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Abstract. In [5] an upper bound for the number of points on an al-
gebraic curve defined over a finite field was derived. In this article we
generalize their result by considering Weierstrass groups of several points
simultaneously.

1 Introduction

Let Fq be the finite field with q elements and F/Fq be a function field [12]. We
denote by N(F) the number of rational places of F and by g(F) its genus. For
any rational place P of F , we may consider vP : F → Z∪{∞} the valuation at P
and the associated Riemann–Roch spaces L(mP ) = {f ∈ F | vP (f)+m ≥ 0}, for
m ∈ Z. Furthermore, we have the Weierstrass semigroup H(P ) = {−vP (f) | f ∈
R} ⊂ N0, where R = ∪m≥0L(mP )\{0}. The Geil–Matsumoto bound estimates
the number of rational places using the Weierstrass semigroup [5, Theorem 1],

N(F) ≤ # (H(P ) \ (qH∗(P ) +H(P ))) + 1,

where qH∗(P ) +H(P ) = {qλ+ λ′ | λ, λ′ ∈ H(P ), λ 6= 0}.
We will consider the Weierstrass semigroup defined by several rational places

[3], in order to extend the Geil–Matsumoto bound in section 2. In section 3, we
estimate the size of certain subsets of the set of rational places. This estimation
can lead to a sharper estimation of the total number of rational places. The
motivation of this work is to estimate the minimum distance of toric codes [7].
This is work in progress.

2 A generalization of the Geil–Matsumoto bound

In this section we will present our main result: a generalization of the Geil–
Matsumoto bound. The main ingredient of this generalization is to consider the
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Weierstrass semigroup of an n-tuple P1, . . . , Pn of rational places of the function
field. In this section, we will denote by Q the set of N(F)−n remaining rational
places, but we would like to warn the reader that in the next section, Q will in
general denote a subset of these N(F)−n places. For an n-tuple i = (i1, . . . , in) ∈
Zn we write deg(i) =

∑n
j=1 ij and L(i) = L(

∑n
j=1 ijPj). Further we will denote

with ej the n-tuple all of whose coordinates are 0, except the j-th one, which is
assumed to be 1. Then one has for example that L(λej) = L(λPj).

Definition 1. Given i ∈ Zn, we define

Hi(Pj) = {−vPj
(f) | f ∈ ∪k∈ZL(i + kej)\{0}}

Remark 1. 1. Denoting by 0 the n-tuple consisting of zeroes only, we have
H0(Pj) = H(Pj).

2. Note that the set Hi(Pj) does not depend on the j-th coordinate of i.
3. We remark that L(i + kej) = {0}, for k < −deg(i), so it also holds that

Hi(Pj) = {−vPj (g) | f ∈ ∪k≥− deg(i)L(i + kej)\{0}}.

4. Sets such as Hi(Pj) were also introduced in [2], where they were used to com-
pute lower bound on the minimum distances of certain algebraic geometry
codes. There it is also explained how to compute these sets.

With this notation in place, we define the following functions:

Definition 2. Let i ∈ Zn and let j be an integer between 1 and n. If either
L(i) = L(i + ej) or if there exists λ ∈ H(Pj)\{0} and µ ∈ Hi(Pj) such that
µ+ qλ = ij + 1, we call the pair (i, i + ej) negligible. Further we define

δ(i, i + ej) =

{
0 if the pair (i, i + ej) is negligible,
1 otherwise.

Lemma 1. Let (i, i + ej) be a negligible pair such that L(i) ( L(i + ej), say
µ+ qλ = ij + 1 for λ ∈ H(Pj)\{0} and µ ∈ Hi(Pj). Then there exist f ∈ L(λej)
and g ∈ L(i) such that fqg ∈ L(i + ej)\L(i).

Proof. Since λ ∈ H(Pj), there exists a function f ∈ L(ej) whose pole divisor
equals (f)∞ = λPj . Similarly there exists a function g ∈ L(i) such that (g) ≥
−
∑n
j=0 ijPj and vPj

(g) = µ. This implies that vPj
(fqg) = qλ+ µ = ij + 1 and

(fqg) ≥ −qλPj −
∑n
j=0 ijPj . Together these imply that fqg ∈ L(i + ej)\L(i) as

desired. ut

A pair (i, i + ej) is negligible if deg(i) is large enough. More precisely, one
has:

Proposition 1. Let i ∈ Zn and let j be an integer between 1 and n. If deg(i) ≥
(q + 2)(g(F) + 1)− 3, then the pair (i, i + ej) is negligible.
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Proof. Suppose that deg(i) ≥ (q + 2)(g(F) + 1) − 3. Since then in particular
deg(i) ≥ 2g(F) − 1, it follows from the theorem of Riemann–Roch that L(i) (
L(i + ej). Since the semigroup H(Pj) = {0, λ, . . . } has exactly g(F) gaps, there
exists λ ∈ H(Pj)\{0} with λ ≤ g(F)+1. This implies that deg(i+(1− qλ)ej) ≥
2g(F), so applying the theorem of Riemann–Roch again, we see that there exists
a function g ∈ L(i + (1− qλ)ej) such that vPj (g) = ij + 1− qλ. By Definition 1,
we see that ij + 1 − qλ ∈ Hi(Pj). By Definition 2 the proposition now follows,
since (ij + 1− qλ) + qλ = ij + 1. ut

Actually we showed the following more precise result:

Corollary 1. Let λj denote the smallest nonzero element of H(Pj). Then the
pair (i, i + ej) is negligible if deg(i) ≥ qλj + 2g(F)− 1.

Now we come to the main theorem.

Theorem 1. Define M = (q + 2)(g(F) + 1) − 3 and let i(−1), . . . , i(M) be a
sequence of n-tuples such that:

1. deg(i(−1)) = −1,
2. for any k there exists a j such that i(k) − i(k−1) = ej.

Then N(F) ≤ n+
∑M
k=0 δ(i

(k−1), i(k)).

Proof. Note that by the properties of the divisor sequence, we have deg(i(k)) = k
for any −1 ≤ k ≤ M . For any divisor G with support disjoint from Q, we
introduce the following notation:

EvQ : L(G)→ FN(F)−n
q

f 7→ (f(Q))Q∈Q

and CQ(G) = EvQ(L(G)). For an n-tuple i, we define

CQ(i) = EvQ(L(i)).

We will begin the proof of the theorem by showing the following three claims:

1. For any divisor G of degree deg(G) ≥ N(F) − n + 2g(F) − 1, we have

CQ(G) = FN(F)−n
q .

2. For any k ≥ 0 we have dim(CQ(i(k))) ≤ dim(CQ(i(k−1))) + δ(i(k−1), i(k)).
3. dim(CQ(i(−1))) = 0.

The first claim follows from a standard argument: the kernel of the eval-

uation map EvQ : L(G) → FN(F)−n
q is given by L(G −

∑
Q∈QQ). Therefore

we get dim(CQ(G)) = dim(L(G)) − dim(L(G −
∑
Q∈QQ)). Using the assump-

tion deg(G) ≥ N(F) − n + 2g(F) − 1 and the theorem of Riemann–Roch, this
expression simplifies to N(F)− n.
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The second claim is trivial if δ(i(k−1), i(k)) = 1, so we may assume that
δ(i(k−1), i(k)) = 0. Since by assumption there exists j such that i(k) = i(k−1)+ej ,
we may apply Lemma 1 to conclude that there exist f ∈ L(λej) for some λ > 0
and g ∈ L(i(k−1)) such that fqg ∈ L(i(k))\L(i(k−1)). On the level of codes this
means that the code CQ(i(k)) is generated as a vector space by the vectors of
CQ(i(k−1)) and the vector EvQ(fqg). However, since the codes are defined over
Fq, we have EvQ(fqg) = EvQ(fg). On the other hand, since λ > 0, we see that
fg ∈ L(i(k−1)) and therefore that EvQ(fg) ∈ CQ(i(k−1)). The second claim now
follows.

The third claim is clear, since L(G) = {0} for any divisor of negative degree.

From the last two parts of the claim we find inductively that

dim(CQ(i(M))) ≤
M∑
k=0

δ(i(k−1), i(k)).

On the other hand, combining a similar reasoning and Proposition 1, we find
that

dim(CQ(i(M))) = dim(CQ(i(M) + lej))

for any j and any natural number l. From this and the first part of the claim we
can conclude that

dim(CQ(i(M))) = N(F)− n.
The theorem now follows. ut

The above proof is inspired by the proof of the Geil–Matsumoto bound [5]. If
n = 1, the above theorem reduces to their result. If n = 1, the only choice
for the sequence i(−1), . . . , i(M) is −1, 0, . . . ,M , but for n > 1, there are many
possibilities. Therefore, we have a weighted oriented graph given by the lattice
with vertices {−1, . . . ,M}n and edges (i, i + ej), with weights w(i, i + ej) =
δ(i, i+ej), for i ∈ {−1, . . . ,M}n and j = 1, . . . , n such that ij 6= M . In practice,
we consider the bound from Corollary 1 instead of M and we may not consider
the whole lattice, we can start with a one-dimensional lattice and increase its
size progressively. We just find an optimal sequence i(−1), . . . , i(M), by finding a
path from a vertex with degree −1 to a vertex with degree M with minimum
weight (using Dijkstra’s algorithm).

We will now give some examples showing that this sometimes can be used to
obtain better bounds on the number of rational places of a function field.

Example 1. Consider the function field F1/F8 = F8(x, y)/F8 of the Klein quartic
defined by the equation x3y+y3+x = 0. One has that N(F) = 24 and g(F1) = 3.
There are three rational places occurring as poles and/or zeroes of the functions
x and y. We will denote these by P1, P2 and P3. More precisely one has, (x) =
3P1−P2− 2P3 and (y) = P1 + 2P2− 3P3 ([8, Example 2.34]). From this one can
show that H = H(P1) = H(P2) = H(P3) = 〈3, 5, 7〉 and

L(i1P1 + i2P2 + i3P3) = 〈xαyβ | 3α+β ≥ −i1,−α+2β ≥ −i2,−2α−3β ≥ −i3〉.
(1)
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From the Geil–Matsumoto bound, we have N(F1) ≤ 1 + 24 = 25, since
H \(qH∗+H) = {0, 3, 5, 6, . . . , 23, 25, 26, 28}. Actually, one can prove that every
rational place of the Klein quartic has the same Weierstrass semigroup.

We now compute the bound from Theorem 1, where we will consider n = 2,
and P1, P2 as above. It is enough to consider a sequence of n-tuples (i(−1), . . . , i(29)),
since (i, i + ej) is negligible if deg(i) ≥ 8 · 3 + 2 · 3 − 1 = 29 (Corollary
1). As before we represent the divisor P1, resp. P2 by e1, resp. e2 and write

ik = (i
(k)
1 , i

(k)
2 ) = i

(k)
1 e1 + i

(k)
2 e2.

We computed a oriented graph as above, given by the {−1, . . . 29}×{0, . . . 4}
lattice, with weights given by δ(i, i + ej) and got a path with minimum weight
given by 

i(k) = (k, 0), for k = −1, . . . , 23,
i(23+k) = (24, k − 1), for k = 1, . . . , 3,
i(26+k) = (25, k + 1), for k = 1, . . . , 3,

then, {k ≥ 0 | δ(i(k−1), i(k)) = 1} = {0, 3, 5, 6, . . . , 23, 25} and therefore N(F) ≤
2 + 22 = 24.

The Geil–Matsumoto bound is an improvement to Lewittes’ bound [10],

N(F) ≤ qλ1 + 1,

where λ1 denotes the smallest non-zero element of H. Let us present a case where
the Geil–Matsumoto bound gives the same result as Lewittes’ bound. Let F/Fq
be a function field, assume that q ∈ H = H(P ), we claim that Geil–Matumoto
bound gives the same result as Lewittes bound. We introduce the Apéry set of a
numerical semigroup [1, 11], which is our main tool for this result. For e ∈ H, the
Apéry set of H relative to e is defined to be Ap(H, e) = {λ ∈ H|H−e /∈ H}. One
has that Ap(H, e) is {w0 = 0, w1, . . . , we−1}, where wi is the smallest element
of H congruent with i modulo e, for i = 0, . . . , e− 1. Moreover, for λ ∈ H there
exist a unique i and k, with i ∈ {0, . . . , e−1} and k ∈ N0, such that λ = wi+ke,
which is called Apéry’s notation. Thus we have the disjoint union

H =

e−1⋃
i=0

{wi + eN0},

in particular {e, w1, . . . , we−1} generates H.

Proposition 2. Let q ∈ H and λ1 the smallest non-zero element of H, then

H \ (qH∗ +H) = H \ (qλ1 +H),

and therefore the bounds in [5, 10] give the same result if q ∈ H.

Proof. Let Ap(H, q) = {w0 = 0, w1, . . . , wq−1} be the Apéry set of H relative to
e = q ∈ H. We consider H generated by {q, w1, . . . , wq−1}, hence

H \ (qH∗ +H) = H \

(
(

q−1⋃
i=1

(qwi +H)) ∪ (qq +H)

)
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We consider Apéry’s notation for qq and qwi: qq = w0 + qq and qwi = w0 +wiq,
for i = 0, . . . , q − 1. Thus,

H \ (qH∗ +H) = H \ (λq +H),

where λ = min{q, w1, . . . , wq−1}, since qq, qwi ∈ {w0 +qN0}, for i = 0, . . . , q−1.
Furthermore, the smallest non-zero element λ1 ofH either is equal to q or belongs
to Ap(H, q) – as in this case λ1 − q 6∈ H. Hence, λ = λ1 is the smallest non-zero
element of H. Therefore, we have

# (H \ (qH∗ +H)) + 1 = # (H \ (qλ1 +H)) + 1 = qλ1 + 1,

and the result holds. ut

The Weierstrass semigroup of Example 1 contains q = 8, the number of
elements of the base field. Therefore, both bounds in [5, 10] give the same result.
Namely, we have e = q = 8 and w0 = 0, w1 = 9, w2 = 10, w3 = 3, w4 = 12, w5 =
5, w6 = 6, w7 = 7.

3 A second generalization of the Geil–Matsumoto bound

In this section we will generalize the previous results by estimating the size of
certain subsets of the set of rational places. Contrary to the previous section, we
will therefore in this section by Q denote some subset of the set of all rational
places not containing any of the places P1, . . . , Pn. The results from the previous
section can be refined in this setup. One of the reasons we now look at subsets
is that we want to apply Geil–Matsumoto like bounds to curves lying on toric
varieties [4] and explore the resulting consequences for some toric codes [7]. For
convenience we define T = Fq\{0}.

Definition 3. Let i ∈ Zn and let j be an integer between 1 and n. We call the
pair (i, i + ej) T -negligible if either L(i) = L(i + ej) or if

1. there exists λ ∈ H(Pj)\{0} and µ ∈ Hi(Pj) such that µ+ (q − 1)λ = ij + 1
and

2. for this λ there exists f ∈ L(λPj)\L((λ − 1)Pj) such that f(Q) ∈ T for all
Q ∈ Q.

Further we define

δT (i, i + ej) =

{
0 if the pair (i, i + ej) is T -negligible,
1 otherwise.

Note that depending on the choice of Q, the function δT may change. Strictly
speaking we should therefore include Q in the notation for this function, but for
the sake of simplicity, we will not do this.
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Lemma 2. Let (i, i + ej) be a T -negligible pair such that L(i) ( L(i + ej),
say µ + (q − 1)λ = ij + 1 for λ ∈ H(Pj)\{0} and µ ∈ Hi(Pj). Then there
exist f ∈ L(λej) and g ∈ L(i) such that fq−1g ∈ L(i + ej)\L(i) and such that
moreover f(Q) ∈ T for all Q ∈ Q.

Proof. Since λ ∈ H(Pj), there exists a function f ∈ L(ej) whose pole divisor
equals (f)∞ = λPj . By definition 3 we can choose f such that f(Q) ∈ T for all
Q ∈ Q. Similarly there exists a function g ∈ L(i) such that (g) ≥ −

∑n
j=0 ijPj

and vPj (g) = µ. This implies that vPj (fq−1g) = (q − 1)λ + µ = ij + 1 and
(fq−1g) ≥ −(q − 1)λPj −

∑n
j=0 ijPj . Together these imply that fq−1g ∈ L(i +

ej)\L(i) as desired. ut

A pair (i, i + ej) is negligible if deg(i) is large enough. More precisely, one
has:

Proposition 3. Let i ∈ Zn and let j be an integer between 1 and n. Define
Λ = #Q + 2g(F) − 1 and MT = (q − 1)(Λ + 1) + 2g(F) − 1. Then any pair
(i, i + ej) satisfying deg(i) ≥MT is T -negligible.

Proof. Suppose that deg(i) ≥MT . Since then in particular deg(i) ≥ 2g(F)−1, it
follows from the theorem of Riemann–Roch that L(i) ( L(i+ej). Also note that
deg(i+(1−(q−1)(Λ+1))ej) ≥ 2g(F), so applying the theorem of Riemann–Roch
again, we see that there exists a function g ∈ L(i+(1−(q−1)(Λ+1))ej) such that
vPj

(g) = ij+1−(q−1)(Λ+1). By Definition 1, we see that ij+1−(q−1)(Λ+1) ∈
Hi(Pj).

Since the largest gap of the semigroup H(Pj) is at most 2g(F) − 1, the
number Λ + 1 is not a gap of H(Pj). This means that there exists a function
f ∈ L((Λ + 1)Pj) such that vPj

(f) = Λ + 1. We cannot conclude yet from
Definition 3 that the pair (i, i + ej) is T -negligible, since f could have a zero
among the places in Q. However, from the proof of Theorem 1 and the definition
of Λ we see that for any j the evaluation map EvQ : L(ΛPj)→ F#Q

q is surjective.
Therefore, we can always choose f such that f(Q) ∈ T for all Q ∈ Q. ut

The MT given in this proposition can be very large. Under some additional
conditions, we can obtain better results.

Proposition 4. Let i ∈ Zn and let j be an integer between 1 and n. Suppose that
for any λ ∈ H(Pj) there exists f ∈ L(λPj)\L((λ − 1)Pj) such that f(Q) ∈ T
for all Q ∈ Q. If deg(i) ≥ (q + 1)(g(F) + 1) − 3, then the pair (i, i + ej) is
T -negligible.

Proof. Suppose that deg(i) ≥ (q + 1)(g(F) + 1) − 3. Since then in particular
deg(i) ≥ 2g(F) − 1, it follows from the theorem of Riemann–Roch that L(i) (
L(i + ej). As in the proof of Proposition 1 we can conclude that there exists
λ ∈ H(Pj)\{0} with λ ≤ g(F) + 1. This implies that deg(i + (1− (q− 1)λ)ej) ≥
2g(F), so applying the theorem of Riemann–Roch again, we see that there exists
a function g ∈ L(i + (1− (q − 1)λ)ej) such that vPj

(g) = ij + 1− (q − 1)λ. By
Definition 1, we see that ij + 1− (q−1)λ ∈ Hi(Pj). Furthermore by assumption,
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there exists f ∈ L(λPj)\L((λ − 1)Pj) such that f(Q) ∈ T for all Q ∈ Q.
Therefore, by Definition 3, the proposition follows. ut

As in the previous section, we can refine the above statement:

Corollary 2. Let λj denote the smallest nonzero element of H(Pj). Suppose
that for any λ ∈ H(Pj) there exists f ∈ L(λPj)\L((λ−1)Pj) such that f(Q) ∈ T
for all Q ∈ Q. Then the pair (i, i + ej) is T -negligible if deg(i) ≥ (q − 1)λj +
2g(F)− 1.

Now we come to the refinement of Theorem 1.

Theorem 2. Define Λ = #Q+2g(F)−1 and MT = (q−1)(Λ+1)+2g(F)−1.
Let i(−1), . . . , i(MT ) be a sequence of n-tuples such that:

1. deg(i(−1)) = −1,

2. for any k there exists a j such that i(k) − i(k−1) = ej.

Then #Q ≤
∑MT

k=0 δT (i(k−1), i(k)).

Proof. The proof is similar to that of Theorem 1. All the reasoning is similar
apart from the proof of the following claim: For any k ≥ 0 we have dim(CQ(i(k))) ≤
dim(CQ(i(k−1))) + δT (i(k−1), i(k)).

This is clear if δT (i(k−1), i(k)) = 1, so we may assume that δT (i(k−1), i(k)) = 0.
We may apply Lemma 2 to conclude that there exist f ∈ L(λej) for some
λ > 0 and g ∈ L(i(k−1)) such that fq−1g ∈ L(i(k))\L(i(k−1)). Moreover, we may
assume that f(Q) ∈ T for all Q ∈ Q. Since αq−1 = 1 for all α ∈ T , this implies
f(Q)q−1 = 1 for all Q ∈ Q. On the level of codes we have, as in Theorem 1, that
the code CQ(i(k)) is generated as a vector space by the vectors of CQ(i(k−1)) and
the vector EvQ(fq−1g). However, we have EvQ(fq−1g) = EvQ(g) ∈ CQ(i(k−1)).
The claim now follows and the proof of the theorem can be concluded as that of
Theorem 1. ut

In case n = 1 and the hypotheses from Proposition 4 are satisfied, we obtain
the following result:

Corollary 3. Suppose that for any λ ∈ H(P ) there exists f ∈ L(λP )\L((λ −
1)P ) such that f(Q) ∈ T for all Q ∈ Q. Then

#Q ≤ #H(P )\((q − 1)H∗(P ) +H(P )).

Proof. Since n = 1, the only sequence we can choose is −1, 0, 1, . . . . However,
under the stated assumptions, a pair (k − 1, k) is T -negligible if and only if
k ∈ (q − 1)H∗(P ) +H(P ). ut

We will now give some examples.
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Example 2. This example is a continuation of Example 1. In particular we will
use the same notation as in that example. We choose P = P1 and Q to be the
set of all rational places Q satisfying x(Q) ∈ T and y(Q) ∈ T . Using the divisors
for x and y in Example 1, we see that the only rational places not in Q are P1,
P2 and P3.

Using Equation (1), we see that the conditions in Corollary 3 are satisfied
for our choice of Q. Therefore we find that

#Q ≤ #H(P1)\(7H∗(P1) +H(P1)) = #{0, 3, 5, . . . , 20, 22, 23, 25} = 21.

Also counting the rational points P1, P2 and P3 we find that N(F1) ≤ 24. In this
instance Corollary 3 gives a better bound than the bound by Geil–Matsumoto.

Example 3. In this example we consider the function field F2/F32 = F32(x, y)/F32

defined by the equation x9 + x2y5 + y2 = 0 [6, 9]. This is a function field with
158 rational places and genus 15. The function y has a unique zero, which we
denote by P1 and it holds that vP1

(x) = 2 and vP1
(y) = 9. The function x has

a unique pole, which we will denote by P2 and it holds that vP2
(x) = −5 and

vP2(y) = −7. Apart from P1, the function x has exactly one other zero, which
we denote by P3 and it holds that vP3(x) = 3 and vP3(y) = −2. All in all, we
see that

(x) = 2P1 − 5P2 + 3P3

and
(y) = 9P1 − 7P2 − 2P3.

With these divisors in hand it is possible to compute the semigroups for P1, P2

and P3:
H(P1) = {0, 7, 9, 14, 16, 18, 19, 20, 21, 23, 25, . . . },

H(P2) = {0, 5, 10, 12, 15, 17, 18, 20, 22, 23, 24, 25, 27, . . . }

and
H(P3) = {0, 8, 11, 13, 14, 16, 19, 21, 22, 24, . . . }.

Moreover it holds that

L(i1P1 + i2P2 + i3P3) = 〈xαyβ | 2α+9β ≥ −i1,−5α−7β ≥ −i2, 3α−2β ≥ −i3〉.
(2)

One can also show that all rational places different from P1, P2 and P3 have
the same semigroup {0, 16, . . . }. The Geil–Matsumoto bound using the point P2

yields N(F2) ≤ 161.
We will apply Corollary 3 for P = P2. As in the previous example, we choose

Q to be the set of all rational places Q satisfying x(Q) ∈ T and y(Q) ∈ T . The
only rational places not contained in Q are P1, P2 and P3. Equation (2) implies
that we can apply Corollary 3 for any of the places P1, P2 and P3. Using P2 we
find that

#Q ≤ H(P2)\(31H∗(P2) +H(P2)) = 155.
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Also counting the places P1, P2 and P3, we find that N(F2) ≤ 158, which is
sharp.
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