WHO Global Foodborne Infections Network external quality assurance system (EQAS) for antimicrobial susceptibility testing of Salmonella isolates

Karlsmose, Susanne; Hendriksen, Rene S.; Mikoleit, Matthew; Jensen, Arne Bent; Aidara-Kane, Awa; Wong, Danilo M.A. Lo Fo; Aarestrup, Frank Møller

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
WHO Global Foodborne Infections Network external quality assurance system (EQAS) for antimicrobial susceptibility testing of Salmonella isolates

Susanne Karlsmose1, Rene S. Hendriksen1, Matthew Mikoleit2, Arne B. Jensen1, Awa Aidara-Kane3, Danilo M.A. Lo Fo Wong3, Frank M. Aarestrup1, and WHO GFN Steering Committee Members

1 WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and EU Reference Laboratory for Antimicrobial Resistance, National Food Institute, Copenhagen, Denmark
2 WHO Collaborating Centre for Surveillance, Epidemiology and Control of Salmonella and other Foodborne Diseases, Centers for Disease Control and Prevention, Division of Foodborne, Waterborne, and Environmental Diseases, Atlanta, GA, USA
3 World Health Organization, Department of Food Safety, Zoonoses and Foodborne Diseases, Geneva, Switzerland

Background
The WHO Global Foodborne Infections Network (GFN) is led by 11 steering committee partners (Figure 1) and builds global capacity to conduct integrated, laboratory-based surveillance, detection and response to outbreaks of foodborne and other infectious enteric diseases through a number of components.

One such component is the global External Quality Assurance System (EQAS) for antimicrobial susceptibility testing (AST) of Salmonella species which was initiated by GFN in 2000. EQAS enhances the capacity of national reference laboratories to obtain reliable data for monitoring and surveillance purposes worldwide.

Methods
Nine EQAS iterations were conducted between 2000 and 2009. In each iteration, participants received eight test strains and new participants were provided with the E. coli ATCC 25922 quality control (QC) strain.

The test strains were selected to cover a variety of antimicrobial resistance profiles, especially emerging phenotypes like plasmid-mediated quinolone resistance and extended-spectrum beta lactamase-producers (ESBL).

In each iteration, participating laboratories submitted AST results for eight Salmonella isolates through a secured website and received an instant report with suggestions for corrective actions if needed.

Results
A total of 323 laboratories in 119 countries participated in the AST component of at least one EQAS iteration conducted between 2001-2009. (Figure 3)

Cumulatively, 92% of the uploaded AST results on the test isolates were in agreement with expected results. The percentage of laboratories uploading data for the QC strain ranged by iteration from 72% to 99% with 41% to 56% of the laboratories having all values within accepted limits (Figure 3). Data from 2001 to 2007 are summarized and published1.

Conclusions
The results from the GFN EQAS, one of the largest of its kind in the world, show that most laboratories worldwide are capable of correctly performing AST of the Salmonella isolates included in the test panel.

However, this study also indicates a continuing need for improvement. Future training efforts should be aimed at enhancing the quality control of the assay stressing the importance of the QC strain, the true indicator of the quality of AST performance, and at enhancing the ability to detect emerging resistance phenotypes, e.g. plasmid mediated quinolone resistance and ESBL.

Reference