accurate multigrid approach,
DC+MG-RB-GS-1V(2,2).

10
3

10
4

10
5

10
6

10
7

10
8

10
−3

10
−2

10
−1

10
0

10
1

N

T
im

e
[s

]
Time pr DC iteration

Tesla C2050 (single)
Tesla C2050 (double)
Tesla C2050 (mixed)
Intel Core i7 (3D, double)

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

Mixed Precision Convergence

The residual norm at every iteration confirms that the mixed precision
algorithm in fact obtain high accuracy.

0 5 10 15 20 25 30
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Convergence history

Iteration

||r
|| 2

Single
Double
Mixed

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

Potential Flow Model GPU Computing Iterative Solver Analysis Mixed Precision

A Fast Mixed-precision Strategy for Iterative
GPU-based Solution of the Laplace Equation

[1]
[2]

Allan P. Engsig-Karup.

Efficient low-storage solution of unsteady fully nonlinear water waves using a defect
correction method.

Submitted to: Journal of Scientific Computing, 2011.

Allan Peter Engsig-Karup, Morten Gorm Madsen, and Stefan Lemvig Glimberg.

A massively parallel gpu-accelerated model for analysis of fully nonlinear free surface waves.

International Journal for Numerical Methods in Fluids, 2011.

A Fast Mixed-Precision Strategy for Iterative GPU-Based Solution of the Laplace Equation Technical University of Denmark

	Potential Flow Model
	GPU Computing
	Iterative Solver Analysis
	Mixed Precision

