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Distortional buckling modes of semi-discretized thin-walled columns

Michael Joachim Andreassen, Jeppe Jönsson

Technical University of Denmark, Department of Civil Engineering, Brovej Building 118,
DK-2800 Kgs. Lyngby

Abstract

This paper presents distorting buckling solutions for semi-discretized thin-walled columns using the coupled differ-
ential equations of a Generalized Beam Theory (GBT). In two related papers recently published by the authors a novel
semi-discretization approach to GBT has been presented. The cross section is discretized and analytical solutions are
sought for the variation along the beam. With this new approach the general GBT equations for identification of a
full set of deformation modes corresponding to both homogeneous and non-homogenous equations are formulated
and solved. Thereby giving the (complex) deformation modes of GBT which decouple the state space equations
corresponding to the reduced order differential equations.

In this paper the developed semi-discretization approach to Generalized Beam Theory (GBT) is extended to include
the geometrical stiffness terms, which are needed for column buckling analysis and identification of buckling modes.
The extension is based on an initial stress approach by addition of the related potential energy terms. The potential
energy of a single deformation mode is formulated based on a discretization of the cross section. Through variations in
the potential energy and the introduction of the constraints related to beam theory this leads to a modified set of coupled
homogeneous differential equations of GBT with initial stress for identification of distortional displacement modes.
In this paper we seek instability solutions using these GBT initial stress equations for simply supported columns
with constrained transverse displacements at the end sections and a constant axial initial stress. Based on the known
boundary conditions the reduced order differential equations are solved by using the trigonometric solution functions
and solving the related eigenvalue problem. This gives the buckling mode shapes and the associated eigenvalues
corresponding to the bifurcation load factors. Thus the buckling modes are found directly by the analytical solution
of the coupled GBT-equations without modal decomposition. Illustrative examples showing global column buckling,
distortional buckling and local buckling are given and it is shown how the novel approach may be used to develop
signature curves and elastic buckling curves. In order to assess the accuracy of the method some of the results are
compared to results found using the commercial FE program Abaqus as well as the conventional GBT and FSM
methods using the software packages GBTUL and CUFSM.

Key words: Thin-walled beams, Beam theory, Stability, Distortion, Warping, Distortional beam theory, Generalized
beam theory, Semi-discretization, Bifurcation, Buckling, Columns.

1. Introduction

An assessment of the structural performance of thin-
walled beams includes linear static analysis and linear
buckling analysis of the behavior. Linear buckling anal-
ysis is used to achieve an estimate of the load level at
which certain types of structures exhibit a loss of sta-
bility through large non-linear deformations. Typically
for these structures membrane strain energy is converted

Email addresses: mican@byg.dtu.dk (Michael Joachim
Andreassen), jej@byg.dtu.dk (Jeppe Jönsson)

into flexural strain energy with very little change in ex-
ternally applied load. In slender columns and thin plates
or shells, the membrane stiffness is much greater than
the bending stiffness, and large strain energy can be
stored with very small membrane deformations. There-
fore the deformations of the fundamental state are ne-
glected and the displacements are measured from the
initial perfect configuration. As the membrane stiff-
ness is much greater than bending stiffness, compara-
tively large bending deformations are needed to absorb
the membrane strain energy released when buckling oc-
curs. In most buckling cases of practical interest this
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means that the geometric stiffness term (for compres-
sional loading) gives a negative contribution to the total
stiffness. In other words, instability may be considered
as the load level at which added elastic stiffness terms
are fully neutralized by a change in added negative ge-
ometric stiffness terms in the potential energy. In this
paper we therefore include initial stress contributions to
the potential energy which allow us to perform linear
distortional buckling analysis of semi-discretized thin-
walled members.

The classic stability analysis of thin-walled columns
is based on a combination of the “in-plane rigid” cross-
section displacement modes (Vlasov modes,[1]) corre-
sponding to: Uniform axial extension, major axis bend-
ing, minor axis bending and torsion with related warp-
ing. An important feature missing here is the deforma-
tion of the cross section, which undergoes in-plane de-
formations by local and distortional modes. Concerning
analysis of thin-walled members including distortion of
the cross section there are a number of methods avail-
able among which are: (i) The use of shell finite ele-
ments in the finite element method (FEM), [2], [3], per-
haps with utilization of recursive substructuring, [4], (ii)
the finite strip method (FSM), [5], [6], [7], [8], [9], and
(iii) the use of approximate GBT-finite beam elements.
In this context the first application of the first genera-
tion of GBT to buckling analysis was published in 1970
by Schardt [10]. Among others also Davies [11], Lep-
istö [12], Simão [13] and Camotim [14] has investigated
the area. This paper deals with a novel method based
on solution of the differential initial stress equations of
GBT obtained through semi-discretization and applica-
tion of beam constraints. In the two related papers by
the authors [15] and [16] a novel finite element based
semi-discretization approach to generalized beam the-
ory (GBT) is presented. In contrast to the traditional
GBT formulations which do not solve the differential
equations but establish a weak solution through intro-
duction of mode shapes (based on an orthogonal shear
stiffness assumption) and use approximate modal ampli-
tude functions, the novel approach in [15] and [16] finds
the exact modes shapes and amplitude solutions of the
reduced order GBT equations related to the discretized
cross section. In the same context the novel approach
in [15] and [16] adhere to the definition of the warping
function given by Kollbrunner & Hajdin, [17], which
adds the integral of the shear flow strains, see also [18]
and [19]. For a more elaborate description see the com-
panion paper, [15].

In this paper the developed semi-discretization for-
mulation is extended by including the initial stress
terms. The potential energy of a single deformation

mode is formulated based on the discretization of the
cross section. Through variations in the potential en-
ergy and the introduction of the constraints related to
beam theory this leads to a modified set of coupled ho-
mogeneous differential equations of GBT with initial
stress for identification of distortional buckling modes.
In this paper we seek “simple” instability solutions us-
ing these GBT initial stress equations for the classical
simply supported columns with constrained transverse
displacements at the end sections and a constant axial
initial stress. Based on the known boundary conditions
the reduced order differential equations are solved by
introducing the relevant trigonometric solution function
and solving the related eigenvalue problem. This di-
rectly gives us the cross-section buckling mode shape
and the eigenvalue corresponding to the bifurcation load
factor. This is done as in conventional FSM without
the use of modal decomposition as conventionally per-
formed in GBT.

Let us shortly make an outline of this paper. We will
start out by introducing the basic assumptions and kine-
matic relations in Section 2. The displacements of a
single mode are separated into the products of cross-
section displacement functions and the axial variation
functions. Furthermore the expressions for the strains
are derived and the element interpolation functions as
well as the nodal displacement components of a straight
cross-section element are described. Based on simple
constitutive relations the potential elastic energy as well
as the potential energy contribution of the factored ini-
tial stress is formulated in Section 3. Furthermore the
global geometrical stiffness matrix is formulated and the
load parameter λ is introduced. Section 4 is split into
two main steps leading to the final distortional differen-
tial equations of double size to which we want to find
solutions. In step I we perform variations in the po-
tential energy whereby the pure axial extension mode
and its homogeneous solution is identified and elimi-
nated. In Step II the constraint equations relating to
the assumption of a constant wall width are introduced,
and the rigid translations and the rigid rotational cross-
section displacement eigenmodes are identified and or-
thogonalized. As in classic beam theory the elimina-
tion or separate formulation of the flexural and torsional
buckling equations (including initial stress terms) are
not possible since they now couple with each other and
with the remaining distortional equations. This results
in global modes which always include distortion of the
cross section to a certain degree. The order of the differ-
ential equations is reduced by doubling the number of
equations through the introduction of a state vector with
components of different differentiation levels. From
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Figure 1: Global and local Cartesian reference frames.

the final differential equations the eigenvalue problem
is formulated. In Section 5 trigonometric solutions of
the eigenvalue problem are considered. Finally Section
6 is devoted to illustrative examples including devel-
opment of classic buckling curves and comparison of
results with finite element results found using Abaqus,
[20], as well as with FSM and conventional GBT re-
sults found using the freely available software packages
CUFSM and GBTUL, see [21] and [22].

2. Basic assumptions and kinematic relations

The prismatic beam is described in a global Cartesian
(x, y, z) coordinate system as shown in Figure 1. From
the figure it is seen that a local coordinate system (z, n, s)
corresponding to the normal and tangential directions is
introduced. In the local coordinate system the displace-
ments un, us and uz are introduced as

un(s, z) = wn(s) ψ(z) (1)

us(n, s, z) =
(
ws(s) − nwn,s(s)

)
ψ(z) (2)

uz(n, s, z) = −
(
Ω(s) + nwn(s)

)
ψ′(z) (3)

For the local transverse displacements un(s, z) and
us(n, s, z), the components ws(s) and wn(s) are the lo-
cal displacements of the centerline and ψ(z) is the
function which describes the axial variation of the in-
plane distortional displacements. For the axial displace-
ments uz(n, s, z) generated by the out-of-plane distor-
tional cross-sectional displacements, the axial (warping)
displacement mode Ω(s) has been included with a varia-
tion corresponding to the negative axial derivative of the
axial variation factor, −ψ′, and due consideration of lo-
cal transverse variation through the term nwn. The local
components are shown in Figure 2.

The corresponding strains referred to as the axial
strains, transverse strains and engineering shear strains,
respectively, are introduced as

εz = −(Ω + nwn)ψ′′ (4)
εs = (ws,s − nwn,ss)ψ (5)
γzs = (ws −Ω,s −2nwn,s)ψ′ (6)

In this approach the thin-walled cross section is dis-
cretized in straight cross-sectional elements. The thick-
ness of the individual plane cross-section element is de-
noted by t and the width of the wall element by bel. The
modal displacements of the individual wall element is
interpolated using the following interpolation functions:

Ωψ′ = NΩvel
Ωψ
′ (7)

wsψ = Nsvel
wψ (8)

wnψ = Nnvel
wψ (9)

in which NΩ(s) and Ns(s) are linear interpolation ma-
trices and Nn(s) is a cubic (beam) interpolation ma-
trix. Furthermore we have introduced the axial and
transverse nodal displacement components of a straight
cross-section element as

vel
Ω =

[
vel

Ω1 vel
Ω2

]T

vel
w =

[
vel

w1 vel
w2 vel

w3 vel
w4 vel

w5 vel
w6

]T
(10)

The nodal components and the direction of the section
coordinates (n, s) are shown in Figure 3. Assembling
the local element degrees of freedom, the global dis-
placement vectors for the total cross section are given
as

vΩ = [vΩ1 vΩ2 vΩ3 . . .]T

vw = [vx1 vy1 φ1 vx2 vy2 φ2 . . .]T (11)

where the axial displacements and the transverse dis-
placements are separated into two vectors. The number
of degrees of freedom ndo f in the cross section is four
times the number of nodes, ndo f = 4nno.

3. Energy assumptions and initial stress

The internal energy potential introduced in paper [15]
and [16] will be briefly presented in this section as well
as the new contribution to the potential energy of the
initial stress terms, which are adequate for distortional
buckling analysis of thin-walled members.

In the classic beam theory simple constitutive rela-
tions are used, which means that the material is assumed
to be linear elastic with a modulus of elasticity E and
shear modulus G. In this paper also a plate elasticity
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Figure 2: Local components of the displacement field and assumed shear stresses.

Figure 3: Nodal components of a straight single flat element.

modulus Es = E/(1 − ν2) in the transverse direction is
utilized. The axial stress is determined as σz = Eεz, the
shear stress as τ = Gγ and finally the transverse stress
as σs = Esεs. Thus taking the transverse plate bending
effect into account but neglecting the coupling of axial
strain εz and transverse strain εs. With the constitutive
relations assumed the basic elastic energy potential be-
comes

Πint =

∫
V

(
1
2 Eε2

z + 1
2Gγ2 + 1

2 Esε
2
s

)
dV (12)

Let us next introduce the contribution to the potential
energy of a constant uniform initial stress σ0 which is
adequate for column buckling analysis. Following con-
ventional methods the initial stress σ0 will be scaled by
a factor λ. After having utilized linear equilibrium of
the pre-buckling state and neglected contribution corre-
sponding to the squared strain term 1

2λσ
0u2

z,z = 1
2λσ

0ε2

the potential energy contribution of the factored initial
stress is given by

Π0 =

∫
V

(
1
2λσ

0u2
s,z + 1

2λσ
0u2

n,z

)
dV

=

∫
V

(
1
2λσ

0(us
′)2 + 1

2λσ
0(un

′)2
)
dV (13)

Let us introduce a thin-walled cross section assem-
bled by using straight cross-sectional elements. This al-
lows us to integrate the internal energy across the vol-
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kσ
ΩΩ

=
∫ be

0 EtNT
Ω

N
Ω

ds

kσww =
∫ be

0
Et3

12 NT
n Nnds

ks =
∫ be

0

(
EstNT

s,sNs,s +
Est3

12 NT
n,ssNn,ss

)
ds

kτww =
∫ be

0

(
GtNT

s Ns + Gt3

3 NT
n,sNn,s

)
ds

kτ
ΩΩ

=
∫ be

0 GtNT
Ω,sNΩ,sds

kτwΩ
=

[
kτ

Ωw

]T
= −

∫ be

0 GtNT
s N

Ω,sds

Table 1: Elastic stiffness contributions of one wall element.

ume of the thin-walled beam. The elastic potential en-
ergy of a single mode takes the following form after the
introduction of the strains expressed by the separated
displacement functions:

Πint =

1
2

∫ L

0

[∑
el

∫ bel

0

{ [
Et(Ωψ′′)2 + 1

12 Et3(wnψ
′′)2

]
+

[
Gt(wsψ

′)2 + Gt(Ω,s ψ′)2

−2Gt(wsψ
′)(Ω,s ψ′) + 1

3Gt3(wn,sψ
′)2

]
+

[
Est(ws,sψ)2 + 1

12 Est3(wn,ssψ)2
] }

ds
]
dz (14)

The elastic energy terms have been grouped in axial
strain energy, shear energy, and transverse strain energy.

The factored initial stress contribution of a single
mode to the potential energy takes the following form
after introduction of straight cross-sectional wall ele-
ments, displacement derivatives and integration through
the thickness:

Π0 = 1
2

∫ L

0

[∑
el

∫ bel

0
λσ0

{
t(wnψ

′)2 + t(wsψ
′)2

1
12 t3(wn,sψ

′)2
}
ds

]
dz (15)

Introducing the displacement interpolation functions
into the internal elastic potential energy leads to the defi-
nition of several stiffness sub-matrices as given in Table
1. The superscripts σ, τ and s correspond to compo-
nents of the axial stiffness, shear stiffness and transverse
stiffness, respectively. After transformation of the indi-
vidual wall elements to global degrees of freedom vw
and vΩ and assembly, the cross-section elastic potential

as introduced in [15] takes the form

Πint =
1
2

∫ L

0

{[
ψvT

w ψvT
Ω

]′′ [Kσ
ww 0
0 Kσ

ΩΩ

] [
ψvw
ψvΩ

]′′
+

[
ψvT

w ψvT
Ω

]′ [Kτ
ww Kτ

wΩ

Kτ
Ωw Kτ

ΩΩ

] [
ψvw
ψvΩ

]′
+

[
ψvT

w ψvT
Ω

] [Ks 0
0 0

] }
dz (16)

Besides the global stiffness matrices K in equation (16),
a bold zero 0 denotes here and in the following a suitable
size matrix or vector of zeroes.

Let us also perform the same operations with the ini-
tial stress contribution to the potential energy. The intro-
duction of the displacement interpolations leads to the
definition of the geometric stiffness matrix for a single
wall element as follows:

k0 =

∫ be

0

{
tσ0

[
NT

n Nn

]
(17)

+tσ0
[
Ns

T Ns

]
+ 1

12 t3σ0
[
Nn,s

T Nn,s

] }
ds

Transforming from local, vel
w, to global, vw, components

using a standard formal finite element transformation
and assembly matrix Tw we get the following global ge-
ometrical stiffness matrix:

K0 =
∑

el

TT
wk0Tw (18)

Hereby equation (15) in reduced form can be rewritten
as

Π0 = 1
2

∫ L

0

{[
ψvT

w ψvT
Ω

]′ [λK0 0
0 0

] [
ψvw
ψvΩ

]′ }
dz

(19)

which is the contribution to the potential energy from
the factored initial stress.

4. GBT differential equations with initial stress

To obtain a formulation resembling a generalization
of Vlasov beam theory including distortion, the follow-
ing main steps need to be performed as in the related
papers [15] and [16].

4.1. Step I: Pure axial extension and influence of shear
constraints

In this step, we introduce the shear constraint equa-
tions that bind axial and transverse modes together and
at the same time simplify or condense equation (16).
In this process we need to eliminate the singularity in
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the shear stiffness matrix related to pure axial exten-
sion. Performing step I as in the related papers the dif-
ferential equations governing the stability problem can
be derived by considering the first variation of the initial
stress contributions to the potential energy in the same
way as the first variation of the traditional elastic po-
tential energy provided the differential equations in the
related papers [15] and [16].

δΠ0 = (20)∫ L

0

{
δ(ψvT

w)′λK0(ψvw)′
}

dz

After performing partial integration the variation of the
initial stress contributions to the potential energy take
the form:

δΠ0 =∫ L

0

{
δ(ψvT

w)
[
− (λK0vwψ

′)′
]}

ds (21)

+

[
δ(ψvT

w)
[
λK0(ψvw)′

]]L

0

where the term in the square bracket correspond to the
boundary loads and boundary conditions. As in the re-
lated paper [15] the pure axial displacement mode is
identified and denoted by superscript a and the remain-
ing axial displacement modes by superscript r. Substi-
tuting δΠint from the related paper leads to the following
coupled homogeneous differential equations of GBT in-
cluding initial stresses in which we note that ζ = −ψ′:(
K̄σvwψ

′′
)′′
−

(
Kσra

ΩΩ va
Ωζ
′
)′′
−

([
Kτvw + λK0vw

]
ψ′

)′
+Ksvwψ = 0

(22)

(
Kσar

ΩΩ vwψ
′′
)′
−

(
Kσaa

ΩΩ va
Ωζ
′
)′

= 0 (23)

These equations establish a coupled set of homogeneous
GBT differential equations, that determine the displace-
ments of a thin-walled beam for a given set of boundary
conditions. Note that va

Ω
is one component that corre-

sponds to the amount of pure axial extension.
Now we seek solutions to the equations. As in paper

[15] we can identify pure axial extension as a solution
which takes the form

ζ(z) = −ψ′(z) = ca1 + ca2z

= −Ψa
′(z) ca =

[
1 z

] [ca1
ca2

]
(24)

where ca1 and ca2 are constants determined by the
boundary conditions of axial extension.

Having identified the “trivial” displacement mode,
pure axial extension, we turn to the solution of the trans-
verse displacement modes. Eliminating ζ′′ by using the
fact that ζ′′ = −ψ′′′ and assuming that ψ′′′ , 0, we find:

va
Ω = −(Kσaa

ΩΩ )−1Kσar
ΩΩ vw (25)

Using this equation or equation (23), we eliminate the
second term in equation (22). This results in the follow-
ing homogeneous fourth order differential equations for
determination of the transverse (global, distortional and
local) distortional displacement modes of GBT:

Kσvwψ
′′′′ −

([
Kτ + λK0

]
vwψ

′
)′

+ Ksvwψ = 0 (26)

where Kσ, Kτ and Ks which are constants are given in
the related paper [15]. In general K0 is a function of
the axial coordinate z corresponding to the longitudinal
contribution of the initial stress. However in the present
context the initial stress will be assumed uniformly dis-
tributed and constant whereby K0 is also independent of
the axial coordinate z and the equation simplifies to

Kσvwψ
′′′′ −

[
Kτ + λK0

]
vwψ

′′ + Ksvwψ = 0 (27)

This set of GBT column stability equations resemble
the conventional equation for classic column stability.
Now the number of degrees of freedom is ndo f = 3nno,
since all (nno) axial dofs vΩ have been eliminated by the
shear constraint equation and the pure axial deformation
mode.

4.2. Step II: Translations, constant wall width and re-
duction of order

In this step we treat two modes corresponding to
transverse translations of the cross section and one
mode corresponding to pure rotation. We also constrain
the transverse displacement field so that the wall widths
remain constant, i.e. we enforce ws,s ≡ 0.

Let us do this by first using the following transforma-
tion fully described in [15]:

vw =
[
Tα

w T3
w T̃u

w

] v
α
w

v3
w

vu
w

 (28)

Here the two orthogonal translational eigenmodes are
ordered in the transformation matrix Tα

w and the or-
thogonal pure rotational eigenmode in T3

w. The iden-
tification of the constrained degrees of freedom to be
eliminated is performed by a transformation matrix Tc

w
while the remaining unconstrained degrees of freedom
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are identified in the transformation matrix Tu
w. By ex-

pressing the constrained degrees of freedom by the un-
constrained we find the total condensed transformation
introduced as T̃u

w, as derived in [15].

Using this transformation to transform the differen-
tial equations in (27), and introducing the null terms
corresponding to the rigid-body modes and zero shear
strain for translational and flexural modes, the differen-
tial equations take the following form:

K
σ
αα 0 Kσ

αu
0 Kσ

33 Kσ
3u

Kσ
uα Kσ

u3 Kσ
uu


v
α
w

v3
w

vu
w

ψ′′′′
−


0 0 0
0 Kτ

33 Kτ
3u

0 Kτ
u3 Kτ

uu

 + λ

K
0
αα K0

α3 K0
αu

K0
3α K0

33 K0
3u

K0
uα K0

u3 K0
uu



v
α
w

v3
w

vu
w

ψ′′

+

0 0 0
0 0 0
0 0 Ks

uu


v
α
w

v3
w

vu
w

ψ =

000
 (29)

The transformed stiffness matrices are found and de-
scribed in paper [15] and the K0-matrices are given in
Table 2. Now the number of degrees of freedom de-
pends on the geometry of the cross section. We have
constrained the transverse displacement field so that the
wall widths remain constant, i.e. we enforce ws,s ≡ 0.
This means that a single ws−dof is eliminated for each
element in the cross section. For a lipped channel cross
section with nel = nno − 1 elements this means that
ndo f = 3nno−nel = 2nno+1. For a box cross section with
nel = nno elements it means that ndo f = 3nno−nel = 2nno.

To solve this differential equation we choose to re-
duce the differential order of the coupled fourth-order
differential equations and the related quadratic eigen-
value problem to twice as many coupled second-order
differential equations with a related linear eigenvalue
problem of double size. This is done in the following.
This method is equivalent to the one used for the solu-
tion of the coupled homogeneous problem of one-mode
distortion and torsion analyzed in [23].

The fourth order differential equation (29) can be
transformed into twice as many second order differen-
tial equations by introducing what is called a state vec-
tor. There are a number of different possible formula-
tions, but we have chosen the use of the state vector
uS = [vαwψ, v3

wψ, vu
wψ, vαwψ′′, v3

wψ
′′, vu

wψ
′′]T . Introduc-

ing this state vector (and using related equality block
equations) yields a reformulation of equation (29) as a
formal second order matrix differential equation of dou-

ble size which takes the form:

0 0 0 0 0 0
0 0 0 0 0 0
0 0 Ks

uu 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 −Kσ

αα 0 −Kσ
αu

0 0 0 0 −Kσ
33 −Kσ

3u
0 0 0 −Kσ

uα −Kσ
u3 −Kσ

uu





vαwψ
v3

wψ
vu

wψ
. . . .
vαwψ′′
v3

wψ
′′

vu
wψ
′′


−





0 0 0 −Kσ
αα 0 −Kσ

αu
0 Kτ

33 Kτ
3u 0 −Kσ

33 −Kσ
3u

0 Kτ
u3 Kτ

uu −Kσ
uα −Kσ

u3 −Kσ
uu

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−Kσ

αα 0 −Kσ
αu 0 0 0

0 −Kσ
33 −Kσ

3u 0 0 0
−Kσ

uα −Kσ
u3 −Kσ

uu 0 0 0


+

λ



K0
αα K0

α3 K0
αu 0 0 0

K0
3α K0

33 K0
3u 0 0 0

K0
uα K0

u3 K0
uu 0 0 0

. . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0







vαwψ
v3

wψ
vu

wψ
. . . .
vαwψ′′
v3

wψ
′′

vu
wψ
′′



′′

=



0
0
0
.
0
0
0


(30)

which we choose to abbreviate as follows using the
block structure shown in equation (30):[

K̃s 0
0 −K̃σ

] [
ṽwψ

ṽwψ
′′

]
−

([
K̃τ −K̃σ

−K̃σ 0

]
+ λ

[
K̃0 0
0 0

]) [
ṽwψ

ṽwψ
′′

]′′
=

[
0
0

]
(31)

This is the set of differential equations to which we want
to find solutions.

5. The distortional initial stress eigenvalue problem

In the reduced order differential equations in (31) we
substitute A, B, C and uS for the respective matrices and
vector in the equation. This means that A and B are lin-
ear stiffness matrices, C a geometrical stiffness matrix
and uS a vector containing the longitudinal amplitude
functions. Thus it takes the following form:

AuS − [B + λC] uS
′′ = 0 (32)

This set of differential equations are homogeneous with
constant coefficients and therefore lead to solution func-
tions of exponential type.

By postulating exponential solutions of the form uS =

vSψ(z), where the state space vector vS is independent
7



K0
αα = Tα

w
T K0Tα

w K0
α3 = Tα

w
T K0T3

w K0
αu = Tα

w
T K0Tu

w

K0
3α = T3

w
T K0Tα

w K0
33 = T3

w
T K0T3

w K0
3u = T3

w
T K0T̃u

w

K0
uα = T̃u

w
T K0Tα

w K0
u3 = T̃u T

w K0T3
w K0

uu = T̃u T
w K0T̃u

w

Table 2: Transformation of K0-stiffness matrices related to Step II.

of the axial coordinate z and ψ(z) = eξz, and inserting
the solution the following special eigenvalue problem is
obtained:

AvS − ξ
2 [B + λC] vS = 0 (33)

In the classic stability theory the solution function
ψ(z) is normally assumed to be a trigonometric function
in order to satisfy suitable simple boundary conditions,
see [24]. This means that ξ = µi is a known (complex)
parameter and that λ can be determined as the eigen-
value equivalent to the instability load factor, which de-
termines the level of stress at which the structure be-
comes unstable. The eigenvalues and the corresponding
eigenvectors vS can be found by solving the eigenvalue
problem.

In order to satisfy suitable simple boundary condi-
tions let us therefore assume that the solution is of a
simple trigonometric form here chosen as

ψ(z) = sin µz (34)

where µ = nπ/L in which n is equal to the number of
buckles, i.e. half-wavelengths. This solution satisfies
boundary conditions corresponding to simple supports
with restrained transverse cross-section displacements
at z = 0 and z = L. Inserting this postulated solu-
tion in equation (32) and remembering the change of
sign related to double differentiation of the sine func-
tion leads to the following generalized linear symmetric
matrix eigenvalue problem, in which the eigenvalues, λ,
correspond to the buckling factor and the eigenvectors
are the distortional state space buckling modes:[
A +

(nπ
L

)2
B
]

vS + λ
(nπ

L

)2
CvS = 0 (35)

Eliminating the second half of vector vS corresponding
to ṽwψ

′′ in equation (31) leads to the following final
generalized linear symmetric matrix eigenvalue prob-
lem:

[K + λG] ṽw = 0 (36)

in which K and G are given in Table 3 as functions of
the inverse length scale parameter µ.

K = K̃s + µ2K̃τ + µ4K̃σ G = µ2K̃0

Table 3: Definition of K and G.

From the results of this eigenvalue problem we know
at which load (λ) the corresponding mode has a ho-
mogeneous solution function which is sinusoidal with
a number of half-waves corresponding to n. Here the
number of degrees of freedom for a lipped channel cross
section is ndo f = 2nno + 1, while the number of degrees
of freedom for a box cross section is ndo f = 2nno. The
number of dofs is equal to the number of eigenvalues. In
the following we will see this applied in the examples.

6. Examples

In this section the developed GBT approach is used
to give illustrative examples of the trigonometric buck-
ling solutions of the differential GBT equations with ini-
tial stress. The ability of the GBT approach to produce
buckling curves and predict buckling is shown. The ex-
amples consider simply supported columns in uniform
compression. The end sections are constrained against
transverse displacements, but otherwise free to warp
(and thus also rotate). The two examples are based on a
lipped channel section and a rectangular hollow section,
respectively.

In each example the buckling signature curves of the
cross section are developed corresponding to the buck-
ling stress versus the buckling half-wavelength for the
four lowest buckling modes. This is done by solving the
GBT eigenvalue problem for consecutive values of the
half-wavelength. For each buckling curve it is shown
that the transverse buckling mode shape varies with the
buckle half-wavelength. The buckling signature curve
is used to develop the overall buckling curve includ-
ing multiple buckling waves by shifting the signature
curve sides ways corresponding to a number of half-
wavelengths. Chosen buckling modes for given col-
umn lengths are used to illustrate local, distortional and
global buckling modes. The accuracy of the results are

8



assessed by comparison to results obtained by the use of
the commercial FE program Abaqus.

The results found using Abaqus are based on
isotropic material and the 4 node S4 shell element with
full 4 point integration. The linear elastic finite element
calculations are based on a structured rectangular mesh
with a side length seed of 5 mm. The cross section is
fixed in the transverse directions at both ends and fixed
at one node against longitudinal translation. All sup-
ports are continuous line supports. Two identical normal
forces are applied as a uniform distributed shell edge
load; one at each end. For further and more detailed
explanations see also [20]. This finite element model
results in local transverse stress near the end supports
due to the Poisson effect. These end stresses have an
influence on the buckling, which is not included in the
FSM or GBT models.

6.1. Example 1: Buckling of a lipped channel column

In this example the buckling of a simply supported
lipped channel column in pure compression is analyzed.
The chosen in-plane geometry and the discretization is
shown in Figure 4. Solving the GBT initial stress eigen-

h = 50
w = 100
c = 25
t = 2.0
E = 2.1 × 105

G = 8.077 × 104

ν = 0.3
◦ Node

Figure 4: Geometry, discretization and parameter values of a lipped
channel column.

value problem given in equation (35) with n=1 for half-
wavelengths L varying from 10 mm to 3000 mm (loga-
rithmical spaced) allows the development of the signa-
ture curve (buckling stress versus the buckle half wave-
length) as shown in Figure 5. Thus the buckling curves
shown in the figure correspond to the four lowest buck-
ling modes with one half-wave buckle , n = 1. For
three different half-wavelengths the transverse buckling
mode shape has been included in the figure. It is clear
that the mode shape of each curve changes gradually as
a function of the length. The chosen half-wavelengths
correspond to the dashed lines at 70 mm, 500 mm and
2000 mm, respectively. To illuminate the changes in
the deformation modes for increasing length we have
chosen also to show the buckling mode shapes in 3D
in Figure 6. The mode shapes are shown as a 3D rep-
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Figure 5: Buckling signature curve corresponding to the lowest four
modes with a single half-wave buckle, n=1.

resentation even though the results are provided by a
one-dimensional beam formulation.

From the figures it is seen that each developing mode
represents its own curve placed in a hierarchical order
according to the stress level. However, the curves are
able to change place in the hierarchy at a certain column
length. This phenomenon can for example be seen for
buckling mode 1 and 2 (two lowest ranking graphs) at a
column length of approximately 1000 mm. The signa-
ture curve, shown bold, is achieved as the the very low-
est of the buckling curves. For this curve a short column
lengths correspond to local buckling, while for increas-
ing column lengths it corresponds to distortional buck-
ling and finally for large column lengths it corresponds
to global buckling. The signature curve is similar to the
finite strip buckling curve obtained by Hancock [25].

As mentioned Figure 5 is for a half-wave number
n = 1. As the buckling loads also depend on the num-
ber of n half waves in the buckled shapes, this means
that points lower than the signature curve can exist for
a greater number of buckles, n > 1. To show this
phenomenon the signature curve has been created for
a varying number of n as shown in Figure 7. This
means that the bold curve shown in Figure 7 represents
the absolute lowest curve for the buckling stress versus
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Figure 6: Column buckling modes associated with Figure 5 for single (n = 1) half wavelengths of 70 mm, 500 mm and 2000 mm
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Figure 7: Buckling stress versus column length for the lipped channel
section in compression.

column length. However, to illustrate the multitude of
buckling modes for each column length, let us look at a
column length of L = 1000mm. In Figure 7 this length
is represented by the vertical dashed line. For this length
we can find the buckling modes m = 1, 2, 3.. ordered
from lowest to highest critical stress, each having a dif-
ferent number of half waves n.

In Table 4 the buckling stresses of FE analysis using
Abaqus [20] versus the presented GBT method, conven-
tional GBT using GBTUL [22] and FSM using CUFSM
[21] are compared. The comparison is performed for
suitable mode numbers (m-values) and the associated
relevant buckling modes are depicted in Figure 8, which
shows the local buckling mode corresponding to the
lowest critical stress (m=1), the global beam buckling
mode (m=20) and a distortional mode shape (m=24),
respectively. The three values of m have been chosen
to show the spectrum of modes represented at the given
beam length.

From Table 4 it is seen that for a column length of
1000 mm buckling will occur as local buckling consist-
ing of thirteen sine half waves and have an associated
buckling stress of 350 MPa. Further more it is seen that
the buckling mode shape for mode m = 20 is global col-
umn buckling with one buckle, n = 1, at a stress level
of 590 Mpa and finally for m = 24 distortional column
buckling occurs at a stress level of 918 Mpa.

Comparing the GBT buckling stresses with Abaqus
we obtain a deviation of 13.4 % for local plate buck-
ling, 1.7 % for global buckling and 1.7 % for distor-
tional buckling. Hereby it is seen that good results
are obtained for global and distortional buckling, while
a rather large deviation is obtained for local buckling.

m=1

m=20

m=24

Figure 8: GBT column buckling mode shapes of a lipped channel
column in pure compression.
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Nr. of half waves Abaqus GBT Diff. GBTUL Diff. CUFSM Diff.
m n [MPa] [MPa] % [MPa] % [MPa] %

1 13 404 350 13.4 436 7.9 412 2.0
20 1 580 590 1.7 589 1.6 581 0.2
24 3 903 918 1.7 – – 906 0.3

Table 4: Comparison of buckling stresses for FE analysis versus the presented GBT method, GBTUL and CUFSM, respectively. The comparisons
are related to the vertical dashed m-line in Figure 7.

The same phenomenon is seen from the GBTUL results
which are based on the classic GBT theory. Here a de-
viation of 7.9 % is obtained for local plate buckling and
1.6 % for global buckling. In contrast to these beam
theory results, Table 4 also shows results obtained from
the CUFSM program which is based on a plate theory.
Here we obtain a deviation of 2.0 % for local plate buck-
ling, 0.2 % for global buckling and 0.3 % for distortional
buckling, showing that good results are obtained in all
cases. From the deviations it is obvious that GBT and
GBTUL are based on beam theories while CUFSM is
based on plate theory. The rather large deviation of 13.4
% for the GBT results compared with the deviation of
7.9 % obtained with GBTUL, can to a certain extent be
explained by the very simple constitutive relations used
in the current GBT formulation. Making a calculation in
Abaqus with similar very simple non-coupling constitu-
tive relations the deviations obtained now corresponds
to (350 MPa) 0.0%, (582 MPa) 1.4% and (888 MPa)
3.4%, respectively. Hereby good matches between the
two approaches are obtained, however also difference
in the modeling of the boundary conditions can affect
the results. Thus demonstrating that this new devel-
oped GBT approach provides reasonably accurate re-
sults with a very small computational cost, making it
an alternative to the traditional and time consuming FE
calculations and the other available methods. However
the constitutive relations should be modified to achieve
a higher accuracy for local plate buckling.

6.2. Example 2: Buckling of a rectangular hollow sec-
tion column

In this example a simply supported rectangular hol-
low section (RHS) column is analyzed. The discretiza-
tion of the cross section and the used parameters are as
given in Figure 9. Considering the given cross section
and solving the eigenvalue problem in equation (35) the
buckling signature curves can be established as depicted
in Figure 10. The buckling curves depicted corresponds
to the lowest four buckling modes with a single half-
wave buckle, n = 1. In this example we have chosen
to show the buckling mode shapes of the four lowest

h = 50
w = 100
t = 2.0
E = 2.1 × 105

G = 8.077 × 104

ν = 0.3
◦ Node

Figure 9: Geometry and parameter values of a rectangular hollow sec-
tion column.

curves. The mode shapes are shown for two values of
the half-wave buckling length corresponding to 200 mm
and 900 mm, respectively. The corresponding 3D plots
of the column buckling mode shapes are shown in Fig-
ure 11. From the figures it is seen that each developing
mode represents its own curve placed in a hierarchical
order according to the stress level. Also here it is seen
that the curves are able to change place in the hierarchy.
Looking at the very lowest curve (the signature curve)
shown as the bolded curve it is seen that short column
length corresponds to local buckling, while larger col-
umn lengths correspond to global buckling.

As mentioned Figure 10 is for a half-wave number
of n = 1. To show the signature curve for a varying
number of n half waves in the buckled shapes Figure 13
has been created. This means that Figure 13 represent
the absolute lowest curve for the buckling stress versus
column length for the section given in Figure 9. To il-
lustrate the multitude of buckling modes for a given col-
umn length let us look at a column length of L = 1000
mm. For this length we look at the ordered buckling
modes, m = 1, 2, 3.. each having a different number of
half-wave buckles. In Figure 13 this length is repre-
sented by the vertical dashed line.

In Table 5 the buckling stresses of FE analysis [20]
versus the presented GBT method and FSM using
CUFSM [21] are compared for suitable m-values. Fur-
ther more the associated relevant buckling configura-
tions are depicted in Figure 12 representing a local
buckling at the lowest critical stress (m=1) and a global
buckling (m=22). The two values of m have been cho-
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Figure 11: Column buckling modes associated with Figure 10 for single (n = 1) half wavelengths of 200 mm and 900 mm.

Nr. of half waves Abaqus GBT Diff. CUFSM Diff.
m n [MPa] [MPa] % [MPa] %

1 12 384 330 14.1 391 1.8
22 1 947 987 4.2 940 0.7

Table 5: Comparison of buckling stresses for FE analysis versus the presented GBT method and CUFSM, respectively. The comparisons are related
to the vertical dashed m-line in Figure 13.
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Figure 10: Buckling signature curve corresponding to the lowest four
modes with a single half-wave buckle, n=1.

m=1

m=22

Figure 12: GBT column buckling mode shapes of a rectangular hol-
low section column in pure compression.

sen to show the spectrum of modes represented at a
given column length. Comparing the buckling stresses
corresponding to the figures in Figure 12 with the com-
mercial FE program Abaqus a maximum deviation of
14.1% is obtained for the first buckling mode (m=1)
corresponding to local plate buckling while a deviation
of 4.2% is obtained for m equal to 22 corresponding to
global column buckling with some distortion included.
Also here it is seen that good results are obtained for
global buckling while a rather large deviation is ob-
tained for local buckling. Using the CUFSM software
we obtain FSM results with a deviation of 1.8 % for lo-
cal plate buckling and 0.7 % for global buckling which
confirms good results in both cases. From the given de-
viations it is clear that GBT results are based on a beam
theory while FSM results are based on a plate theory.
In contrast to Example 1 a comparison using the GB-
TUL software is not performed in this example as GB-
TUL can not currently handle closed cross sections. The
large deviation of 14.1% obtained by the presented GBT
method can to a great extent be explained by the cho-
sen constitutive relations in the current approach. Us-
ing identical simple non-coupling constitutive relations
in the Abaqus finite element model the deviations now
corresponds to (330 MPa) 0.0 % and (941 MPa) 4.9 %,
respectively. Hereby reasonable matches between the
two approaches are obtained for a rectangular hollow
section, thus confirming that this new developed GBT
approach provides adequate results with a very small
computational cost, making it an alternative to the tradi-
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Figure 13: Buckling stress versus column length for the rectangular
hollow section in compression.

tional and time consuming FE calculations and the other
available methods. However there is a need to improve
the constitutive assumptions related to the local plate
behavior.

7. Conclusion

This paper presented the extention of the novel GBT
approach devolped by the authors in [15] and [16] to
include the geometrical stiffness terms which are need
for column buckling analysis. The distortional differ-
ential equations developed in papers [15] and [16] are
extended to a formulation including geometrical stiff-
ness terms by using the initial stress approach to for-
mulate the instability problem. The derived GBT dif-
ferential equations with inital stress have been solved
as an eigenvalue problem leading to a number of buck-
ling modes and associated buckling stresses for simply
supported columns in compression. Illustrative exam-
ples have been given dealing with a lipped channel col-
umn section and a rectangular hollow column section,
respectively. In order to illustrate the application and
validity of the approach the results have been compared
with FE results obtained using the commercial program
Abaqus as well as with FSM and conventional GBT re-
sults found using the freely available software packages
CUFSM and GBTUL respectivly. For both sections rea-
sonable matches are obtained confirming that this new
developed GBT approach including geometrical stiff-
ness terms provides reasonable results with a very small
computational cost making it an alternative to the tradi-
tional and time consuming FE calculations and the other
available methods. However the constitutive relations

may have to be modified in order to achieve higher ac-
curacy for local plate buckling.
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